perf_event.c 119.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38 39 40
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 209 210
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
211 212 213 214 215

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233 234 235 236 237 238
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242 243 244 245 246 247 248
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

249
/*
250
 * Add a event from the lists for its context.
251 252
 * Must be called with ctx->mutex and ctx->lock held.
 */
253
static void
254
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255
{
256
	struct perf_event *group_leader = event->group_leader;
257 258

	/*
259 260
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
261 262
	 * leader's sibling list:
	 */
263 264
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
265
	else {
266
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
267 268
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
269

270 271 272
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
273
		ctx->nr_stat++;
274 275
}

276
/*
277
 * Remove a event from the lists for its context.
278
 * Must be called with ctx->mutex and ctx->lock held.
279
 */
280
static void
281
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282
{
283
	struct perf_event *sibling, *tmp;
284

285
	if (list_empty(&event->group_entry))
286
		return;
287 288
	ctx->nr_events--;
	if (event->attr.inherit_stat)
289
		ctx->nr_stat--;
290

291 292
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
293

294 295
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
296

297
	/*
298 299
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
300 301
	 * to the context list directly:
	 */
302
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303

304
		list_move_tail(&sibling->group_entry, &ctx->group_list);
305 306 307 308
		sibling->group_leader = sibling;
	}
}

309
static void
310
event_sched_out(struct perf_event *event,
311
		  struct perf_cpu_context *cpuctx,
312
		  struct perf_event_context *ctx)
313
{
314
	if (event->state != PERF_EVENT_STATE_ACTIVE)
315 316
		return;

317 318 319 320
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
321
	}
322 323 324
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
325

326
	if (!is_software_event(event))
327 328
		cpuctx->active_oncpu--;
	ctx->nr_active--;
329
	if (event->attr.exclusive || !cpuctx->active_oncpu)
330 331 332
		cpuctx->exclusive = 0;
}

333
static void
334
group_sched_out(struct perf_event *group_event,
335
		struct perf_cpu_context *cpuctx,
336
		struct perf_event_context *ctx)
337
{
338
	struct perf_event *event;
339

340
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 342
		return;

343
	event_sched_out(group_event, cpuctx, ctx);
344 345 346 347

	/*
	 * Schedule out siblings (if any):
	 */
348 349
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
350

351
	if (group_event->attr.exclusive)
352 353 354
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
355
/*
356
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
357
 *
358
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
359 360
 * remove it from the context list.
 */
361
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
362 363
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 365
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
366 367 368 369 370 371

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
372
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
373 374
		return;

375
	spin_lock(&ctx->lock);
376 377
	/*
	 * Protect the list operation against NMI by disabling the
378
	 * events on a global level.
379 380
	 */
	perf_disable();
T
Thomas Gleixner 已提交
381

382
	event_sched_out(event, cpuctx, ctx);
383

384
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
385 386 387

	if (!ctx->task) {
		/*
388
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
389 390 391
		 * reservation:
		 */
		cpuctx->max_pertask =
392 393
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
394 395
	}

396
	perf_enable();
397
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
398 399 400 401
}


/*
402
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
403
 *
404
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
405
 *
406
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
407
 * call when the task is on a CPU.
408
 *
409 410
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
411 412
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
413
 * When called from perf_event_exit_task, it's OK because the
414
 * context has been detached from its task.
T
Thomas Gleixner 已提交
415
 */
416
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
417
{
418
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
419 420 421 422
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
423
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
424 425
		 * the removal is always sucessful.
		 */
426 427 428
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
429 430 431 432
		return;
	}

retry:
433 434
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
435 436 437 438 439

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
440
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
441 442 443 444 445 446
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
447
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
448 449
	 * succeed.
	 */
450 451
	if (!list_empty(&event->group_entry)) {
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
452 453 454 455
	}
	spin_unlock_irq(&ctx->lock);
}

456
static inline u64 perf_clock(void)
457
{
458
	return cpu_clock(smp_processor_id());
459 460 461 462 463
}

/*
 * Update the record of the current time in a context.
 */
464
static void update_context_time(struct perf_event_context *ctx)
465
{
466 467 468 469
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
470 471 472
}

/*
473
 * Update the total_time_enabled and total_time_running fields for a event.
474
 */
475
static void update_event_times(struct perf_event *event)
476
{
477
	struct perf_event_context *ctx = event->ctx;
478 479
	u64 run_end;

480 481
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 483
		return;

484
	event->total_time_enabled = ctx->time - event->tstamp_enabled;
485

486 487
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
488 489 490
	else
		run_end = ctx->time;

491
	event->total_time_running = run_end - event->tstamp_running;
492 493 494
}

/*
495
 * Update total_time_enabled and total_time_running for all events in a group.
496
 */
497
static void update_group_times(struct perf_event *leader)
498
{
499
	struct perf_event *event;
500

501 502 503
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
504 505
}

506
/*
507
 * Cross CPU call to disable a performance event
508
 */
509
static void __perf_event_disable(void *info)
510
{
511
	struct perf_event *event = info;
512
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513
	struct perf_event_context *ctx = event->ctx;
514 515

	/*
516 517
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
518
	 */
519
	if (ctx->task && cpuctx->task_ctx != ctx)
520 521
		return;

522
	spin_lock(&ctx->lock);
523 524

	/*
525
	 * If the event is on, turn it off.
526 527
	 * If it is in error state, leave it in error state.
	 */
528
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529
		update_context_time(ctx);
530 531 532
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
533
		else
534 535
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
536 537
	}

538
	spin_unlock(&ctx->lock);
539 540 541
}

/*
542
 * Disable a event.
543
 *
544 545
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
546
 * remains valid.  This condition is satisifed when called through
547 548 549 550
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
551
 * is the current context on this CPU and preemption is disabled,
552
 * hence we can't get into perf_event_task_sched_out for this context.
553
 */
554
static void perf_event_disable(struct perf_event *event)
555
{
556
	struct perf_event_context *ctx = event->ctx;
557 558 559 560
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
561
		 * Disable the event on the cpu that it's on
562
		 */
563 564
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
565 566 567 568
		return;
	}

 retry:
569
	task_oncpu_function_call(task, __perf_event_disable, event);
570 571 572

	spin_lock_irq(&ctx->lock);
	/*
573
	 * If the event is still active, we need to retry the cross-call.
574
	 */
575
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 577 578 579 580 581 582 583
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
584 585 586
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
587
	}
588 589 590 591

	spin_unlock_irq(&ctx->lock);
}

592
static int
593
event_sched_in(struct perf_event *event,
594
		 struct perf_cpu_context *cpuctx,
595
		 struct perf_event_context *ctx,
596 597
		 int cpu)
{
598
	if (event->state <= PERF_EVENT_STATE_OFF)
599 600
		return 0;

601 602
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
603 604 605 606 607
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

608 609 610
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
611 612 613
		return -EAGAIN;
	}

614
	event->tstamp_running += ctx->time - event->tstamp_stopped;
615

616
	if (!is_software_event(event))
617
		cpuctx->active_oncpu++;
618 619
	ctx->nr_active++;

620
	if (event->attr.exclusive)
621 622
		cpuctx->exclusive = 1;

623 624 625
	return 0;
}

626
static int
627
group_sched_in(struct perf_event *group_event,
628
	       struct perf_cpu_context *cpuctx,
629
	       struct perf_event_context *ctx,
630 631
	       int cpu)
{
632
	struct perf_event *event, *partial_group;
633 634
	int ret;

635
	if (group_event->state == PERF_EVENT_STATE_OFF)
636 637
		return 0;

638
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 640 641
	if (ret)
		return ret < 0 ? ret : 0;

642
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 644 645 646 647
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
648 649 650
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
651 652 653 654 655 656 657 658 659 660 661
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
662 663
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
664
			break;
665
		event_sched_out(event, cpuctx, ctx);
666
	}
667
	event_sched_out(group_event, cpuctx, ctx);
668 669 670 671

	return -EAGAIN;
}

672
/*
673 674
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
675
 */
676
static int is_software_only_group(struct perf_event *leader)
677
{
678
	struct perf_event *event;
679

680
	if (!is_software_event(leader))
681
		return 0;
P
Peter Zijlstra 已提交
682

683 684
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
685
			return 0;
P
Peter Zijlstra 已提交
686

687 688 689 690
	return 1;
}

/*
691
 * Work out whether we can put this event group on the CPU now.
692
 */
693
static int group_can_go_on(struct perf_event *event,
694 695 696 697
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
698
	 * Groups consisting entirely of software events can always go on.
699
	 */
700
	if (is_software_only_group(event))
701 702 703
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
704
	 * events can go on.
705 706 707 708 709
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
710
	 * events on the CPU, it can't go on.
711
	 */
712
	if (event->attr.exclusive && cpuctx->active_oncpu)
713 714 715 716 717 718 719 720
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

721 722
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
723
{
724 725 726 727
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
728 729
}

T
Thomas Gleixner 已提交
730
/*
731
 * Cross CPU call to install and enable a performance event
732 733
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
734 735 736 737
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 739 740
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
741
	int cpu = smp_processor_id();
742
	int err;
T
Thomas Gleixner 已提交
743 744 745 746 747

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
748
	 * Or possibly this is the right context but it isn't
749
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
750
	 */
751
	if (ctx->task && cpuctx->task_ctx != ctx) {
752
		if (cpuctx->task_ctx || ctx->task != current)
753 754 755
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
756

757
	spin_lock(&ctx->lock);
758
	ctx->is_active = 1;
759
	update_context_time(ctx);
T
Thomas Gleixner 已提交
760 761 762

	/*
	 * Protect the list operation against NMI by disabling the
763
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
764
	 */
765
	perf_disable();
T
Thomas Gleixner 已提交
766

767
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
768

769
	/*
770
	 * Don't put the event on if it is disabled or if
771 772
	 * it is in a group and the group isn't on.
	 */
773 774
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 776
		goto unlock;

777
	/*
778 779 780
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
781
	 */
782
	if (!group_can_go_on(event, cpuctx, 1))
783 784
		err = -EEXIST;
	else
785
		err = event_sched_in(event, cpuctx, ctx, cpu);
786

787 788
	if (err) {
		/*
789
		 * This event couldn't go on.  If it is in a group
790
		 * then we have to pull the whole group off.
791
		 * If the event group is pinned then put it in error state.
792
		 */
793
		if (leader != event)
794
			group_sched_out(leader, cpuctx, ctx);
795
		if (leader->attr.pinned) {
796
			update_group_times(leader);
797
			leader->state = PERF_EVENT_STATE_ERROR;
798
		}
799
	}
T
Thomas Gleixner 已提交
800

801
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
802 803
		cpuctx->max_pertask--;

