perf_event.c 121.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
206
		raw_spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 210
			goto retry;
		}
211 212

		if (!atomic_inc_not_zero(&ctx->refcount)) {
213
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 215
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
234
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
235 236 237 238
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242
{
	unsigned long flags;

243
	raw_spin_lock_irqsave(&ctx->lock, flags);
244
	--ctx->pin_count;
245
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 247 248
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

277 278 279 280 281 282
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
283 284 285 286 287 288 289 290 291

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

292
/*
293
 * Add a event from the lists for its context.
294 295
 * Must be called with ctx->mutex and ctx->lock held.
 */
296
static void
297
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298
{
299
	struct perf_event *group_leader = event->group_leader;
300 301

	/*
302 303
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
304 305
	 * leader's sibling list:
	 */
306 307
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
308
	else {
309
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
310 311
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
312

313 314 315
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
316
		ctx->nr_stat++;
317 318
}

319
/*
320
 * Remove a event from the lists for its context.
321
 * Must be called with ctx->mutex and ctx->lock held.
322
 */
323
static void
324
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325
{
326
	struct perf_event *sibling, *tmp;
327

328
	if (list_empty(&event->group_entry))
329
		return;
330 331
	ctx->nr_events--;
	if (event->attr.inherit_stat)
332
		ctx->nr_stat--;
333

334 335
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
336

337 338
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
339

340
	update_event_times(event);
341 342 343 344 345 346 347 348 349 350

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
351

352
	/*
353 354
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
355 356
	 * to the context list directly:
	 */
357
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
358

359
		list_move_tail(&sibling->group_entry, &ctx->group_list);
360 361 362 363
		sibling->group_leader = sibling;
	}
}

364
static void
365
event_sched_out(struct perf_event *event,
366
		  struct perf_cpu_context *cpuctx,
367
		  struct perf_event_context *ctx)
368
{
369
	if (event->state != PERF_EVENT_STATE_ACTIVE)
370 371
		return;

372 373 374 375
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
376
	}
377 378 379
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
380

381
	if (!is_software_event(event))
382 383
		cpuctx->active_oncpu--;
	ctx->nr_active--;
384
	if (event->attr.exclusive || !cpuctx->active_oncpu)
385 386 387
		cpuctx->exclusive = 0;
}

388
static void
389
group_sched_out(struct perf_event *group_event,
390
		struct perf_cpu_context *cpuctx,
391
		struct perf_event_context *ctx)
392
{
393
	struct perf_event *event;
394

395
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 397
		return;

398
	event_sched_out(group_event, cpuctx, ctx);
399 400 401 402

	/*
	 * Schedule out siblings (if any):
	 */
403 404
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
405

406
	if (group_event->attr.exclusive)
407 408 409
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
410
/*
411
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
412
 *
413
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
414 415
 * remove it from the context list.
 */
416
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
417 418
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 420
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
421 422 423 424 425 426

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
427
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
428 429
		return;

430
	raw_spin_lock(&ctx->lock);
431 432
	/*
	 * Protect the list operation against NMI by disabling the
433
	 * events on a global level.
434 435
	 */
	perf_disable();
T
Thomas Gleixner 已提交
436

437
	event_sched_out(event, cpuctx, ctx);
438

439
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
440 441 442

	if (!ctx->task) {
		/*
443
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
444 445 446
		 * reservation:
		 */
		cpuctx->max_pertask =
447 448
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
449 450
	}

451
	perf_enable();
452
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
453 454 455 456
}


/*
457
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
458
 *
459
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
460
 *
461
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
462
 * call when the task is on a CPU.
463
 *
464 465
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
466 467
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
468
 * When called from perf_event_exit_task, it's OK because the
469
 * context has been detached from its task.
T
Thomas Gleixner 已提交
470
 */
471
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
472
{
473
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
474 475 476 477
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
478
		 * Per cpu events are removed via an smp call and
479
		 * the removal is always successful.
T
Thomas Gleixner 已提交
480
		 */
481 482 483
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
484 485 486 487
		return;
	}

retry:
488 489
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
490

491
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
492 493 494
	/*
	 * If the context is active we need to retry the smp call.
	 */
495
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
496
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
497 498 499 500 501
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
502
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
503 504
	 * succeed.
	 */
P
Peter Zijlstra 已提交
505
	if (!list_empty(&event->group_entry))
506
		list_del_event(event, ctx);
507
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
508 509
}

