perf_event.c 124.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
206
		raw_spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 210
			goto retry;
		}
211 212

		if (!atomic_inc_not_zero(&ctx->refcount)) {
213
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 215
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
234
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
235 236 237 238
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242
{
	unsigned long flags;

243
	raw_spin_lock_irqsave(&ctx->lock, flags);
244
	--ctx->pin_count;
245
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 247 248
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

277 278 279 280 281 282
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
283 284 285 286 287 288 289 290 291

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

292 293 294 295 296 297 298 299 300
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

301
/*
302
 * Add a event from the lists for its context.
303 304
 * Must be called with ctx->mutex and ctx->lock held.
 */
305
static void
306
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
307
{
308
	struct perf_event *group_leader = event->group_leader;
309 310

	/*
311 312
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
313 314
	 * leader's sibling list:
	 */
315 316 317
	if (group_leader == event) {
		struct list_head *list;

318 319 320
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

321 322 323
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
324 325 326 327
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

328
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
329 330
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
331

332 333 334
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
335
		ctx->nr_stat++;
336 337
}

338
/*
339
 * Remove a event from the lists for its context.
340
 * Must be called with ctx->mutex and ctx->lock held.
341
 */
342
static void
343
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344
{
345
	struct perf_event *sibling, *tmp;
346

347
	if (list_empty(&event->group_entry))
348
		return;
349 350
	ctx->nr_events--;
	if (event->attr.inherit_stat)
351
		ctx->nr_stat--;
352

353 354
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
355

356 357
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
358

359
	update_event_times(event);
360 361 362 363 364 365 366 367 368 369

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
370

371
	/*
372 373
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
374 375
	 * to the context list directly:
	 */
376
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
377
		struct list_head *list;
378

379 380
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
381
		sibling->group_leader = sibling;
382 383 384

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
385 386 387
	}
}

388
static void
389
event_sched_out(struct perf_event *event,
390
		  struct perf_cpu_context *cpuctx,
391
		  struct perf_event_context *ctx)
392
{
393
	if (event->state != PERF_EVENT_STATE_ACTIVE)
394 395
		return;

396 397 398 399
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
400
	}
401 402 403
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
404

405
	if (!is_software_event(event))
406 407
		cpuctx->active_oncpu--;
	ctx->nr_active--;
408
	if (event->attr.exclusive || !cpuctx->active_oncpu)
409 410 411
		cpuctx->exclusive = 0;
}

412
static void
413
group_sched_out(struct perf_event *group_event,
414
		struct perf_cpu_context *cpuctx,
415
		struct perf_event_context *ctx)
416
{
417
	struct perf_event *event;
418

419
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
420 421
		return;

422
	event_sched_out(group_event, cpuctx, ctx);
423 424 425 426

	/*
	 * Schedule out siblings (if any):
	 */
427 428
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
429

430
	if (group_event->attr.exclusive)
431 432 433
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
434
/*
435
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
436
 *
437
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
438 439
 * remove it from the context list.
 */
440
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
441 442
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
443 444
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
445 446 447 448 449 450

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
451
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
452 453
		return;

454
	raw_spin_lock(&ctx->lock);
455 456
	/*
	 * Protect the list operation against NMI by disabling the
457
	 * events on a global level.
458 459
	 */
	perf_disable();
T
Thomas Gleixner 已提交
460

461
	event_sched_out(event, cpuctx, ctx);
462

463
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
464 465 466

	if (!ctx->task) {
		/*
467
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
468 469 470
		 * reservation:
		 */
		cpuctx->max_pertask =
471 472
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
473 474
	}

475
	perf_enable();
476
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
477 478 479 480
}


/*
481
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
482
 *
483
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
484
 *
485
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
486
 * call when the task is on a CPU.
487
 *
488 489
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
490 491
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
492
 * When called from perf_event_exit_task, it's OK because the
493
 * context has been detached from its task.
T
Thomas Gleixner 已提交
494
 */
495
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
496
{
497
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
498 499 500 501
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
502
		 * Per cpu events are removed via an smp call and
503
		 * the removal is always successful.
T
Thomas Gleixner 已提交
504
		 */
505 506 507
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
508 509 510 511
		return;
	}

retry:
512 513
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
514

515
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
516 517 518
	/*
	 * If the context is active we need to retry the smp call.
	 */
519
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
520
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
521 522 523 524 525
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
526
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
527 528
	 * succeed.
	 */
P
Peter Zijlstra 已提交
529
	if (!list_empty(&event->group_entry))
530
		list_del_event(event, ctx);
531
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
532 533
}

534
/*
535
 * Update total_time_enabled and total_time_running for all events in a group.
536
 */
537
static void update_group_times(struct perf_event *leader)
538
{
539
	struct perf_event *event;
540

541 542 543
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
544 545
}

546
/*
547
 * Cross CPU call to disable a performance event
548
 */
549
static void __perf_event_disable(void *info)
550
{
551
	struct perf_event *event = info;
552
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
553
	struct perf_event_context *ctx = event->ctx;
554 555

	/*
556 557
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
558
	 */
559
	if (ctx->task && cpuctx->task_ctx != ctx)
560 561
		return;

562
	raw_spin_lock(&ctx->lock);
563 564

	/*
565
	 * If the event is on, turn it off.
566 567
	 * If it is in error state, leave it in error state.
	 */
568
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
569
		update_context_time(ctx);
570 571 572
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
573
		else
574 575
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
576 577
	}

578
	raw_spin_unlock(&ctx->lock);
579 580 581
}

/*
582
 * Disable a event.
583
 *
584 585
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
586
 * remains valid.  This condition is satisifed when called through
587 588 589 590
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
591
 * is the current context on this CPU and preemption is disabled,
592
 * hence we can't get into perf_event_task_sched_out for this context.
593
 */
594
void perf_event_disable(struct perf_event *event)
595
{
596
	struct perf_event_context *ctx = event->ctx;
597 598 599 600
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
601
		 * Disable the event on the cpu that it's on
602
		 */
603 604
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
605 606 607 608
		return;
	}

 retry:
609
	task_oncpu_function_call(task, __perf_event_disable, event);
610

611
	raw_spin_lock_irq(&ctx->lock);
612
	/*
613
	 * If the event is still active, we need to retry the cross-call.
614
	 */
615
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
616
		raw_spin_unlock_irq(&ctx->lock);
617 618 619 620 621 622 623
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
624 625 626
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
627
	}
628

629
	raw_spin_unlock_irq(&ctx->lock);
630 631
}

632
static int
633
event_sched_in(struct perf_event *event,
634
		 struct perf_cpu_context *cpuctx,
635
		 struct perf_event_context *ctx,
636 637
		 int cpu)
{
638
	if (event->state <= PERF_EVENT_STATE_OFF)
639 640
		return 0;

641 642
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
643 644 645 646 647
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

648 649 650
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
651 652 653
		return -EAGAIN;
	}

654
	event->tstamp_running += ctx->time - event->tstamp_stopped;
655

656
	if (!is_software_event(event))
657
		cpuctx->active_oncpu++;
658 659
	ctx->nr_active++;

660
	if (event->attr.exclusive)
661 662
		cpuctx->exclusive = 1;

663 664 665
	return 0;
}

666
static int
667
group_sched_in(struct perf_event *group_event,
668
	       struct perf_cpu_context *cpuctx,
669
	       struct perf_event_context *ctx,
670 671
	       int cpu)
{
672
	struct perf_event *event, *partial_group;
673 674
	int ret;

675
	if (group_event->state == PERF_EVENT_STATE_OFF)
676 677
		return 0;

678
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
679 680 681
	if (ret)
		return ret < 0 ? ret : 0;

682
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
683 684 685 686 687
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
688 689 690
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
691 692 693 694 695 696 697 698 699 700 701
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
702 703
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
704
			break;
705
		event_sched_out(event, cpuctx, ctx);
706
	}
707
	event_sched_out(group_event, cpuctx, ctx);
708 709 710 711

	return -EAGAIN;
}

712
/*
713
 * Work out whether we can put this event group on the CPU now.
714
 */
715
static int group_can_go_on(struct perf_event *event,
716 717 718 719
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
720
	 * Groups consisting entirely of software events can always go on.
721
	 */
722
	if (event->group_flags & PERF_GROUP_SOFTWARE)
723 724 725
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
726
	 * events can go on.
727 728 729 730 731
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
732
	 * events on the CPU, it can't go on.
733
	 */
734
	if (event->attr.exclusive && cpuctx->active_oncpu)
735 736 737 738 739 740 741 742
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

743 744
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
745
{
746 747 748 749
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
750 751
}

T
Thomas Gleixner 已提交
752
/*
753
 * Cross CPU call to install and enable a performance event
754 755
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
756 757 758 759
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
760 761 762
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
763
	int cpu = smp_processor_id();
764
	int err;
T
Thomas Gleixner 已提交
765 766 767 768 769

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
770
	 * Or possibly this is the right context but it isn't
771
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
772
	 */
773
	if (ctx->task && cpuctx->task_ctx != ctx) {
774
		if (cpuctx->task_ctx || ctx->task != current)
775 776 777
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
778

779
	raw_spin_lock(&ctx->lock);
780
	ctx->is_active = 1;
781
	update_context_time(ctx);
T
Thomas Gleixner 已提交
782 783 784

	/*
	 * Protect the list operation against NMI by disabling the
785
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
786
	 */
787
	perf_disable();
T
Thomas Gleixner 已提交
788

789
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
790

791 792 793
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

794
	/*
795
	 * Don't put the event on if it is disabled or if
796 797
	 * it is in a group and the group isn't on.
	 */
798 799
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
800 801
		goto unlock;

802
	/*
803 804 805
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
806
	 */
807
	if (!group_can_go_on(event, cpuctx, 1))
808 809
		err = -EEXIST;
	else
810
		err = event_sched_in(event, cpuctx, ctx, cpu);
811

812 813
	if (err) {
		/*
814
		 * This event couldn't go on.  If it is in a group
815
		 * then we have to pull the whole group off.
816
		 * If the event group is pinned then put it in error state.
817
		 */
818
		if (leader != event)
819
			group_sched_out(leader, cpuctx, ctx);
820
		if (leader->attr.pinned) {
821
			update_group_times(leader);
822
			leader->state = PERF_EVENT_STATE_ERROR;
823
		}
824
	}
T
Thomas Gleixner 已提交
825

826
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
827 828
		cpuctx->max_pertask--;

829
 unlock:
830
	perf_enable();
831

832
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
833 834 835
}

/*
836
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
837
 *
838 839
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
840
 *
841
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
842 843
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
844 845
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
846 847
 */
static void
848 849
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
850 851 852 853 854 855
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
856
		 * Per cpu events are installed via an smp call and
857
		 * the install is always successful.
T
Thomas Gleixner 已提交
858 859
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
860
					 event, 1);
T
Thomas Gleixner 已提交
861 862 863 864 865
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
866
				 event);
T
Thomas Gleixner 已提交
867

