perf_event.c 146.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

38
atomic_t perf_task_events __read_mostly;
39 40 41
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
42

P
Peter Zijlstra 已提交
43 44 45 46
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

47
/*
48
 * perf event paranoia level:
49 50
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
51
 *   1 - disallow cpu events for unpriv
52
 *   2 - disallow kernel profiling for unpriv
53
 */
54
int sysctl_perf_event_paranoid __read_mostly = 1;
55

56
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57 58

/*
59
 * max perf event sample rate
60
 */
61
int sysctl_perf_event_sample_rate __read_mostly = 100000;
62

63
static atomic64_t perf_event_id;
64

65
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
66

67
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
68
{
69
	return "pmu";
T
Thomas Gleixner 已提交
70 71
}

P
Peter Zijlstra 已提交
72
void perf_pmu_disable(struct pmu *pmu)
73
{
P
Peter Zijlstra 已提交
74 75 76
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
77 78
}

P
Peter Zijlstra 已提交
79
void perf_pmu_enable(struct pmu *pmu)
80
{
P
Peter Zijlstra 已提交
81 82 83
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
84 85
}

86 87 88 89 90 91 92
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
93
static void perf_pmu_rotate_start(struct pmu *pmu)
94
{
P
Peter Zijlstra 已提交
95
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96
	struct list_head *head = &__get_cpu_var(rotation_list);
97

98
	WARN_ON(!irqs_disabled());
99

100 101
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
102 103
}

104
static void get_ctx(struct perf_event_context *ctx)
105
{
106
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 108
}

109 110
static void free_ctx(struct rcu_head *head)
{
111
	struct perf_event_context *ctx;
112

113
	ctx = container_of(head, struct perf_event_context, rcu_head);
114 115 116
	kfree(ctx);
}

117
static void put_ctx(struct perf_event_context *ctx)
118
{
119 120 121
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
122 123 124
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
125
	}
126 127
}

128
static void unclone_ctx(struct perf_event_context *ctx)
129 130 131 132 133 134 135
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

158
/*
159
 * If we inherit events we want to return the parent event id
160 161
 * to userspace.
 */
162
static u64 primary_event_id(struct perf_event *event)
163
{
164
	u64 id = event->id;
165

166 167
	if (event->parent)
		id = event->parent->id;
168 169 170 171

	return id;
}

172
/*
173
 * Get the perf_event_context for a task and lock it.
174 175 176
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
177
static struct perf_event_context *
P
Peter Zijlstra 已提交
178
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
179
{
180
	struct perf_event_context *ctx;
181 182

	rcu_read_lock();
P
Peter Zijlstra 已提交
183
retry:
P
Peter Zijlstra 已提交
184
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
185 186 187 188
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
189
		 * perf_event_task_sched_out, though the
190 191 192 193 194 195
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
196
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
197
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
198
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
199 200
			goto retry;
		}
201 202

		if (!atomic_inc_not_zero(&ctx->refcount)) {
203
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
204 205
			ctx = NULL;
		}
206 207 208 209 210 211 212 213 214 215
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
216 217
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
218
{
219
	struct perf_event_context *ctx;
220 221
	unsigned long flags;

P
Peter Zijlstra 已提交
222
	ctx = perf_lock_task_context(task, ctxn, &flags);
223 224
	if (ctx) {
		++ctx->pin_count;
225
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
226 227 228 229
	}
	return ctx;
}

230
static void perf_unpin_context(struct perf_event_context *ctx)
231 232 233
{
	unsigned long flags;

234
	raw_spin_lock_irqsave(&ctx->lock, flags);
235
	--ctx->pin_count;
236
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
237 238 239
	put_ctx(ctx);
}

240 241
static inline u64 perf_clock(void)
{
242
	return local_clock();
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

268 269 270 271 272 273
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
274 275 276 277 278 279 280 281 282

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

283 284 285 286 287 288 289 290 291 292 293 294
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

295 296 297 298 299 300 301 302 303
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

304
/*
305
 * Add a event from the lists for its context.
306 307
 * Must be called with ctx->mutex and ctx->lock held.
 */
308
static void
309
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
310
{
311 312
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
313 314

	/*
315 316 317
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
318
	 */
319
	if (event->group_leader == event) {
320 321
		struct list_head *list;

322 323 324
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

325 326
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
327
	}
P
Peter Zijlstra 已提交
328

329
	list_add_rcu(&event->event_entry, &ctx->event_list);
330
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
331
		perf_pmu_rotate_start(ctx->pmu);
332 333
	ctx->nr_events++;
	if (event->attr.inherit_stat)
334
		ctx->nr_stat++;
335 336
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

409
	event->id_header_size = size;
410 411
}

412 413
static void perf_group_attach(struct perf_event *event)
{
414
	struct perf_event *group_leader = event->group_leader, *pos;
415

P
Peter Zijlstra 已提交
416 417 418 419 420 421
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

422 423 424 425 426 427 428 429 430 431 432
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
433 434 435 436 437

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
438 439
}

440
/*
441
 * Remove a event from the lists for its context.
442
 * Must be called with ctx->mutex and ctx->lock held.
443
 */
444
static void
445
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
446
{
447 448 449 450
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
451
		return;
452 453 454

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

455 456
	ctx->nr_events--;
	if (event->attr.inherit_stat)
457
		ctx->nr_stat--;
458

459
	list_del_rcu(&event->event_entry);
460

461 462
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
463

464
	update_group_times(event);
465 466 467 468 469 470 471 472 473 474

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
475 476
}

477
static void perf_group_detach(struct perf_event *event)
478 479
{
	struct perf_event *sibling, *tmp;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
496
		goto out;
497 498 499 500
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
501

502
	/*
503 504
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
505
	 * to whatever list we are on.
506
	 */
507
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
508 509
		if (list)
			list_move_tail(&sibling->group_entry, list);
510
		sibling->group_leader = sibling;
511 512 513

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
514
	}
515 516 517 518 519 520

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
521 522
}

523 524 525 526 527 528
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

529 530
static void
event_sched_out(struct perf_event *event,
531
		  struct perf_cpu_context *cpuctx,
532
		  struct perf_event_context *ctx)
533
{
534 535 536 537 538 539 540 541 542 543 544 545 546 547
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

548
	if (event->state != PERF_EVENT_STATE_ACTIVE)
549
		return;
550

551 552 553 554
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
555
	}
556
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
557
	event->pmu->del(event, 0);
558
	event->oncpu = -1;
559

560
	if (!is_software_event(event))
561 562
		cpuctx->active_oncpu--;
	ctx->nr_active--;
563
	if (event->attr.exclusive || !cpuctx->active_oncpu)
564 565 566
		cpuctx->exclusive = 0;
}

567
static void
568
group_sched_out(struct perf_event *group_event,
569
		struct perf_cpu_context *cpuctx,
570
		struct perf_event_context *ctx)
571
{
572
	struct perf_event *event;
573
	int state = group_event->state;
574

575
	event_sched_out(group_event, cpuctx, ctx);
576 577 578 579

	/*
	 * Schedule out siblings (if any):
	 */
580 581
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
582

583
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
584 585 586
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
587 588 589 590 591 592
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
593
/*
594
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
595
 *
596
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
597 598
 * remove it from the context list.
 */
599
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
600
{
601 602
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
603
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
604 605 606 607 608 609

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
610
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
611 612
		return;

613
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
614

615
	event_sched_out(event, cpuctx, ctx);
616

617
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
618

619
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
620 621 622 623
}


/*
624
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
625
 *
626
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
627
 *
628
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
629
 * call when the task is on a CPU.
630
 *
631 632
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
633 634
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
635
 * When called from perf_event_exit_task, it's OK because the
636
 * context has been detached from its task.
T
Thomas Gleixner 已提交
637
 */
638
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
639
{
640
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
641 642 643 644
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
645
		 * Per cpu events are removed via an smp call and
646
		 * the removal is always successful.
T
Thomas Gleixner 已提交
647
		 */
648 649 650
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
651 652 653 654
		return;
	}

retry:
655 656
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
657

658
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
659 660 661
	/*
	 * If the context is active we need to retry the smp call.
	 */
662
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
663
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
664 665 666 667 668
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
669
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
670 671
	 * succeed.
	 */
P
Peter Zijlstra 已提交
672
	if (!list_empty(&event->group_entry))
673
		list_del_event(event, ctx);
674
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
675 676
}

677
/*
678
 * Cross CPU call to disable a performance event
679
 */
680
static void __perf_event_disable(void *info)
681
{
682 683
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
684
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
685 686

	/*
687 688
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
689
	 */
690
	if (ctx->task && cpuctx->task_ctx != ctx)
691 692
		return;

693
	raw_spin_lock(&ctx->lock);
694 695

	/*
696
	 * If the event is on, turn it off.
697 698
	 * If it is in error state, leave it in error state.
	 */
699
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
700
		update_context_time(ctx);
701 702 703
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
704
		else
705 706
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
707 708
	}

709
	raw_spin_unlock(&ctx->lock);
710 711 712
}

/*
713
 * Disable a event.
714
 *
715 716
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
717
 * remains valid.  This condition is satisifed when called through
718 719 720 721
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
722
 * is the current context on this CPU and preemption is disabled,
723
 * hence we can't get into perf_event_task_sched_out for this context.
724
 */
725
void perf_event_disable(struct perf_event *event)
726
{
727
	struct perf_event_context *ctx = event->ctx;
728 729 730 731
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
732
		 * Disable the event on the cpu that it's on
733
		 */
734 735
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
736 737 738
		return;
	}

P
Peter Zijlstra 已提交
739
retry:
740
	task_oncpu_function_call(task, __perf_event_disable, event);
741

742
	raw_spin_lock_irq(&ctx->lock);
743
	/*
744
	 * If the event is still active, we need to retry the cross-call.
745
	 */
746
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
747
		raw_spin_unlock_irq(&ctx->lock);
748 749 750 751 752 753 754
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
755 756 757
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
758
	}
759

760
	raw_spin_unlock_irq(&ctx->lock);
761 762
}

763
static int
764
event_sched_in(struct perf_event *event,
765
		 struct perf_cpu_context *cpuctx,
766
		 struct perf_event_context *ctx)
767
{
768
	if (event->state <= PERF_EVENT_STATE_OFF)
769 770
		return 0;

771
	event->state = PERF_EVENT_STATE_ACTIVE;
772
	event->oncpu = smp_processor_id();
773 774 775 776 777
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
778
	if (event->pmu->add(event, PERF_EF_START)) {
779 780
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
781 782 783
		return -EAGAIN;
	}

784 785
	event->tstamp_running += ctx->time - event->tstamp_stopped;

786 787
	event->shadow_ctx_time = ctx->time - ctx->timestamp;

788
	if (!is_software_event(event))
789
		cpuctx->active_oncpu++;
790 791
	ctx->nr_active++;

792
	if (event->attr.exclusive)
793 794
		cpuctx->exclusive = 1;

795 796 797
	return 0;
}

798
static int
799
group_sched_in(struct perf_event *group_event,
800
	       struct perf_cpu_context *cpuctx,
801
	       struct perf_event_context *ctx)
802
{
803
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
804
	struct pmu *pmu = group_event->pmu;
805 806
	u64 now = ctx->time;
	bool simulate = false;
807

808
	if (group_event->state == PERF_EVENT_STATE_OFF)
809 810
		return 0;

P
Peter Zijlstra 已提交
811
	pmu->start_txn(pmu);
812

813
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
814
		pmu->cancel_txn(pmu);
815
		return -EAGAIN;
816
	}
817 818 819 820

	/*
	 * Schedule in siblings as one group (if any):
	 */
821
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
822
		if (event_sched_in(event, cpuctx, ctx)) {
823
			partial_group = event;
824 825 826 827
			goto group_error;
		}
	}

828
	if (!pmu->commit_txn(pmu))
829
		return 0;
830

831 832 833 834
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
835 836 837 838 839 840 841 842 843 844
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
845
	 */
846 847
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
848 849 850 851 852 853 854 855
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
856
	}
857
	event_sched_out(group_event, cpuctx, ctx);
858

P
Peter Zijlstra 已提交
859
	pmu->cancel_txn(pmu);
860

861 862 863
	return -EAGAIN;
}

864
/*
865
 * Work out whether we can put this event group on the CPU now.
866
 */
867
static int group_can_go_on(struct perf_event *event,
868 869 870 871
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
872
	 * Groups consisting entirely of software events can always go on.
873
	 */
874
	if (event->group_flags & PERF_GROUP_SOFTWARE)
875 876 877
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
878
	 * events can go on.
879 880 881 882 883
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
884
	 * events on the CPU, it can't go on.
885
	 */
886
	if (event->attr.exclusive && cpuctx->active_oncpu)
887 888 889 890 891 892 893 894
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