510
/*
511
 * Update total_time_enabled and total_time_running for all events in a group.
512
 */
513
static void update_group_times(struct perf_event *leader)
514
{
515
	struct perf_event *event;
516

517 518 519
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
520 521
}

522
/*
523
 * Cross CPU call to disable a performance event
524
 */
525
static void __perf_event_disable(void *info)
526
{
527
	struct perf_event *event = info;
528
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529
	struct perf_event_context *ctx = event->ctx;
530 531

	/*
532 533
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
534
	 */
535
	if (ctx->task && cpuctx->task_ctx != ctx)
536 537
		return;

538
	raw_spin_lock(&ctx->lock);
539 540

	/*
541
	 * If the event is on, turn it off.
542 543
	 * If it is in error state, leave it in error state.
	 */
544
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545
		update_context_time(ctx);
546 547 548
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
549
		else
550 551
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
552 553
	}

554
	raw_spin_unlock(&ctx->lock);
555 556 557
}

/*
558
 * Disable a event.
559
 *
560 561
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
562
 * remains valid.  This condition is satisifed when called through
563 564 565 566
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
567
 * is the current context on this CPU and preemption is disabled,
568
 * hence we can't get into perf_event_task_sched_out for this context.
569
 */
570
void perf_event_disable(struct perf_event *event)
571
{
572
	struct perf_event_context *ctx = event->ctx;
573 574 575 576
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
577
		 * Disable the event on the cpu that it's on
578
		 */
579 580
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
581 582 583 584
		return;
	}

 retry:
585
	task_oncpu_function_call(task, __perf_event_disable, event);
586

587
	raw_spin_lock_irq(&ctx->lock);
588
	/*
589
	 * If the event is still active, we need to retry the cross-call.
590
	 */
591
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
592
		raw_spin_unlock_irq(&ctx->lock);
593 594 595 596 597 598 599
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
600 601 602
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
603
	}
604

605
	raw_spin_unlock_irq(&ctx->lock);
606 607
}

608
static int
609
event_sched_in(struct perf_event *event,
610
		 struct perf_cpu_context *cpuctx,
611
		 struct perf_event_context *ctx,
612 613
		 int cpu)
{
614
	if (event->state <= PERF_EVENT_STATE_OFF)
615 616
		return 0;

617 618
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
619 620 621 622 623
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

624 625 626
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
627 628 629
		return -EAGAIN;
	}

630
	event->tstamp_running += ctx->time - event->tstamp_stopped;
631

632
	if (!is_software_event(event))
633
		cpuctx->active_oncpu++;
634 635
	ctx->nr_active++;

636
	if (event->attr.exclusive)
637 638
		cpuctx->exclusive = 1;

639 640 641
	return 0;
}

642
static int
643
group_sched_in(struct perf_event *group_event,
644
	       struct perf_cpu_context *cpuctx,
645
	       struct perf_event_context *ctx,
646 647
	       int cpu)
{
648
	struct perf_event *event, *partial_group;
649 650
	int ret;

651
	if (group_event->state == PERF_EVENT_STATE_OFF)
652 653
		return 0;

654
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 656 657
	if (ret)
		return ret < 0 ? ret : 0;

658
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 660 661 662 663
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
664 665 666
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
667 668 669 670 671 672 673 674 675 676 677
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
678 679
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
680
			break;
681
		event_sched_out(event, cpuctx, ctx);
682
	}
683
	event_sched_out(group_event, cpuctx, ctx);
684 685 686 687

	return -EAGAIN;
}

688
/*
689 690
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
691
 */
692
static int is_software_only_group(struct perf_event *leader)
693
{
694
	struct perf_event *event;
695

696
	if (!is_software_event(leader))
697
		return 0;
P
Peter Zijlstra 已提交
698

699 700
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
701
			return 0;
P
Peter Zijlstra 已提交
702