868
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
869 870 871
	/*
	 * we need to retry the smp call.
	 */
872
	if (ctx->is_active && list_empty(&event->group_entry)) {
873
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
874 875 876 877 878
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
879
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
880 881
	 * succeed.
	 */
882 883
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
884
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
885 886
}

887
/*
888
 * Put a event into inactive state and update time fields.
889 890 891 892 893 894
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
895 896
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
897
{
898
	struct perf_event *sub;
899

900 901 902 903
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
904 905 906 907
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

908
/*
909
 * Cross CPU call to enable a performance event
910
 */
911
static void __perf_event_enable(void *info)
912
{
913
	struct perf_event *event = info;
914
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
915 916
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
917
	int err;
918

919
	/*
920 921
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
922
	 */
923
	if (ctx->task && cpuctx->task_ctx != ctx) {
924
		if (cpuctx->task_ctx || ctx->task != current)
925 926 927
			return;
		cpuctx->task_ctx = ctx;
	}
928

929
	raw_spin_lock(&ctx->lock);
930
	ctx->is_active = 1;
931
	update_context_time(ctx);
932

933
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
934
		goto unlock;
935
	__perf_event_mark_enabled(event, ctx);
936

937 938 939
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

940
	/*
941
	 * If the event is in a group and isn't the group leader,
942
	 * then don't put it on unless the group is on.
943
	 */
944
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
945
		goto unlock;
946

947
	if (!group_can_go_on(event, cpuctx, 1)) {
948
		err = -EEXIST;
949
	} else {
950
		perf_disable();
951 952
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
953 954
					     smp_processor_id());
		else
955
			err = event_sched_in(event, cpuctx, ctx,
956
					       smp_processor_id());
957
		perf_enable();
958
	}
959 960 961

	if (err) {
		/*
962
		 * If this event can't go on and it's part of a
963 964
		 * group, then the whole group has to come off.
		 */
965
		if (leader != event)
966
			group_sched_out(leader, cpuctx, ctx);
967
		if (leader->attr.pinned) {
968
			update_group_times(leader);
969
			leader->state = PERF_EVENT_STATE_ERROR;
970
		}
971 972 973
	}

 unlock:
974
	raw_spin_unlock(&ctx->lock);
975 976 977
}

/*
978
 * Enable a event.
979
 *
980 981
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
982
 * remains valid.  This condition is satisfied when called through
983 984
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
985
 */
986
void perf_event_enable(struct perf_event *event)
987
{
988
	struct perf_event_context *ctx = event->ctx;
989 990 991 992
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
993
		 * Enable the event on the cpu that it's on
994
		 */
995 996
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
997 998 999
		return;
	}

1000
	raw_spin_lock_irq(&ctx->lock);
1001
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1002 1003 1004
		goto out;

	/*
1005 1006
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1007 1008 1009 1010
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1011 1012
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1013 1014

 retry:
1015
	raw_spin_unlock_irq(&ctx->lock);
1016
	task_oncpu_function_call(task, __perf_event_enable, event);
1017

1018
	raw_spin_lock_irq(&ctx->lock);
1019 1020

	/*
1021
	 * If the context is active and the event is still off,
1022 1023
	 * we need to retry the cross-call.
	 */
1024
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1025 1026 1027 1028 1029 1030
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1031 1032
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1033

1034
 out:
1035
	raw_spin_unlock_irq(&ctx->lock);
1036 1037
}

1038
static int perf_event_refresh(struct perf_event *event, int refresh)
1039
{
1040
	/*
1041
	 * not supported on inherited events
1042
	 */
1043
	if (event->attr.inherit)
1044 1045
		return -EINVAL;

1046 1047
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1048 1049

	return 0;
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1061
{
1062
	struct perf_event *event;
1063

1064
	raw_spin_lock(&ctx->lock);
1065
	ctx->is_active = 0;
1066
	if (likely(!ctx->nr_events))
1067
		goto out;
1068
	update_context_time(ctx);
1069

1070
	perf_disable();
1071 1072 1073 1074
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1075 1076 1077
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1078
	if (event_type & EVENT_FLEXIBLE)
1079
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1080
			group_sched_out(event, cpuctx, ctx);
1081 1082

 out_enable:
1083
	perf_enable();
1084
 out:
1085
	raw_spin_unlock(&ctx->lock);
1086 1087
}

1088 1089 1090
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1091 1092 1093 1094
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1095
 * in them directly with an fd; we can only enable/disable all
1096
 * events via prctl, or enable/disable all events in a family
1097 1098
 * via ioctl, which will have the same effect on both contexts.
 */
1099 1100
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1101 1102
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1103
		&& ctx1->parent_gen == ctx2->parent_gen
1104
		&& !ctx1->pin_count && !ctx2->pin_count;
1105 1106
}

1107 1108
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1109 1110 1111
{
	u64 value;

1112
	if (!event->attr.inherit_stat)
1113 1114 1115
		return;

	/*
1116
	 * Update the event value, we cannot use perf_event_read()
1117 1118
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1119
	 * we know the event must be on the current CPU, therefore we
1120 1121
	 * don't need to use it.
	 */
1122 1123
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1124 1125
		event->pmu->read(event);
		/* fall-through */
1126

1127 1128
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1129 1130 1131 1132 1133 1134 1135
		break;

	default:
		break;
	}

	/*
1136
	 * In order to keep per-task stats reliable we need to flip the event
1137 1138
	 * values when we flip the contexts.
	 */
1139 1140 1141
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1142

1143 1144
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1145

1146
	/*
1147
	 * Since we swizzled the values, update the user visible data too.
1148
	 */
1149 1150
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1151 1152 1153 1154 1155
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1156 1157
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1158
{
1159
	struct perf_event *event, *next_event;
1160 1161 1162 1163

	if (!ctx->nr_stat)
		return;

1164 1165
	update_context_time(ctx);

1166 1167
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1168

1169 1170
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1171

1172 1173
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1174

1175
		__perf_event_sync_stat(event, next_event);
1176

1177 1178
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1179 1180 1181
	}
}

T
Thomas Gleixner 已提交
1182
/*
1183
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1184 1185
 * with interrupts disabled.
 *
1186
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1187
 *
I
Ingo Molnar 已提交
1188
 * This does not protect us against NMI, but disable()
1189 1190 1191
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1192
 */
1193
void perf_event_task_sched_out(struct task_struct *task,
1194
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1195
{
1196
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1197 1198 1199
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1200
	struct pt_regs *regs;
1201
	int do_switch = 1;
T
Thomas Gleixner 已提交
1202

1203
	regs = task_pt_regs(task);
1204
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1205

1206
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1207 1208
		return;

1209 1210
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1211
	next_ctx = next->perf_event_ctxp;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1223 1224
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1225
		if (context_equiv(ctx, next_ctx)) {
1226 1227
			/*
			 * XXX do we need a memory barrier of sorts
1228
			 * wrt to rcu_dereference() of perf_event_ctxp
1229
			 */
1230 1231
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1232 1233 1234
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1235

1236
			perf_event_sync_stat(ctx, next_ctx);
1237
		}
1238 1239
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1240
	}
1241
	rcu_read_unlock();
1242

1243
	if (do_switch) {
1244
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1245 1246
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1247 1248
}

1249 1250
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1251 1252 1253
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1254 1255
	if (!cpuctx->task_ctx)
		return;
1256 1257 1258 1259

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1260
	ctx_sched_out(ctx, cpuctx, event_type);
1261 1262 1263
	cpuctx->task_ctx = NULL;
}

1264 1265 1266
/*
 * Called with IRQs disabled
 */
1267
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1268
{
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1279 1280
}

1281
static void
1282 1283 1284
ctx_pinned_sched_in(struct perf_event_context *ctx,
		    struct perf_cpu_context *cpuctx,
		    int cpu)
T
Thomas Gleixner 已提交
1285
{
1286
	struct perf_event *event;
T
Thomas Gleixner 已提交
1287

1288 1289
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1290
			continue;
1291
		if (event->cpu != -1 && event->cpu != cpu)
1292 1293
			continue;

1294 1295
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1296 1297 1298 1299 1300

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1301 1302 1303
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1304
		}
1305
	}
1306 1307 1308 1309 1310 1311 1312 1313 1314
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
		      struct perf_cpu_context *cpuctx,
		      int cpu)
{
	struct perf_event *event;
	int can_add_hw = 1;
1315

1316 1317 1318
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1319
			continue;
1320 1321
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1322
		 * of events:
1323
		 */
1324
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1325 1326
			continue;

1327 1328
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1329
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1330
	}
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	int cpu = smp_processor_id();

	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
		ctx_pinned_sched_in(ctx, cpuctx, cpu);

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
		ctx_flexible_sched_in(ctx, cpuctx, cpu);

1360
	perf_enable();
1361
 out:
1362
	raw_spin_unlock(&ctx->lock);
1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1378
/*
1379
 * Called from scheduler to add the events of the current task
1380 1381
 * with interrupts disabled.
 *
1382
 * We restore the event value and then enable it.
1383 1384
 *
 * This does not protect us against NMI, but enable()
1385 1386 1387
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1388
 */
1389
void perf_event_task_sched_in(struct task_struct *task)
1390
{
1391
	task_ctx_sched_in(task, EVENT_ALL);
T
Thomas Gleixner 已提交
1392 1393
}

1394 1395
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
1396
{
1397
	struct perf_event_context *ctx = &cpuctx->ctx;
1398

1399
	ctx_sched_in(ctx, cpuctx, event_type);
1400 1401
}

1402 1403
#define MAX_INTERRUPTS (~0ULL)

1404
static void perf_log_throttle(struct perf_event *event, int enable);
1405

1406
static void perf_adjust_period(struct perf_event *event, u64 events)
1407
{
1408
	struct hw_perf_event *hwc = &event->hw;
1409 1410 1411 1412
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1413
	period = div64_u64(events, event->attr.sample_freq);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1426
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1427
{
1428 1429
	struct perf_event *event;
	struct hw_perf_event *hwc;
1430
	u64 interrupts, freq;
1431

1432
	raw_spin_lock(&ctx->lock);
1433
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1434
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1435 1436
			continue;

1437 1438 1439
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1440
		hwc = &event->hw;
1441 1442 1443

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1444

1445
		/*
1446
		 * unthrottle events on the tick
1447
		 */
1448
		if (interrupts == MAX_INTERRUPTS) {
1449 1450 1451
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1452 1453
		}

1454
		if (!event->attr.freq || !event->attr.sample_freq)
1455 1456
			continue;

1457 1458 1459
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1460 1461
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1475
		perf_adjust_period(event, freq * interrupts);
1476