804
 unlock:
805
	perf_enable();
806

807
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
808 809 810
}

/*
811
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
812
 *
813 814
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
815
 *
816
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
817 818
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
819 820
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
821 822
 */
static void
823 824
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
825 826 827 828 829 830
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
831
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
832 833 834
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
835
					 event, 1);
T
Thomas Gleixner 已提交
836 837 838 839 840
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
841
				 event);
T
Thomas Gleixner 已提交
842 843 844 845 846

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
847
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
848 849 850 851 852 853
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
854
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
855 856
	 * succeed.
	 */
857 858
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
859 860 861
	spin_unlock_irq(&ctx->lock);
}

862
/*
863
 * Put a event into inactive state and update time fields.
864 865 866 867 868 869
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
870 871
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
872
{
873
	struct perf_event *sub;
874

875 876 877 878
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 880 881 882
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

883
/*
884
 * Cross CPU call to enable a performance event
885
 */
886
static void __perf_event_enable(void *info)
887
{
888
	struct perf_event *event = info;
889
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 891
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
892
	int err;
893

894
	/*
895 896
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
897
	 */
898
	if (ctx->task && cpuctx->task_ctx != ctx) {
899
		if (cpuctx->task_ctx || ctx->task != current)
900 901 902
			return;
		cpuctx->task_ctx = ctx;
	}
903

904
	spin_lock(&ctx->lock);
905
	ctx->is_active = 1;
906
	update_context_time(ctx);
907

908
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
909
		goto unlock;
910
	__perf_event_mark_enabled(event, ctx);
911 912

	/*
913
	 * If the event is in a group and isn't the group leader,
914
	 * then don't put it on unless the group is on.
915
	 */
916
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917
		goto unlock;
918

919
	if (!group_can_go_on(event, cpuctx, 1)) {
920
		err = -EEXIST;
921
	} else {
922
		perf_disable();
923 924
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
925 926
					     smp_processor_id());
		else
927
			err = event_sched_in(event, cpuctx, ctx,
928
					       smp_processor_id());
929
		perf_enable();
930
	}
931 932 933

	if (err) {
		/*
934
		 * If this event can't go on and it's part of a
935 936
		 * group, then the whole group has to come off.
		 */
937
		if (leader != event)
938
			group_sched_out(leader, cpuctx, ctx);
939
		if (leader->attr.pinned) {
940
			update_group_times(leader);
941
			leader->state = PERF_EVENT_STATE_ERROR;
942
		}
943 944 945
	}

 unlock:
946
	spin_unlock(&ctx->lock);
947 948 949
}

/*
950
 * Enable a event.
951
 *
952 953
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
954
 * remains valid.  This condition is satisfied when called through
955 956
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
957
 */
958
static void perf_event_enable(struct perf_event *event)
959
{
960
	struct perf_event_context *ctx = event->ctx;
961 962 963 964
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
965
		 * Enable the event on the cpu that it's on
966
		 */
967 968
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
969 970 971 972
		return;
	}

	spin_lock_irq(&ctx->lock);
973
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 975 976
		goto out;

	/*
977 978
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
979 980 981 982
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
983 984
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
985 986 987

 retry:
	spin_unlock_irq(&ctx->lock);
988
	task_oncpu_function_call(task, __perf_event_enable, event);
989 990 991 992

	spin_lock_irq(&ctx->lock);

	/*
993
	 * If the context is active and the event is still off,
994 995
	 * we need to retry the cross-call.
	 */
996
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 998 999 1000 1001 1002
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1003 1004
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1005

1006 1007 1008 1009
 out:
	spin_unlock_irq(&ctx->lock);
}

1010
static int perf_event_refresh(struct perf_event *event, int refresh)
1011
{
1012
	/*
1013
	 * not supported on inherited events
1014
	 */
1015
	if (event->attr.inherit)
1016 1017
		return -EINVAL;

1018 1019
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1020 1021

	return 0;
1022 1023
}

1024
void __perf_event_sched_out(struct perf_event_context *ctx,
1025 1026
			      struct perf_cpu_context *cpuctx)
{
1027
	struct perf_event *event;
1028

1029 1030
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1031
	if (likely(!ctx->nr_events))
1032
		goto out;
1033
	update_context_time(ctx);
1034

1035
	perf_disable();
1036 1037 1038 1039
	if (ctx->nr_active)
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);

1040
	perf_enable();
1041
 out:
1042 1043 1044
	spin_unlock(&ctx->lock);
}

1045 1046 1047
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1048 1049 1050 1051
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1052
 * in them directly with an fd; we can only enable/disable all
1053
 * events via prctl, or enable/disable all events in a family
1054 1055
 * via ioctl, which will have the same effect on both contexts.
 */
1056 1057
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1058 1059
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060
		&& ctx1->parent_gen == ctx2->parent_gen
1061
		&& !ctx1->pin_count && !ctx2->pin_count;
1062 1063
}

1064
static void __perf_event_read(void *event);
1065

1066 1067
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1068 1069 1070
{
	u64 value;

1071
	if (!event->attr.inherit_stat)
1072 1073 1074
		return;

	/*
1075
	 * Update the event value, we cannot use perf_event_read()
1076 1077
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1078
	 * we know the event must be on the current CPU, therefore we
1079 1080
	 * don't need to use it.
	 */
1081 1082 1083
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
		__perf_event_read(event);
1084 1085
		break;

1086 1087
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1088 1089 1090 1091 1092 1093 1094
		break;

	default:
		break;
	}

	/*
1095
	 * In order to keep per-task stats reliable we need to flip the event
1096 1097
	 * values when we flip the contexts.
	 */
1098 1099 1100
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1101

1102 1103
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1104

1105
	/*
1106
	 * Since we swizzled the values, update the user visible data too.
1107
	 */
1108 1109
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1110 1111 1112 1113 1114
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1115 1116
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1117
{
1118
	struct perf_event *event, *next_event;
1119 1120 1121 1122

	if (!ctx->nr_stat)
		return;

1123 1124
	update_context_time(ctx);

1125 1126
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1127

1128 1129
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1130

1131 1132
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1133

1134
		__perf_event_sync_stat(event, next_event);
1135

1136 1137
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1138 1139 1140
	}
}

T
Thomas Gleixner 已提交
1141
/*
1142
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1143 1144
 * with interrupts disabled.
 *
1145
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1146
 *
I
Ingo Molnar 已提交
1147
 * This does not protect us against NMI, but disable()
1148 1149 1150
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1151
 */
1152
void perf_event_task_sched_out(struct task_struct *task,
1153
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1154 1155
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1156 1157 1158
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1159
	struct pt_regs *regs;
1160
	int do_switch = 1;
T
Thomas Gleixner 已提交
1161

1162
	regs = task_pt_regs(task);
1163
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164

1165
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1166 1167
		return;

1168 1169
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1170
	next_ctx = next->perf_event_ctxp;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1185 1186
			/*
			 * XXX do we need a memory barrier of sorts
1187
			 * wrt to rcu_dereference() of perf_event_ctxp
1188
			 */
1189 1190
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1191 1192 1193
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1194

1195
			perf_event_sync_stat(ctx, next_ctx);
1196 1197 1198
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1199
	}
1200
	rcu_read_unlock();
1201

1202
	if (do_switch) {
1203
		__perf_event_sched_out(ctx, cpuctx);
1204 1205
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1206 1207
}

1208 1209 1210
/*
 * Called with IRQs disabled
 */
1211
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1212 1213 1214
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1215 1216
	if (!cpuctx->task_ctx)
		return;
1217 1218 1219 1220

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1221
	__perf_event_sched_out(ctx, cpuctx);
1222 1223 1224
	cpuctx->task_ctx = NULL;
}

1225 1226 1227
/*
 * Called with IRQs disabled
 */
1228
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1229
{
1230
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231 1232
}

1233
static void
1234
__perf_event_sched_in(struct perf_event_context *ctx,
1235
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1236
{
1237
	struct perf_event *event;
1238
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1239

1240 1241
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1242
	if (likely(!ctx->nr_events))
1243
		goto out;
T
Thomas Gleixner 已提交
1244

1245
	ctx->timestamp = perf_clock();
1246

1247
	perf_disable();
1248 1249 1250 1251 1252

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1253 1254 1255
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1256
			continue;
1257
		if (event->cpu != -1 && event->cpu != cpu)
1258 1259
			continue;

1260 1261
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1262 1263 1264 1265 1266

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1267 1268 1269
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1270
		}
1271 1272
	}

1273
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1274
		/*
1275 1276
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1277
		 */
1278 1279
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1280 1281
			continue;

1282 1283
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1284
		 * of events:
1285
		 */
1286
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1287 1288
			continue;

1289 1290
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1291
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1292
	}
1293
	perf_enable();
1294
 out:
T
Thomas Gleixner 已提交
1295
	spin_unlock(&ctx->lock);
1296 1297 1298
}

/*
1299
 * Called from scheduler to add the events of the current task
1300 1301
 * with interrupts disabled.
 *
1302
 * We restore the event value and then enable it.
1303 1304
 *
 * This does not protect us against NMI, but enable()
1305 1306 1307
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1308
 */
1309
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1310 1311
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1312
	struct perf_event_context *ctx = task->perf_event_ctxp;
1313

1314 1315
	if (likely(!ctx))
		return;
1316 1317
	if (cpuctx->task_ctx == ctx)
		return;
1318
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1319 1320 1321
	cpuctx->task_ctx = ctx;
}

1322
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1323
{
1324
	struct perf_event_context *ctx = &cpuctx->ctx;
1325

1326
	__perf_event_sched_in(ctx, cpuctx, cpu);
1327 1328
}

1329 1330
#define MAX_INTERRUPTS (~0ULL)

1331
static void perf_log_throttle(struct perf_event *event, int enable);
1332

1333
static void perf_adjust_period(struct perf_event *event, u64 events)
1334
{
1335
	struct hw_perf_event *hwc = &event->hw;
1336 1337 1338 1339
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1340
	period = div64_u64(events, event->attr.sample_freq);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1353
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1354
{
1355 1356
	struct perf_event *event;
	struct hw_perf_event *hwc;
1357
	u64 interrupts, freq;
1358 1359

	spin_lock(&ctx->lock);
1360
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1361
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1362 1363
			continue;

1364
		hwc = &event->hw;
1365 1366 1367

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1368

1369
		/*
1370
		 * unthrottle events on the tick
1371
		 */
1372
		if (interrupts == MAX_INTERRUPTS) {
1373 1374 1375
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1376 1377
		}

1378
		if (!event->attr.freq || !event->attr.sample_freq)
1379 1380
			continue;

1381 1382 1383
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1384 1385
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1399
		perf_adjust_period(event, freq * interrupts);
1400