703 704 705 706
	return 1;
}

/*
707
 * Work out whether we can put this event group on the CPU now.
708
 */
709
static int group_can_go_on(struct perf_event *event,
710 711 712 713
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
714
	 * Groups consisting entirely of software events can always go on.
715
	 */
716
	if (is_software_only_group(event))
717 718 719
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
720
	 * events can go on.
721 722 723 724 725
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
726
	 * events on the CPU, it can't go on.
727
	 */
728
	if (event->attr.exclusive && cpuctx->active_oncpu)
729 730 731 732 733 734 735 736
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

737 738
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
739
{
740 741 742 743
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
744 745
}

T
Thomas Gleixner 已提交
746
/*
747
 * Cross CPU call to install and enable a performance event
748 749
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
750 751 752 753
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 755 756
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
757
	int cpu = smp_processor_id();
758
	int err;
T
Thomas Gleixner 已提交
759 760 761 762 763

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
764
	 * Or possibly this is the right context but it isn't
765
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
766
	 */
767
	if (ctx->task && cpuctx->task_ctx != ctx) {
768
		if (cpuctx->task_ctx || ctx->task != current)
769 770 771
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
772

773
	raw_spin_lock(&ctx->lock);
774
	ctx->is_active = 1;
775
	update_context_time(ctx);
T
Thomas Gleixner 已提交
776 777 778

	/*
	 * Protect the list operation against NMI by disabling the
779
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
780
	 */
781
	perf_disable();
T
Thomas Gleixner 已提交
782

783
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
784

785 786 787
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

788
	/*
789
	 * Don't put the event on if it is disabled or if
790 791
	 * it is in a group and the group isn't on.
	 */
792 793
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
794 795
		goto unlock;

796
	/*
797 798 799
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
800
	 */
801
	if (!group_can_go_on(event, cpuctx, 1))
802 803
		err = -EEXIST;
	else
804
		err = event_sched_in(event, cpuctx, ctx, cpu);
805

806 807
	if (err) {
		/*
808
		 * This event couldn't go on.  If it is in a group
809
		 * then we have to pull the whole group off.
810
		 * If the event group is pinned then put it in error state.
811
		 */
812
		if (leader != event)
813
			group_sched_out(leader, cpuctx, ctx);
814
		if (leader->attr.pinned) {
815
			update_group_times(leader);
816
			leader->state = PERF_EVENT_STATE_ERROR;
817
		}
818
	}
T
Thomas Gleixner 已提交
819

820
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
821 822
		cpuctx->max_pertask--;

823
 unlock:
824
	perf_enable();
825

826
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
827 828 829
}

/*
830
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
831
 *
832 833
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
834
 *
835
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
836 837
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
838 839
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
840 841
 */
static void
842 843
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
844 845 846 847 848 849
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
850
		 * Per cpu events are installed via an smp call and
851
		 * the install is always successful.
T
Thomas Gleixner 已提交
852 853
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
854
					 event, 1);
T
Thomas Gleixner 已提交
855 856 857 858 859
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
860
				 event);
T
Thomas Gleixner 已提交
861

862
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
863 864 865
	/*
	 * we need to retry the smp call.
	 */
866
	if (ctx->is_active && list_empty(&event->group_entry)) {
867
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
868 869 870 871 872
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
873
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
874 875
	 * succeed.
	 */
876 877
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
878
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
879 880
}

881
/*
882
 * Put a event into inactive state and update time fields.
883 884 885 886 887 888
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
889 890
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
891
{
892
	struct perf_event *sub;
893

894 895 896 897
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
898 899 900 901
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

902
/*
903
 * Cross CPU call to enable a performance event
904
 */
905
static void __perf_event_enable(void *info)
906
{
907
	struct perf_event *event = info;
908
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
909 910
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
911
	int err;
912

913
	/*
914 915
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
916
	 */
917
	if (ctx->task && cpuctx->task_ctx != ctx) {
918
		if (cpuctx->task_ctx || ctx->task != current)
919 920 921
			return;
		cpuctx->task_ctx = ctx;
	}
922

923
	raw_spin_lock(&ctx->lock);
924
	ctx->is_active = 1;
925
	update_context_time(ctx);
926