1477 1478 1479 1480 1481 1482 1483
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1484
			event->pmu->disable(event);
1485
			atomic64_set(&hwc->period_left, 0);
1486
			event->pmu->enable(event);
1487 1488
			perf_enable();
		}
1489
	}
1490
	raw_spin_unlock(&ctx->lock);
1491 1492
}

1493
/*
1494
 * Round-robin a context's events:
1495
 */
1496
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1497
{
1498
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1499 1500
		return;

1501
	raw_spin_lock(&ctx->lock);
1502 1503

	/* Rotate the first entry last of non-pinned groups */
1504
	perf_disable();
1505

1506 1507
	list_rotate_left(&ctx->flexible_groups);

1508
	perf_enable();
T
Thomas Gleixner 已提交
1509

1510
	raw_spin_unlock(&ctx->lock);
1511 1512
}

1513
void perf_event_task_tick(struct task_struct *curr)
1514
{
1515
	struct perf_cpu_context *cpuctx;
1516
	struct perf_event_context *ctx;
1517

1518
	if (!atomic_read(&nr_events))
1519 1520
		return;

1521
	cpuctx = &__get_cpu_var(perf_cpu_context);
1522
	ctx = curr->perf_event_ctxp;
1523

1524
	perf_ctx_adjust_freq(&cpuctx->ctx);
1525
	if (ctx)
1526
		perf_ctx_adjust_freq(ctx);
1527

1528
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1529
	if (ctx)
1530
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1531

1532
	rotate_ctx(&cpuctx->ctx);
1533 1534
	if (ctx)
		rotate_ctx(ctx);
1535

1536
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1537
	if (ctx)
1538
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1539 1540
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1556
/*
1557
 * Enable all of a task's events that have been marked enable-on-exec.
1558 1559
 * This expects task == current.
 */
1560
static void perf_event_enable_on_exec(struct task_struct *task)
1561
{
1562 1563
	struct perf_event_context *ctx;
	struct perf_event *event;
1564 1565
	unsigned long flags;
	int enabled = 0;
1566
	int ret;
1567 1568

	local_irq_save(flags);
1569 1570
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1571 1572
		goto out;

1573
	__perf_event_task_sched_out(ctx);
1574

1575
	raw_spin_lock(&ctx->lock);
1576

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1587 1588 1589
	}

	/*
1590
	 * Unclone this context if we enabled any event.
1591
	 */
1592 1593
	if (enabled)
		unclone_ctx(ctx);
1594

1595
	raw_spin_unlock(&ctx->lock);
1596

1597
	perf_event_task_sched_in(task);
1598 1599 1600 1601
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1602
/*
1603
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1604
 */
1605
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1606
{
1607
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1608 1609
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1610

1611 1612 1613 1614
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1615 1616
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1617 1618 1619 1620
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1621
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1622
	update_context_time(ctx);
1623
	update_event_times(event);
1624
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1625

P
Peter Zijlstra 已提交
1626
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1627 1628
}

1629
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1630 1631
{
	/*
1632 1633
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1634
	 */
1635 1636 1637 1638
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1639 1640 1641
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1642
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1643
		update_context_time(ctx);
1644
		update_event_times(event);
1645
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1646 1647
	}

1648
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1649 1650
}

1651
/*
1652
 * Initialize the perf_event context in a task_struct:
1653 1654
 */
static void
1655
__perf_event_init_context(struct perf_event_context *ctx,
1656 1657
			    struct task_struct *task)
{
1658
	raw_spin_lock_init(&ctx->lock);
1659
	mutex_init(&ctx->mutex);
1660 1661
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1662 1663 1664 1665 1666
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1667
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1668
{
1669
	struct perf_event_context *ctx;
1670
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1671
	struct task_struct *task;
1672
	unsigned long flags;
1673
	int err;
T
Thomas Gleixner 已提交
1674

1675
	if (pid == -1 && cpu != -1) {
1676
		/* Must be root to operate on a CPU event: */
1677
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1678 1679
			return ERR_PTR(-EACCES);

1680
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1681 1682 1683
			return ERR_PTR(-EINVAL);

		/*
1684
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1685 1686 1687
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1688
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1689 1690 1691 1692
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1693
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1710
	/*
1711
	 * Can't attach events to a dying task.
1712 1713 1714 1715 1716
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1717
	/* Reuse ptrace permission checks for now. */
1718 1719 1720 1721 1722
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1723
	ctx = perf_lock_task_context(task, &flags);
1724
	if (ctx) {
1725
		unclone_ctx(ctx);
1726
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1727 1728
	}

1729
	if (!ctx) {
1730
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1731 1732 1733
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1734
		__perf_event_init_context(ctx, task);
1735
		get_ctx(ctx);
1736
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1737 1738 1739 1740 1741
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1742
			goto retry;
1743
		}
1744
		get_task_struct(task);
1745 1746
	}

1747
	put_task_struct(task);
T
Thomas Gleixner 已提交
1748
	return ctx;
1749 1750 1751 1752

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1753 1754
}

L
Li Zefan 已提交
1755 1756
static void perf_event_free_filter(struct perf_event *event);

1757
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1758
{
1759
	struct perf_event *event;
P
Peter Zijlstra 已提交
1760

1761 1762 1763
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1764
	perf_event_free_filter(event);
1765
	kfree(event);
P
Peter Zijlstra 已提交
1766 1767
}

1768
static void perf_pending_sync(struct perf_event *event);
1769

1770
static void free_event(struct perf_event *event)
1771
{
1772
	perf_pending_sync(event);
1773

1774 1775 1776 1777 1778 1779 1780 1781
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1782
	}
1783

1784 1785 1786
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1787 1788
	}

1789 1790
	if (event->destroy)
		event->destroy(event);
1791

1792 1793
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1794 1795
}

1796
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1797
{
1798
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1799

1800
	WARN_ON_ONCE(ctx->parent_ctx);
1801
	mutex_lock(&ctx->mutex);
1802
	perf_event_remove_from_context(event);
1803
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1804

1805 1806 1807 1808
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1809

1810
	free_event(event);
T
Thomas Gleixner 已提交
1811 1812 1813

	return 0;
}
1814
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1815

1816 1817 1818 1819
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1820
{
1821
	struct perf_event *event = file->private_data;
1822

1823
	file->private_data = NULL;
1824

1825
	return perf_event_release_kernel(event);
1826 1827
}

1828
static int perf_event_read_size(struct perf_event *event)
1829 1830 1831 1832 1833
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1834
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1835 1836
		size += sizeof(u64);

1837
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1838 1839
		size += sizeof(u64);

1840
	if (event->attr.read_format & PERF_FORMAT_ID)
1841 1842
		entry += sizeof(u64);

1843 1844
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1845 1846 1847 1848 1849 1850 1851 1852
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1853
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1854
{
1855
	struct perf_event *child;
1856 1857
	u64 total = 0;

1858 1859 1860
	*enabled = 0;
	*running = 0;

1861
	mutex_lock(&event->child_mutex);
1862
	total += perf_event_read(event);
1863 1864 1865 1866 1867 1868
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1869
		total += perf_event_read(child);
1870 1871 1872
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1873
	mutex_unlock(&event->child_mutex);
1874 1875 1876

	return total;
}
1877
EXPORT_SYMBOL_GPL(perf_event_read_value);
1878

1879
static int perf_event_read_group(struct perf_event *event,
1880 1881
				   u64 read_format, char __user *buf)
{
1882
	struct perf_event *leader = event->group_leader, *sub;
1883 1884
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1885
	u64 values[5];
1886
	u64 count, enabled, running;
1887

1888
	mutex_lock(&ctx->mutex);
1889
	count = perf_event_read_value(leader, &enabled, &running);
1890 1891

	values[n++] = 1 + leader->nr_siblings;
1892 1893 1894 1895
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1896 1897 1898
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1899 1900 1901 1902

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1903
		goto unlock;
1904

1905
	ret = size;
1906

1907
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1908
		n = 0;
1909

1910
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1911 1912 1913 1914 1915
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1916
		if (copy_to_user(buf + ret, values, size)) {
1917 1918 1919
			ret = -EFAULT;
			goto unlock;
		}
1920 1921

		ret += size;
1922
	}
1923 1924
unlock:
	mutex_unlock(&ctx->mutex);
1925

1926
	return ret;
1927 1928
}

1929
static int perf_event_read_one(struct perf_event *event,
1930 1931
				 u64 read_format, char __user *buf)
{
1932
	u64 enabled, running;
1933 1934 1935
	u64 values[4];
	int n = 0;

1936 1937 1938 1939 1940
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1941
	if (read_format & PERF_FORMAT_ID)
1942
		values[n++] = primary_event_id(event);
1943 1944 1945 1946 1947 1948 1949

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1950
/*
1951
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1952 1953
 */
static ssize_t
1954
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1955
{
1956
	u64 read_format = event->attr.read_format;
1957
	int ret;
T
Thomas Gleixner 已提交
1958

1959
	/*
1960
	 * Return end-of-file for a read on a event that is in
1961 1962 1963
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1964
	if (event->state == PERF_EVENT_STATE_ERROR)
1965 1966
		return 0;

1967
	if (count < perf_event_read_size(event))
1968 1969
		return -ENOSPC;

1970
	WARN_ON_ONCE(event->ctx->parent_ctx);
1971
	if (read_format & PERF_FORMAT_GROUP)
1972
		ret = perf_event_read_group(event, read_format, buf);
1973
	else
1974
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
1975

1976
	return ret;
T
Thomas Gleixner 已提交
1977 1978 1979 1980 1981
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1982
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1983

1984
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1985 1986 1987 1988
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1989
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1990
	struct perf_mmap_data *data;
1991
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1992 1993

	rcu_read_lock();
1994
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1995
	if (data)
1996
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1997
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1998

1999
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2000 2001 2002 2003

	return events;
}

2004
static void perf_event_reset(struct perf_event *event)
2005
{
2006 2007 2008
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2009 2010
}

2011
/*
2012 2013 2014 2015
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2016
 */
2017 2018
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2019
{
2020
	struct perf_event *child;
P
Peter Zijlstra 已提交
2021

2022 2023 2024 2025
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2026
		func(child);
2027
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2028 2029
}

2030 2031
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2032
{
2033 2034
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2035

2036 2037
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2038
	event = event->group_leader;
2039

2040 2041 2042 2043
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2044
	mutex_unlock(&ctx->mutex);
2045 2046
}

2047
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2048
{
2049
	struct perf_event_context *ctx = event->ctx;
2050 2051 2052 2053
	unsigned long size;
	int ret = 0;
	u64 value;

2054
	if (!event->attr.sample_period)
2055 2056 2057 2058 2059 2060 2061 2062 2063
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2064
	raw_spin_lock_irq(&ctx->lock);
2065 2066
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2067 2068 2069 2070
			ret = -EINVAL;
			goto unlock;
		}