1401 1402 1403 1404 1405 1406 1407
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1408
			event->pmu->disable(event);
1409
			atomic64_set(&hwc->period_left, 0);
1410
			event->pmu->enable(event);
1411 1412
			perf_enable();
		}
1413 1414 1415 1416
	}
	spin_unlock(&ctx->lock);
}

1417
/*
1418
 * Round-robin a context's events:
1419
 */
1420
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1421
{
1422
	struct perf_event *event;
T
Thomas Gleixner 已提交
1423

1424
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1425 1426 1427 1428
		return;

	spin_lock(&ctx->lock);
	/*
1429
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1430
	 */
1431
	perf_disable();
1432 1433
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1434 1435
		break;
	}
1436
	perf_enable();
T
Thomas Gleixner 已提交
1437 1438

	spin_unlock(&ctx->lock);
1439 1440
}

1441
void perf_event_task_tick(struct task_struct *curr, int cpu)
1442
{
1443
	struct perf_cpu_context *cpuctx;
1444
	struct perf_event_context *ctx;
1445

1446
	if (!atomic_read(&nr_events))
1447 1448 1449
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1450
	ctx = curr->perf_event_ctxp;
1451

1452
	perf_ctx_adjust_freq(&cpuctx->ctx);
1453
	if (ctx)
1454
		perf_ctx_adjust_freq(ctx);
1455

1456
	perf_event_cpu_sched_out(cpuctx);
1457
	if (ctx)
1458
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1459

1460
	rotate_ctx(&cpuctx->ctx);
1461 1462
	if (ctx)
		rotate_ctx(ctx);
1463

1464
	perf_event_cpu_sched_in(cpuctx, cpu);
1465
	if (ctx)
1466
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1467 1468
}

1469
/*
1470
 * Enable all of a task's events that have been marked enable-on-exec.
1471 1472
 * This expects task == current.
 */
1473
static void perf_event_enable_on_exec(struct task_struct *task)
1474
{
1475 1476
	struct perf_event_context *ctx;
	struct perf_event *event;
1477 1478 1479 1480
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1481 1482
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1483 1484
		goto out;

1485
	__perf_event_task_sched_out(ctx);
1486 1487 1488

	spin_lock(&ctx->lock);

1489 1490
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1491
			continue;
1492 1493
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1494
			continue;
1495
		__perf_event_mark_enabled(event, ctx);
1496 1497 1498 1499
		enabled = 1;
	}

	/*
1500
	 * Unclone this context if we enabled any event.
1501
	 */
1502 1503
	if (enabled)
		unclone_ctx(ctx);
1504 1505 1506

	spin_unlock(&ctx->lock);

1507
	perf_event_task_sched_in(task, smp_processor_id());
1508 1509 1510 1511
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1512
/*
1513
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1514
 */
1515
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1516
{
1517
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1518 1519
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1520

1521 1522 1523 1524
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1525 1526
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1527 1528 1529 1530
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1531
	if (ctx->is_active)
1532
		update_context_time(ctx);
1533 1534
	event->pmu->read(event);
	update_event_times(event);
T
Thomas Gleixner 已提交
1535 1536
}

1537
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1538 1539
{
	/*
1540 1541
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1542
	 */
1543 1544 1545 1546 1547
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_event_times(event);
T
Thomas Gleixner 已提交
1548 1549
	}

1550
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1551 1552
}

1553
/*
1554
 * Initialize the perf_event context in a task_struct:
1555 1556
 */
static void
1557
__perf_event_init_context(struct perf_event_context *ctx,
1558 1559 1560 1561 1562
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1563
	INIT_LIST_HEAD(&ctx->group_list);
1564 1565 1566 1567 1568
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1569
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1570
{
1571
	struct perf_event_context *ctx;
1572
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1573
	struct task_struct *task;
1574
	unsigned long flags;
1575
	int err;
T
Thomas Gleixner 已提交
1576 1577

	/*
1578
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1579 1580
	 */
	if (cpu != -1) {
1581
		/* Must be root to operate on a CPU event: */
1582
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1583 1584 1585 1586 1587 1588
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1589
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1590 1591 1592 1593 1594 1595 1596 1597
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1598
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1615
	/*
1616
	 * Can't attach events to a dying task.
1617 1618 1619 1620 1621
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1622
	/* Reuse ptrace permission checks for now. */
1623 1624 1625 1626 1627
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1628
	ctx = perf_lock_task_context(task, &flags);
1629
	if (ctx) {
1630
		unclone_ctx(ctx);
1631
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1632 1633
	}

1634
	if (!ctx) {
1635
		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1636 1637 1638
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1639
		__perf_event_init_context(ctx, task);
1640
		get_ctx(ctx);
1641
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1642 1643 1644 1645 1646
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1647
			goto retry;
1648
		}
1649
		get_task_struct(task);
1650 1651
	}

1652
	put_task_struct(task);
T
Thomas Gleixner 已提交
1653
	return ctx;
1654 1655 1656 1657

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1658 1659
}

L
Li Zefan 已提交
1660 1661
static void perf_event_free_filter(struct perf_event *event);

1662
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1663
{
1664
	struct perf_event *event;
P
Peter Zijlstra 已提交
1665

1666 1667 1668
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1669
	perf_event_free_filter(event);
1670
	kfree(event);
P
Peter Zijlstra 已提交
1671 1672
}

1673
static void perf_pending_sync(struct perf_event *event);
1674

1675
static void free_event(struct perf_event *event)
1676
{
1677
	perf_pending_sync(event);
1678

1679 1680 1681 1682 1683 1684 1685 1686
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1687
	}
1688

1689 1690 1691
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1692 1693
	}

1694 1695
	if (event->destroy)
		event->destroy(event);
1696

1697 1698
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1699 1700
}

T
Thomas Gleixner 已提交
1701 1702 1703 1704 1705
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
1706 1707
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1708 1709 1710

	file->private_data = NULL;

1711
	WARN_ON_ONCE(ctx->parent_ctx);
1712
	mutex_lock(&ctx->mutex);
1713
	perf_event_remove_from_context(event);
1714
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1715

1716 1717 1718 1719
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1720

1721
	free_event(event);
T
Thomas Gleixner 已提交
1722 1723 1724 1725

	return 0;
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
int perf_event_release_kernel(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_event_remove_from_context(event);
	mutex_unlock(&ctx->mutex);

	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);

	free_event(event);

	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

1746
static int perf_event_read_size(struct perf_event *event)
1747 1748 1749 1750 1751
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1752
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1753 1754
		size += sizeof(u64);

1755
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1756 1757
		size += sizeof(u64);

1758
	if (event->attr.read_format & PERF_FORMAT_ID)
1759 1760
		entry += sizeof(u64);

1761 1762
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1763 1764 1765 1766 1767 1768 1769 1770
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1771
u64 perf_event_read_value(struct perf_event *event)
1772
{
1773
	struct perf_event *child;
1774 1775
	u64 total = 0;

1776 1777 1778
	total += perf_event_read(event);
	list_for_each_entry(child, &event->child_list, child_list)
		total += perf_event_read(child);
1779 1780 1781

	return total;
}
1782
EXPORT_SYMBOL_GPL(perf_event_read_value);
1783

1784
static int perf_event_read_group(struct perf_event *event,
1785 1786
				   u64 read_format, char __user *buf)
{
1787
	struct perf_event *leader = event->group_leader, *sub;
1788 1789 1790 1791 1792
	int n = 0, size = 0, ret = 0;
	u64 values[5];
	u64 count;

	count = perf_event_read_value(leader);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802

	values[n++] = 1 + leader->nr_siblings;
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}
1803 1804 1805
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1806 1807 1808 1809 1810 1811

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
		return -EFAULT;

1812
	ret += size;
1813

1814
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1815
		n = 0;
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
		values[n++] = perf_event_read_value(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

		if (copy_to_user(buf + size, values, size))
			return -EFAULT;

		ret += size;
1827 1828
	}

1829
	return ret;
1830 1831
}

1832
static int perf_event_read_one(struct perf_event *event,
1833 1834 1835 1836 1837
				 u64 read_format, char __user *buf)
{
	u64 values[4];
	int n = 0;

1838
	values[n++] = perf_event_read_value(event);
1839
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1840 1841
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
1842 1843
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1844 1845
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
1846 1847
	}
	if (read_format & PERF_FORMAT_ID)
1848
		values[n++] = primary_event_id(event);
1849 1850 1851 1852 1853 1854 1855

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1856
/*
1857
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1858 1859
 */
static ssize_t
1860
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1861
{
1862
	u64 read_format = event->attr.read_format;
1863
	int ret;
T
Thomas Gleixner 已提交
1864

1865
	/*
1866
	 * Return end-of-file for a read on a event that is in
1867 1868 1869
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1870
	if (event->state == PERF_EVENT_STATE_ERROR)
1871 1872
		return 0;

1873
	if (count < perf_event_read_size(event))
1874 1875
		return -ENOSPC;

1876 1877
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
1878
	if (read_format & PERF_FORMAT_GROUP)
1879
		ret = perf_event_read_group(event, read_format, buf);
1880
	else
1881 1882
		ret = perf_event_read_one(event, read_format, buf);
	mutex_unlock(&event->child_mutex);
T
Thomas Gleixner 已提交
1883

1884
	return ret;
T
Thomas Gleixner 已提交
1885 1886 1887 1888 1889
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1890
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1891

1892
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1893 1894 1895 1896
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1897
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1898
	struct perf_mmap_data *data;
1899
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1900 1901

	rcu_read_lock();
1902
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1903
	if (data)
1904
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1905
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1906

1907
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1908 1909 1910 1911

	return events;
}

1912
static void perf_event_reset(struct perf_event *event)
1913
{
1914 1915 1916
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1917 1918
}

1919
/*
1920 1921 1922 1923
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1924
 */
1925 1926
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1927
{
1928
	struct perf_event *child;
P
Peter Zijlstra 已提交
1929

1930 1931 1932 1933
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1934
		func(child);
1935
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1936 1937
}

1938 1939
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1940
{
1941 1942
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1943

1944 1945
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1946
	event = event->group_leader;
1947

1948 1949 1950 1951
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1952
	mutex_unlock(&ctx->mutex);
1953 1954
}

1955
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1956
{
1957
	struct perf_event_context *ctx = event->ctx;
1958 1959 1960 1961
	unsigned long size;
	int ret = 0;
	u64 value;

1962
	if (!event->attr.sample_period)
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1973 1974
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1975 1976 1977 1978
			ret = -EINVAL;
			goto unlock;
		}

1979
		event->attr.sample_freq = value;
1980
	} else {
1981 1982
		event->attr.sample_period = value;
		event->hw.sample_period = value;
1983 1984 1985 1986 1987 1988 1989
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