927
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
928
		goto unlock;
929
	__perf_event_mark_enabled(event, ctx);
930

931 932 933
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

934
	/*
935
	 * If the event is in a group and isn't the group leader,
936
	 * then don't put it on unless the group is on.
937
	 */
938
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
939
		goto unlock;
940

941
	if (!group_can_go_on(event, cpuctx, 1)) {
942
		err = -EEXIST;
943
	} else {
944
		perf_disable();
945 946
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
947 948
					     smp_processor_id());
		else
949
			err = event_sched_in(event, cpuctx, ctx,
950
					       smp_processor_id());
951
		perf_enable();
952
	}
953 954 955

	if (err) {
		/*
956
		 * If this event can't go on and it's part of a
957 958
		 * group, then the whole group has to come off.
		 */
959
		if (leader != event)
960
			group_sched_out(leader, cpuctx, ctx);
961
		if (leader->attr.pinned) {
962
			update_group_times(leader);
963
			leader->state = PERF_EVENT_STATE_ERROR;
964
		}
965 966 967
	}

 unlock:
968
	raw_spin_unlock(&ctx->lock);
969 970 971
}

/*
972
 * Enable a event.
973
 *
974 975
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
976
 * remains valid.  This condition is satisfied when called through
977 978
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
979
 */
980
void perf_event_enable(struct perf_event *event)
981
{
982
	struct perf_event_context *ctx = event->ctx;
983 984 985 986
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
987
		 * Enable the event on the cpu that it's on
988
		 */
989 990
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
991 992 993
		return;
	}

994
	raw_spin_lock_irq(&ctx->lock);
995
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
996 997 998
		goto out;

	/*
999 1000
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1001 1002 1003 1004
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1005 1006
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1007 1008

 retry:
1009
	raw_spin_unlock_irq(&ctx->lock);
1010
	task_oncpu_function_call(task, __perf_event_enable, event);
1011

1012
	raw_spin_lock_irq(&ctx->lock);
1013 1014

	/*
1015
	 * If the context is active and the event is still off,
1016 1017
	 * we need to retry the cross-call.
	 */
1018
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1019 1020 1021 1022 1023 1024
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1025 1026
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1027

1028
 out:
1029
	raw_spin_unlock_irq(&ctx->lock);
1030 1031
}

1032
static int perf_event_refresh(struct perf_event *event, int refresh)
1033
{
1034
	/*
1035
	 * not supported on inherited events
1036
	 */
1037
	if (event->attr.inherit)
1038 1039
		return -EINVAL;

1040 1041
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1042 1043

	return 0;
1044 1045
}

1046
void __perf_event_sched_out(struct perf_event_context *ctx,
1047 1048
			      struct perf_cpu_context *cpuctx)
{
1049
	struct perf_event *event;
1050

1051
	raw_spin_lock(&ctx->lock);
1052
	ctx->is_active = 0;
1053
	if (likely(!ctx->nr_events))
1054
		goto out;
1055
	update_context_time(ctx);
1056

1057
	perf_disable();
P
Peter Zijlstra 已提交
1058
	if (ctx->nr_active) {
1059 1060
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1061
	}
1062
	perf_enable();
1063
 out:
1064
	raw_spin_unlock(&ctx->lock);
1065 1066
}

1067 1068 1069
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1070 1071 1072 1073
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1074
 * in them directly with an fd; we can only enable/disable all
1075
 * events via prctl, or enable/disable all events in a family
1076 1077
 * via ioctl, which will have the same effect on both contexts.
 */
1078 1079
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1080 1081
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082
		&& ctx1->parent_gen == ctx2->parent_gen
1083
		&& !ctx1->pin_count && !ctx2->pin_count;
1084 1085
}

1086 1087
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1088 1089 1090
{
	u64 value;

1091
	if (!event->attr.inherit_stat)
1092 1093 1094
		return;

	/*
1095
	 * Update the event value, we cannot use perf_event_read()
1096 1097
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1098
	 * we know the event must be on the current CPU, therefore we
1099 1100
	 * don't need to use it.
	 */
1101 1102
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1103 1104
		event->pmu->read(event);
		/* fall-through */
1105