2071
		event->attr.sample_freq = value;
2072
	} else {
2073 2074
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2075 2076
	}
unlock:
2077
	raw_spin_unlock_irq(&ctx->lock);
2078 2079 2080 2081

	return ret;
}

L
Li Zefan 已提交
2082 2083
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2084

2085 2086
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2087 2088
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2089
	u32 flags = arg;
2090 2091

	switch (cmd) {
2092 2093
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2094
		break;
2095 2096
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2097
		break;
2098 2099
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2100
		break;
P
Peter Zijlstra 已提交
2101

2102 2103
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2104

2105 2106
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2107

2108 2109
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2110

L
Li Zefan 已提交
2111 2112 2113
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2114
	default:
P
Peter Zijlstra 已提交
2115
		return -ENOTTY;
2116
	}
P
Peter Zijlstra 已提交
2117 2118

	if (flags & PERF_IOC_FLAG_GROUP)
2119
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2120
	else
2121
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2122 2123

	return 0;
2124 2125
}

2126
int perf_event_task_enable(void)
2127
{
2128
	struct perf_event *event;
2129

2130 2131 2132 2133
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2134 2135 2136 2137

	return 0;
}

2138
int perf_event_task_disable(void)
2139
{
2140
	struct perf_event *event;
2141

2142 2143 2144 2145
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2146 2147 2148 2149

	return 0;
}

2150 2151
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2152 2153
#endif

2154
static int perf_event_index(struct perf_event *event)
2155
{
2156
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2157 2158
		return 0;

2159
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2160 2161
}

2162 2163 2164 2165 2166
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2167
void perf_event_update_userpage(struct perf_event *event)
2168
{
2169
	struct perf_event_mmap_page *userpg;
2170
	struct perf_mmap_data *data;
2171 2172

	rcu_read_lock();
2173
	data = rcu_dereference(event->data);
2174 2175 2176 2177
	if (!data)
		goto unlock;

	userpg = data->user_page;
2178

2179 2180 2181 2182 2183
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2184
	++userpg->lock;
2185
	barrier();
2186 2187 2188 2189
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2190

2191 2192
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2193

2194 2195
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2196

2197
	barrier();
2198
	++userpg->lock;
2199
	preempt_enable();
2200
unlock:
2201
	rcu_read_unlock();
2202 2203
}

2204
static unsigned long perf_data_size(struct perf_mmap_data *data)
2205
{
2206 2207
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2208

2209
#ifndef CONFIG_PERF_USE_VMALLOC
2210

2211 2212 2213
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2214

2215 2216 2217 2218 2219
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2220

2221 2222
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2223

2224
	return virt_to_page(data->data_pages[pgoff - 1]);
2225 2226
}

2227 2228
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2229 2230 2231 2232 2233
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2234
	WARN_ON(atomic_read(&event->mmap_count));
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2253
	data->data_order = 0;
2254 2255
	data->nr_pages = nr_pages;

2256
	return data;
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2268
	return NULL;
2269 2270
}

2271 2272
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2273
	struct page *page = virt_to_page((void *)addr);
2274 2275 2276 2277 2278

	page->mapping = NULL;
	__free_page(page);
}

2279
static void perf_mmap_data_free(struct perf_mmap_data *data)
2280 2281 2282
{
	int i;

2283
	perf_mmap_free_page((unsigned long)data->user_page);
2284
	for (i = 0; i < data->nr_pages; i++)
2285
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2286
	kfree(data);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2327
	kfree(data);
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2343

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2421
		data->watermark = max_size / 2;
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2433 2434
}

2435
static void perf_mmap_data_release(struct perf_event *event)
2436
{
2437
	struct perf_mmap_data *data = event->data;
2438

2439
	WARN_ON(atomic_read(&event->mmap_count));
2440

2441
	rcu_assign_pointer(event->data, NULL);
2442
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2443 2444 2445 2446
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2447
	struct perf_event *event = vma->vm_file->private_data;
2448

2449
	atomic_inc(&event->mmap_count);
2450 2451 2452 2453
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2454
	struct perf_event *event = vma->vm_file->private_data;
2455

2456 2457
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2458
		unsigned long size = perf_data_size(event->data);
2459 2460
		struct user_struct *user = current_user();

2461
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2462
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2463
		perf_mmap_data_release(event);
2464
		mutex_unlock(&event->mmap_mutex);
2465
	}
2466 2467
}

2468
static const struct vm_operations_struct perf_mmap_vmops = {
2469 2470 2471 2472
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2473 2474 2475 2476
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2477
	struct perf_event *event = file->private_data;
2478
	unsigned long user_locked, user_lock_limit;
2479
	struct user_struct *user = current_user();
2480
	unsigned long locked, lock_limit;
2481
	struct perf_mmap_data *data;
2482 2483
	unsigned long vma_size;
	unsigned long nr_pages;
2484
	long user_extra, extra;
2485
	int ret = 0;
2486

2487
	if (!(vma->vm_flags & VM_SHARED))
2488
		return -EINVAL;
2489 2490 2491 2492

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2493 2494 2495 2496 2497
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2498 2499
		return -EINVAL;

2500
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2501 2502
		return -EINVAL;

2503 2504
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2505

2506 2507 2508
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2509 2510 2511 2512
		ret = -EINVAL;
		goto unlock;
	}

2513 2514
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2515 2516 2517 2518
			ret = -EINVAL;
		goto unlock;
	}

2519
	user_extra = nr_pages + 1;
2520
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2521 2522 2523 2524 2525 2526

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2527
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2528

2529 2530 2531
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2532 2533 2534

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2535
	locked = vma->vm_mm->locked_vm + extra;
2536

2537 2538
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2539 2540 2541
		ret = -EPERM;
		goto unlock;
	}
2542

2543
	WARN_ON(event->data);
2544 2545 2546 2547

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2548 2549
		goto unlock;

2550 2551 2552
	ret = 0;
	perf_mmap_data_init(event, data);

2553
	atomic_set(&event->mmap_count, 1);
2554
	atomic_long_add(user_extra, &user->locked_vm);
2555
	vma->vm_mm->locked_vm += extra;
2556
	event->data->nr_locked = extra;
2557
	if (vma->vm_flags & VM_WRITE)
2558
		event->data->writable = 1;
2559

2560
unlock:
2561
	mutex_unlock(&event->mmap_mutex);
2562 2563 2564

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2565 2566

	return ret;
2567 2568
}

P
Peter Zijlstra 已提交
2569 2570 2571
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2572
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2573 2574 2575
	int retval;

	mutex_lock(&inode->i_mutex);
2576
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2577 2578 2579 2580 2581 2582 2583 2584
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2585 2586 2587 2588
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2589 2590
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2591
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2592
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2593 2594
};

2595
/*
2596
 * Perf event wakeup
2597 2598 2599 2600 2601
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2602
void perf_event_wakeup(struct perf_event *event)
2603
{
2604
	wake_up_all(&event->waitq);
2605

2606 2607 2608
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2609
	}
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2621
static void perf_pending_event(struct perf_pending_entry *entry)
2622
{
2623 2624
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2625

2626 2627 2628
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2629 2630
	}

2631 2632 2633
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2634 2635 2636
	}
}

2637
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2638

2639
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2640 2641 2642
	PENDING_TAIL,
};

2643 2644
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2645
{
2646
	struct perf_pending_entry **head;
2647

2648
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2649 2650
		return;

2651 2652 2653
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2654 2655

	do {
2656 2657
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2658

2659
	set_perf_event_pending();
2660

2661
	put_cpu_var(perf_pending_head);
2662 2663 2664 2665
}

static int __perf_pending_run(void)
{
2666
	struct perf_pending_entry *list;
2667 2668
	int nr = 0;

2669
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2670
	while (list != PENDING_TAIL) {
2671 2672
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2673 2674 2675

		list = list->next;

2676 2677
		func = entry->func;
		entry->next = NULL;
2678 2679 2680 2681 2682 2683 2684
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2685
		func(entry);
2686 2687 2688 2689 2690 2691
		nr++;
	}

	return nr;
}

2692
static inline int perf_not_pending(struct perf_event *event)
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2707
	return event->pending.next == NULL;
2708 2709
}

2710
static void perf_pending_sync(struct perf_event *event)
2711
{
2712
	wait_event(event->waitq, perf_not_pending(event));
2713 2714
}

2715
void perf_event_do_pending(void)
2716 2717 2718 2719
{
	__perf_pending_run();
}

2720 2721 2722 2723
/*
 * Callchain support -- arch specific
 */

2724
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2725 2726 2727 2728
{
	return NULL;
}

2729 2730 2731
/*
 * Output
 */
2732 2733
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2734 2735 2736 2737 2738 2739
{
	unsigned long mask;

	if (!data->writable)
		return true;

2740
	mask = perf_data_size(data) - 1;
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2751
static void perf_output_wakeup(struct perf_output_handle *handle)
2752
{
2753 2754
	atomic_set(&handle->data->poll, POLL_IN);

2755
	if (handle->nmi) {
2756 2757 2758
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2759
	} else
2760
		perf_event_wakeup(handle->event);
2761 2762
}

2763 2764 2765
/*
 * Curious locking construct.
 *
2766 2767
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2768 2769 2770 2771 2772 2773
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2774
 * event_id completes.
2775 2776 2777 2778
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2779
	int cur, cpu = get_cpu();
2780 2781 2782

	handle->locked = 0;

2783 2784 2785 2786 2787 2788 2789 2790
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2791 2792

		cpu_relax();
2793
	}
2794 2795 2796 2797 2798
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2799 2800
	unsigned long head;
	int cpu;
2801

2802
	data->done_head = data->head;
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2813
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2814 2815 2816
		data->user_page->data_head = head;

	/*
2817
	 * NMI can happen here, which means we can miss a done_head update.
2818 2819
	 */

2820
	cpu = atomic_xchg(&data->lock, -1);
2821 2822 2823 2824 2825
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2826
	if (unlikely(atomic_long_read(&data->done_head))) {
2827 2828 2829
		/*
		 * Since we had it locked, we can lock it again.
		 */
2830
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2831 2832 2833 2834 2835
			cpu_relax();

		goto again;
	}

2836
	if (atomic_xchg(&data->wakeup, 0))
2837 2838
		perf_output_wakeup(handle);
out:
2839
	put_cpu();
2840 2841
}

2842 2843
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2844 2845
{
	unsigned int pages_mask;
2846
	unsigned long offset;
2847 2848 2849 2850 2851 2852 2853 2854
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2855 2856
		unsigned long page_offset;
		unsigned long page_size;
2857 2858 2859
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2860 2861 2862
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2880
int perf_output_begin(struct perf_output_handle *handle,
2881
		      struct perf_event *event, unsigned int size,
2882
		      int nmi, int sample)
2883
{
2884
	struct perf_event *output_event;
2885
	struct perf_mmap_data *data;
2886
	unsigned long tail, offset, head;
2887 2888 2889 2890 2891 2892
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2893