L
Li Zefan 已提交
1990 1991
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
1992

1993 1994
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
1995 1996
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
1997
	u32 flags = arg;
1998 1999

	switch (cmd) {
2000 2001
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2002
		break;
2003 2004
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2005
		break;
2006 2007
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2008
		break;
P
Peter Zijlstra 已提交
2009

2010 2011
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2012

2013 2014
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2015

2016 2017
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2018

L
Li Zefan 已提交
2019 2020 2021
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2022
	default:
P
Peter Zijlstra 已提交
2023
		return -ENOTTY;
2024
	}
P
Peter Zijlstra 已提交
2025 2026

	if (flags & PERF_IOC_FLAG_GROUP)
2027
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2028
	else
2029
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2030 2031

	return 0;
2032 2033
}

2034
int perf_event_task_enable(void)
2035
{
2036
	struct perf_event *event;
2037

2038 2039 2040 2041
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2042 2043 2044 2045

	return 0;
}

2046
int perf_event_task_disable(void)
2047
{
2048
	struct perf_event *event;
2049

2050 2051 2052 2053
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2054 2055 2056 2057

	return 0;
}

2058 2059
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2060 2061
#endif

2062
static int perf_event_index(struct perf_event *event)
2063
{
2064
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2065 2066
		return 0;

2067
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2068 2069
}

2070 2071 2072 2073 2074
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2075
void perf_event_update_userpage(struct perf_event *event)
2076
{
2077
	struct perf_event_mmap_page *userpg;
2078
	struct perf_mmap_data *data;
2079 2080

	rcu_read_lock();
2081
	data = rcu_dereference(event->data);
2082 2083 2084 2085
	if (!data)
		goto unlock;

	userpg = data->user_page;
2086

2087 2088 2089 2090 2091
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2092
	++userpg->lock;
2093
	barrier();
2094 2095 2096 2097
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2098

2099 2100
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2101

2102 2103
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2104

2105
	barrier();
2106
	++userpg->lock;
2107
	preempt_enable();
2108
unlock:
2109
	rcu_read_unlock();
2110 2111
}

2112
static unsigned long perf_data_size(struct perf_mmap_data *data)
2113
{
2114 2115
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2116

2117
#ifndef CONFIG_PERF_USE_VMALLOC
2118

2119 2120 2121
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2122

2123 2124 2125 2126 2127
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2128

2129 2130
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2131

2132
	return virt_to_page(data->data_pages[pgoff - 1]);
2133 2134
}

2135 2136
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2137 2138 2139 2140 2141
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2142
	WARN_ON(atomic_read(&event->mmap_count));
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2161
	data->data_order = 0;
2162 2163
	data->nr_pages = nr_pages;

2164
	return data;
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2176
	return NULL;
2177 2178
}

2179 2180
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2181
	struct page *page = virt_to_page((void *)addr);
2182 2183 2184 2185 2186

	page->mapping = NULL;
	__free_page(page);
}

2187
static void perf_mmap_data_free(struct perf_mmap_data *data)
2188 2189 2190
{
	int i;

2191
	perf_mmap_free_page((unsigned long)data->user_page);
2192
	for (i = 0; i < data->nr_pages; i++)
2193
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
		data->watermark = max_t(long, PAGE_SIZE, max_size / 2);


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2339 2340 2341
	kfree(data);
}

2342
static void perf_mmap_data_release(struct perf_event *event)
2343
{
2344
	struct perf_mmap_data *data = event->data;
2345

2346
	WARN_ON(atomic_read(&event->mmap_count));
2347

2348
	rcu_assign_pointer(event->data, NULL);
2349
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2350 2351 2352 2353
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2354
	struct perf_event *event = vma->vm_file->private_data;
2355

2356
	atomic_inc(&event->mmap_count);
2357 2358 2359 2360
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2361
	struct perf_event *event = vma->vm_file->private_data;
2362

2363 2364
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2365
		unsigned long size = perf_data_size(event->data);
2366 2367
		struct user_struct *user = current_user();

2368
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2369
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2370
		perf_mmap_data_release(event);
2371
		mutex_unlock(&event->mmap_mutex);
2372
	}
2373 2374
}

2375
static const struct vm_operations_struct perf_mmap_vmops = {
2376 2377 2378 2379
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2380 2381 2382 2383
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2384
	struct perf_event *event = file->private_data;
2385
	unsigned long user_locked, user_lock_limit;
2386
	struct user_struct *user = current_user();
2387
	unsigned long locked, lock_limit;
2388
	struct perf_mmap_data *data;
2389 2390
	unsigned long vma_size;
	unsigned long nr_pages;
2391
	long user_extra, extra;
2392
	int ret = 0;
2393

2394
	if (!(vma->vm_flags & VM_SHARED))
2395
		return -EINVAL;
2396 2397 2398 2399

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2400 2401 2402 2403 2404
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2405 2406
		return -EINVAL;

2407
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2408 2409
		return -EINVAL;

2410 2411
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2412

2413 2414 2415
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2416 2417 2418 2419
		ret = -EINVAL;
		goto unlock;
	}

2420 2421
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2422 2423 2424 2425
			ret = -EINVAL;
		goto unlock;
	}

2426
	user_extra = nr_pages + 1;
2427
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2428 2429 2430 2431 2432 2433

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2434
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2435

2436 2437 2438
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2439 2440 2441

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2442
	locked = vma->vm_mm->locked_vm + extra;
2443

2444 2445
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2446 2447 2448
		ret = -EPERM;
		goto unlock;
	}
2449

2450
	WARN_ON(event->data);
2451 2452 2453 2454

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2455 2456
		goto unlock;

2457 2458 2459
	ret = 0;
	perf_mmap_data_init(event, data);

2460
	atomic_set(&event->mmap_count, 1);
2461
	atomic_long_add(user_extra, &user->locked_vm);
2462
	vma->vm_mm->locked_vm += extra;
2463
	event->data->nr_locked = extra;
2464
	if (vma->vm_flags & VM_WRITE)
2465
		event->data->writable = 1;
2466

2467
unlock:
2468
	mutex_unlock(&event->mmap_mutex);
2469 2470 2471

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2472 2473

	return ret;
2474 2475
}

P
Peter Zijlstra 已提交
2476 2477 2478
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2479
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2480 2481 2482
	int retval;

	mutex_lock(&inode->i_mutex);
2483
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2484 2485 2486 2487 2488 2489 2490 2491
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2492 2493 2494 2495
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2496 2497
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2498
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2499
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2500 2501
};

2502
/*
2503
 * Perf event wakeup
2504 2505 2506 2507 2508
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2509
void perf_event_wakeup(struct perf_event *event)
2510
{
2511
	wake_up_all(&event->waitq);
2512

2513 2514 2515
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2516
	}
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2528
static void perf_pending_event(struct perf_pending_entry *entry)
2529
{
2530 2531
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2532

2533 2534 2535
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2536 2537
	}

2538 2539 2540
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2541 2542 2543
	}
}

2544
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2545

2546
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2547 2548 2549
	PENDING_TAIL,
};

2550 2551
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2552
{
2553
	struct perf_pending_entry **head;
2554

2555
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2556 2557
		return;

2558 2559 2560
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2561 2562

	do {
2563 2564
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2565

2566
	set_perf_event_pending();
2567

2568
	put_cpu_var(perf_pending_head);
2569 2570 2571 2572
}

static int __perf_pending_run(void)
{
2573
	struct perf_pending_entry *list;
2574 2575
	int nr = 0;

2576
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2577
	while (list != PENDING_TAIL) {
2578 2579
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2580 2581 2582

		list = list->next;

2583 2584
		func = entry->func;
		entry->next = NULL;
2585 2586 2587 2588 2589 2590 2591
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2592
		func(entry);
2593 2594 2595 2596 2597 2598
		nr++;
	}

	return nr;
}

2599
static inline int perf_not_pending(struct perf_event *event)
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2614
	return event->pending.next == NULL;
2615 2616
}

2617
static void perf_pending_sync(struct perf_event *event)
2618
{
2619
	wait_event(event->waitq, perf_not_pending(event));
2620 2621
}

2622
void perf_event_do_pending(void)
2623 2624 2625 2626
{
	__perf_pending_run();
}

2627 2628 2629 2630
/*
 * Callchain support -- arch specific
 */

2631
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2632 2633 2634 2635
{
	return NULL;
}

2636 2637 2638
/*
 * Output
 */
2639 2640
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2641 2642 2643 2644 2645 2646
{
	unsigned long mask;

	if (!data->writable)
		return true;

2647
	mask = perf_data_size(data) - 1;
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2658
static void perf_output_wakeup(struct perf_output_handle *handle)
2659
{
2660 2661
	atomic_set(&handle->data->poll, POLL_IN);

2662
	if (handle->nmi) {
2663 2664 2665
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2666
	} else
2667
		perf_event_wakeup(handle->event);
2668 2669
}

2670 2671 2672
/*
 * Curious locking construct.
 *
2673 2674
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2675 2676 2677 2678 2679 2680
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2681
 * event_id completes.
2682 2683 2684 2685
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2686
	int cur, cpu = get_cpu();
2687 2688 2689

	handle->locked = 0;

2690 2691 2692 2693 2694 2695 2696 2697
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2698 2699

		cpu_relax();
2700
	}
2701 2702 2703 2704 2705
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2706 2707
	unsigned long head;
	int cpu;
2708

2709
	data->done_head = data->head;
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2720
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2721 2722 2723
		data->user_page->data_head = head;

	/*
2724
	 * NMI can happen here, which means we can miss a done_head update.
2725 2726
	 */

2727
	cpu = atomic_xchg(&data->lock, -1);
2728 2729 2730 2731 2732
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2733
	if (unlikely(atomic_long_read(&data->done_head))) {
2734 2735 2736
		/*
		 * Since we had it locked, we can lock it again.
		 */
2737
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2738 2739 2740 2741 2742
			cpu_relax();

		goto again;
	}

2743
	if (atomic_xchg(&data->wakeup, 0))
2744 2745
		perf_output_wakeup(handle);
out:
2746
	put_cpu();
2747 2748
}

2749 2750
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2751 2752
{
	unsigned int pages_mask;
2753
	unsigned long offset;
2754 2755 2756 2757 2758 2759 2760 2761
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2762 2763
		unsigned long page_offset;
		unsigned long page_size;
2764 2765 2766
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2767 2768 2769
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2787
int perf_output_begin(struct perf_output_handle *handle,
2788
		      struct perf_event *event, unsigned int size,
2789
		      int nmi, int sample)
2790
{
2791
	struct perf_event *output_event;
2792
	struct perf_mmap_data *data;
2793
	unsigned long tail, offset, head;
2794 2795 2796 2797 2798 2799
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2800