895 896
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
897
{
898
	list_add_event(event, ctx);
899
	perf_group_attach(event);
900 901 902
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
903 904
}

T
Thomas Gleixner 已提交
905
/*
906
 * Cross CPU call to install and enable a performance event
907 908
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
909 910 911
 */
static void __perf_install_in_context(void *info)
{
912 913 914
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
915
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
916
	int err;
T
Thomas Gleixner 已提交
917 918 919 920 921

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
922
	 * Or possibly this is the right context but it isn't
923
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
924
	 */
925
	if (ctx->task && cpuctx->task_ctx != ctx) {
926
		if (cpuctx->task_ctx || ctx->task != current)
927 928 929
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
930

931
	raw_spin_lock(&ctx->lock);
932
	ctx->is_active = 1;
933
	update_context_time(ctx);
T
Thomas Gleixner 已提交
934

935
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
936

937 938 939
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

940
	/*
941
	 * Don't put the event on if it is disabled or if
942 943
	 * it is in a group and the group isn't on.
	 */
944 945
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
946 947
		goto unlock;

948
	/*
949 950 951
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
952
	 */
953
	if (!group_can_go_on(event, cpuctx, 1))
954 955
		err = -EEXIST;
	else
956
		err = event_sched_in(event, cpuctx, ctx);
957

958 959
	if (err) {
		/*
960
		 * This event couldn't go on.  If it is in a group
961
		 * then we have to pull the whole group off.
962
		 * If the event group is pinned then put it in error state.
963
		 */
964
		if (leader != event)
965
			group_sched_out(leader, cpuctx, ctx);
966
		if (leader->attr.pinned) {
967
			update_group_times(leader);
968
			leader->state = PERF_EVENT_STATE_ERROR;
969
		}
970
	}
T
Thomas Gleixner 已提交
971

P
Peter Zijlstra 已提交
972
unlock:
973
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
974 975 976
}

/*
977
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
978
 *
979 980
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
981
 *
982
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
983 984
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
985 986
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
987 988
 */
static void
989 990
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
991 992 993 994
			int cpu)
{
	struct task_struct *task = ctx->task;

995 996
	event->ctx = ctx;

T
Thomas Gleixner 已提交
997 998
	if (!task) {
		/*
999
		 * Per cpu events are installed via an smp call and
1000
		 * the install is always successful.
T
Thomas Gleixner 已提交
1001 1002
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
1003
					 event, 1);
T
Thomas Gleixner 已提交
1004 1005 1006 1007 1008
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
1009
				 event);
T
Thomas Gleixner 已提交
1010

1011
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1012 1013 1014
	/*
	 * we need to retry the smp call.
	 */
1015
	if (ctx->is_active && list_empty(&event->group_entry)) {
1016
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1017 1018 1019 1020 1021
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
1022
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
1023 1024
	 * succeed.
	 */
1025 1026
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
1027
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1028 1029
}

1030
/*
1031
 * Put a event into inactive state and update time fields.
1032 1033 1034 1035 1036 1037
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1038 1039
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1040
{
1041
	struct perf_event *sub;
1042

1043 1044
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
1045 1046
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
1047 1048
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1049 1050
		}
	}
1051 1052
}

1053
/*
1054
 * Cross CPU call to enable a performance event
1055
 */
1056
static void __perf_event_enable(void *info)
1057
{
1058 1059 1060
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1061
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1062
	int err;
1063

1064
	/*
1065 1066
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1067
	 */
1068
	if (ctx->task && cpuctx->task_ctx != ctx) {
1069
		if (cpuctx->task_ctx || ctx->task != current)
1070 1071 1072
			return;
		cpuctx->task_ctx = ctx;
	}
1073

1074
	raw_spin_lock(&ctx->lock);
1075
	ctx->is_active = 1;
1076
	update_context_time(ctx);
1077

1078
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1079
		goto unlock;
1080
	__perf_event_mark_enabled(event, ctx);
1081

1082 1083 1084
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

1085
	/*
1086
	 * If the event is in a group and isn't the group leader,
1087
	 * then don't put it on unless the group is on.
1088
	 */
1089
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1090
		goto unlock;
1091

1092
	if (!group_can_go_on(event, cpuctx, 1)) {
1093
		err = -EEXIST;
1094
	} else {
1095
		if (event == leader)
1096
			err = group_sched_in(event, cpuctx, ctx);
1097
		else
1098
			err = event_sched_in(event, cpuctx, ctx);
1099
	}
1100 1101 1102

	if (err) {
		/*
1103
		 * If this event can't go on and it's part of a
1104 1105
		 * group, then the whole group has to come off.
		 */
1106
		if (leader != event)
1107
			group_sched_out(leader, cpuctx, ctx);
1108
		if (leader->attr.pinned) {
1109
			update_group_times(leader);
1110
			leader->state = PERF_EVENT_STATE_ERROR;
1111
		}
1112 1113
	}

P
Peter Zijlstra 已提交
1114
unlock:
1115
	raw_spin_unlock(&ctx->lock);
1116 1117 1118
}

/*
1119
 * Enable a event.
1120
 *
1121 1122
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1123
 * remains valid.  This condition is satisfied when called through
1124 1125
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1126
 */
1127
void perf_event_enable(struct perf_event *event)
1128
{
1129
	struct perf_event_context *ctx = event->ctx;
1130 1131 1132 1133
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1134
		 * Enable the event on the cpu that it's on
1135
		 */
1136 1137
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1138 1139 1140
		return;
	}

1141
	raw_spin_lock_irq(&ctx->lock);
1142
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1143 1144 1145
		goto out;

	/*
1146 1147
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1148 1149 1150 1151
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1152 1153
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1154

P
Peter Zijlstra 已提交
1155
retry:
1156
	raw_spin_unlock_irq(&ctx->lock);
1157
	task_oncpu_function_call(task, __perf_event_enable, event);
1158

1159
	raw_spin_lock_irq(&ctx->lock);
1160 1161

	/*
1162
	 * If the context is active and the event is still off,
1163 1164
	 * we need to retry the cross-call.
	 */
1165
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1166 1167 1168 1169 1170 1171
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1172 1173
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1174

P
Peter Zijlstra 已提交
1175
out:
1176
	raw_spin_unlock_irq(&ctx->lock);
1177 1178
}

1179
static int perf_event_refresh(struct perf_event *event, int refresh)
1180
{
1181
	/*
1182
	 * not supported on inherited events
1183
	 */
1184
	if (event->attr.inherit || !is_sampling_event(event))
1185 1186
		return -EINVAL;

1187 1188
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1189 1190

	return 0;
1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1202
{
1203
	struct perf_event *event;
1204

1205
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1206
	perf_pmu_disable(ctx->pmu);
1207
	ctx->is_active = 0;
1208
	if (likely(!ctx->nr_events))
1209
		goto out;
1210
	update_context_time(ctx);
1211

1212
	if (!ctx->nr_active)
1213
		goto out;
1214

P
Peter Zijlstra 已提交
1215
	if (event_type & EVENT_PINNED) {
1216 1217
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1218
	}
1219

P
Peter Zijlstra 已提交
1220
	if (event_type & EVENT_FLEXIBLE) {
1221
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1222
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1223 1224
	}
out:
P
Peter Zijlstra 已提交
1225
	perf_pmu_enable(ctx->pmu);
1226
	raw_spin_unlock(&ctx->lock);
1227 1228
}

1229 1230 1231
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1232 1233 1234 1235
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1236
 * in them directly with an fd; we can only enable/disable all
1237
 * events via prctl, or enable/disable all events in a family
1238 1239
 * via ioctl, which will have the same effect on both contexts.
 */
1240 1241
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1242 1243
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1244
		&& ctx1->parent_gen == ctx2->parent_gen
1245
		&& !ctx1->pin_count && !ctx2->pin_count;
1246 1247
}

1248 1249
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1250 1251 1252
{
	u64 value;

1253
	if (!event->attr.inherit_stat)
1254 1255 1256
		return;

	/*
1257
	 * Update the event value, we cannot use perf_event_read()
1258 1259
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1260
	 * we know the event must be on the current CPU, therefore we
1261 1262
	 * don't need to use it.
	 */
1263 1264
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1265 1266
		event->pmu->read(event);
		/* fall-through */
1267

1268 1269
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1270 1271 1272 1273 1274 1275 1276
		break;

	default:
		break;
	}

	/*
1277
	 * In order to keep per-task stats reliable we need to flip the event
1278 1279
	 * values when we flip the contexts.
	 */
1280 1281 1282
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1283

1284 1285
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1286

1287
	/*
1288
	 * Since we swizzled the values, update the user visible data too.
1289
	 */
1290 1291
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1292 1293 1294 1295 1296
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1297 1298
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1299
{
1300
	struct perf_event *event, *next_event;
1301 1302 1303 1304

	if (!ctx->nr_stat)
		return;

1305 1306
	update_context_time(ctx);

1307 1308
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1309

1310 1311
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1312

1313 1314
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1315

1316
		__perf_event_sync_stat(event, next_event);
1317

1318 1319
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1320 1321 1322
	}
}

P
Peter Zijlstra 已提交
1323 1324
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1325
{
P
Peter Zijlstra 已提交
1326
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1327 1328
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1329
	struct perf_cpu_context *cpuctx;
1330
	int do_switch = 1;
T
Thomas Gleixner 已提交
1331

P
Peter Zijlstra 已提交
1332 1333
	if (likely(!ctx))
		return;
1334

P
Peter Zijlstra 已提交
1335 1336
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1337 1338
		return;

1339 1340
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1341
	next_ctx = next->perf_event_ctxp[ctxn];
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1353 1354
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1355
		if (context_equiv(ctx, next_ctx)) {
1356 1357
			/*
			 * XXX do we need a memory barrier of sorts
1358
			 * wrt to rcu_dereference() of perf_event_ctxp
1359
			 */
P
Peter Zijlstra 已提交
1360 1361
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1362 1363 1364
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1365

1366
			perf_event_sync_stat(ctx, next_ctx);
1367
		}
1368 1369
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1370
	}
1371
	rcu_read_unlock();
1372

1373
	if (do_switch) {
1374
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1375 1376
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1377 1378
}

P
Peter Zijlstra 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1393 1394
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1395 1396 1397 1398 1399 1400 1401
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1402 1403
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1404
{
P
Peter Zijlstra 已提交
1405
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1406

1407 1408
	if (!cpuctx->task_ctx)
		return;
1409 1410 1411 1412

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1413
	ctx_sched_out(ctx, cpuctx, event_type);
1414 1415 1416
	cpuctx->task_ctx = NULL;
}

1417 1418 1419 1420 1421 1422 1423
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1424 1425
}

1426
static void
1427
ctx_pinned_sched_in(struct perf_event_context *ctx,
1428
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1429
{
1430
	struct perf_event *event;
T
Thomas Gleixner 已提交
1431

1432 1433
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1434
			continue;
1435
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1436 1437
			continue;

1438
		if (group_can_go_on(event, cpuctx, 1))
1439
			group_sched_in(event, cpuctx, ctx);
1440 1441 1442 1443 1444

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1445 1446 1447
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1448
		}
1449
	}
1450 1451 1452 1453
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1454
		      struct perf_cpu_context *cpuctx)
1455 1456 1457
{
	struct perf_event *event;
	int can_add_hw = 1;
1458

1459 1460 1461
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1462
			continue;
1463 1464
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1465
		 * of events:
1466
		 */
1467
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1468 1469
			continue;

P
Peter Zijlstra 已提交
1470
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1471
			if (group_sched_in(event, cpuctx, ctx))
1472
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1473
		}
T
Thomas Gleixner 已提交
1474
	}
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1494
		ctx_pinned_sched_in(ctx, cpuctx);
1495 1496 1497

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1498
		ctx_flexible_sched_in(ctx, cpuctx);
1499

P
Peter Zijlstra 已提交
1500
out:
1501
	raw_spin_unlock(&ctx->lock);
1502 1503
}

1504 1505 1506 1507 1508 1509 1510 1511
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1512
static void task_ctx_sched_in(struct perf_event_context *ctx,
1513 1514
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1515
	struct perf_cpu_context *cpuctx;
1516

P
Peter Zijlstra 已提交
1517
       	cpuctx = __get_cpu_context(ctx);
1518 1519
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1520

1521 1522 1523
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
1524

P
Peter Zijlstra 已提交
1525
void perf_event_context_sched_in(struct perf_event_context *ctx)
1526
{
P
Peter Zijlstra 已提交
1527
	struct perf_cpu_context *cpuctx;
1528

P
Peter Zijlstra 已提交
1529
	cpuctx = __get_cpu_context(ctx);
1530 1531 1532
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
1533
	perf_pmu_disable(ctx->pmu);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1546