2894
	rcu_read_lock();
2895
	/*
2896
	 * For inherited events we send all the output towards the parent.
2897
	 */
2898 2899
	if (event->parent)
		event = event->parent;
2900

2901 2902 2903
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2904

2905
	data = rcu_dereference(event->data);
2906 2907 2908
	if (!data)
		goto out;

2909
	handle->data	= data;
2910
	handle->event	= event;
2911 2912
	handle->nmi	= nmi;
	handle->sample	= sample;
2913

2914
	if (!data->nr_pages)
2915
		goto fail;
2916

2917 2918 2919 2920
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2921 2922
	perf_output_lock(handle);

2923
	do {
2924 2925 2926 2927 2928 2929 2930
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2931
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2932
		head += size;
2933
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2934
			goto fail;
2935
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2936

2937
	handle->offset	= offset;
2938
	handle->head	= head;
2939

2940
	if (head - tail > data->watermark)
2941
		atomic_set(&data->wakeup, 1);
2942

2943
	if (have_lost) {
2944
		lost_event.header.type = PERF_RECORD_LOST;
2945 2946
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2947
		lost_event.id          = event->id;
2948 2949 2950 2951 2952
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2953
	return 0;
2954

2955
fail:
2956 2957
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2958 2959
out:
	rcu_read_unlock();
2960

2961 2962
	return -ENOSPC;
}
2963

2964
void perf_output_end(struct perf_output_handle *handle)
2965
{
2966
	struct perf_event *event = handle->event;
2967 2968
	struct perf_mmap_data *data = handle->data;

2969
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2970

2971
	if (handle->sample && wakeup_events) {
2972
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2973
		if (events >= wakeup_events) {
2974
			atomic_sub(wakeup_events, &data->events);
2975
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2976
		}
2977 2978 2979
	}

	perf_output_unlock(handle);
2980
	rcu_read_unlock();
2981 2982
}

2983
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2984 2985
{
	/*
2986
	 * only top level events have the pid namespace they were created in
2987
	 */
2988 2989
	if (event->parent)
		event = event->parent;
2990

2991
	return task_tgid_nr_ns(p, event->ns);
2992 2993
}

2994
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2995 2996
{
	/*
2997
	 * only top level events have the pid namespace they were created in
2998
	 */
2999 3000
	if (event->parent)
		event = event->parent;
3001

3002
	return task_pid_nr_ns(p, event->ns);
3003 3004
}

3005
static void perf_output_read_one(struct perf_output_handle *handle,
3006
				 struct perf_event *event)
3007
{
3008
	u64 read_format = event->attr.read_format;
3009 3010 3011
	u64 values[4];
	int n = 0;

3012
	values[n++] = atomic64_read(&event->count);
3013
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3014 3015
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3016 3017
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3018 3019
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3020 3021
	}
	if (read_format & PERF_FORMAT_ID)
3022
		values[n++] = primary_event_id(event);
3023 3024 3025 3026 3027

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3028
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3029 3030
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3031
			    struct perf_event *event)
3032
{
3033 3034
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3046
	if (leader != event)
3047 3048 3049 3050
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3051
		values[n++] = primary_event_id(leader);
3052 3053 3054

	perf_output_copy(handle, values, n * sizeof(u64));

3055
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3056 3057
		n = 0;

3058
		if (sub != event)
3059 3060 3061 3062
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3063
			values[n++] = primary_event_id(sub);
3064 3065 3066 3067 3068 3069

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3070
			     struct perf_event *event)
3071
{
3072 3073
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3074
	else
3075
		perf_output_read_one(handle, event);
3076 3077
}

3078 3079 3080
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3081
			struct perf_event *event)
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3112
		perf_output_read(handle, event);
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3150
			 struct perf_event *event,
3151
			 struct pt_regs *regs)
3152
{
3153
	u64 sample_type = event->attr.sample_type;
3154

3155
	data->type = sample_type;
3156

3157
	header->type = PERF_RECORD_SAMPLE;
3158 3159 3160 3161
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3162

3163
	if (sample_type & PERF_SAMPLE_IP) {
3164 3165 3166
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3167
	}
3168

3169
	if (sample_type & PERF_SAMPLE_TID) {
3170
		/* namespace issues */
3171 3172
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3173

3174
		header->size += sizeof(data->tid_entry);
3175 3176
	}

3177
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3178
		data->time = perf_clock();
3179

3180
		header->size += sizeof(data->time);
3181 3182
	}

3183
	if (sample_type & PERF_SAMPLE_ADDR)
3184
		header->size += sizeof(data->addr);
3185

3186
	if (sample_type & PERF_SAMPLE_ID) {
3187
		data->id = primary_event_id(event);
3188

3189 3190 3191 3192
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3193
		data->stream_id = event->id;
3194 3195 3196

		header->size += sizeof(data->stream_id);
	}
3197

3198
	if (sample_type & PERF_SAMPLE_CPU) {
3199 3200
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3201

3202
		header->size += sizeof(data->cpu_entry);
3203 3204
	}

3205
	if (sample_type & PERF_SAMPLE_PERIOD)
3206
		header->size += sizeof(data->period);
3207

3208
	if (sample_type & PERF_SAMPLE_READ)
3209
		header->size += perf_event_read_size(event);
3210

3211
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3212
		int size = 1;
3213

3214 3215 3216 3217 3218 3219
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3220 3221
	}

3222
	if (sample_type & PERF_SAMPLE_RAW) {
3223 3224 3225 3226 3227 3228 3229 3230
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3231
		header->size += size;
3232
	}
3233
}
3234

3235
static void perf_event_output(struct perf_event *event, int nmi,
3236 3237 3238 3239 3240
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3241

3242
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3243

3244
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3245
		return;
3246

3247
	perf_output_sample(&handle, &header, data, event);
3248

3249
	perf_output_end(&handle);
3250 3251
}

3252
/*
3253
 * read event_id
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3264
perf_event_read_event(struct perf_event *event,
3265 3266 3267
			struct task_struct *task)
{
	struct perf_output_handle handle;
3268
	struct perf_read_event read_event = {
3269
		.header = {
3270
			.type = PERF_RECORD_READ,
3271
			.misc = 0,
3272
			.size = sizeof(read_event) + perf_event_read_size(event),
3273
		},
3274 3275
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3276
	};
3277
	int ret;
3278

3279
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3280 3281 3282
	if (ret)
		return;

3283
	perf_output_put(&handle, read_event);
3284
	perf_output_read(&handle, event);
3285

3286 3287 3288
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3289
/*
P
Peter Zijlstra 已提交
3290 3291 3292
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3293 3294
 */

P
Peter Zijlstra 已提交
3295
struct perf_task_event {
3296
	struct task_struct		*task;
3297
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3298 3299 3300 3301 3302 3303

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3304 3305
		u32				tid;
		u32				ptid;
3306
		u64				time;
3307
	} event_id;
P
Peter Zijlstra 已提交
3308 3309
};

3310
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3311
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3312 3313
{
	struct perf_output_handle handle;
3314
	int size;
P
Peter Zijlstra 已提交
3315
	struct task_struct *task = task_event->task;
3316 3317
	int ret;

3318 3319
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3320 3321 3322 3323

	if (ret)
		return;

3324 3325
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3326

3327 3328
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3329

3330
	task_event->event_id.time = perf_clock();
3331

3332
	perf_output_put(&handle, task_event->event_id);
3333

P
Peter Zijlstra 已提交
3334 3335 3336
	perf_output_end(&handle);
}

3337
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3338
{
3339 3340 3341
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3342
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3343 3344 3345 3346 3347
		return 1;

	return 0;
}

3348
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3349
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3350
{
3351
	struct perf_event *event;
P
Peter Zijlstra 已提交
3352

3353 3354 3355
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3356 3357 3358
	}
}

3359
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3360 3361
{
	struct perf_cpu_context *cpuctx;
3362
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3363

3364
	rcu_read_lock();
P
Peter Zijlstra 已提交
3365
	cpuctx = &get_cpu_var(perf_cpu_context);
3366
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3367
	if (!ctx)
3368
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3369
	if (ctx)
3370
		perf_event_task_ctx(ctx, task_event);
3371
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3372 3373 3374
	rcu_read_unlock();
}

3375 3376
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3377
			      int new)
P
Peter Zijlstra 已提交
3378
{
P
Peter Zijlstra 已提交
3379
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3380

3381 3382 3383
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3384 3385
		return;

P
Peter Zijlstra 已提交
3386
	task_event = (struct perf_task_event){
3387 3388
		.task	  = task,
		.task_ctx = task_ctx,
3389
		.event_id    = {
P
Peter Zijlstra 已提交
3390
			.header = {
3391
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3392
				.misc = 0,
3393
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3394
			},
3395 3396
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3397 3398
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3399 3400 3401
		},
	};

3402
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3403 3404
}

3405
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3406
{
3407
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3408 3409
}

3410 3411 3412 3413 3414
/*
 * comm tracking
 */

struct perf_comm_event {
3415 3416
	struct task_struct	*task;
	char			*comm;
3417 3418 3419 3420 3421 3422 3423
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3424
	} event_id;
3425 3426
};

3427
static void perf_event_comm_output(struct perf_event *event,
3428 3429 3430
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3431 3432
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3433 3434 3435 3436

	if (ret)
		return;

3437 3438
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3439

3440
	perf_output_put(&handle, comm_event->event_id);
3441 3442 3443 3444 3445
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3446
static int perf_event_comm_match(struct perf_event *event)
3447
{
3448 3449 3450
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3451
	if (event->attr.comm)
3452 3453 3454 3455 3456
		return 1;

	return 0;
}

3457
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3458 3459
				  struct perf_comm_event *comm_event)
{
3460
	struct perf_event *event;
3461

3462 3463 3464
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3465 3466 3467
	}
}

3468
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3469 3470
{
	struct perf_cpu_context *cpuctx;
3471
	struct perf_event_context *ctx;
3472
	unsigned int size;
3473
	char comm[TASK_COMM_LEN];
3474

3475
	memset(comm, 0, sizeof(comm));
3476
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3477
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3478 3479 3480 3481

	comm_event->comm = comm;
	comm_event->comm_size = size;

3482
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3483

3484
	rcu_read_lock();
3485
	cpuctx = &get_cpu_var(perf_cpu_context);
3486 3487
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3488
	if (ctx)
3489
		perf_event_comm_ctx(ctx, comm_event);
3490
	put_cpu_var(perf_cpu_context);
3491
	rcu_read_unlock();
3492 3493
}

3494
void perf_event_comm(struct task_struct *task)
3495
{
3496 3497
	struct perf_comm_event comm_event;