2801
	rcu_read_lock();
2802
	/*
2803
	 * For inherited events we send all the output towards the parent.
2804
	 */
2805 2806
	if (event->parent)
		event = event->parent;
2807

2808 2809 2810
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2811

2812
	data = rcu_dereference(event->data);
2813 2814 2815
	if (!data)
		goto out;

2816
	handle->data	= data;
2817
	handle->event	= event;
2818 2819
	handle->nmi	= nmi;
	handle->sample	= sample;
2820

2821
	if (!data->nr_pages)
2822
		goto fail;
2823

2824 2825 2826 2827
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2828 2829
	perf_output_lock(handle);

2830
	do {
2831 2832 2833 2834 2835 2836 2837
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2838
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2839
		head += size;
2840
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2841
			goto fail;
2842
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2843

2844
	handle->offset	= offset;
2845
	handle->head	= head;
2846

2847
	if (head - tail > data->watermark)
2848
		atomic_set(&data->wakeup, 1);
2849

2850
	if (have_lost) {
2851
		lost_event.header.type = PERF_RECORD_LOST;
2852 2853
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2854
		lost_event.id          = event->id;
2855 2856 2857 2858 2859
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2860
	return 0;
2861

2862
fail:
2863 2864
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2865 2866
out:
	rcu_read_unlock();
2867

2868 2869
	return -ENOSPC;
}
2870

2871
void perf_output_end(struct perf_output_handle *handle)
2872
{
2873
	struct perf_event *event = handle->event;
2874 2875
	struct perf_mmap_data *data = handle->data;

2876
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2877

2878
	if (handle->sample && wakeup_events) {
2879
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2880
		if (events >= wakeup_events) {
2881
			atomic_sub(wakeup_events, &data->events);
2882
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2883
		}
2884 2885 2886
	}

	perf_output_unlock(handle);
2887
	rcu_read_unlock();
2888 2889
}

2890
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2891 2892
{
	/*
2893
	 * only top level events have the pid namespace they were created in
2894
	 */
2895 2896
	if (event->parent)
		event = event->parent;
2897

2898
	return task_tgid_nr_ns(p, event->ns);
2899 2900
}

2901
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2902 2903
{
	/*
2904
	 * only top level events have the pid namespace they were created in
2905
	 */
2906 2907
	if (event->parent)
		event = event->parent;
2908

2909
	return task_pid_nr_ns(p, event->ns);
2910 2911
}

2912
static void perf_output_read_one(struct perf_output_handle *handle,
2913
				 struct perf_event *event)
2914
{
2915
	u64 read_format = event->attr.read_format;
2916 2917 2918
	u64 values[4];
	int n = 0;

2919
	values[n++] = atomic64_read(&event->count);
2920
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2921 2922
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2923 2924
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2925 2926
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2927 2928
	}
	if (read_format & PERF_FORMAT_ID)
2929
		values[n++] = primary_event_id(event);
2930 2931 2932 2933 2934

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2935
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2936 2937
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2938
			    struct perf_event *event)
2939
{
2940 2941
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2953
	if (leader != event)
2954 2955 2956 2957
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2958
		values[n++] = primary_event_id(leader);
2959 2960 2961

	perf_output_copy(handle, values, n * sizeof(u64));

2962
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2963 2964
		n = 0;

2965
		if (sub != event)
2966 2967 2968 2969
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2970
			values[n++] = primary_event_id(sub);
2971 2972 2973 2974 2975 2976

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2977
			     struct perf_event *event)
2978
{
2979 2980
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
2981
	else
2982
		perf_output_read_one(handle, event);
2983 2984
}

2985 2986 2987
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
2988
			struct perf_event *event)
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3019
		perf_output_read(handle, event);
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3057
			 struct perf_event *event,
3058
			 struct pt_regs *regs)
3059
{
3060
	u64 sample_type = event->attr.sample_type;
3061

3062
	data->type = sample_type;
3063

3064
	header->type = PERF_RECORD_SAMPLE;
3065 3066 3067 3068
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3069

3070
	if (sample_type & PERF_SAMPLE_IP) {
3071 3072 3073
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3074
	}
3075

3076
	if (sample_type & PERF_SAMPLE_TID) {
3077
		/* namespace issues */
3078 3079
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3080

3081
		header->size += sizeof(data->tid_entry);
3082 3083
	}

3084
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3085
		data->time = perf_clock();
3086

3087
		header->size += sizeof(data->time);
3088 3089
	}

3090
	if (sample_type & PERF_SAMPLE_ADDR)
3091
		header->size += sizeof(data->addr);
3092

3093
	if (sample_type & PERF_SAMPLE_ID) {
3094
		data->id = primary_event_id(event);
3095

3096 3097 3098 3099
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3100
		data->stream_id = event->id;
3101 3102 3103

		header->size += sizeof(data->stream_id);
	}
3104

3105
	if (sample_type & PERF_SAMPLE_CPU) {
3106 3107
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3108

3109
		header->size += sizeof(data->cpu_entry);
3110 3111
	}

3112
	if (sample_type & PERF_SAMPLE_PERIOD)
3113
		header->size += sizeof(data->period);
3114

3115
	if (sample_type & PERF_SAMPLE_READ)
3116
		header->size += perf_event_read_size(event);
3117

3118
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3119
		int size = 1;
3120

3121 3122 3123 3124 3125 3126
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3127 3128
	}

3129
	if (sample_type & PERF_SAMPLE_RAW) {
3130 3131 3132 3133 3134 3135 3136 3137
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3138
		header->size += size;
3139
	}
3140
}
3141

3142
static void perf_event_output(struct perf_event *event, int nmi,
3143 3144 3145 3146 3147
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3148

3149
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3150

3151
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3152
		return;
3153

3154
	perf_output_sample(&handle, &header, data, event);
3155

3156
	perf_output_end(&handle);
3157 3158
}

3159
/*
3160
 * read event_id
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3171
perf_event_read_event(struct perf_event *event,
3172 3173 3174
			struct task_struct *task)
{
	struct perf_output_handle handle;
3175
	struct perf_read_event read_event = {
3176
		.header = {
3177
			.type = PERF_RECORD_READ,
3178
			.misc = 0,
3179
			.size = sizeof(read_event) + perf_event_read_size(event),
3180
		},
3181 3182
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3183
	};
3184
	int ret;
3185

3186
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3187 3188 3189
	if (ret)
		return;

3190
	perf_output_put(&handle, read_event);
3191
	perf_output_read(&handle, event);
3192

3193 3194 3195
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3196
/*
P
Peter Zijlstra 已提交
3197 3198 3199
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3200 3201
 */

P
Peter Zijlstra 已提交
3202
struct perf_task_event {
3203
	struct task_struct		*task;
3204
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3205 3206 3207 3208 3209 3210

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3211 3212
		u32				tid;
		u32				ptid;
3213
		u64				time;
3214
	} event_id;
P
Peter Zijlstra 已提交
3215 3216
};

3217
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3218
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3219 3220
{
	struct perf_output_handle handle;
3221
	int size;
P
Peter Zijlstra 已提交
3222
	struct task_struct *task = task_event->task;
3223 3224
	int ret;

3225 3226
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3227 3228 3229 3230

	if (ret)
		return;

3231 3232
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3233

3234 3235
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3236

3237
	task_event->event_id.time = perf_clock();
3238

3239
	perf_output_put(&handle, task_event->event_id);
3240

P
Peter Zijlstra 已提交
3241 3242 3243
	perf_output_end(&handle);
}

3244
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3245
{
3246
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3247 3248 3249 3250 3251
		return 1;

	return 0;
}

3252
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3253
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3254
{
3255
	struct perf_event *event;
P
Peter Zijlstra 已提交
3256

3257 3258 3259
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3260 3261 3262
	}
}

3263
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3264 3265
{
	struct perf_cpu_context *cpuctx;
3266
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3267

3268
	rcu_read_lock();
P
Peter Zijlstra 已提交
3269
	cpuctx = &get_cpu_var(perf_cpu_context);
3270
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3271 3272
	put_cpu_var(perf_cpu_context);

3273
	if (!ctx)
3274
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3275
	if (ctx)
3276
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3277 3278 3279
	rcu_read_unlock();
}

3280 3281
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3282
			      int new)
P
Peter Zijlstra 已提交
3283
{
P
Peter Zijlstra 已提交
3284
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3285

3286 3287 3288
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3289 3290
		return;

P
Peter Zijlstra 已提交
3291
	task_event = (struct perf_task_event){
3292 3293
		.task	  = task,
		.task_ctx = task_ctx,
3294
		.event_id    = {
P
Peter Zijlstra 已提交
3295
			.header = {
3296
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3297
				.misc = 0,
3298
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3299
			},
3300 3301
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3302 3303
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3304 3305 3306
		},
	};

3307
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3308 3309
}

3310
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3311
{
3312
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3313 3314
}

3315 3316 3317 3318 3319
/*
 * comm tracking
 */

struct perf_comm_event {
3320 3321
	struct task_struct	*task;
	char			*comm;
3322 3323 3324 3325 3326 3327 3328
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3329
	} event_id;
3330 3331
};

3332
static void perf_event_comm_output(struct perf_event *event,
3333 3334 3335
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3336 3337
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3338 3339 3340 3341

	if (ret)
		return;

3342 3343
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3344

3345
	perf_output_put(&handle, comm_event->event_id);
3346 3347 3348 3349 3350
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3351
static int perf_event_comm_match(struct perf_event *event)
3352
{
3353
	if (event->attr.comm)
3354 3355 3356 3357 3358
		return 1;

	return 0;
}

3359
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3360 3361
				  struct perf_comm_event *comm_event)
{
3362
	struct perf_event *event;
3363

3364 3365 3366
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3367 3368 3369
	}
}

3370
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3371 3372
{
	struct perf_cpu_context *cpuctx;
3373
	struct perf_event_context *ctx;
3374
	unsigned int size;
3375
	char comm[TASK_COMM_LEN];
3376

3377 3378
	memset(comm, 0, sizeof(comm));
	strncpy(comm, comm_event->task->comm, sizeof(comm));
3379
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3380 3381 3382 3383

	comm_event->comm = comm;
	comm_event->comm_size = size;

3384
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3385

3386
	rcu_read_lock();
3387
	cpuctx = &get_cpu_var(perf_cpu_context);
3388
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3389
	put_cpu_var(perf_cpu_context);
3390 3391 3392 3393 3394

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3395
	ctx = rcu_dereference(current->perf_event_ctxp);
3396
	if (ctx)
3397
		perf_event_comm_ctx(ctx, comm_event);
3398
	rcu_read_unlock();
3399 3400
}