1547 1548 1549 1550
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1551
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
1552
	perf_pmu_enable(ctx->pmu);
1553 1554
}

P
Peter Zijlstra 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
1566
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
1578 1579
}

1580 1581
#define MAX_INTERRUPTS (~0ULL)

1582
static void perf_log_throttle(struct perf_event *event, int enable);
1583

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1651 1652 1653
	if (!divisor)
		return dividend;

1654 1655 1656 1657
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1658
{
1659
	struct hw_perf_event *hwc = &event->hw;
1660
	s64 period, sample_period;
1661 1662
	s64 delta;

1663
	period = perf_calculate_period(event, nsec, count);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1674

1675
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1676
		event->pmu->stop(event, PERF_EF_UPDATE);
1677
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1678
		event->pmu->start(event, PERF_EF_RELOAD);
1679
	}
1680 1681
}

1682
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1683
{
1684 1685
	struct perf_event *event;
	struct hw_perf_event *hwc;
1686 1687
	u64 interrupts, now;
	s64 delta;
1688

1689
	raw_spin_lock(&ctx->lock);
1690
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1691
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1692 1693
			continue;

1694 1695 1696
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1697
		hwc = &event->hw;
1698 1699 1700

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1701

1702
		/*
1703
		 * unthrottle events on the tick
1704
		 */
1705
		if (interrupts == MAX_INTERRUPTS) {
1706
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1707
			event->pmu->start(event, 0);
1708 1709
		}

1710
		if (!event->attr.freq || !event->attr.sample_freq)
1711 1712
			continue;

1713
		event->pmu->read(event);
1714
		now = local64_read(&event->count);
1715 1716
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1717

1718
		if (delta > 0)
1719
			perf_adjust_period(event, period, delta);
1720
	}
1721
	raw_spin_unlock(&ctx->lock);
1722 1723
}

1724
/*
1725
 * Round-robin a context's events:
1726
 */
1727
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1728
{
1729
	raw_spin_lock(&ctx->lock);
1730

1731 1732 1733 1734 1735 1736
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
1737

1738
	raw_spin_unlock(&ctx->lock);
1739 1740
}

1741
/*
1742 1743 1744
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
1745
 */
1746
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1747
{
1748
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
1749
	struct perf_event_context *ctx = NULL;
1750
	int rotate = 0, remove = 1;
1751

1752
	if (cpuctx->ctx.nr_events) {
1753
		remove = 0;
1754 1755 1756
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1757

P
Peter Zijlstra 已提交
1758
	ctx = cpuctx->task_ctx;
1759
	if (ctx && ctx->nr_events) {
1760
		remove = 0;
1761 1762 1763
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1764

P
Peter Zijlstra 已提交
1765
	perf_pmu_disable(cpuctx->ctx.pmu);
1766
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1767
	if (ctx)
1768
		perf_ctx_adjust_freq(ctx, interval);
1769

1770
	if (!rotate)
1771
		goto done;
1772

1773
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1774
	if (ctx)
1775
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1776

1777
	rotate_ctx(&cpuctx->ctx);
1778 1779
	if (ctx)
		rotate_ctx(ctx);
1780

1781
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1782
	if (ctx)
P
Peter Zijlstra 已提交
1783
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1784 1785

done:
1786 1787 1788
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
1789
	perf_pmu_enable(cpuctx->ctx.pmu);
1790 1791 1792 1793 1794 1795
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
1796

1797 1798 1799 1800 1801 1802 1803
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
1804 1805
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1821
/*
1822
 * Enable all of a task's events that have been marked enable-on-exec.
1823 1824
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1825
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1826
{
1827
	struct perf_event *event;
1828 1829
	unsigned long flags;
	int enabled = 0;
1830
	int ret;
1831 1832

	local_irq_save(flags);
1833
	if (!ctx || !ctx->nr_events)
1834 1835
		goto out;

P
Peter Zijlstra 已提交
1836
	task_ctx_sched_out(ctx, EVENT_ALL);
1837

1838
	raw_spin_lock(&ctx->lock);
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1850 1851 1852
	}

	/*
1853
	 * Unclone this context if we enabled any event.
1854
	 */
1855 1856
	if (enabled)
		unclone_ctx(ctx);
1857

1858
	raw_spin_unlock(&ctx->lock);
1859

P
Peter Zijlstra 已提交
1860
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1861
out:
1862 1863 1864
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1865
/*
1866
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1867
 */
1868
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1869
{
1870 1871
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1872
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1873

1874 1875 1876 1877
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1878 1879
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1880 1881 1882 1883
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1884
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1885
	update_context_time(ctx);
1886
	update_event_times(event);
1887
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1888

P
Peter Zijlstra 已提交
1889
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1890 1891
}

P
Peter Zijlstra 已提交
1892 1893
static inline u64 perf_event_count(struct perf_event *event)
{
1894
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1895 1896
}

1897
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1898 1899
{
	/*
1900 1901
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1902
	 */
1903 1904 1905 1906
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1907 1908 1909
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1910
		raw_spin_lock_irqsave(&ctx->lock, flags);
1911 1912 1913 1914 1915 1916 1917
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
		if (ctx->is_active)
			update_context_time(ctx);
1918
		update_event_times(event);
1919
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1920 1921
	}

P
Peter Zijlstra 已提交
1922
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1923 1924
}

1925
/*
1926
 * Callchain support
1927
 */
1928 1929 1930 1931 1932 1933

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1934
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1935 1936 1937 1938 1939 1940 1941
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
1942 1943 1944
{
}

1945 1946
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
1947
{
1948
}
T
Thomas Gleixner 已提交
1949

1950 1951 1952 1953
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
1954

1955
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
1956

1957 1958
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
1959

1960 1961
	kfree(entries);
}
T
Thomas Gleixner 已提交
1962

1963 1964 1965
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1966

1967 1968 1969 1970
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
1971

1972 1973 1974 1975 1976
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1977

1978
	/*
1979 1980 1981
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
1982
	 */
1983 1984
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();
1985

1986 1987 1988
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
1989

1990
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
1991

1992 1993 1994 1995 1996
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
1997 1998
	}

1999
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2135
/*
2136
 * Initialize the perf_event context in a task_struct:
2137
 */
2138
static void __perf_event_init_context(struct perf_event_context *ctx)
2139
{
2140
	raw_spin_lock_init(&ctx->lock);
2141
	mutex_init(&ctx->mutex);
2142 2143
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2144 2145
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2161
	}
2162 2163 2164
	ctx->pmu = pmu;

	return ctx;
2165 2166
}

2167 2168 2169 2170 2171
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2172 2173

	rcu_read_lock();
2174
	if (!vpid)
T
Thomas Gleixner 已提交
2175 2176
		task = current;
	else
2177
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2178 2179 2180 2181 2182 2183 2184
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2185
	/*
2186
	 * Can't attach events to a dying task.
2187 2188 2189 2190 2191
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2192
	/* Reuse ptrace permission checks for now. */
2193 2194 2195 2196
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2197 2198 2199 2200 2201 2202 2203
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

P
Peter Zijlstra 已提交
2204
static struct perf_event_context *
M
Matt Helsley 已提交
2205
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2206
{
2207
	struct perf_event_context *ctx;
2208
	struct perf_cpu_context *cpuctx;
2209
	unsigned long flags;
P
Peter Zijlstra 已提交
2210
	int ctxn, err;
T
Thomas Gleixner 已提交
2211

M
Matt Helsley 已提交
2212
	if (!task && cpu != -1) {
2213
		/* Must be root to operate on a CPU event: */
2214
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2215 2216
			return ERR_PTR(-EACCES);

2217
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2218 2219 2220
			return ERR_PTR(-EINVAL);

		/*
2221
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2222 2223 2224
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2225
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2226 2227
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2228
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2229
		ctx = &cpuctx->ctx;
2230
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2231 2232 2233 2234

		return ctx;
	}

P
Peter Zijlstra 已提交
2235 2236 2237 2238 2239
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2240
retry:
P
Peter Zijlstra 已提交
2241
	ctx = perf_lock_task_context(task, ctxn, &flags);
2242
	if (ctx) {
2243
		unclone_ctx(ctx);
2244
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2245 2246
	}

2247
	if (!ctx) {
2248
		ctx = alloc_perf_context(pmu, task);
2249 2250 2251
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2252

2253
		get_ctx(ctx);
2254

P
Peter Zijlstra 已提交
2255
		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2256 2257 2258 2259
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2260
			put_task_struct(task);
2261
			kfree(ctx);
2262
			goto retry;
2263 2264 2265
		}
	}

T
Thomas Gleixner 已提交
2266
	return ctx;
2267

P
Peter Zijlstra 已提交
2268
errout:
2269
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2270 2271
}

L
Li Zefan 已提交
2272 2273
static void perf_event_free_filter(struct perf_event *event);

2274
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2275
{
2276
	struct perf_event *event;
P
Peter Zijlstra 已提交
2277

2278 2279 2280
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2281
	perf_event_free_filter(event);
2282
	kfree(event);
P
Peter Zijlstra 已提交
2283 2284
}

2285
static void perf_buffer_put(struct perf_buffer *buffer);
2286

2287
static void free_event(struct perf_event *event)
2288
{
2289
	irq_work_sync(&event->pending);
2290

2291
	if (!event->parent) {
2292 2293
		if (event->attach_state & PERF_ATTACH_TASK)
			jump_label_dec(&perf_task_events);
2294
		if (event->attr.mmap || event->attr.mmap_data)
2295 2296 2297 2298 2299
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2300 2301
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2302
	}
2303

2304 2305 2306
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2307 2308
	}

2309 2310
	if (event->destroy)
		event->destroy(event);
2311

P
Peter Zijlstra 已提交
2312 2313 2314
	if (event->ctx)
		put_ctx(event->ctx);

2315
	call_rcu(&event->rcu_head, free_event_rcu);
2316 2317
}

2318
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2319
{
2320
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2321

2322 2323 2324 2325 2326 2327
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2328
	WARN_ON_ONCE(ctx->parent_ctx);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2342
	raw_spin_lock_irq(&ctx->lock);
2343
	perf_group_detach(event);
2344 2345
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2346
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2347

2348
	free_event(event);
T
Thomas Gleixner 已提交
2349 2350 2351

	return 0;
}
2352
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2353

2354 2355 2356 2357
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2358
{
2359
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2360
	struct task_struct *owner;
2361

2362
	file->private_data = NULL;
2363

P
Peter Zijlstra 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2397
	return perf_event_release_kernel(event);
2398 2399
}

2400
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2401
{
2402
	struct perf_event *child;
2403 2404
	u64 total = 0;

2405 2406 2407
	*enabled = 0;
	*running = 0;

2408
	mutex_lock(&event->child_mutex);
2409
	total += perf_event_read(event);
2410 2411 2412 2413 2414 2415
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2416
		total += perf_event_read(child);
2417 2418 2419
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2420
	mutex_unlock(&event->child_mutex);
2421 2422 2423

	return total;
}
2424
EXPORT_SYMBOL_GPL(perf_event_read_value);
2425

2426
static int perf_event_read_group(struct perf_event *event,
2427 2428
				   u64 read_format, char __user *buf)
{
2429
	struct perf_event *leader = event->group_leader, *sub;
2430 2431
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2432
	u64 values[5];
2433
	u64 count, enabled, running;
2434

2435
	mutex_lock(&ctx->mutex);
2436
	count = perf_event_read_value(leader, &enabled, &running);
2437 2438

	values[n++] = 1 + leader->nr_siblings;
2439 2440 2441 2442
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2443 2444 2445
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2446 2447 2448 2449

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2450
		goto unlock;
2451

2452
	ret = size;
2453

2454
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2455
		n = 0;
2456

2457
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2458 2459 2460 2461 2462
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2463
		if (copy_to_user(buf + ret, values, size)) {
2464 2465 2466
			ret = -EFAULT;
			goto unlock;
		}
2467 2468

		ret += size;
2469
	}
2470 2471
unlock:
	mutex_unlock(&ctx->mutex);
2472

2473
	return ret;
2474 2475
}

2476
static int perf_event_read_one(struct perf_event *event,
2477 2478
				 u64 read_format, char __user *buf)
{
2479
	u64 enabled, running;
2480 2481 2482
	u64 values[4];
	int n = 0;

2483 2484 2485 2486 2487
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2488
	if (read_format & PERF_FORMAT_ID)
2489
		values[n++] = primary_event_id(event);
2490 2491 2492 2493 2494 2495 2496

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2497
/*
2498
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2499 2500
 */
static ssize_t
2501
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2502
{
2503
	u64 read_format = event->attr.read_format;
2504
	int ret;
T
Thomas Gleixner 已提交
2505