3498 3499
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3500

3501
	if (!atomic_read(&nr_comm_events))
3502
		return;
3503

3504
	comm_event = (struct perf_comm_event){
3505
		.task	= task,
3506 3507
		/* .comm      */
		/* .comm_size */
3508
		.event_id  = {
3509
			.header = {
3510
				.type = PERF_RECORD_COMM,
3511 3512 3513 3514 3515
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3516 3517 3518
		},
	};

3519
	perf_event_comm_event(&comm_event);
3520 3521
}

3522 3523 3524 3525 3526
/*
 * mmap tracking
 */

struct perf_mmap_event {
3527 3528 3529 3530
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3531 3532 3533 3534 3535 3536 3537 3538 3539

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3540
	} event_id;
3541 3542
};

3543
static void perf_event_mmap_output(struct perf_event *event,
3544 3545 3546
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3547 3548
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3549 3550 3551 3552

	if (ret)
		return;

3553 3554
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3555

3556
	perf_output_put(&handle, mmap_event->event_id);
3557 3558
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3559
	perf_output_end(&handle);
3560 3561
}

3562
static int perf_event_mmap_match(struct perf_event *event,
3563 3564
				   struct perf_mmap_event *mmap_event)
{
3565 3566 3567
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3568
	if (event->attr.mmap)
3569 3570 3571 3572 3573
		return 1;

	return 0;
}

3574
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3575 3576
				  struct perf_mmap_event *mmap_event)
{
3577
	struct perf_event *event;
3578

3579 3580 3581
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3582 3583 3584
	}
}

3585
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3586 3587
{
	struct perf_cpu_context *cpuctx;
3588
	struct perf_event_context *ctx;
3589 3590
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3591 3592 3593
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3594
	const char *name;
3595

3596 3597
	memset(tmp, 0, sizeof(tmp));

3598
	if (file) {
3599 3600 3601 3602 3603 3604
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3605 3606 3607 3608
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3609
		name = d_path(&file->f_path, buf, PATH_MAX);
3610 3611 3612 3613 3614
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3615 3616 3617
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3618
			goto got_name;
3619
		}
3620 3621 3622 3623 3624 3625

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3626 3627 3628 3629 3630
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3631
	size = ALIGN(strlen(name)+1, sizeof(u64));
3632 3633 3634 3635

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3636
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3637

3638
	rcu_read_lock();
3639
	cpuctx = &get_cpu_var(perf_cpu_context);
3640 3641
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3642
	if (ctx)
3643
		perf_event_mmap_ctx(ctx, mmap_event);
3644
	put_cpu_var(perf_cpu_context);
3645 3646
	rcu_read_unlock();

3647 3648 3649
	kfree(buf);
}

3650
void __perf_event_mmap(struct vm_area_struct *vma)
3651
{
3652 3653
	struct perf_mmap_event mmap_event;

3654
	if (!atomic_read(&nr_mmap_events))
3655 3656 3657
		return;

	mmap_event = (struct perf_mmap_event){
3658
		.vma	= vma,
3659 3660
		/* .file_name */
		/* .file_size */
3661
		.event_id  = {
3662
			.header = {
3663
				.type = PERF_RECORD_MMAP,
3664 3665 3666 3667 3668
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3669 3670 3671
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3672 3673 3674
		},
	};

3675
	perf_event_mmap_event(&mmap_event);
3676 3677
}

3678 3679 3680 3681
/*
 * IRQ throttle logging
 */

3682
static void perf_log_throttle(struct perf_event *event, int enable)
3683 3684 3685 3686 3687 3688 3689
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3690
		u64				id;
3691
		u64				stream_id;
3692 3693
	} throttle_event = {
		.header = {
3694
			.type = PERF_RECORD_THROTTLE,
3695 3696 3697
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3698
		.time		= perf_clock(),
3699 3700
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3701 3702
	};

3703
	if (enable)
3704
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3705

3706
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3707 3708 3709 3710 3711 3712 3713
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3714
/*
3715
 * Generic event overflow handling, sampling.
3716 3717
 */

3718
static int __perf_event_overflow(struct perf_event *event, int nmi,
3719 3720
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3721
{
3722 3723
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3724 3725
	int ret = 0;

3726
	throttle = (throttle && event->pmu->unthrottle != NULL);
3727

3728
	if (!throttle) {
3729
		hwc->interrupts++;
3730
	} else {
3731 3732
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3733
			if (HZ * hwc->interrupts >
3734
					(u64)sysctl_perf_event_sample_rate) {
3735
				hwc->interrupts = MAX_INTERRUPTS;
3736
				perf_log_throttle(event, 0);
3737 3738 3739 3740
				ret = 1;
			}
		} else {
			/*
3741
			 * Keep re-disabling events even though on the previous
3742
			 * pass we disabled it - just in case we raced with a
3743
			 * sched-in and the event got enabled again:
3744
			 */
3745 3746 3747
			ret = 1;
		}
	}
3748

3749
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3750
		u64 now = perf_clock();
3751 3752 3753 3754 3755
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3756
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3757 3758
	}

3759 3760
	/*
	 * XXX event_limit might not quite work as expected on inherited
3761
	 * events
3762 3763
	 */

3764 3765
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3766
		ret = 1;
3767
		event->pending_kill = POLL_HUP;
3768
		if (nmi) {
3769 3770 3771
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3772
		} else
3773
			perf_event_disable(event);
3774 3775
	}

3776 3777 3778 3779 3780
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3781
	return ret;
3782 3783
}

3784
int perf_event_overflow(struct perf_event *event, int nmi,
3785 3786
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3787
{
3788
	return __perf_event_overflow(event, nmi, 1, data, regs);
3789 3790
}

3791
/*
3792
 * Generic software event infrastructure
3793 3794
 */

3795
/*
3796 3797
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3798 3799 3800 3801
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3802
static u64 perf_swevent_set_period(struct perf_event *event)
3803
{
3804
	struct hw_perf_event *hwc = &event->hw;
3805 3806 3807 3808 3809
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3810 3811

again:
3812 3813 3814
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3815

3816 3817 3818 3819 3820
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3821

3822
	return nr;
3823 3824
}

3825
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3826 3827
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3828
{
3829
	struct hw_perf_event *hwc = &event->hw;
3830
	int throttle = 0;
3831

3832
	data->period = event->hw.last_period;
3833 3834
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3835

3836 3837
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3838

3839
	for (; overflow; overflow--) {
3840
		if (__perf_event_overflow(event, nmi, throttle,
3841
					    data, regs)) {
3842 3843 3844 3845 3846 3847
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3848
		throttle = 1;
3849
	}
3850 3851
}

3852
static void perf_swevent_unthrottle(struct perf_event *event)
3853 3854
{
	/*
3855
	 * Nothing to do, we already reset hwc->interrupts.
3856
	 */
3857
}
3858

3859
static void perf_swevent_add(struct perf_event *event, u64 nr,
3860 3861
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3862
{
3863
	struct hw_perf_event *hwc = &event->hw;
3864

3865
	atomic64_add(nr, &event->count);
3866

3867 3868 3869
	if (!regs)
		return;

3870 3871
	if (!hwc->sample_period)
		return;
3872

3873 3874 3875 3876
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3877
		return;
3878

3879
	perf_swevent_overflow(event, 0, nmi, data, regs);
3880 3881
}

3882
static int perf_swevent_is_counting(struct perf_event *event)
3883
{
3884
	/*
3885
	 * The event is active, we're good!
3886
	 */
3887
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3888 3889
		return 1;

3890
	/*
3891
	 * The event is off/error, not counting.
3892
	 */
3893
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3894 3895 3896
		return 0;

	/*
3897
	 * The event is inactive, if the context is active
3898 3899
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3900
	 */
3901
	if (event->ctx->is_active)
3902 3903 3904 3905 3906 3907 3908 3909
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3910 3911
}

L
Li Zefan 已提交
3912 3913 3914
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

3929
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3930
				enum perf_type_id type,
L
Li Zefan 已提交
3931 3932 3933
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3934
{
3935 3936 3937
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3938
	if (!perf_swevent_is_counting(event))
3939 3940
		return 0;

3941
	if (event->attr.type != type)
3942
		return 0;
3943

3944
	if (event->attr.config != event_id)
3945 3946
		return 0;

3947 3948
	if (perf_exclude_event(event, regs))
		return 0;
3949

L
Li Zefan 已提交
3950 3951 3952 3953
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3954 3955 3956
	return 1;
}

3957
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3958
				     enum perf_type_id type,
3959
				     u32 event_id, u64 nr, int nmi,
3960 3961
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3962
{
3963
	struct perf_event *event;
3964

3965
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3966
		if (perf_swevent_match(event, type, event_id, data, regs))
3967
			perf_swevent_add(event, nr, nmi, data, regs);
3968 3969 3970
	}
}

3971
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
3972
{
3973 3974
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
3975

P
Peter Zijlstra 已提交
3976
	if (in_nmi())
3977
		rctx = 3;
3978
	else if (in_irq())
3979
		rctx = 2;
3980
	else if (in_softirq())
3981
		rctx = 1;
3982
	else
3983
		rctx = 0;
P
Peter Zijlstra 已提交
3984

3985 3986
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
3987
		return -1;
3988
	}
P
Peter Zijlstra 已提交
3989

3990 3991
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
3992

3993
	return rctx;
P
Peter Zijlstra 已提交
3994
}
I
Ingo Molnar 已提交
3995
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
3996

3997
void perf_swevent_put_recursion_context(int rctx)
3998
{
3999 4000
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4001
	cpuctx->recursion[rctx]--;
4002
	put_cpu_var(perf_cpu_context);
4003
}
I
Ingo Molnar 已提交
4004
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4005

4006 4007 4008 4009
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4010
{
4011
	struct perf_cpu_context *cpuctx;
4012
	struct perf_event_context *ctx;
4013

4014
	cpuctx = &__get_cpu_var(perf_cpu_context);
4015
	rcu_read_lock();
4016
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4017
				 nr, nmi, data, regs);
4018 4019 4020 4021
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
4022
	ctx = rcu_dereference(current->perf_event_ctxp);
4023
	if (ctx)
4024
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4025
	rcu_read_unlock();
4026
}
4027

4028
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4029
			    struct pt_regs *regs, u64 addr)
4030
{
4031
	struct perf_sample_data data;
4032 4033 4034 4035 4036
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4037 4038 4039

	data.addr = addr;
	data.raw  = NULL;
4040

4041
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4042 4043

	perf_swevent_put_recursion_context(rctx);
4044 4045
}

4046
static void perf_swevent_read(struct perf_event *event)
4047 4048 4049
{
}

4050
static int perf_swevent_enable(struct perf_event *event)
4051
{
4052
	struct hw_perf_event *hwc = &event->hw;
4053 4054 4055