1106 1107
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1108 1109 1110 1111 1112 1113 1114
		break;

	default:
		break;
	}

	/*
1115
	 * In order to keep per-task stats reliable we need to flip the event
1116 1117
	 * values when we flip the contexts.
	 */
1118 1119 1120
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1121

1122 1123
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1124

1125
	/*
1126
	 * Since we swizzled the values, update the user visible data too.
1127
	 */
1128 1129
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1130 1131 1132 1133 1134
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1135 1136
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1137
{
1138
	struct perf_event *event, *next_event;
1139 1140 1141 1142

	if (!ctx->nr_stat)
		return;

1143 1144
	update_context_time(ctx);

1145 1146
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1147

1148 1149
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1150

1151 1152
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1153

1154
		__perf_event_sync_stat(event, next_event);
1155

1156 1157
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1158 1159 1160
	}
}

T
Thomas Gleixner 已提交
1161
/*
1162
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1163 1164
 * with interrupts disabled.
 *
1165
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1166
 *
I
Ingo Molnar 已提交
1167
 * This does not protect us against NMI, but disable()
1168 1169 1170
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1171
 */
1172
void perf_event_task_sched_out(struct task_struct *task,
1173
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1174
{
1175
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1176 1177 1178
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1179
	struct pt_regs *regs;
1180
	int do_switch = 1;
T
Thomas Gleixner 已提交
1181

1182
	regs = task_pt_regs(task);
1183
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1184

1185
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1186 1187
		return;

1188 1189
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1190
	next_ctx = next->perf_event_ctxp;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1202 1203
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1204
		if (context_equiv(ctx, next_ctx)) {
1205 1206
			/*
			 * XXX do we need a memory barrier of sorts
1207
			 * wrt to rcu_dereference() of perf_event_ctxp
1208
			 */
1209 1210
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1211 1212 1213
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1214

1215
			perf_event_sync_stat(ctx, next_ctx);
1216
		}
1217 1218
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1219
	}
1220
	rcu_read_unlock();
1221

1222
	if (do_switch) {
1223
		__perf_event_sched_out(ctx, cpuctx);
1224 1225
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1226 1227
}

1228 1229 1230
/*
 * Called with IRQs disabled
 */
1231
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1232 1233 1234
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1235 1236
	if (!cpuctx->task_ctx)
		return;
1237 1238 1239 1240

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1241
	__perf_event_sched_out(ctx, cpuctx);
1242 1243 1244
	cpuctx->task_ctx = NULL;
}

1245 1246 1247
/*
 * Called with IRQs disabled
 */
1248
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1249
{
1250
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1251 1252
}

1253
static void
1254
__perf_event_sched_in(struct perf_event_context *ctx,
1255
			struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1256
{
1257
	int cpu = smp_processor_id();
1258
	struct perf_event *event;
1259
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1260

1261
	raw_spin_lock(&ctx->lock);
1262
	ctx->is_active = 1;
1263
	if (likely(!ctx->nr_events))
1264
		goto out;
T
Thomas Gleixner 已提交
1265

1266
	ctx->timestamp = perf_clock();
1267

1268
	perf_disable();
1269 1270 1271 1272 1273

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1274 1275 1276
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1277
			continue;
1278
		if (event->cpu != -1 && event->cpu != cpu)
1279 1280
			continue;

1281 1282
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1283 1284 1285 1286 1287

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1288 1289 1290
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1291
		}
1292 1293
	}

1294
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1295
		/*
1296 1297
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1298
		 */
1299 1300
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1301 1302
			continue;

1303 1304
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1305
		 * of events:
1306
		 */
1307
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1308 1309
			continue;

1310 1311
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1312
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1313
	}
1314
	perf_enable();
1315
 out:
1316
	raw_spin_unlock(&ctx->lock);
1317 1318 1319
}

/*
1320
 * Called from scheduler to add the events of the current task
1321 1322
 * with interrupts disabled.
 *
1323
 * We restore the event value and then enable it.
1324 1325
 *
 * This does not protect us against NMI, but enable()
1326 1327 1328
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1329
 */
1330
void perf_event_task_sched_in(struct task_struct *task)
1331
{
1332
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1333
	struct perf_event_context *ctx = task->perf_event_ctxp;
1334