2506
	/*
2507
	 * Return end-of-file for a read on a event that is in
2508 2509 2510
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2511
	if (event->state == PERF_EVENT_STATE_ERROR)
2512 2513
		return 0;

2514
	if (count < event->read_size)
2515 2516
		return -ENOSPC;

2517
	WARN_ON_ONCE(event->ctx->parent_ctx);
2518
	if (read_format & PERF_FORMAT_GROUP)
2519
		ret = perf_event_read_group(event, read_format, buf);
2520
	else
2521
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2522

2523
	return ret;
T
Thomas Gleixner 已提交
2524 2525 2526 2527 2528
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2529
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2530

2531
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2532 2533 2534 2535
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2536
	struct perf_event *event = file->private_data;
2537
	struct perf_buffer *buffer;
2538
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2539 2540

	rcu_read_lock();
2541 2542 2543
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2544
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2545

2546
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2547 2548 2549 2550

	return events;
}

2551
static void perf_event_reset(struct perf_event *event)
2552
{
2553
	(void)perf_event_read(event);
2554
	local64_set(&event->count, 0);
2555
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2556 2557
}

2558
/*
2559 2560 2561 2562
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2563
 */
2564 2565
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2566
{
2567
	struct perf_event *child;
P
Peter Zijlstra 已提交
2568

2569 2570 2571 2572
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2573
		func(child);
2574
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2575 2576
}

2577 2578
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2579
{
2580 2581
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2582

2583 2584
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2585
	event = event->group_leader;
2586

2587 2588 2589 2590
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2591
	mutex_unlock(&ctx->mutex);
2592 2593
}

2594
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2595
{
2596
	struct perf_event_context *ctx = event->ctx;
2597 2598 2599
	int ret = 0;
	u64 value;

2600
	if (!is_sampling_event(event))
2601 2602
		return -EINVAL;

2603
	if (copy_from_user(&value, arg, sizeof(value)))
2604 2605 2606 2607 2608
		return -EFAULT;

	if (!value)
		return -EINVAL;

2609
	raw_spin_lock_irq(&ctx->lock);
2610 2611
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2612 2613 2614 2615
			ret = -EINVAL;
			goto unlock;
		}

2616
		event->attr.sample_freq = value;
2617
	} else {
2618 2619
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2620 2621
	}
unlock:
2622
	raw_spin_unlock_irq(&ctx->lock);
2623 2624 2625 2626

	return ret;
}

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2648
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2649

2650 2651
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2652 2653
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2654
	u32 flags = arg;
2655 2656

	switch (cmd) {
2657 2658
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2659
		break;
2660 2661
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2662
		break;
2663 2664
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2665
		break;
P
Peter Zijlstra 已提交
2666

2667 2668
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2669

2670 2671
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2672

2673
	case PERF_EVENT_IOC_SET_OUTPUT:
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2691

L
Li Zefan 已提交
2692 2693 2694
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2695
	default:
P
Peter Zijlstra 已提交
2696
		return -ENOTTY;
2697
	}
P
Peter Zijlstra 已提交
2698 2699

	if (flags & PERF_IOC_FLAG_GROUP)
2700
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2701
	else
2702
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2703 2704

	return 0;
2705 2706
}

2707
int perf_event_task_enable(void)
2708
{
2709
	struct perf_event *event;
2710

2711 2712 2713 2714
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2715 2716 2717 2718

	return 0;
}

2719
int perf_event_task_disable(void)
2720
{
2721
	struct perf_event *event;
2722

2723 2724 2725 2726
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2727 2728 2729 2730

	return 0;
}

2731 2732
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2733 2734
#endif

2735
static int perf_event_index(struct perf_event *event)
2736
{
P
Peter Zijlstra 已提交
2737 2738 2739
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2740
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2741 2742
		return 0;

2743
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2744 2745
}

2746 2747 2748 2749 2750
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2751
void perf_event_update_userpage(struct perf_event *event)
2752
{
2753
	struct perf_event_mmap_page *userpg;
2754
	struct perf_buffer *buffer;
2755 2756

	rcu_read_lock();
2757 2758
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2759 2760
		goto unlock;

2761
	userpg = buffer->user_page;
2762

2763 2764 2765 2766 2767
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2768
	++userpg->lock;
2769
	barrier();
2770
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2771
	userpg->offset = perf_event_count(event);
2772
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2773
		userpg->offset -= local64_read(&event->hw.prev_count);
2774

2775 2776
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2777

2778 2779
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2780

2781
	barrier();
2782
	++userpg->lock;
2783
	preempt_enable();
2784
unlock:
2785
	rcu_read_unlock();
2786 2787
}

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2807
#ifndef CONFIG_PERF_USE_VMALLOC
2808

2809 2810 2811
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2812

2813
static struct page *
2814
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2815
{
2816
	if (pgoff > buffer->nr_pages)
2817
		return NULL;
2818

2819
	if (pgoff == 0)
2820
		return virt_to_page(buffer->user_page);
2821

2822
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2823 2824
}

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2838
static struct perf_buffer *
2839
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2840
{
2841
	struct perf_buffer *buffer;
2842 2843 2844
	unsigned long size;
	int i;

2845
	size = sizeof(struct perf_buffer);
2846 2847
	size += nr_pages * sizeof(void *);

2848 2849
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2850 2851
		goto fail;

2852
	buffer->user_page = perf_mmap_alloc_page(cpu);
2853
	if (!buffer->user_page)
2854 2855 2856
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2857
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2858
		if (!buffer->data_pages[i])
2859 2860 2861
			goto fail_data_pages;
	}

2862
	buffer->nr_pages = nr_pages;
2863

2864 2865
	perf_buffer_init(buffer, watermark, flags);

2866
	return buffer;
2867 2868 2869

fail_data_pages:
	for (i--; i >= 0; i--)
2870
		free_page((unsigned long)buffer->data_pages[i]);
2871

2872
	free_page((unsigned long)buffer->user_page);
2873 2874

fail_user_page:
2875
	kfree(buffer);
2876 2877

fail:
2878
	return NULL;
2879 2880
}

2881 2882
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2883
	struct page *page = virt_to_page((void *)addr);
2884 2885 2886 2887 2888

	page->mapping = NULL;
	__free_page(page);
}

2889
static void perf_buffer_free(struct perf_buffer *buffer)
2890 2891 2892
{
	int i;

2893 2894 2895 2896
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2897 2898
}

2899
static inline int page_order(struct perf_buffer *buffer)
2900 2901 2902 2903
{
	return 0;
}

2904 2905 2906 2907 2908 2909 2910 2911
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2912
static inline int page_order(struct perf_buffer *buffer)
2913
{
2914
	return buffer->page_order;
2915 2916
}

2917
static struct page *
2918
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2919
{
2920
	if (pgoff > (1UL << page_order(buffer)))
2921 2922
		return NULL;

2923
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2924 2925 2926 2927 2928 2929 2930 2931 2932
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2933
static void perf_buffer_free_work(struct work_struct *work)
2934
{
2935
	struct perf_buffer *buffer;
2936 2937 2938
	void *base;
	int i, nr;

2939 2940
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2941

2942
	base = buffer->user_page;
2943 2944 2945 2946
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2947
	kfree(buffer);
2948 2949
}

2950
static void perf_buffer_free(struct perf_buffer *buffer)
2951
{
2952
	schedule_work(&buffer->work);
2953 2954
}

2955
static struct perf_buffer *
2956
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2957
{
2958
	struct perf_buffer *buffer;
2959 2960 2961
	unsigned long size;
	void *all_buf;

2962
	size = sizeof(struct perf_buffer);
2963 2964
	size += sizeof(void *);

2965 2966
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2967 2968
		goto fail;

2969
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2970 2971 2972 2973 2974

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2975 2976 2977 2978
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2979

2980 2981
	perf_buffer_init(buffer, watermark, flags);

2982
	return buffer;
2983 2984

fail_all_buf:
2985
	kfree(buffer);
2986 2987 2988 2989 2990 2991 2992

fail:
	return NULL;
}

#endif

2993
static unsigned long perf_data_size(struct perf_buffer *buffer)
2994
{
2995
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2996 2997
}

2998 2999 3000
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3001
	struct perf_buffer *buffer;
3002 3003 3004 3005 3006 3007 3008 3009 3010
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3011 3012
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3013 3014 3015 3016 3017
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3018
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3033
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3034
{
3035
	struct perf_buffer *buffer;
3036

3037 3038
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3039 3040
}

3041
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3042
{
3043
	struct perf_buffer *buffer;
3044

3045
	rcu_read_lock();
3046 3047 3048 3049
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3050 3051 3052
	}
	rcu_read_unlock();

3053
	return buffer;
3054 3055
}

3056
static void perf_buffer_put(struct perf_buffer *buffer)
3057
{
3058
	if (!atomic_dec_and_test(&buffer->refcount))
3059
		return;
3060

3061
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3062 3063 3064 3065
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3066
	struct perf_event *event = vma->vm_file->private_data;
3067

3068
	atomic_inc(&event->mmap_count);
3069 3070 3071 3072
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3073
	struct perf_event *event = vma->vm_file->private_data;
3074

3075
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3076
		unsigned long size = perf_data_size(event->buffer);
3077
		struct user_struct *user = event->mmap_user;
3078
		struct perf_buffer *buffer = event->buffer;
3079

3080
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3081
		vma->vm_mm->locked_vm -= event->mmap_locked;
3082
		rcu_assign_pointer(event->buffer, NULL);
3083
		mutex_unlock(&event->mmap_mutex);
3084

3085
		perf_buffer_put(buffer);
3086
		free_uid(user);
3087
	}
3088 3089
}

3090
static const struct vm_operations_struct perf_mmap_vmops = {
3091 3092 3093 3094
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3095 3096 3097 3098
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3099
	struct perf_event *event = file->private_data;
3100
	unsigned long user_locked, user_lock_limit;
3101
	struct user_struct *user = current_user();
3102
	unsigned long locked, lock_limit;
3103
	struct perf_buffer *buffer;
3104 3105
	unsigned long vma_size;
	unsigned long nr_pages;
3106
	long user_extra, extra;
3107
	int ret = 0, flags = 0;
3108

3109 3110 3111 3112 3113 3114 3115 3116
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3117
	if (!(vma->vm_flags & VM_SHARED))
3118
		return -EINVAL;
3119 3120 3121 3122

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3123
	/*
3124
	 * If we have buffer pages ensure they're a power-of-two number, so we
3125 3126 3127
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3128 3129
		return -EINVAL;

3130
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3131 3132
		return -EINVAL;

3133 3134
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3135

3136 3137
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3138 3139 3140
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3141
		else
3142 3143 3144 3145
			ret = -EINVAL;
		goto unlock;
	}

3146
	user_extra = nr_pages + 1;
3147
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3148 3149 3150 3151 3152 3153

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3154
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3155

3156 3157 3158
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3159

3160
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3161
	lock_limit >>= PAGE_SHIFT;
3162
	locked = vma->vm_mm->locked_vm + extra;
3163

3164 3165
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3166 3167 3168
		ret = -EPERM;
		goto unlock;
	}
3169

3170
	WARN_ON(event->buffer);
3171

3172 3173 3174 3175 3176
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3177
	if (!buffer) {
3178
		ret = -ENOMEM;
3179
		goto unlock;
3180
	}
3181
	rcu_assign_pointer(event->buffer, buffer);
3182

3183 3184 3185 3186 3187
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3188
unlock:
3189 3190
	if (!ret)
		atomic_inc(&event->mmap_count);
3191
	mutex_unlock(&event->mmap_mutex);
3192 3193 3194

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3195 3196

	return ret;
3197 3198
}

P
Peter Zijlstra 已提交
3199 3200 3201
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3202
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3203 3204 3205
	int retval;

	mutex_lock(&inode->i_mutex);
3206
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3207 3208 3209 3210 3211 3212 3213 3214
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3215
static const struct file_operations perf_fops = {
3216
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3217 3218 3219
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3220 3221
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3222
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3223
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3224 3225
};

3226
/*
3227
 * Perf event wakeup
3228 3229 3230 3231 3232
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3233
void perf_event_wakeup(struct perf_event *event)
3234
{
3235
	wake_up_all(&event->waitq);
3236

3237 3238 3239
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3240
	}
3241 3242
}

3243
static void perf_pending_event(struct irq_work *entry)
3244
{
3245 3246
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3247

3248 3249 3250
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3251 3252
	}

3253 3254 3255
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3256 3257 3258
	}
}

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3280 3281 3282
/*
 * Output
 */
3283
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3284
			      unsigned long offset, unsigned long head)
3285 3286 3287
{
	unsigned long mask;

3288
	if (!buffer->writable)
3289 3290
		return true;

3291
	mask = perf_data_size(buffer) - 1;
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3302
static void perf_output_wakeup(struct perf_output_handle *handle)
3303
{
3304
	atomic_set(&handle->buffer->poll, POLL_IN);
3305