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4056
		perf_swevent_set_period(event);
4057
	}
4058 4059 4060
	return 0;
}

4061
static void perf_swevent_disable(struct perf_event *event)
4062 4063 4064
{
}

4065
static const struct pmu perf_ops_generic = {
4066 4067 4068 4069
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4070 4071
};

4072
/*
4073
 * hrtimer based swevent callback
4074 4075
 */

4076
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4077 4078 4079
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4080
	struct pt_regs *regs;
4081
	struct perf_event *event;
4082 4083
	u64 period;

4084 4085
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4086 4087

	data.addr = 0;
4088
	data.raw = NULL;
4089
	data.period = event->hw.last_period;
4090
	regs = get_irq_regs();
4091 4092 4093 4094
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4095 4096
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4097
		regs = task_pt_regs(current);
4098

4099
	if (regs) {
4100 4101 4102
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4103 4104
	}

4105
	period = max_t(u64, 10000, event->hw.sample_period);
4106 4107 4108 4109 4110
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4147
/*
4148
 * Software event: cpu wall time clock
4149 4150
 */

4151
static void cpu_clock_perf_event_update(struct perf_event *event)
4152 4153 4154 4155 4156 4157
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4158
	prev = atomic64_xchg(&event->hw.prev_count, now);
4159
	atomic64_add(now - prev, &event->count);
4160 4161
}

4162
static int cpu_clock_perf_event_enable(struct perf_event *event)
4163
{
4164
	struct hw_perf_event *hwc = &event->hw;
4165 4166 4167
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4168
	perf_swevent_start_hrtimer(event);
4169 4170 4171 4172

	return 0;
}

4173
static void cpu_clock_perf_event_disable(struct perf_event *event)
4174
{
4175
	perf_swevent_cancel_hrtimer(event);
4176
	cpu_clock_perf_event_update(event);
4177 4178
}

4179
static void cpu_clock_perf_event_read(struct perf_event *event)
4180
{
4181
	cpu_clock_perf_event_update(event);
4182 4183
}

4184
static const struct pmu perf_ops_cpu_clock = {
4185 4186 4187
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4188 4189
};

4190
/*
4191
 * Software event: task time clock
4192 4193
 */

4194
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4195
{
4196
	u64 prev;
I
Ingo Molnar 已提交
4197 4198
	s64 delta;

4199
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4200
	delta = now - prev;
4201
	atomic64_add(delta, &event->count);
4202 4203
}

4204
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4205
{
4206
	struct hw_perf_event *hwc = &event->hw;
4207 4208
	u64 now;

4209
	now = event->ctx->time;
4210

4211
	atomic64_set(&hwc->prev_count, now);
4212 4213

	perf_swevent_start_hrtimer(event);
4214 4215

	return 0;
I
Ingo Molnar 已提交
4216 4217
}

4218
static void task_clock_perf_event_disable(struct perf_event *event)
4219
{
4220
	perf_swevent_cancel_hrtimer(event);
4221
	task_clock_perf_event_update(event, event->ctx->time);
4222

4223
}
I
Ingo Molnar 已提交
4224

4225
static void task_clock_perf_event_read(struct perf_event *event)
4226
{
4227 4228 4229
	u64 time;

	if (!in_nmi()) {
4230 4231
		update_context_time(event->ctx);
		time = event->ctx->time;
4232 4233
	} else {
		u64 now = perf_clock();
4234 4235
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4236 4237
	}

4238
	task_clock_perf_event_update(event, time);
4239 4240
}

4241
static const struct pmu perf_ops_task_clock = {
4242 4243 4244
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4245 4246
};

4247
#ifdef CONFIG_EVENT_TRACING
L
Li Zefan 已提交
4248

4249
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4250
			  int entry_size)
4251
{
4252
	struct perf_raw_record raw = {
4253
		.size = entry_size,
4254
		.data = record,
4255 4256
	};

4257
	struct perf_sample_data data = {
4258
		.addr = addr,
4259
		.raw = &raw,
4260
	};
4261

4262 4263 4264 4265
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4266

4267
	/* Trace events already protected against recursion */
4268
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4269
				&data, regs);
4270
}
4271
EXPORT_SYMBOL_GPL(perf_tp_event);
4272

L
Li Zefan 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4282

4283
static void tp_perf_event_destroy(struct perf_event *event)
4284
{
4285
	ftrace_profile_disable(event->attr.config);
4286 4287
}

4288
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4289
{
4290 4291 4292 4293
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4294
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4295
			perf_paranoid_tracepoint_raw() &&
4296 4297 4298
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4299
	if (ftrace_profile_enable(event->attr.config))
4300 4301
		return NULL;

4302
	event->destroy = tp_perf_event_destroy;
4303 4304 4305

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4330
#else
L
Li Zefan 已提交
4331 4332 4333 4334 4335 4336 4337

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4338
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4339 4340 4341
{
	return NULL;
}
L
Li Zefan 已提交
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4352
#endif /* CONFIG_EVENT_TRACING */
4353

4354 4355 4356 4357 4358 4359 4360 4361 4362
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4363 4364

	err = register_perf_hw_breakpoint(bp);
4365 4366 4367 4368 4369 4370 4371 4372
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4373
void perf_bp_event(struct perf_event *bp, void *data)
4374
{
4375 4376 4377
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4378
	sample.raw = NULL;
4379 4380 4381 4382
	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4395
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4396

4397
static void sw_perf_event_destroy(struct perf_event *event)
4398
{
4399
	u64 event_id = event->attr.config;
4400

4401
	WARN_ON(event->parent);
4402

4403
	atomic_dec(&perf_swevent_enabled[event_id]);
4404 4405
}

4406
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4407
{
4408
	const struct pmu *pmu = NULL;
4409
	u64 event_id = event->attr.config;
4410

4411
	/*
4412
	 * Software events (currently) can't in general distinguish
4413 4414 4415 4416 4417
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4418
	switch (event_id) {
4419
	case PERF_COUNT_SW_CPU_CLOCK:
4420
		pmu = &perf_ops_cpu_clock;
4421

4422
		break;
4423
	case PERF_COUNT_SW_TASK_CLOCK:
4424
		/*
4425 4426
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4427
		 */
4428
		if (event->ctx->task)
4429
			pmu = &perf_ops_task_clock;
4430
		else
4431
			pmu = &perf_ops_cpu_clock;
4432

4433
		break;
4434 4435 4436 4437 4438
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4439 4440
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4441 4442 4443
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4444
		}
4445
		pmu = &perf_ops_generic;
4446
		break;
4447
	}
4448

4449
	return pmu;
4450 4451
}

T
Thomas Gleixner 已提交
4452
/*
4453
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4454
 */
4455 4456
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4457
		   int cpu,
4458 4459 4460
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4461
		   perf_overflow_handler_t overflow_handler,
4462
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4463
{
4464
	const struct pmu *pmu;
4465 4466
	struct perf_event *event;
	struct hw_perf_event *hwc;
4467
	long err;
T
Thomas Gleixner 已提交
4468

4469 4470
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4471
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4472

4473
	/*
4474
	 * Single events are their own group leaders, with an
4475 4476 4477
	 * empty sibling list:
	 */
	if (!group_leader)
4478
		group_leader = event;
4479

4480 4481
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4482

4483 4484 4485 4486
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4487

4488
	mutex_init(&event->mmap_mutex);
4489

4490 4491 4492 4493 4494 4495
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4496

4497
	event->parent		= parent_event;
4498

4499 4500
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4501

4502
	event->state		= PERF_EVENT_STATE_INACTIVE;
4503

4504 4505
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4506
	
4507
	event->overflow_handler	= overflow_handler;
4508

4509
	if (attr->disabled)
4510
		event->state = PERF_EVENT_STATE_OFF;
4511

4512
	pmu = NULL;
4513

4514
	hwc = &event->hw;
4515
	hwc->sample_period = attr->sample_period;
4516
	if (attr->freq && attr->sample_freq)
4517
		hwc->sample_period = 1;
4518
	hwc->last_period = hwc->sample_period;
4519 4520

	atomic64_set(&hwc->period_left, hwc->sample_period);
4521

4522
	/*
4523
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4524
	 */
4525
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4526 4527
		goto done;

4528
	switch (attr->type) {
4529
	case PERF_TYPE_RAW:
4530
	case PERF_TYPE_HARDWARE:
4531
	case PERF_TYPE_HW_CACHE:
4532
		pmu = hw_perf_event_init(event);
4533 4534 4535
		break;

	case PERF_TYPE_SOFTWARE:
4536
		pmu = sw_perf_event_init(event);
4537 4538 4539
		break;

	case PERF_TYPE_TRACEPOINT:
4540
		pmu = tp_perf_event_init(event);
4541
		break;
4542

4543 4544 4545 4546 4547
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4548 4549
	default:
		break;
4550
	}
4551 4552
done:
	err = 0;
4553
	if (!pmu)
4554
		err = -EINVAL;
4555 4556
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4557

4558
	if (err) {
4559 4560 4561
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4562
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4563
	}
4564

4565
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4566

4567 4568 4569 4570 4571 4572 4573 4574
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4575
	}
4576

4577
	return event;
T
Thomas Gleixner 已提交
4578 4579
}

4580 4581
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4582 4583
{
	u32 size;
4584
	int ret;
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4609 4610 4611
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4612 4613
	 */
	if (size > sizeof(*attr)) {
4614 4615 4616
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4617

4618 4619
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4620

4621
		for (; addr < end; addr++) {
4622 4623 4624 4625 4626 4627
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4628
		size = sizeof(*attr);
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4642
	if (attr->__reserved_1 || attr->__reserved_2)
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4660
static int perf_event_set_output(struct perf_event *event, int output_fd)
4661
{
4662
	struct perf_event *output_event = NULL;
4663
	struct file *output_file = NULL;
4664
	struct perf_event *old_output;
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4678
	output_event = output_file->private_data;
4679 4680

	/* Don't chain output fds */
4681
	if (output_event->output)
4682 4683 4684
		goto out;

	/* Don't set an output fd when we already have an output channel */
4685
	if (event->data)
4686 4687 4688 4689 4690
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4691 4692 4693 4694
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4695 4696 4697 4698

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4699
		 * is still referencing this event.
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4711
/**
4712
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4713
 *
4714
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4715
 * @pid:		target pid
I
Ingo Molnar 已提交
4716
 * @cpu:		target cpu
4717
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4718
 */
4719 4720
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4721
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4722
{
4723 4724 4725 4726
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4727 4728
	struct file *group_file = NULL;
	int fput_needed = 0;
4729
	int fput_needed2 = 0;
4730
	int err;
T
Thomas Gleixner 已提交
4731

4732
	/* for future expandability... */
4733
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4734 4735
		return -EINVAL;