3401
void perf_event_comm(struct task_struct *task)
3402
{
3403 3404
	struct perf_comm_event comm_event;

3405 3406
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3407

3408
	if (!atomic_read(&nr_comm_events))
3409
		return;
3410

3411
	comm_event = (struct perf_comm_event){
3412
		.task	= task,
3413 3414
		/* .comm      */
		/* .comm_size */
3415
		.event_id  = {
3416
			.header = {
3417
				.type = PERF_RECORD_COMM,
3418 3419 3420 3421 3422
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3423 3424 3425
		},
	};

3426
	perf_event_comm_event(&comm_event);
3427 3428
}

3429 3430 3431 3432 3433
/*
 * mmap tracking
 */

struct perf_mmap_event {
3434 3435 3436 3437
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3438 3439 3440 3441 3442 3443 3444 3445 3446

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3447
	} event_id;
3448 3449
};

3450
static void perf_event_mmap_output(struct perf_event *event,
3451 3452 3453
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3454 3455
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3456 3457 3458 3459

	if (ret)
		return;

3460 3461
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3462

3463
	perf_output_put(&handle, mmap_event->event_id);
3464 3465
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3466
	perf_output_end(&handle);
3467 3468
}

3469
static int perf_event_mmap_match(struct perf_event *event,
3470 3471
				   struct perf_mmap_event *mmap_event)
{
3472
	if (event->attr.mmap)
3473 3474 3475 3476 3477
		return 1;

	return 0;
}

3478
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3479 3480
				  struct perf_mmap_event *mmap_event)
{
3481
	struct perf_event *event;
3482

3483 3484 3485
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3486 3487 3488
	}
}

3489
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3490 3491
{
	struct perf_cpu_context *cpuctx;
3492
	struct perf_event_context *ctx;
3493 3494
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3495 3496 3497
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3498
	const char *name;
3499

3500 3501
	memset(tmp, 0, sizeof(tmp));

3502
	if (file) {
3503 3504 3505 3506 3507 3508
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3509 3510 3511 3512
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3513
		name = d_path(&file->f_path, buf, PATH_MAX);
3514 3515 3516 3517 3518
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3519 3520 3521
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3522
			goto got_name;
3523
		}
3524 3525 3526 3527 3528 3529

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3530 3531 3532 3533 3534
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3535
	size = ALIGN(strlen(name)+1, sizeof(u64));
3536 3537 3538 3539

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3540
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3541

3542
	rcu_read_lock();
3543
	cpuctx = &get_cpu_var(perf_cpu_context);
3544
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3545 3546
	put_cpu_var(perf_cpu_context);

3547 3548 3549 3550
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3551
	ctx = rcu_dereference(current->perf_event_ctxp);
3552
	if (ctx)
3553
		perf_event_mmap_ctx(ctx, mmap_event);
3554 3555
	rcu_read_unlock();

3556 3557 3558
	kfree(buf);
}

3559
void __perf_event_mmap(struct vm_area_struct *vma)
3560
{
3561 3562
	struct perf_mmap_event mmap_event;

3563
	if (!atomic_read(&nr_mmap_events))
3564 3565 3566
		return;

	mmap_event = (struct perf_mmap_event){
3567
		.vma	= vma,
3568 3569
		/* .file_name */
		/* .file_size */
3570
		.event_id  = {
3571
			.header = {
3572
				.type = PERF_RECORD_MMAP,
3573 3574 3575 3576 3577
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3578 3579 3580
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3581 3582 3583
		},
	};

3584
	perf_event_mmap_event(&mmap_event);
3585 3586
}

3587 3588 3589 3590
/*
 * IRQ throttle logging
 */

3591
static void perf_log_throttle(struct perf_event *event, int enable)
3592 3593 3594 3595 3596 3597 3598
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3599
		u64				id;
3600
		u64				stream_id;
3601 3602
	} throttle_event = {
		.header = {
3603
			.type = PERF_RECORD_THROTTLE,
3604 3605 3606
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3607
		.time		= perf_clock(),
3608 3609
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3610 3611
	};

3612
	if (enable)
3613
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3614

3615
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3616 3617 3618 3619 3620 3621 3622
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3623
/*
3624
 * Generic event overflow handling, sampling.
3625 3626
 */

3627
static int __perf_event_overflow(struct perf_event *event, int nmi,
3628 3629
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3630
{
3631 3632
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3633 3634
	int ret = 0;

3635
	throttle = (throttle && event->pmu->unthrottle != NULL);
3636

3637
	if (!throttle) {
3638
		hwc->interrupts++;
3639
	} else {
3640 3641
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3642
			if (HZ * hwc->interrupts >
3643
					(u64)sysctl_perf_event_sample_rate) {
3644
				hwc->interrupts = MAX_INTERRUPTS;
3645
				perf_log_throttle(event, 0);
3646 3647 3648 3649
				ret = 1;
			}
		} else {
			/*
3650
			 * Keep re-disabling events even though on the previous
3651
			 * pass we disabled it - just in case we raced with a
3652
			 * sched-in and the event got enabled again:
3653
			 */
3654 3655 3656
			ret = 1;
		}
	}
3657

3658
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3659
		u64 now = perf_clock();
3660 3661 3662 3663 3664
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3665
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3666 3667
	}

3668 3669
	/*
	 * XXX event_limit might not quite work as expected on inherited
3670
	 * events
3671 3672
	 */

3673 3674
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3675
		ret = 1;
3676
		event->pending_kill = POLL_HUP;
3677
		if (nmi) {
3678 3679 3680
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3681
		} else
3682
			perf_event_disable(event);
3683 3684
	}

3685 3686 3687 3688 3689
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3690
	return ret;
3691 3692
}

3693
int perf_event_overflow(struct perf_event *event, int nmi,
3694 3695
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3696
{
3697
	return __perf_event_overflow(event, nmi, 1, data, regs);
3698 3699
}

3700
/*
3701
 * Generic software event infrastructure
3702 3703
 */

3704
/*
3705 3706
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3707 3708 3709 3710
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3711
static u64 perf_swevent_set_period(struct perf_event *event)
3712
{
3713
	struct hw_perf_event *hwc = &event->hw;
3714 3715 3716 3717 3718
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3719 3720

again:
3721 3722 3723
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3724

3725 3726 3727 3728 3729
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3730

3731
	return nr;
3732 3733
}

3734
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3735 3736
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3737
{
3738
	struct hw_perf_event *hwc = &event->hw;
3739
	int throttle = 0;
3740

3741
	data->period = event->hw.last_period;
3742 3743
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3744

3745 3746
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3747

3748
	for (; overflow; overflow--) {
3749
		if (__perf_event_overflow(event, nmi, throttle,
3750
					    data, regs)) {
3751 3752 3753 3754 3755 3756
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3757
		throttle = 1;
3758
	}
3759 3760
}

3761
static void perf_swevent_unthrottle(struct perf_event *event)
3762 3763
{
	/*
3764
	 * Nothing to do, we already reset hwc->interrupts.
3765
	 */
3766
}
3767

3768
static void perf_swevent_add(struct perf_event *event, u64 nr,
3769 3770
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3771
{
3772
	struct hw_perf_event *hwc = &event->hw;
3773

3774
	atomic64_add(nr, &event->count);
3775

3776 3777 3778
	if (!regs)
		return;

3779 3780
	if (!hwc->sample_period)
		return;
3781

3782 3783 3784 3785
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3786
		return;
3787

3788
	perf_swevent_overflow(event, 0, nmi, data, regs);
3789 3790
}

3791
static int perf_swevent_is_counting(struct perf_event *event)
3792
{
3793
	/*
3794
	 * The event is active, we're good!
3795
	 */
3796
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3797 3798
		return 1;

3799
	/*
3800
	 * The event is off/error, not counting.
3801
	 */
3802
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3803 3804 3805
		return 0;

	/*
3806
	 * The event is inactive, if the context is active
3807 3808
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3809
	 */
3810
	if (event->ctx->is_active)
3811 3812 3813 3814 3815 3816 3817 3818
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3819 3820
}

L
Li Zefan 已提交
3821 3822 3823
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3824
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3825
				enum perf_type_id type,
L
Li Zefan 已提交
3826 3827 3828
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3829
{
3830
	if (!perf_swevent_is_counting(event))
3831 3832
		return 0;

3833
	if (event->attr.type != type)
3834
		return 0;
3835
	if (event->attr.config != event_id)
3836 3837
		return 0;

3838
	if (regs) {
3839
		if (event->attr.exclude_user && user_mode(regs))
3840
			return 0;
3841

3842
		if (event->attr.exclude_kernel && !user_mode(regs))
3843 3844
			return 0;
	}
3845

L
Li Zefan 已提交
3846 3847 3848 3849
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3850 3851 3852
	return 1;
}

3853
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3854
				     enum perf_type_id type,
3855
				     u32 event_id, u64 nr, int nmi,
3856 3857
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3858
{
3859
	struct perf_event *event;
3860

3861
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3862
		if (perf_swevent_match(event, type, event_id, data, regs))
3863
			perf_swevent_add(event, nr, nmi, data, regs);
3864 3865 3866
	}
}

3867
static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
P
Peter Zijlstra 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3881
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3882
				    u64 nr, int nmi,
3883 3884
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3885 3886
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3887 3888
	int *recursion = perf_swevent_recursion_context(cpuctx);
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3889 3890 3891 3892 3893 3894

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3895

3896
	rcu_read_lock();
3897
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3898
				 nr, nmi, data, regs);
3899 3900 3901 3902
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3903
	ctx = rcu_dereference(current->perf_event_ctxp);
3904
	if (ctx)
3905
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3906
	rcu_read_unlock();
3907

P
Peter Zijlstra 已提交
3908 3909 3910 3911
	barrier();
	(*recursion)--;

out:
3912 3913 3914
	put_cpu_var(perf_cpu_context);
}

3915
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3916
			    struct pt_regs *regs, u64 addr)
3917
{
3918 3919 3920 3921
	struct perf_sample_data data = {
		.addr = addr,
	};

3922
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3923
				&data, regs);
3924 3925
}

3926
static void perf_swevent_read(struct perf_event *event)
3927 3928 3929
{
}

3930
static int perf_swevent_enable(struct perf_event *event)
3931
{
3932
	struct hw_perf_event *hwc = &event->hw;
3933 3934 3935

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3936
		perf_swevent_set_period(event);
3937
	}
3938 3939 3940
	return 0;
}

3941
static void perf_swevent_disable(struct perf_event *event)
3942 3943 3944
{
}

3945
static const struct pmu perf_ops_generic = {
3946 3947 3948 3949
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3950 3951
};