3306
	if (handle->nmi) {
3307
		handle->event->pending_wakeup = 1;
3308
		irq_work_queue(&handle->event->pending);
3309
	} else
3310
		perf_event_wakeup(handle->event);
3311 3312
}

3313
/*
3314
 * We need to ensure a later event_id doesn't publish a head when a former
3315
 * event isn't done writing. However since we need to deal with NMIs we
3316 3317 3318
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3319
 * event completes.
3320
 */
3321
static void perf_output_get_handle(struct perf_output_handle *handle)
3322
{
3323
	struct perf_buffer *buffer = handle->buffer;
3324

3325
	preempt_disable();
3326 3327
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3328 3329
}

3330
static void perf_output_put_handle(struct perf_output_handle *handle)
3331
{
3332
	struct perf_buffer *buffer = handle->buffer;
3333
	unsigned long head;
3334 3335

again:
3336
	head = local_read(&buffer->head);
3337 3338

	/*
3339
	 * IRQ/NMI can happen here, which means we can miss a head update.
3340 3341
	 */

3342
	if (!local_dec_and_test(&buffer->nest))
3343
		goto out;
3344 3345

	/*
3346
	 * Publish the known good head. Rely on the full barrier implied
3347
	 * by atomic_dec_and_test() order the buffer->head read and this
3348
	 * write.
3349
	 */
3350
	buffer->user_page->data_head = head;
3351

3352 3353
	/*
	 * Now check if we missed an update, rely on the (compiler)
3354
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3355
	 */
3356 3357
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3358 3359 3360
		goto again;
	}

3361
	if (handle->wakeup != local_read(&buffer->wakeup))
3362
		perf_output_wakeup(handle);
3363

P
Peter Zijlstra 已提交
3364
out:
3365
	preempt_enable();
3366 3367
}

3368
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3369
		      const void *buf, unsigned int len)
3370
{
3371
	do {
3372
		unsigned long size = min_t(unsigned long, handle->size, len);
3373 3374 3375 3376 3377

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3378
		buf += size;
3379 3380
		handle->size -= size;
		if (!handle->size) {
3381
			struct perf_buffer *buffer = handle->buffer;
3382

3383
			handle->page++;
3384 3385 3386
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3387 3388
		}
	} while (len);
3389 3390
}

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3421
int perf_output_begin(struct perf_output_handle *handle,
3422
		      struct perf_event *event, unsigned int size,
3423
		      int nmi, int sample)
3424
{
3425
	struct perf_buffer *buffer;
3426
	unsigned long tail, offset, head;
3427 3428 3429 3430 3431 3432
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3433

3434
	rcu_read_lock();
3435
	/*
3436
	 * For inherited events we send all the output towards the parent.
3437
	 */
3438 3439
	if (event->parent)
		event = event->parent;
3440

3441 3442
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3443 3444
		goto out;

3445
	handle->buffer	= buffer;
3446
	handle->event	= event;
3447 3448
	handle->nmi	= nmi;
	handle->sample	= sample;
3449

3450
	if (!buffer->nr_pages)
3451
		goto out;
3452

3453
	have_lost = local_read(&buffer->lost);
3454 3455 3456
	if (have_lost)
		size += sizeof(lost_event);

3457
	perf_output_get_handle(handle);
3458

3459
	do {
3460 3461 3462 3463 3464
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3465
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3466
		smp_rmb();
3467
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3468
		head += size;
3469
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3470
			goto fail;
3471
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3472

3473 3474
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3475

3476 3477 3478 3479
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3480
	handle->addr += handle->size;
3481
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3482

3483
	if (have_lost) {
3484
		lost_event.header.type = PERF_RECORD_LOST;
3485 3486
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3487
		lost_event.id          = event->id;
3488
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3489 3490 3491 3492

		perf_output_put(handle, lost_event);
	}

3493
	return 0;
3494

3495
fail:
3496
	local_inc(&buffer->lost);
3497
	perf_output_put_handle(handle);
3498 3499
out:
	rcu_read_unlock();
3500

3501 3502
	return -ENOSPC;
}
3503

3504
void perf_output_end(struct perf_output_handle *handle)
3505
{
3506
	struct perf_event *event = handle->event;
3507
	struct perf_buffer *buffer = handle->buffer;
3508

3509
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3510

3511
	if (handle->sample && wakeup_events) {
3512
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3513
		if (events >= wakeup_events) {
3514 3515
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3516
		}
3517 3518
	}

3519
	perf_output_put_handle(handle);
3520
	rcu_read_unlock();
3521 3522
}

3523
static void perf_output_read_one(struct perf_output_handle *handle,
3524 3525
				 struct perf_event *event,
				 u64 enabled, u64 running)
3526
{
3527
	u64 read_format = event->attr.read_format;
3528 3529 3530
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3531
	values[n++] = perf_event_count(event);
3532
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3533
		values[n++] = enabled +
3534
			atomic64_read(&event->child_total_time_enabled);
3535 3536
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3537
		values[n++] = running +
3538
			atomic64_read(&event->child_total_time_running);
3539 3540
	}
	if (read_format & PERF_FORMAT_ID)
3541
		values[n++] = primary_event_id(event);
3542 3543 3544 3545 3546

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3547
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3548 3549
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3550 3551
			    struct perf_event *event,
			    u64 enabled, u64 running)
3552
{
3553 3554
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3555 3556 3557 3558 3559 3560
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3561
		values[n++] = enabled;
3562 3563

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3564
		values[n++] = running;
3565

3566
	if (leader != event)
3567 3568
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3569
	values[n++] = perf_event_count(leader);
3570
	if (read_format & PERF_FORMAT_ID)
3571
		values[n++] = primary_event_id(leader);
3572 3573 3574

	perf_output_copy(handle, values, n * sizeof(u64));

3575
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3576 3577
		n = 0;

3578
		if (sub != event)
3579 3580
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3581
		values[n++] = perf_event_count(sub);
3582
		if (read_format & PERF_FORMAT_ID)
3583
			values[n++] = primary_event_id(sub);
3584 3585 3586 3587 3588

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

3589 3590 3591
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3592
static void perf_output_read(struct perf_output_handle *handle,
3593
			     struct perf_event *event)
3594
{
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

3614
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3615
		perf_output_read_group(handle, event, enabled, running);
3616
	else
3617
		perf_output_read_one(handle, event, enabled, running);
3618 3619
}

3620 3621 3622
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3623
			struct perf_event *event)
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3654
		perf_output_read(handle, event);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3692
			 struct perf_event *event,
3693
			 struct pt_regs *regs)
3694
{
3695
	u64 sample_type = event->attr.sample_type;
3696

3697
	header->type = PERF_RECORD_SAMPLE;
3698
	header->size = sizeof(*header) + event->header_size;
3699 3700 3701

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3702

3703 3704
	perf_event_header__init_id(header, data, event);

3705
	if (sample_type & PERF_SAMPLE_IP)
3706 3707
		data->ip = perf_instruction_pointer(regs);

3708
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3709
		int size = 1;
3710

3711 3712 3713 3714 3715 3716
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3717 3718
	}

3719
	if (sample_type & PERF_SAMPLE_RAW) {
3720 3721 3722 3723 3724 3725 3726 3727
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3728
		header->size += size;
3729
	}
3730
}
3731

3732
static void perf_event_output(struct perf_event *event, int nmi,
3733 3734 3735 3736 3737
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3738

3739 3740 3741
	/* protect the callchain buffers */
	rcu_read_lock();

3742
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3743

3744
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3745
		goto exit;
3746

3747
	perf_output_sample(&handle, &header, data, event);
3748

3749
	perf_output_end(&handle);
3750 3751 3752

exit:
	rcu_read_unlock();
3753 3754
}

3755
/*
3756
 * read event_id
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3767
perf_event_read_event(struct perf_event *event,
3768 3769 3770
			struct task_struct *task)
{
	struct perf_output_handle handle;
3771
	struct perf_read_event read_event = {
3772
		.header = {
3773
			.type = PERF_RECORD_READ,
3774
			.misc = 0,
3775
			.size = sizeof(read_event) + event->read_size,
3776
		},
3777 3778
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3779
	};
3780
	int ret;
3781

3782
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3783 3784 3785
	if (ret)
		return;

3786
	perf_output_put(&handle, read_event);
3787
	perf_output_read(&handle, event);
3788

3789 3790 3791
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3792
/*
P
Peter Zijlstra 已提交
3793 3794
 * task tracking -- fork/exit
 *
3795
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3796 3797
 */

P
Peter Zijlstra 已提交
3798
struct perf_task_event {
3799
	struct task_struct		*task;
3800
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3801 3802 3803 3804 3805 3806

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3807 3808
		u32				tid;
		u32				ptid;
3809
		u64				time;
3810
	} event_id;
P
Peter Zijlstra 已提交
3811 3812
};

3813
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3814
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3815 3816
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3817
	struct task_struct *task = task_event->task;
3818 3819
	int size, ret;

3820 3821
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3822

3823
	if (ret)
P
Peter Zijlstra 已提交
3824 3825
		return;

3826 3827
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3828

3829 3830
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3831

3832
	perf_output_put(&handle, task_event->event_id);
3833

P
Peter Zijlstra 已提交
3834 3835 3836
	perf_output_end(&handle);
}

3837
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3838
{
P
Peter Zijlstra 已提交
3839
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3840 3841
		return 0;

3842 3843 3844
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3845 3846
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3847 3848 3849 3850 3851
		return 1;

	return 0;
}

3852
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3853
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3854
{
3855
	struct perf_event *event;
P
Peter Zijlstra 已提交
3856

3857 3858 3859
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3860 3861 3862
	}
}

3863
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3864 3865
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3866
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3867
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3868
	int ctxn;
P
Peter Zijlstra 已提交
3869

3870
	rcu_read_lock();
P
Peter Zijlstra 已提交
3871
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3872
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3873
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3874 3875 3876 3877 3878

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
3879
				goto next;
P
Peter Zijlstra 已提交
3880 3881 3882 3883
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
3884 3885
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3886
	}
P
Peter Zijlstra 已提交
3887 3888 3889
	rcu_read_unlock();
}

3890 3891
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3892
			      int new)
P
Peter Zijlstra 已提交
3893
{
P
Peter Zijlstra 已提交
3894
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3895

3896 3897 3898
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3899 3900
		return;

P
Peter Zijlstra 已提交
3901
	task_event = (struct perf_task_event){
3902 3903
		.task	  = task,
		.task_ctx = task_ctx,
3904
		.event_id    = {
P
Peter Zijlstra 已提交
3905
			.header = {
3906
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3907
				.misc = 0,
3908
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3909
			},
3910 3911
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3912 3913
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3914
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3915 3916 3917
		},
	};

3918
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3919 3920
}

3921
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3922
{
3923
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3924 3925
}

3926 3927 3928 3929 3930
/*
 * comm tracking
 */

struct perf_comm_event {
3931 3932
	struct task_struct	*task;
	char			*comm;
3933 3934 3935 3936 3937 3938 3939
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3940
	} event_id;
3941 3942
};

3943
static void perf_event_comm_output(struct perf_event *event,
3944 3945 3946
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3947 3948
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3949 3950 3951 3952

	if (ret)
		return;

3953 3954
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3955

3956
	perf_output_put(&handle, comm_event->event_id);
3957 3958 3959 3960 3961
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3962
static int perf_event_comm_match(struct perf_event *event)
3963
{
P
Peter Zijlstra 已提交
3964
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3965 3966
		return 0;

3967 3968 3969
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3970
	if (event->attr.comm)
3971 3972 3973 3974 3975
		return 1;

	return 0;
}

3976
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3977 3978
				  struct perf_comm_event *comm_event)
{
3979
	struct perf_event *event;
3980

3981 3982 3983
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3984 3985 3986
	}
}

3987
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3988 3989
{
	struct perf_cpu_context *cpuctx;
3990
	struct perf_event_context *ctx;
3991
	char comm[TASK_COMM_LEN];
3992
	unsigned int size;
P
Peter Zijlstra 已提交
3993
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3994
	int ctxn;
3995

3996
	memset(comm, 0, sizeof(comm));
3997
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3998
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3999 4000 4001 4002

	comm_event->comm = comm;
	comm_event->comm_size = size;

4003
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4004

4005
	rcu_read_lock();
P
Peter Zijlstra 已提交
4006
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4007
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4008
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4009 4010 4011

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4012
			goto next;
P
Peter Zijlstra 已提交
4013 4014 4015 4016

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4017 4018
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4019
	}
4020
	rcu_read_unlock();
4021 4022
}

4023
void perf_event_comm(struct task_struct *task)
4024
{
4025
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4026 4027
	struct perf_event_context *ctx;
	int ctxn;
4028