4736 4737 4738
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4739

4740 4741 4742 4743 4744
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4745
	if (attr.freq) {
4746
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4747 4748 4749
			return -EINVAL;
	}

4750
	/*
I
Ingo Molnar 已提交
4751 4752 4753 4754 4755 4756 4757
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4758
	 * Look up the group leader (we will attach this event to it):
4759 4760
	 */
	group_leader = NULL;
4761
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4762
		err = -EINVAL;
4763 4764
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4765
			goto err_put_context;
4766
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4767
			goto err_put_context;
4768 4769 4770

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4771 4772 4773 4774 4775 4776 4777 4778
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4779
		 */
I
Ingo Molnar 已提交
4780 4781
		if (group_leader->ctx != ctx)
			goto err_put_context;
4782 4783 4784
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4785
		if (attr.exclusive || attr.pinned)
4786
			goto err_put_context;
4787 4788
	}

4789
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4790
				     NULL, NULL, GFP_KERNEL);
4791 4792
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4793 4794
		goto err_put_context;

4795
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4796
	if (err < 0)
4797 4798
		goto err_free_put_context;

4799 4800
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4801 4802
		goto err_free_put_context;

4803
	if (flags & PERF_FLAG_FD_OUTPUT) {
4804
		err = perf_event_set_output(event, group_fd);
4805 4806
		if (err)
			goto err_fput_free_put_context;
4807 4808
	}

4809
	event->filp = event_file;
4810
	WARN_ON_ONCE(ctx->parent_ctx);
4811
	mutex_lock(&ctx->mutex);
4812
	perf_install_in_context(ctx, event, cpu);
4813
	++ctx->generation;
4814
	mutex_unlock(&ctx->mutex);
4815

4816
	event->owner = current;
4817
	get_task_struct(current);
4818 4819 4820
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4821

4822
err_fput_free_put_context:
4823
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4824

4825
err_free_put_context:
4826
	if (err < 0)
4827
		kfree(event);
T
Thomas Gleixner 已提交
4828 4829

err_put_context:
4830 4831 4832 4833
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4834

4835
	return err;
T
Thomas Gleixner 已提交
4836 4837
}

4838 4839 4840 4841 4842 4843 4844 4845 4846
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4847 4848
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4859 4860 4861 4862
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4863 4864

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4865
				 NULL, overflow_handler, GFP_KERNEL);
4866 4867
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4868
		goto err_put_context;
4869
	}
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4886 4887 4888 4889
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4890 4891 4892
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4893
/*
4894
 * inherit a event from parent task to child task:
4895
 */
4896 4897
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4898
	      struct task_struct *parent,
4899
	      struct perf_event_context *parent_ctx,
4900
	      struct task_struct *child,
4901 4902
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4903
{
4904
	struct perf_event *child_event;
4905

4906
	/*
4907 4908
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4909 4910 4911
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4912 4913
	if (parent_event->parent)
		parent_event = parent_event->parent;
4914

4915 4916 4917
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4918
					   NULL, GFP_KERNEL);
4919 4920
	if (IS_ERR(child_event))
		return child_event;
4921
	get_ctx(child_ctx);
4922

4923
	/*
4924
	 * Make the child state follow the state of the parent event,
4925
	 * not its attr.disabled bit.  We hold the parent's mutex,
4926
	 * so we won't race with perf_event_{en, dis}able_family.
4927
	 */
4928 4929
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4930
	else
4931
		child_event->state = PERF_EVENT_STATE_OFF;
4932

4933 4934
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4935

4936 4937
	child_event->overflow_handler = parent_event->overflow_handler;

4938 4939 4940
	/*
	 * Link it up in the child's context:
	 */
4941
	add_event_to_ctx(child_event, child_ctx);
4942 4943 4944

	/*
	 * Get a reference to the parent filp - we will fput it
4945
	 * when the child event exits. This is safe to do because
4946 4947 4948
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4949
	atomic_long_inc(&parent_event->filp->f_count);
4950

4951
	/*
4952
	 * Link this into the parent event's child list
4953
	 */
4954 4955 4956 4957
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4958

4959
	return child_event;
4960 4961
}

4962
static int inherit_group(struct perf_event *parent_event,
4963
	      struct task_struct *parent,
4964
	      struct perf_event_context *parent_ctx,
4965
	      struct task_struct *child,
4966
	      struct perf_event_context *child_ctx)
4967
{
4968 4969 4970
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4971

4972
	leader = inherit_event(parent_event, parent, parent_ctx,
4973
				 child, NULL, child_ctx);
4974 4975
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4976 4977
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4978 4979 4980
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4981
	}
4982 4983 4984
	return 0;
}

4985
static void sync_child_event(struct perf_event *child_event,
4986
			       struct task_struct *child)
4987
{
4988
	struct perf_event *parent_event = child_event->parent;
4989
	u64 child_val;
4990

4991 4992
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4993

4994
	child_val = atomic64_read(&child_event->count);
4995 4996 4997 4998

	/*
	 * Add back the child's count to the parent's count:
	 */
4999 5000 5001 5002 5003
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5004 5005

	/*
5006
	 * Remove this event from the parent's list
5007
	 */
5008 5009 5010 5011
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5012 5013

	/*
5014
	 * Release the parent event, if this was the last
5015 5016
	 * reference to it.
	 */
5017
	fput(parent_event->filp);
5018 5019
}

5020
static void
5021 5022
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5023
			 struct task_struct *child)
5024
{
5025
	struct perf_event *parent_event;
5026

5027
	perf_event_remove_from_context(child_event);
5028

5029
	parent_event = child_event->parent;
5030
	/*
5031
	 * It can happen that parent exits first, and has events
5032
	 * that are still around due to the child reference. These
5033
	 * events need to be zapped - but otherwise linger.
5034
	 */
5035 5036 5037
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5038
	}
5039 5040 5041
}

/*
5042
 * When a child task exits, feed back event values to parent events.
5043
 */
5044
void perf_event_exit_task(struct task_struct *child)
5045
{
5046 5047
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5048
	unsigned long flags;
5049

5050 5051
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5052
		return;
P
Peter Zijlstra 已提交
5053
	}
5054

5055
	local_irq_save(flags);
5056 5057 5058 5059 5060 5061
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5062 5063
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5064 5065 5066

	/*
	 * Take the context lock here so that if find_get_context is
5067
	 * reading child->perf_event_ctxp, we wait until it has
5068 5069
	 * incremented the context's refcount before we do put_ctx below.
	 */
5070
	raw_spin_lock(&child_ctx->lock);
5071
	child->perf_event_ctxp = NULL;
5072 5073 5074
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5075
	 * the events from it.
5076 5077
	 */
	unclone_ctx(child_ctx);
5078
	update_context_time(child_ctx);
5079
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5080 5081

	/*
5082 5083 5084
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5085
	 */
5086
	perf_event_task(child, child_ctx, 0);
5087

5088 5089 5090
	/*
	 * We can recurse on the same lock type through:
	 *
5091 5092 5093
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5094 5095 5096 5097 5098 5099
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5100

5101
again:
5102 5103 5104 5105 5106
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5107
				 group_entry)
5108
		__perf_event_exit_task(child_event, child_ctx, child);
5109 5110

	/*
5111
	 * If the last event was a group event, it will have appended all
5112 5113 5114
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5115 5116
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5117
		goto again;
5118 5119 5120 5121

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5122 5123
}

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5142 5143 5144 5145
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5146
void perf_event_free_task(struct task_struct *task)
5147
{
5148 5149
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5150 5151 5152 5153 5154 5155

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5156 5157
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5158

5159 5160 5161
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5162

5163 5164 5165
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5166

5167
	mutex_unlock(&ctx->mutex);
5168

5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5184 5185
	}

5186 5187 5188 5189 5190 5191 5192
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5193

5194 5195 5196 5197
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5198

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5211 5212
}

5213

5214
/*
5215
 * Initialize the perf_event context in task_struct
5216
 */
5217
int perf_event_init_task(struct task_struct *child)
5218
{
5219
	struct perf_event_context *child_ctx, *parent_ctx;
5220 5221
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5222
	struct task_struct *parent = current;
5223
	int inherited_all = 1;
5224
	int ret = 0;
5225

5226
	child->perf_event_ctxp = NULL;
5227

5228 5229
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5230

5231
	if (likely(!parent->perf_event_ctxp))
5232 5233
		return 0;

5234
	/*
5235 5236
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5237
	 */
5238 5239
	parent_ctx = perf_pin_task_context(parent);

5240 5241 5242 5243 5244 5245 5246
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5247 5248 5249 5250
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5251
	mutex_lock(&parent_ctx->mutex);
5252 5253 5254 5255 5256

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5257 5258 5259 5260 5261 5262
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5263

5264 5265 5266 5267
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5268
			break;
5269 5270
	}

5271 5272
	child_ctx = child->perf_event_ctxp;

5273
	if (child_ctx && inherited_all) {
5274 5275 5276
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5277 5278
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5279
		 * because the list of events and the generation
5280
		 * count can't have changed since we took the mutex.
5281
		 */
5282 5283 5284
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5285
			child_ctx->parent_gen = parent_ctx->parent_gen;
5286 5287 5288 5289 5290
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5291 5292
	}

5293
	mutex_unlock(&parent_ctx->mutex);
5294

5295
	perf_unpin_context(parent_ctx);
5296

5297
	return ret;
5298 5299
}

5300
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5301
{
5302
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5303

5304
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5305
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5306

5307
	spin_lock(&perf_resource_lock);
5308
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5309
	spin_unlock(&perf_resource_lock);
5310

5311
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5312 5313 5314
}

#ifdef CONFIG_HOTPLUG_CPU
5315
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5316 5317
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5318 5319
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5320

5321 5322 5323
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5324
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5325
}
5326
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5327
{
5328
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5329
	struct perf_event_context *ctx = &cpuctx->ctx;
5330 5331

	mutex_lock(&ctx->mutex);
5332
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5333
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5334 5335
}
#else
5336
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5348
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5349 5350
		break;

5351 5352
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5353
		hw_perf_event_setup_online(cpu);
5354 5355
		break;

T
Thomas Gleixner 已提交
5356 5357
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5358
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5359 5360 5361 5362 5363 5364 5365 5366 5367
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5368 5369 5370
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5371 5372
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5373
	.priority		= 20,
T
Thomas Gleixner 已提交
5374 5375
};

5376
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5377 5378 5379
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5380 5381
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5402
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5403 5404
		return -EINVAL;

5405
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5406 5407 5408
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5409
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5410 5411
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5412
		cpuctx->max_pertask = mpt;
5413
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5414
	}
5415
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5437
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5438
	perf_overcommit = val;
5439
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5466
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5467 5468
};

5469
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5470 5471 5472 5473
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5474
device_initcall(perf_event_sysfs_init);