3952
/*
3953
 * hrtimer based swevent callback
3954 3955
 */

3956
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3957 3958 3959
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
3960
	struct pt_regs *regs;
3961
	struct perf_event *event;
3962 3963
	u64 period;

3964 3965
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
3966 3967

	data.addr = 0;
3968
	regs = get_irq_regs();
3969 3970 3971 3972
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
3973 3974
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
3975
		regs = task_pt_regs(current);
3976

3977
	if (regs) {
3978 3979 3980
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
3981 3982
	}

3983
	period = max_t(u64, 10000, event->hw.sample_period);
3984 3985 3986 3987 3988
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4025
/*
4026
 * Software event: cpu wall time clock
4027 4028
 */

4029
static void cpu_clock_perf_event_update(struct perf_event *event)
4030 4031 4032 4033 4034 4035
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4036 4037 4038
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4039 4040
}

4041
static int cpu_clock_perf_event_enable(struct perf_event *event)
4042
{
4043
	struct hw_perf_event *hwc = &event->hw;
4044 4045 4046
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4047
	perf_swevent_start_hrtimer(event);
4048 4049 4050 4051

	return 0;
}

4052
static void cpu_clock_perf_event_disable(struct perf_event *event)
4053
{
4054
	perf_swevent_cancel_hrtimer(event);
4055
	cpu_clock_perf_event_update(event);
4056 4057
}

4058
static void cpu_clock_perf_event_read(struct perf_event *event)
4059
{
4060
	cpu_clock_perf_event_update(event);
4061 4062
}

4063
static const struct pmu perf_ops_cpu_clock = {
4064 4065 4066
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4067 4068
};

4069
/*
4070
 * Software event: task time clock
4071 4072
 */

4073
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4074
{
4075
	u64 prev;
I
Ingo Molnar 已提交
4076 4077
	s64 delta;

4078
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4079
	delta = now - prev;
4080
	atomic64_add(delta, &event->count);
4081 4082
}

4083
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4084
{
4085
	struct hw_perf_event *hwc = &event->hw;
4086 4087
	u64 now;

4088
	now = event->ctx->time;
4089

4090
	atomic64_set(&hwc->prev_count, now);
4091 4092

	perf_swevent_start_hrtimer(event);
4093 4094

	return 0;
I
Ingo Molnar 已提交
4095 4096
}

4097
static void task_clock_perf_event_disable(struct perf_event *event)
4098
{
4099
	perf_swevent_cancel_hrtimer(event);
4100
	task_clock_perf_event_update(event, event->ctx->time);
4101

4102
}
I
Ingo Molnar 已提交
4103

4104
static void task_clock_perf_event_read(struct perf_event *event)
4105
{
4106 4107 4108
	u64 time;

	if (!in_nmi()) {
4109 4110
		update_context_time(event->ctx);
		time = event->ctx->time;
4111 4112
	} else {
		u64 now = perf_clock();
4113 4114
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4115 4116
	}

4117
	task_clock_perf_event_update(event, time);
4118 4119
}

4120
static const struct pmu perf_ops_task_clock = {
4121 4122 4123
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4124 4125
};

4126
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4127

4128
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4129
			  int entry_size)
4130
{
4131
	struct perf_raw_record raw = {
4132
		.size = entry_size,
4133
		.data = record,
4134 4135
	};

4136
	struct perf_sample_data data = {
4137
		.addr = addr,
4138
		.raw = &raw,
4139
	};
4140

4141 4142 4143 4144
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4145

4146
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4147
				&data, regs);
4148
}
4149
EXPORT_SYMBOL_GPL(perf_tp_event);
4150

L
Li Zefan 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4160

4161
static void tp_perf_event_destroy(struct perf_event *event)
4162
{
4163
	ftrace_profile_disable(event->attr.config);
4164 4165
}

4166
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4167
{
4168 4169 4170 4171
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4172
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4173
			perf_paranoid_tracepoint_raw() &&
4174 4175 4176
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4177
	if (ftrace_profile_enable(event->attr.config))
4178 4179
		return NULL;

4180
	event->destroy = tp_perf_event_destroy;
4181 4182 4183

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4208
#else
L
Li Zefan 已提交
4209 4210 4211 4212 4213 4214 4215

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4216
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4217 4218 4219
{
	return NULL;
}
L
Li Zefan 已提交
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4231

4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
	/*
	 * The breakpoint is already filled if we haven't created the counter
	 * through perf syscall
	 * FIXME: manage to get trigerred to NULL if it comes from syscalls
	 */
	if (!bp->callback)
		err = register_perf_hw_breakpoint(bp);
	else
		err = __register_perf_hw_breakpoint(bp);
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
	/* TODO */
}
#else
static void bp_perf_event_destroy(struct perf_event *event)
{
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4277
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4278

4279
static void sw_perf_event_destroy(struct perf_event *event)
4280
{
4281
	u64 event_id = event->attr.config;
4282

4283
	WARN_ON(event->parent);
4284

4285
	atomic_dec(&perf_swevent_enabled[event_id]);
4286 4287
}

4288
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4289
{
4290
	const struct pmu *pmu = NULL;
4291
	u64 event_id = event->attr.config;
4292

4293
	/*
4294
	 * Software events (currently) can't in general distinguish
4295 4296 4297 4298 4299
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4300
	switch (event_id) {
4301
	case PERF_COUNT_SW_CPU_CLOCK:
4302
		pmu = &perf_ops_cpu_clock;
4303

4304
		break;
4305
	case PERF_COUNT_SW_TASK_CLOCK:
4306
		/*
4307 4308
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4309
		 */
4310
		if (event->ctx->task)
4311
			pmu = &perf_ops_task_clock;
4312
		else
4313
			pmu = &perf_ops_cpu_clock;
4314

4315
		break;
4316 4317 4318 4319 4320
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4321 4322
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4323 4324 4325
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4326
		}
4327
		pmu = &perf_ops_generic;
4328
		break;
4329
	}
4330

4331
	return pmu;
4332 4333
}

T
Thomas Gleixner 已提交
4334
/*
4335
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4336
 */
4337 4338
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4339
		   int cpu,
4340 4341 4342
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4343
		   perf_callback_t callback,
4344
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4345
{
4346
	const struct pmu *pmu;
4347 4348
	struct perf_event *event;
	struct hw_perf_event *hwc;
4349
	long err;
T
Thomas Gleixner 已提交
4350

4351 4352
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4353
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4354

4355
	/*
4356
	 * Single events are their own group leaders, with an
4357 4358 4359
	 * empty sibling list:
	 */
	if (!group_leader)
4360
		group_leader = event;
4361

4362 4363
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4364

4365 4366 4367 4368
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4369

4370
	mutex_init(&event->mmap_mutex);
4371

4372 4373 4374 4375 4376 4377
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4378

4379
	event->parent		= parent_event;
4380

4381 4382
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4383

4384
	event->state		= PERF_EVENT_STATE_INACTIVE;
4385

4386 4387 4388 4389 4390
	if (!callback && parent_event)
		callback = parent_event->callback;
	
	event->callback	= callback;

4391
	if (attr->disabled)
4392
		event->state = PERF_EVENT_STATE_OFF;
4393

4394
	pmu = NULL;
4395

4396
	hwc = &event->hw;
4397
	hwc->sample_period = attr->sample_period;
4398
	if (attr->freq && attr->sample_freq)
4399
		hwc->sample_period = 1;
4400
	hwc->last_period = hwc->sample_period;
4401 4402

	atomic64_set(&hwc->period_left, hwc->sample_period);
4403

4404
	/*
4405
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4406
	 */
4407
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4408 4409
		goto done;

4410
	switch (attr->type) {
4411
	case PERF_TYPE_RAW:
4412
	case PERF_TYPE_HARDWARE:
4413
	case PERF_TYPE_HW_CACHE:
4414
		pmu = hw_perf_event_init(event);
4415 4416 4417
		break;

	case PERF_TYPE_SOFTWARE:
4418
		pmu = sw_perf_event_init(event);
4419 4420 4421
		break;

	case PERF_TYPE_TRACEPOINT:
4422
		pmu = tp_perf_event_init(event);
4423
		break;
4424

4425 4426 4427 4428 4429
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4430 4431
	default:
		break;
4432
	}
4433 4434
done:
	err = 0;
4435
	if (!pmu)
4436
		err = -EINVAL;
4437 4438
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4439

4440
	if (err) {
4441 4442 4443
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4444
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4445
	}
4446

4447
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4448

4449 4450 4451 4452 4453 4454 4455 4456
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4457
	}
4458

4459
	return event;
T
Thomas Gleixner 已提交
4460 4461
}

4462 4463
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4464 4465
{
	u32 size;
4466
	int ret;
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4491 4492 4493
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4494 4495
	 */
	if (size > sizeof(*attr)) {
4496 4497 4498
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4499

4500 4501
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4502

4503
		for (; addr < end; addr++) {
4504 4505 4506 4507 4508 4509
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4510
		size = sizeof(*attr);
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4542
static int perf_event_set_output(struct perf_event *event, int output_fd)
4543
{
4544
	struct perf_event *output_event = NULL;
4545
	struct file *output_file = NULL;
4546
	struct perf_event *old_output;
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4560
	output_event = output_file->private_data;
4561 4562

	/* Don't chain output fds */
4563
	if (output_event->output)
4564 4565 4566
		goto out;

	/* Don't set an output fd when we already have an output channel */
4567
	if (event->data)
4568 4569 4570 4571 4572
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4573 4574 4575 4576
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4577 4578 4579 4580

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4581
		 * is still referencing this event.
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4593
/**
4594
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4595
 *
4596
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4597
 * @pid:		target pid
I
Ingo Molnar 已提交
4598
 * @cpu:		target cpu
4599
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4600
 */
4601 4602
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4603
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4604
{
4605 4606 4607 4608
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4609 4610
	struct file *group_file = NULL;
	int fput_needed = 0;
4611
	int fput_needed2 = 0;
4612
	int err;
T
Thomas Gleixner 已提交
4613

4614
	/* for future expandability... */
4615
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4616 4617
		return -EINVAL;

4618 4619 4620
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4621

4622 4623 4624 4625 4626
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4627
	if (attr.freq) {
4628
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4629 4630 4631
			return -EINVAL;
	}

4632
	/*
I
Ingo Molnar 已提交
4633 4634 4635 4636 4637 4638 4639
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4640
	 * Look up the group leader (we will attach this event to it):
4641 4642
	 */
	group_leader = NULL;
4643
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4644
		err = -EINVAL;
4645 4646
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4647
			goto err_put_context;
4648
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4649
			goto err_put_context;
4650 4651 4652