P
Peter Zijlstra 已提交
4029 4030 4031 4032
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4033

P
Peter Zijlstra 已提交
4034 4035
		perf_event_enable_on_exec(ctx);
	}
4036

4037
	if (!atomic_read(&nr_comm_events))
4038
		return;
4039

4040
	comm_event = (struct perf_comm_event){
4041
		.task	= task,
4042 4043
		/* .comm      */
		/* .comm_size */
4044
		.event_id  = {
4045
			.header = {
4046
				.type = PERF_RECORD_COMM,
4047 4048 4049 4050 4051
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4052 4053 4054
		},
	};

4055
	perf_event_comm_event(&comm_event);
4056 4057
}

4058 4059 4060 4061 4062
/*
 * mmap tracking
 */

struct perf_mmap_event {
4063 4064 4065 4066
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4067 4068 4069 4070 4071 4072 4073 4074 4075

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4076
	} event_id;
4077 4078
};

4079
static void perf_event_mmap_output(struct perf_event *event,
4080 4081 4082
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4083 4084
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
4085 4086 4087 4088

	if (ret)
		return;

4089 4090
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4091

4092
	perf_output_put(&handle, mmap_event->event_id);
4093 4094
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4095
	perf_output_end(&handle);
4096 4097
}

4098
static int perf_event_mmap_match(struct perf_event *event,
4099 4100
				   struct perf_mmap_event *mmap_event,
				   int executable)
4101
{
P
Peter Zijlstra 已提交
4102
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4103 4104
		return 0;

4105 4106 4107
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4108 4109
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4110 4111 4112 4113 4114
		return 1;

	return 0;
}

4115
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4116 4117
				  struct perf_mmap_event *mmap_event,
				  int executable)
4118
{
4119
	struct perf_event *event;
4120

4121
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4122
		if (perf_event_mmap_match(event, mmap_event, executable))
4123
			perf_event_mmap_output(event, mmap_event);
4124 4125 4126
	}
}

4127
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4128 4129
{
	struct perf_cpu_context *cpuctx;
4130
	struct perf_event_context *ctx;
4131 4132
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4133 4134 4135
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4136
	const char *name;
P
Peter Zijlstra 已提交
4137
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4138
	int ctxn;
4139

4140 4141
	memset(tmp, 0, sizeof(tmp));

4142
	if (file) {
4143 4144 4145 4146 4147 4148
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4149 4150 4151 4152
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4153
		name = d_path(&file->f_path, buf, PATH_MAX);
4154 4155 4156 4157 4158
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4159 4160 4161
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4162
			goto got_name;
4163
		}
4164 4165 4166 4167

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4168 4169 4170 4171 4172 4173 4174 4175
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4176 4177
		}

4178 4179 4180 4181 4182
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4183
	size = ALIGN(strlen(name)+1, sizeof(u64));
4184 4185 4186 4187

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4188
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4189

4190
	rcu_read_lock();
P
Peter Zijlstra 已提交
4191
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4192
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4193 4194
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4195 4196 4197

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4198
			goto next;
P
Peter Zijlstra 已提交
4199 4200 4201 4202 4203 4204

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4205 4206
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4207
	}
4208 4209
	rcu_read_unlock();

4210 4211 4212
	kfree(buf);
}

4213
void perf_event_mmap(struct vm_area_struct *vma)
4214
{
4215 4216
	struct perf_mmap_event mmap_event;

4217
	if (!atomic_read(&nr_mmap_events))
4218 4219 4220
		return;

	mmap_event = (struct perf_mmap_event){
4221
		.vma	= vma,
4222 4223
		/* .file_name */
		/* .file_size */
4224
		.event_id  = {
4225
			.header = {
4226
				.type = PERF_RECORD_MMAP,
4227
				.misc = PERF_RECORD_MISC_USER,
4228 4229 4230 4231
				/* .size */
			},
			/* .pid */
			/* .tid */
4232 4233
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4234
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4235 4236 4237
		},
	};

4238
	perf_event_mmap_event(&mmap_event);
4239 4240
}

4241 4242 4243 4244
/*
 * IRQ throttle logging
 */

4245
static void perf_log_throttle(struct perf_event *event, int enable)
4246 4247 4248 4249 4250 4251 4252
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4253
		u64				id;
4254
		u64				stream_id;
4255 4256
	} throttle_event = {
		.header = {
4257
			.type = PERF_RECORD_THROTTLE,
4258 4259 4260
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4261
		.time		= perf_clock(),
4262 4263
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4264 4265
	};

4266
	if (enable)
4267
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4268

4269
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4270 4271 4272 4273 4274 4275 4276
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4277
/*
4278
 * Generic event overflow handling, sampling.
4279 4280
 */

4281
static int __perf_event_overflow(struct perf_event *event, int nmi,
4282 4283
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4284
{
4285 4286
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4287 4288
	int ret = 0;

4289 4290 4291 4292 4293 4294 4295
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4296
	if (!throttle) {
4297
		hwc->interrupts++;
4298
	} else {
4299 4300
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4301
			if (HZ * hwc->interrupts >
4302
					(u64)sysctl_perf_event_sample_rate) {
4303
				hwc->interrupts = MAX_INTERRUPTS;
4304
				perf_log_throttle(event, 0);
4305 4306 4307 4308
				ret = 1;
			}
		} else {
			/*
4309
			 * Keep re-disabling events even though on the previous
4310
			 * pass we disabled it - just in case we raced with a
4311
			 * sched-in and the event got enabled again:
4312
			 */
4313 4314 4315
			ret = 1;
		}
	}
4316

4317
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4318
		u64 now = perf_clock();
4319
		s64 delta = now - hwc->freq_time_stamp;
4320

4321
		hwc->freq_time_stamp = now;
4322

4323 4324
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4325 4326
	}

4327 4328
	/*
	 * XXX event_limit might not quite work as expected on inherited
4329
	 * events
4330 4331
	 */

4332 4333
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4334
		ret = 1;
4335
		event->pending_kill = POLL_HUP;
4336
		if (nmi) {
4337
			event->pending_disable = 1;
4338
			irq_work_queue(&event->pending);
4339
		} else
4340
			perf_event_disable(event);
4341 4342
	}

4343 4344 4345 4346 4347
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4348
	return ret;
4349 4350
}

4351
int perf_event_overflow(struct perf_event *event, int nmi,
4352 4353
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4354
{
4355
	return __perf_event_overflow(event, nmi, 1, data, regs);
4356 4357
}

4358
/*
4359
 * Generic software event infrastructure
4360 4361
 */

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4373
/*
4374 4375
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4376 4377 4378 4379
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4380
static u64 perf_swevent_set_period(struct perf_event *event)
4381
{
4382
	struct hw_perf_event *hwc = &event->hw;
4383 4384 4385 4386 4387
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4388 4389

again:
4390
	old = val = local64_read(&hwc->period_left);
4391 4392
	if (val < 0)
		return 0;
4393

4394 4395 4396
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4397
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4398
		goto again;
4399

4400
	return nr;
4401 4402
}

4403
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4404 4405
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4406
{
4407
	struct hw_perf_event *hwc = &event->hw;
4408
	int throttle = 0;
4409

4410
	data->period = event->hw.last_period;
4411 4412
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4413

4414 4415
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4416

4417
	for (; overflow; overflow--) {
4418
		if (__perf_event_overflow(event, nmi, throttle,
4419
					    data, regs)) {
4420 4421 4422 4423 4424 4425
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4426
		throttle = 1;
4427
	}
4428 4429
}

P
Peter Zijlstra 已提交
4430
static void perf_swevent_event(struct perf_event *event, u64 nr,
4431 4432
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4433
{
4434
	struct hw_perf_event *hwc = &event->hw;
4435

4436
	local64_add(nr, &event->count);
4437

4438 4439 4440
	if (!regs)
		return;

4441
	if (!is_sampling_event(event))
4442
		return;
4443

4444 4445 4446
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4447
	if (local64_add_negative(nr, &hwc->period_left))
4448
		return;
4449

4450
	perf_swevent_overflow(event, 0, nmi, data, regs);
4451 4452
}

4453 4454 4455
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4456 4457 4458
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4470
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4471
				enum perf_type_id type,
L
Li Zefan 已提交
4472 4473 4474
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4475
{
4476
	if (event->attr.type != type)
4477
		return 0;
4478

4479
	if (event->attr.config != event_id)
4480 4481
		return 0;

4482 4483
	if (perf_exclude_event(event, regs))
		return 0;
4484 4485 4486 4487

	return 1;
}

4488 4489 4490 4491 4492 4493 4494
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4495 4496
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4497
{
4498 4499 4500 4501
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4502

4503 4504
/* For the read side: events when they trigger */
static inline struct hlist_head *
4505
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4506 4507
{
	struct swevent_hlist *hlist;
4508

4509
	hlist = rcu_dereference(swhash->swevent_hlist);
4510 4511 4512
	if (!hlist)
		return NULL;

4513 4514 4515 4516 4517
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4518
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4529
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4530 4531 4532 4533 4534
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4535 4536 4537 4538 4539 4540
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4541
{
4542
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4543
	struct perf_event *event;
4544 4545
	struct hlist_node *node;
	struct hlist_head *head;
4546

4547
	rcu_read_lock();
4548
	head = find_swevent_head_rcu(swhash, type, event_id);
4549 4550 4551 4552
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4553
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4554
			perf_swevent_event(event, nr, nmi, data, regs);
4555
	}
4556 4557
end:
	rcu_read_unlock();
4558 4559
}

4560
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4561
{
4562
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4563

4564
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4565
}
I
Ingo Molnar 已提交
4566
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4567

4568
void inline perf_swevent_put_recursion_context(int rctx)
4569
{
4570
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4571

4572
	put_recursion_context(swhash->recursion, rctx);
4573
}
4574

4575
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4576
			    struct pt_regs *regs, u64 addr)
4577
{
4578
	struct perf_sample_data data;
4579 4580
	int rctx;

4581
	preempt_disable_notrace();
4582 4583 4584
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4585

4586
	perf_sample_data_init(&data, addr);
4587

4588
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4589 4590

	perf_swevent_put_recursion_context(rctx);
4591
	preempt_enable_notrace();
4592 4593
}

4594
static void perf_swevent_read(struct perf_event *event)
4595 4596 4597
{
}

P
Peter Zijlstra 已提交
4598
static int perf_swevent_add(struct perf_event *event, int flags)
4599
{
4600
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4601
	struct hw_perf_event *hwc = &event->hw;
4602 4603
	struct hlist_head *head;

4604
	if (is_sampling_event(event)) {
4605
		hwc->last_period = hwc->sample_period;
4606
		perf_swevent_set_period(event);
4607
	}
4608

P
Peter Zijlstra 已提交
4609 4610
	hwc->state = !(flags & PERF_EF_START);

4611
	head = find_swevent_head(swhash, event);
4612 4613 4614 4615 4616
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4617 4618 4619
	return 0;
}

P
Peter Zijlstra 已提交
4620
static void perf_swevent_del(struct perf_event *event, int flags)
4621
{
4622
	hlist_del_rcu(&event->hlist_entry);
4623 4624
}

P
Peter Zijlstra 已提交
4625
static void perf_swevent_start(struct perf_event *event, int flags)
4626
{
P
Peter Zijlstra 已提交
4627
	event->hw.state = 0;
4628
}
I
Ingo Molnar 已提交
4629

P
Peter Zijlstra 已提交
4630
static void perf_swevent_stop(struct perf_event *event, int flags)
4631
{
P
Peter Zijlstra 已提交
4632
	event->hw.state = PERF_HES_STOPPED;
4633 4634
}

4635 4636
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4637
swevent_hlist_deref(struct swevent_htable *swhash)
4638
{
4639 4640
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4641 4642
}

4643 4644 4645 4646 4647 4648 4649 4650
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4651
static void swevent_hlist_release(struct swevent_htable *swhash)
4652
{
4653
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4654

4655
	if (!hlist)
4656 4657
		return;

4658
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4659 4660 4661 4662 4663
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4664
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4665

4666
	mutex_lock(&swhash->hlist_mutex);
4667

4668 4669
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4670

4671
	mutex_unlock(&swhash->hlist_mutex);
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4689
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4690 4691
	int err = 0;

4692
	mutex_lock(&swhash->hlist_mutex);
4693

4694
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4695 4696 4697 4698 4699 4700 4701
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4702
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4703
	}
4704
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4705
exit:
4706
	mutex_unlock(&swhash->hlist_mutex);
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4730
fail:
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4741
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4742

4743 4744 4745
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4746

4747 4748
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
4749
	jump_label_dec(&perf_swevent_enabled[event_id]);
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
4779
		jump_label_inc(&perf_swevent_enabled[event_id]);
4780 4781 4782 4783 4784 4785 4786
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4787
	.task_ctx_nr	= perf_sw_context,
4788

4789
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4790 4791 4792 4793
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4794 4795 4796
	.read		= perf_swevent_read,
};

4797 4798
#ifdef CONFIG_EVENT_TRACING

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4813 4814 4815 4816
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4817 4818 4819 4820 4821 4822 4823 4824 4825
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4826
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4827 4828
{
	struct perf_sample_data data;
4829 4830 4831
	struct perf_event *event;
	struct hlist_node *node;

4832 4833 4834 4835 4836 4837 4838 4839
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4840 4841
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4842
			perf_swevent_event(event, count, 1, &data, regs);
4843
	}
4844 4845

	perf_swevent_put_recursion_context(rctx);
4846 4847 4848
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4849
static void tp_perf_event_destroy(struct perf_event *event)
4850
{
4851
	perf_trace_destroy(event);
4852 4853
}

4854
static int perf_tp_event_init(struct perf_event *event)
4855
{
4856 4857
	int err;

4858 4859 4860
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4861 4862
	err = perf_trace_init(event);
	if (err)
4863
		return err;
4864

4865
	event->destroy = tp_perf_event_destroy;
4866

4867 4868 4869 4870
	return 0;
}

static struct pmu perf_tracepoint = {
4871 4872
	.task_ctx_nr	= perf_sw_context,

4873
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4874 4875 4876 4877
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4878 4879 4880 4881 4882 4883
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4884
}
L
Li Zefan 已提交
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4909
#else
L
Li Zefan 已提交
4910

4911
static inline void perf_tp_register(void)
4912 4913
{
}
L
Li Zefan 已提交
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4924
#endif /* CONFIG_EVENT_TRACING */
4925

4926
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4927
void perf_bp_event(struct perf_event *bp, void *data)
4928
{
4929 4930 4931
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4932
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4933

P
Peter Zijlstra 已提交
4934 4935
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4936 4937 4938
}
#endif

4939 4940 4941
/*
 * hrtimer based swevent callback
 */
4942

4943
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4944
{
4945 4946 4947 4948 4949
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4950

4951 4952
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4953

4954 4955 4956 4957 4958 4959 4960 4961 4962
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4963

4964 4965
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4966

4967
	return ret;
4968 4969
}

4970
static void perf_swevent_start_hrtimer(struct perf_event *event)
4971
{
4972
	struct hw_perf_event *hwc = &event->hw;
4973 4974 4975 4976
	s64 period;

	if (!is_sampling_event(event))
		return;
4977

4978 4979
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
4980

4981 4982 4983 4984
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
4985

4986 4987 4988 4989 4990
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
4991
				ns_to_ktime(period), 0,
4992
				HRTIMER_MODE_REL_PINNED, 0);
4993
}
4994 4995

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4996
{
4997 4998
	struct hw_perf_event *hwc = &event->hw;

4999
	if (is_sampling_event(event)) {
5000
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5001
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5002 5003 5004

		hrtimer_cancel(&hwc->hrtimer);
	}
5005 5006
}

5007 5008 5009 5010 5011
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5012
{
5013 5014 5015
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5016
	now = local_clock();
5017 5018
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5019 5020
}

P
Peter Zijlstra 已提交
5021
static void cpu_clock_event_start(struct perf_event *event, int flags)
5022
{
P
Peter Zijlstra 已提交
5023
	local64_set(&event->hw.prev_count, local_clock());
5024 5025 5026
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5027
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5028
{
5029 5030 5031
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5032

P
Peter Zijlstra 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5046 5047 5048 5049
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5050

5051 5052 5053 5054 5055 5056 5057 5058 5059
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
5060 5061
}

5062
static struct pmu perf_cpu_clock = {
5063 5064
	.task_ctx_nr	= perf_sw_context,

5065
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5066 5067 5068 5069
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5070 5071 5072 5073 5074 5075 5076 5077
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5078
{
5079 5080
	u64 prev;
	s64 delta;
5081

5082 5083 5084 5085
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5086

P
Peter Zijlstra 已提交
5087
static void task_clock_event_start(struct perf_event *event, int flags)
5088
{
P
Peter Zijlstra 已提交
5089
	local64_set(&event->hw.prev_count, event->ctx->time);
5090 5091 5092
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5093
static void task_clock_event_stop(struct perf_event *event, int flags)
5094 5095 5096
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5097 5098 5099 5100 5101 5102
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5103

P
Peter Zijlstra 已提交
5104 5105 5106 5107 5108 5109
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5129
{
5130 5131 5132 5133 5134 5135 5136
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
L
Li Zefan 已提交
5137 5138
}

5139
static struct pmu perf_task_clock = {
5140 5141
	.task_ctx_nr	= perf_sw_context,

5142
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5143 5144 5145 5146
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5147 5148
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5149

P
Peter Zijlstra 已提交
5150
static void perf_pmu_nop_void(struct pmu *pmu)
5151 5152
{
}
L
Li Zefan 已提交
5153

P
Peter Zijlstra 已提交
5154
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5155
{
P
Peter Zijlstra 已提交
5156
	return 0;
L
Li Zefan 已提交
5157 5158
}

P
Peter Zijlstra 已提交
5159
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5160
{
P
Peter Zijlstra 已提交
5161
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5162 5163
}

P
Peter Zijlstra 已提交
5164 5165 5166 5167 5168
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5169

P
Peter Zijlstra 已提交
5170
static void perf_pmu_cancel_txn(struct pmu *pmu)
5171
{
P
Peter Zijlstra 已提交
5172
	perf_pmu_enable(pmu);
5173 5174
}

P
Peter Zijlstra 已提交
5175 5176 5177 5178 5179
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5180
{
P
Peter Zijlstra 已提交
5181
	struct pmu *pmu;
5182

P
Peter Zijlstra 已提交
5183 5184
	if (ctxn < 0)
		return NULL;
5185

P
Peter Zijlstra 已提交
5186 5187 5188 5189
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5190

P
Peter Zijlstra 已提交
5191
	return NULL;
5192 5193
}

P
Peter Zijlstra 已提交
5194
static void free_pmu_context(void * __percpu cpu_context)
5195
{
P
Peter Zijlstra 已提交
5196
	struct pmu *pmu;
5197

P
Peter Zijlstra 已提交
5198
	mutex_lock(&pmus_lock);
5199
	/*
P
Peter Zijlstra 已提交
5200
	 * Like a real lame refcount.
5201
	 */
P
Peter Zijlstra 已提交
5202 5203 5204 5205
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->pmu_cpu_context == cpu_context)
			goto out;
	}
5206

P
Peter Zijlstra 已提交
5207 5208 5209
	free_percpu(cpu_context);
out:
	mutex_unlock(&pmus_lock);
5210
}
5211

5212
int perf_pmu_register(struct pmu *pmu)
5213
{
P
Peter Zijlstra 已提交
5214
	int cpu, ret;
5215

5216
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5217 5218 5219 5220
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5221

P
Peter Zijlstra 已提交
5222 5223 5224
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5225

P
Peter Zijlstra 已提交
5226 5227 5228
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;
5229

P
Peter Zijlstra 已提交
5230 5231 5232 5233
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5234
		__perf_event_init_context(&cpuctx->ctx);
5235
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5236
		cpuctx->ctx.pmu = pmu;
5237 5238
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
P
Peter Zijlstra 已提交
5239
	}
5240

P
Peter Zijlstra 已提交
5241
got_cpu_context:
P
Peter Zijlstra 已提交
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5256
		}
5257
	}
5258

P
Peter Zijlstra 已提交
5259 5260 5261 5262 5263
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5264
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5265 5266
	ret = 0;
unlock:
5267 5268
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5269
	return ret;
P
Peter Zijlstra 已提交
5270 5271 5272 5273

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5274 5275
}

5276
void perf_pmu_unregister(struct pmu *pmu)
5277
{
5278 5279 5280
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5281

5282
	/*
P
Peter Zijlstra 已提交
5283 5284
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5285
	 */
5286
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5287
	synchronize_rcu();
5288

P
Peter Zijlstra 已提交
5289
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5290
	free_pmu_context(pmu->pmu_cpu_context);
5291
}
5292

5293 5294 5295 5296 5297 5298 5299 5300 5301
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
P
Peter Zijlstra 已提交
5302
			goto unlock;
5303

5304 5305
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5306
			goto unlock;
5307
		}
5308
	}
P
Peter Zijlstra 已提交
5309 5310
	pmu = ERR_PTR(-ENOENT);
unlock:
5311
	srcu_read_unlock(&pmus_srcu, idx);
5312

5313
	return pmu;
5314 5315
}

T
Thomas Gleixner 已提交
5316
/*
5317
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5318
 */
5319
static struct perf_event *
5320
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5321 5322 5323 5324
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5325
{
P
Peter Zijlstra 已提交
5326
	struct pmu *pmu;
5327 5328
	struct perf_event *event;
	struct hw_perf_event *hwc;
5329
	long err;
T
Thomas Gleixner 已提交
5330

5331
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5332
	if (!event)
5333
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5334

5335
	/*
5336
	 * Single events are their own group leaders, with an
5337 5338 5339
	 * empty sibling list:
	 */
	if (!group_leader)
5340
		group_leader = event;
5341

5342 5343
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5344

5345 5346 5347 5348
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5349
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5350

5351
	mutex_init(&event->mmap_mutex);
5352

5353 5354 5355 5356 5357
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5358

5359
	event->parent		= parent_event;
5360

5361 5362
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5363

5364
	event->state		= PERF_EVENT_STATE_INACTIVE;
5365

5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5377 5378
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5379
	
5380
	event->overflow_handler	= overflow_handler;
5381

5382
	if (attr->disabled)
5383
		event->state = PERF_EVENT_STATE_OFF;
5384

5385
	pmu = NULL;
5386

5387
	hwc = &event->hw;
5388
	hwc->sample_period = attr->sample_period;
5389
	if (attr->freq && attr->sample_freq)
5390
		hwc->sample_period = 1;
5391
	hwc->last_period = hwc->sample_period;
5392

5393
	local64_set(&hwc->period_left, hwc->sample_period);
5394

5395
	/*
5396
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5397
	 */
5398
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5399 5400
		goto done;

5401
	pmu = perf_init_event(event);
5402

5403 5404
done:
	err = 0;
5405
	if (!pmu)
5406
		err = -EINVAL;
5407 5408
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5409

5410
	if (err) {
5411 5412 5413
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5414
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5415
	}
5416

5417
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5418

5419
	if (!event->parent) {
5420 5421
		if (event->attach_state & PERF_ATTACH_TASK)
			jump_label_inc(&perf_task_events);
5422
		if (event->attr.mmap || event->attr.mmap_data)
5423 5424 5425 5426 5427
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5428 5429 5430 5431 5432 5433 5434
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5435
	}
5436

5437
	return event;
T
Thomas Gleixner 已提交
5438 5439
}

5440 5441
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5442 5443
{
	u32 size;
5444
	int ret;
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5469 5470 5471
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5472 5473
	 */
	if (size > sizeof(*attr)) {
5474 5475 5476
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5477

5478 5479
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5480

5481
		for (; addr < end; addr++) {
5482 5483 5484 5485 5486 5487
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5488
		size = sizeof(*attr);
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5502
	if (attr->__reserved_1)
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5520 5521
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5522
{
5523
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5524 5525
	int ret = -EINVAL;

5526
	if (!output_event)
5527 5528
		goto set;

5529 5530
	/* don't allow circular references */
	if (event == output_event)
5531 5532
		goto out;

5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5545
set:
5546
	mutex_lock(&event->mmap_mutex);
5547 5548 5549
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5550

5551 5552
	if (output_event) {
		/* get the buffer we want to redirect to */
5553 5554
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5555
			goto unlock;
5556 5557
	}

5558 5559
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5560
	ret = 0;
5561 5562 5563
unlock:
	mutex_unlock(&event->mmap_mutex);

5564 5565
	if (old_buffer)
		perf_buffer_put(old_buffer);
5566 5567 5568 5569
out:
	return ret;
}

T
Thomas Gleixner 已提交
5570
/**
5571
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5572
 *
5573
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5574
 * @pid:		target pid
I
Ingo Molnar 已提交
5575
 * @cpu:		target cpu
5576
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5577
 */
5578 5579
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5580
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5581
{
5582 5583
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5584 5585 5586
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5587
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5588
	struct task_struct *task = NULL;
5589
	struct pmu *pmu;
5590
	int event_fd;
5591
	int move_group = 0;
5592
	int fput_needed = 0;
5593
	int err;
T
Thomas Gleixner 已提交
5594

5595
	/* for future expandability... */
5596
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5597 5598
		return -EINVAL;