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4653 4654 4655 4656 4657 4658 4659 4660
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4661
		 */
I
Ingo Molnar 已提交
4662 4663
		if (group_leader->ctx != ctx)
			goto err_put_context;
4664 4665 4666
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4667
		if (attr.exclusive || attr.pinned)
4668
			goto err_put_context;
4669 4670
	}

4671
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4672
				     NULL, NULL, GFP_KERNEL);
4673 4674
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4675 4676
		goto err_put_context;

4677
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4678
	if (err < 0)
4679 4680
		goto err_free_put_context;

4681 4682
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4683 4684
		goto err_free_put_context;

4685
	if (flags & PERF_FLAG_FD_OUTPUT) {
4686
		err = perf_event_set_output(event, group_fd);
4687 4688
		if (err)
			goto err_fput_free_put_context;
4689 4690
	}

4691
	event->filp = event_file;
4692
	WARN_ON_ONCE(ctx->parent_ctx);
4693
	mutex_lock(&ctx->mutex);
4694
	perf_install_in_context(ctx, event, cpu);
4695
	++ctx->generation;
4696
	mutex_unlock(&ctx->mutex);
4697

4698
	event->owner = current;
4699
	get_task_struct(current);
4700 4701 4702
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4703

4704
err_fput_free_put_context:
4705
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4706

4707
err_free_put_context:
4708
	if (err < 0)
4709
		kfree(event);
T
Thomas Gleixner 已提交
4710 4711

err_put_context:
4712 4713 4714 4715
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4716

4717
	return err;
T
Thomas Gleixner 已提交
4718 4719
}

4720 4721 4722 4723 4724 4725 4726 4727 4728
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4729
				 pid_t pid, perf_callback_t callback)
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
4741
		return NULL;
4742 4743

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4744
				     NULL, callback, GFP_KERNEL);
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
	err = PTR_ERR(event);
	if (IS_ERR(event))
		goto err_put_context;

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

err_put_context:
	if (err < 0)
		put_ctx(ctx);

	return NULL;
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4772
/*
4773
 * inherit a event from parent task to child task:
4774
 */
4775 4776
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4777
	      struct task_struct *parent,
4778
	      struct perf_event_context *parent_ctx,
4779
	      struct task_struct *child,
4780 4781
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4782
{
4783
	struct perf_event *child_event;
4784

4785
	/*
4786 4787
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4788 4789 4790
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4791 4792
	if (parent_event->parent)
		parent_event = parent_event->parent;
4793

4794 4795 4796
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4797
					   NULL, GFP_KERNEL);
4798 4799
	if (IS_ERR(child_event))
		return child_event;
4800
	get_ctx(child_ctx);
4801

4802
	/*
4803
	 * Make the child state follow the state of the parent event,
4804
	 * not its attr.disabled bit.  We hold the parent's mutex,
4805
	 * so we won't race with perf_event_{en, dis}able_family.
4806
	 */
4807 4808
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4809
	else
4810
		child_event->state = PERF_EVENT_STATE_OFF;
4811

4812 4813
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4814

4815 4816
	child_event->overflow_handler = parent_event->overflow_handler;

4817 4818 4819
	/*
	 * Link it up in the child's context:
	 */
4820
	add_event_to_ctx(child_event, child_ctx);
4821 4822 4823

	/*
	 * Get a reference to the parent filp - we will fput it
4824
	 * when the child event exits. This is safe to do because
4825 4826 4827
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4828
	atomic_long_inc(&parent_event->filp->f_count);
4829

4830
	/*
4831
	 * Link this into the parent event's child list
4832
	 */
4833 4834 4835 4836
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4837

4838
	return child_event;
4839 4840
}

4841
static int inherit_group(struct perf_event *parent_event,
4842
	      struct task_struct *parent,
4843
	      struct perf_event_context *parent_ctx,
4844
	      struct task_struct *child,
4845
	      struct perf_event_context *child_ctx)
4846
{
4847 4848 4849
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4850

4851
	leader = inherit_event(parent_event, parent, parent_ctx,
4852
				 child, NULL, child_ctx);
4853 4854
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4855 4856
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4857 4858 4859
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4860
	}
4861 4862 4863
	return 0;
}

4864
static void sync_child_event(struct perf_event *child_event,
4865
			       struct task_struct *child)
4866
{
4867
	struct perf_event *parent_event = child_event->parent;
4868
	u64 child_val;
4869

4870 4871
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4872

4873
	child_val = atomic64_read(&child_event->count);
4874 4875 4876 4877

	/*
	 * Add back the child's count to the parent's count:
	 */
4878 4879 4880 4881 4882
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4883 4884

	/*
4885
	 * Remove this event from the parent's list
4886
	 */
4887 4888 4889 4890
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4891 4892

	/*
4893
	 * Release the parent event, if this was the last
4894 4895
	 * reference to it.
	 */
4896
	fput(parent_event->filp);
4897 4898
}

4899
static void
4900 4901
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4902
			 struct task_struct *child)
4903
{
4904
	struct perf_event *parent_event;
4905

4906 4907
	update_event_times(child_event);
	perf_event_remove_from_context(child_event);
4908

4909
	parent_event = child_event->parent;
4910
	/*
4911
	 * It can happen that parent exits first, and has events
4912
	 * that are still around due to the child reference. These
4913
	 * events need to be zapped - but otherwise linger.
4914
	 */
4915 4916 4917
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4918
	}
4919 4920 4921
}

/*
4922
 * When a child task exits, feed back event values to parent events.
4923
 */
4924
void perf_event_exit_task(struct task_struct *child)
4925
{
4926 4927
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4928
	unsigned long flags;
4929

4930 4931
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4932
		return;
P
Peter Zijlstra 已提交
4933
	}
4934

4935
	local_irq_save(flags);
4936 4937 4938 4939 4940 4941
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4942 4943
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4944 4945 4946

	/*
	 * Take the context lock here so that if find_get_context is
4947
	 * reading child->perf_event_ctxp, we wait until it has
4948 4949 4950
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4951
	child->perf_event_ctxp = NULL;
4952 4953 4954
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
4955
	 * the events from it.
4956 4957
	 */
	unclone_ctx(child_ctx);
P
Peter Zijlstra 已提交
4958 4959 4960
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
4961 4962 4963
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
4964
	 */
4965
	perf_event_task(child, child_ctx, 0);
4966

4967 4968 4969
	/*
	 * We can recurse on the same lock type through:
	 *
4970 4971 4972
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
4973 4974 4975 4976 4977 4978
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4979

4980
again:
4981
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4982
				 group_entry)
4983
		__perf_event_exit_task(child_event, child_ctx, child);
4984 4985

	/*
4986
	 * If the last event was a group event, it will have appended all
4987 4988 4989
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
4990
	if (!list_empty(&child_ctx->group_list))
4991
		goto again;
4992 4993 4994 4995

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4996 4997
}

4998 4999 5000 5001
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5002
void perf_event_free_task(struct task_struct *task)
5003
{
5004 5005
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5006 5007 5008 5009 5010 5011

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5012 5013
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5014 5015 5016 5017 5018

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5019
		list_del_init(&event->child_list);
5020 5021 5022 5023
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5024 5025
		list_del_event(event, ctx);
		free_event(event);
5026 5027
	}

5028
	if (!list_empty(&ctx->group_list))
5029 5030 5031 5032 5033 5034 5035
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5036
/*
5037
 * Initialize the perf_event context in task_struct
5038
 */
5039
int perf_event_init_task(struct task_struct *child)
5040
{
5041 5042 5043
	struct perf_event_context *child_ctx, *parent_ctx;
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5044
	struct task_struct *parent = current;
5045
	int inherited_all = 1;
5046
	int ret = 0;
5047

5048
	child->perf_event_ctxp = NULL;
5049

5050 5051
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5052

5053
	if (likely(!parent->perf_event_ctxp))
5054 5055
		return 0;

5056 5057
	/*
	 * This is executed from the parent task context, so inherit
5058
	 * events that have been marked for cloning.
5059
	 * First allocate and initialize a context for the child.
5060 5061
	 */

5062
	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5063
	if (!child_ctx)
5064
		return -ENOMEM;
5065

5066 5067
	__perf_event_init_context(child_ctx, child);
	child->perf_event_ctxp = child_ctx;
5068
	get_task_struct(child);
5069

5070
	/*
5071 5072
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5073
	 */
5074 5075
	parent_ctx = perf_pin_task_context(parent);

5076 5077 5078 5079 5080 5081 5082
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5083 5084 5085 5086
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5087
	mutex_lock(&parent_ctx->mutex);
5088 5089 5090 5091 5092

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5093
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5094

5095
		if (!event->attr.inherit) {
5096
			inherited_all = 0;
5097
			continue;
5098
		}
5099

5100
		ret = inherit_group(event, parent, parent_ctx,
5101 5102
					     child, child_ctx);
		if (ret) {
5103
			inherited_all = 0;
5104
			break;
5105 5106 5107 5108 5109 5110 5111
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5112 5113
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5114
		 * because the list of events and the generation
5115
		 * count can't have changed since we took the mutex.
5116
		 */
5117 5118 5119
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5120
			child_ctx->parent_gen = parent_ctx->parent_gen;
5121 5122 5123 5124 5125
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5126 5127
	}

5128
	mutex_unlock(&parent_ctx->mutex);
5129

5130
	perf_unpin_context(parent_ctx);
5131

5132
	return ret;
5133 5134
}

5135
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5136
{
5137
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5138

5139
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5140
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5141

5142
	spin_lock(&perf_resource_lock);
5143
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5144
	spin_unlock(&perf_resource_lock);
5145

5146
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5147 5148 5149
}

#ifdef CONFIG_HOTPLUG_CPU
5150
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5151 5152
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5153 5154
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5155

5156 5157
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5158
}
5159
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5160
{
5161
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5162
	struct perf_event_context *ctx = &cpuctx->ctx;
5163 5164

	mutex_lock(&ctx->mutex);
5165
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5166
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5167 5168
}
#else
5169
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5181
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5182 5183
		break;

5184 5185
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5186
		hw_perf_event_setup_online(cpu);
5187 5188
		break;

T
Thomas Gleixner 已提交
5189 5190
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5191
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5192 5193 5194 5195 5196 5197 5198 5199 5200
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5201 5202 5203
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5204 5205
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5206
	.priority		= 20,
T
Thomas Gleixner 已提交
5207 5208
};

5209
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5210 5211 5212
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5213 5214
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5235
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5236 5237
		return -EINVAL;

5238
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5239 5240 5241 5242
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5243 5244
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5245 5246 5247
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5248
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5270
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5271
	perf_overcommit = val;
5272
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5299
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5300 5301
};

5302
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5303 5304 5305 5306
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5307
device_initcall(perf_event_sysfs_init);