5599 5600 5601
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5602

5603 5604 5605 5606 5607
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5608
	if (attr.freq) {
5609
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5610 5611 5612
			return -EINVAL;
	}

5613 5614 5615 5616
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5617 5618 5619 5620
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5621
			goto err_fd;
5622 5623 5624 5625 5626 5627 5628 5629
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5630 5631 5632 5633 5634 5635 5636 5637
	if (pid != -1) {
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

5638
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5639 5640
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5641
		goto err_task;
5642 5643
	}

5644 5645 5646 5647 5648
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
5672 5673 5674 5675

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
5676
	ctx = find_get_context(pmu, task, cpu);
5677 5678
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5679
		goto err_alloc;
5680 5681
	}

I
Ingo Molnar 已提交
5682
	/*
5683
	 * Look up the group leader (we will attach this event to it):
5684
	 */
5685
	if (group_leader) {
5686
		err = -EINVAL;
5687 5688

		/*
I
Ingo Molnar 已提交
5689 5690 5691 5692
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5693
			goto err_context;
I
Ingo Molnar 已提交
5694 5695 5696
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5697
		 */
5698 5699 5700 5701 5702 5703 5704 5705
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

5706 5707 5708
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5709
		if (attr.exclusive || attr.pinned)
5710
			goto err_context;
5711 5712 5713 5714 5715
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5716
			goto err_context;
5717
	}
T
Thomas Gleixner 已提交
5718

5719 5720 5721
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5722
		goto err_context;
5723
	}
5724

5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
		perf_event_remove_from_context(group_leader);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_event_remove_from_context(sibling);
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
5737
	}
5738

5739
	event->filp = event_file;
5740
	WARN_ON_ONCE(ctx->parent_ctx);
5741
	mutex_lock(&ctx->mutex);
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

5753
	perf_install_in_context(ctx, event, cpu);
5754
	++ctx->generation;
5755
	mutex_unlock(&ctx->mutex);
5756

5757
	event->owner = current;
P
Peter Zijlstra 已提交
5758

5759 5760 5761
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5762

5763 5764 5765 5766
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
5767
	perf_event__id_header_size(event);
5768

5769 5770 5771 5772 5773 5774
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5775 5776 5777
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5778

5779
err_context:
5780
	put_ctx(ctx);
5781
err_alloc:
5782
	free_event(event);
P
Peter Zijlstra 已提交
5783 5784 5785
err_task:
	if (task)
		put_task_struct(task);
5786
err_group_fd:
5787
	fput_light(group_file, fput_needed);
5788 5789
err_fd:
	put_unused_fd(event_fd);
5790
	return err;
T
Thomas Gleixner 已提交
5791 5792
}

5793 5794 5795 5796 5797
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
5798
 * @task: task to profile (NULL for percpu)
5799 5800 5801
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
5802
				 struct task_struct *task,
5803
				 perf_overflow_handler_t overflow_handler)
5804 5805
{
	struct perf_event_context *ctx;
5806
	struct perf_event *event;
5807
	int err;
5808

5809 5810 5811
	/*
	 * Get the target context (task or percpu):
	 */
5812

5813
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5814 5815 5816 5817
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
5818

M
Matt Helsley 已提交
5819
	ctx = find_get_context(event->pmu, task, cpu);
5820 5821
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5822
		goto err_free;
5823
	}
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	return event;

5834 5835 5836
err_free:
	free_event(event);
err:
5837
	return ERR_PTR(err);
5838
}
5839
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5840

5841
static void sync_child_event(struct perf_event *child_event,
5842
			       struct task_struct *child)
5843
{
5844
	struct perf_event *parent_event = child_event->parent;
5845
	u64 child_val;
5846

5847 5848
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5849

P
Peter Zijlstra 已提交
5850
	child_val = perf_event_count(child_event);
5851 5852 5853 5854

	/*
	 * Add back the child's count to the parent's count:
	 */
5855
	atomic64_add(child_val, &parent_event->child_count);
5856 5857 5858 5859
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5860 5861

	/*
5862
	 * Remove this event from the parent's list
5863
	 */
5864 5865 5866 5867
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5868 5869

	/*
5870
	 * Release the parent event, if this was the last
5871 5872
	 * reference to it.
	 */
5873
	fput(parent_event->filp);
5874 5875
}

5876
static void
5877 5878
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5879
			 struct task_struct *child)
5880
{
5881
	struct perf_event *parent_event;
5882

5883
	perf_event_remove_from_context(child_event);
5884

5885
	parent_event = child_event->parent;
5886
	/*
5887
	 * It can happen that parent exits first, and has events
5888
	 * that are still around due to the child reference. These
5889
	 * events need to be zapped - but otherwise linger.
5890
	 */
5891 5892 5893
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5894
	}
5895 5896
}

P
Peter Zijlstra 已提交
5897
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5898
{
5899 5900
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5901
	unsigned long flags;
5902

P
Peter Zijlstra 已提交
5903
	if (likely(!child->perf_event_ctxp[ctxn])) {
5904
		perf_event_task(child, NULL, 0);
5905
		return;
P
Peter Zijlstra 已提交
5906
	}
5907

5908
	local_irq_save(flags);
5909 5910 5911 5912 5913 5914
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
P
Peter Zijlstra 已提交
5915
	child_ctx = child->perf_event_ctxp[ctxn];
5916
	task_ctx_sched_out(child_ctx, EVENT_ALL);
5917 5918 5919

	/*
	 * Take the context lock here so that if find_get_context is
5920
	 * reading child->perf_event_ctxp, we wait until it has
5921 5922
	 * incremented the context's refcount before we do put_ctx below.
	 */
5923
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
5924
	child->perf_event_ctxp[ctxn] = NULL;
5925 5926 5927
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5928
	 * the events from it.
5929 5930
	 */
	unclone_ctx(child_ctx);
5931
	update_context_time(child_ctx);
5932
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5933 5934

	/*
5935 5936 5937
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5938
	 */
5939
	perf_event_task(child, child_ctx, 0);
5940

5941 5942 5943
	/*
	 * We can recurse on the same lock type through:
	 *
5944 5945 5946
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5947 5948 5949 5950 5951
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5952
	mutex_lock(&child_ctx->mutex);
5953

5954
again:
5955 5956 5957 5958 5959
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5960
				 group_entry)
5961
		__perf_event_exit_task(child_event, child_ctx, child);
5962 5963

	/*
5964
	 * If the last event was a group event, it will have appended all
5965 5966 5967
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5968 5969
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5970
		goto again;
5971 5972 5973 5974

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5975 5976
}

P
Peter Zijlstra 已提交
5977 5978 5979 5980 5981
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
5982
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5983 5984
	int ctxn;

P
Peter Zijlstra 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6000 6001 6002 6003
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6018
	perf_group_detach(event);
6019 6020 6021 6022
	list_del_event(event, ctx);
	free_event(event);
}

6023 6024
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6025
 * perf_event_init_task below, used by fork() in case of fail.
6026
 */
6027
void perf_event_free_task(struct task_struct *task)
6028
{
P
Peter Zijlstra 已提交
6029
	struct perf_event_context *ctx;
6030
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6031
	int ctxn;
6032

P
Peter Zijlstra 已提交
6033 6034 6035 6036
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6037

P
Peter Zijlstra 已提交
6038
		mutex_lock(&ctx->mutex);
6039
again:
P
Peter Zijlstra 已提交
6040 6041 6042
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6043

P
Peter Zijlstra 已提交
6044 6045 6046
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6047

P
Peter Zijlstra 已提交
6048 6049 6050
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6051

P
Peter Zijlstra 已提交
6052
		mutex_unlock(&ctx->mutex);
6053

P
Peter Zijlstra 已提交
6054 6055
		put_ctx(ctx);
	}
6056 6057
}

6058 6059 6060 6061 6062 6063 6064 6065
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6078
	unsigned long flags;
P
Peter Zijlstra 已提交
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6091
					   child,
P
Peter Zijlstra 已提交
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6121 6122 6123 6124
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6125
	perf_event__id_header_size(child_event);
6126

P
Peter Zijlstra 已提交
6127 6128 6129
	/*
	 * Link it up in the child's context:
	 */
6130
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6131
	add_event_to_ctx(child_event, child_ctx);
6132
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6174 6175 6176 6177 6178
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6179
		   struct task_struct *child, int ctxn,
6180 6181 6182
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6183
	struct perf_event_context *child_ctx;
6184 6185 6186 6187

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6188 6189
	}

P
Peter Zijlstra 已提交
6190
       	child_ctx = child->perf_event_ctxp[ctxn];
6191 6192 6193 6194 6195 6196 6197
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6198

6199
		child_ctx = alloc_perf_context(event->pmu, child);
6200 6201
		if (!child_ctx)
			return -ENOMEM;
6202

P
Peter Zijlstra 已提交
6203
		child->perf_event_ctxp[ctxn] = child_ctx;
6204 6205 6206 6207 6208 6209 6210 6211 6212
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6213 6214
}

6215
/*
6216
 * Initialize the perf_event context in task_struct
6217
 */
P
Peter Zijlstra 已提交
6218
int perf_event_init_context(struct task_struct *child, int ctxn)
6219
{
6220
	struct perf_event_context *child_ctx, *parent_ctx;
6221 6222
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6223
	struct task_struct *parent = current;
6224
	int inherited_all = 1;
6225
	unsigned long flags;
6226
	int ret = 0;
6227

P
Peter Zijlstra 已提交
6228
	child->perf_event_ctxp[ctxn] = NULL;
6229

6230 6231
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
6232

P
Peter Zijlstra 已提交
6233
	if (likely(!parent->perf_event_ctxp[ctxn]))
6234 6235
		return 0;

6236
	/*
6237 6238
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6239
	 */
P
Peter Zijlstra 已提交
6240
	parent_ctx = perf_pin_task_context(parent, ctxn);
6241

6242 6243 6244 6245 6246 6247 6248
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6249 6250 6251 6252
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6253
	mutex_lock(&parent_ctx->mutex);
6254 6255 6256 6257 6258

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6259
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6260 6261
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6262 6263 6264
		if (ret)
			break;
	}
6265

6266 6267 6268 6269 6270 6271 6272 6273 6274
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6275
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6276 6277
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6278
		if (ret)
6279
			break;
6280 6281
	}

6282 6283 6284 6285
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

P
Peter Zijlstra 已提交
6286
	child_ctx = child->perf_event_ctxp[ctxn];
6287

6288
	if (child_ctx && inherited_all) {
6289 6290 6291
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
6292 6293
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
6294
		 * because the list of events and the generation
6295
		 * count can't have changed since we took the mutex.
6296
		 */
6297 6298 6299
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6300
			child_ctx->parent_gen = parent_ctx->parent_gen;
6301 6302 6303 6304 6305
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6306 6307
	}

6308
	mutex_unlock(&parent_ctx->mutex);
6309

6310
	perf_unpin_context(parent_ctx);
6311

6312
	return ret;
6313 6314
}

P
Peter Zijlstra 已提交
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6331 6332
static void __init perf_event_init_all_cpus(void)
{
6333
	struct swevent_htable *swhash;
6334 6335 6336
	int cpu;

	for_each_possible_cpu(cpu) {
6337 6338
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6339
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6340 6341 6342
	}
}

6343
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6344
{
P
Peter Zijlstra 已提交
6345
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6346

6347 6348
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6349 6350
		struct swevent_hlist *hlist;

6351 6352 6353
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6354
	}
6355
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6356 6357 6358
}

#ifdef CONFIG_HOTPLUG_CPU
6359
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6360
{
6361 6362 6363 6364 6365 6366 6367
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6368
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6369
{
P
Peter Zijlstra 已提交
6370
	struct perf_event_context *ctx = __info;
6371
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6372

P
Peter Zijlstra 已提交
6373
	perf_pmu_rotate_stop(ctx->pmu);
6374

6375 6376 6377
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6378
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6379
}
P
Peter Zijlstra 已提交
6380 6381 6382 6383 6384 6385 6386 6387 6388

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6389
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6390 6391 6392 6393 6394 6395 6396 6397

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6398
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6399
{
6400
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6401

6402 6403 6404
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6405

P
Peter Zijlstra 已提交
6406
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6407 6408
}
#else
6409
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6410 6411 6412 6413 6414 6415 6416
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6417
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6418 6419

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6420
	case CPU_DOWN_FAILED:
6421
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6422 6423
		break;

P
Peter Zijlstra 已提交
6424
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6425
	case CPU_DOWN_PREPARE:
6426
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6427 6428 6429 6430 6431 6432 6433 6434 6435
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6436
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6437
{
6438 6439
	int ret;

6440
	perf_event_init_all_cpus();
6441 6442 6443 6444 6445 6446
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
6447 6448 6449

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6450
}