1335 1336
	if (likely(!ctx))
		return;
1337 1338
	if (cpuctx->task_ctx == ctx)
		return;
1339
	__perf_event_sched_in(ctx, cpuctx);
T
Thomas Gleixner 已提交
1340 1341 1342
	cpuctx->task_ctx = ctx;
}

1343
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx)
1344
{
1345
	struct perf_event_context *ctx = &cpuctx->ctx;
1346

1347
	__perf_event_sched_in(ctx, cpuctx);
1348 1349
}

1350 1351
#define MAX_INTERRUPTS (~0ULL)

1352
static void perf_log_throttle(struct perf_event *event, int enable);
1353

1354
static void perf_adjust_period(struct perf_event *event, u64 events)
1355
{
1356
	struct hw_perf_event *hwc = &event->hw;
1357 1358 1359 1360
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1361
	period = div64_u64(events, event->attr.sample_freq);
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1374
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1375
{
1376 1377
	struct perf_event *event;
	struct hw_perf_event *hwc;
1378
	u64 interrupts, freq;
1379

1380
	raw_spin_lock(&ctx->lock);
1381
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1382
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1383 1384
			continue;

1385 1386 1387
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1388
		hwc = &event->hw;
1389 1390 1391

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1392

1393
		/*
1394
		 * unthrottle events on the tick
1395
		 */
1396
		if (interrupts == MAX_INTERRUPTS) {
1397 1398 1399
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1400 1401
		}

1402
		if (!event->attr.freq || !event->attr.sample_freq)
1403 1404
			continue;

1405 1406 1407
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1408 1409
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1423
		perf_adjust_period(event, freq * interrupts);
1424

1425 1426 1427 1428 1429 1430 1431
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1432
			event->pmu->disable(event);
1433
			atomic64_set(&hwc->period_left, 0);
1434
			event->pmu->enable(event);
1435 1436
			perf_enable();
		}
1437
	}
1438
	raw_spin_unlock(&ctx->lock);
1439 1440
}

1441
/*
1442
 * Round-robin a context's events:
1443
 */
1444
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1445
{
1446
	struct perf_event *event;
T
Thomas Gleixner 已提交
1447

1448
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1449 1450
		return;

1451
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
1452
	/*
1453
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1454
	 */
1455
	perf_disable();
1456 1457
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1458 1459
		break;
	}
1460
	perf_enable();
T
Thomas Gleixner 已提交
1461

1462
	raw_spin_unlock(&ctx->lock);
1463 1464
}

1465
void perf_event_task_tick(struct task_struct *curr)
1466
{
1467
	struct perf_cpu_context *cpuctx;
1468
	struct perf_event_context *ctx;
1469

1470
	if (!atomic_read(&nr_events))
1471 1472
		return;

1473
	cpuctx = &__get_cpu_var(perf_cpu_context);
1474
	ctx = curr->perf_event_ctxp;
1475

1476
	perf_ctx_adjust_freq(&cpuctx->ctx);
1477
	if (ctx)
1478
		perf_ctx_adjust_freq(ctx);
1479

1480
	perf_event_cpu_sched_out(cpuctx);
1481
	if (ctx)
1482
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1483

1484
	rotate_ctx(&cpuctx->ctx);
1485 1486
	if (ctx)
		rotate_ctx(ctx);
1487

1488
	perf_event_cpu_sched_in(cpuctx);
1489
	if (ctx)
1490
		perf_event_task_sched_in(curr);
T
Thomas Gleixner 已提交
1491 1492
}

1493
/*
1494
 * Enable all of a task's events that have been marked enable-on-exec.
1495 1496
 * This expects task == current.
 */
1497
static void perf_event_enable_on_exec(struct task_struct *task)
1498
{
1499 1500
	struct perf_event_context *ctx;
	struct perf_event *event;
1501 1502 1503 1504
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1505 1506
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1507 1508
		goto out;

1509
	__perf_event_task_sched_out(ctx);
1510

1511
	raw_spin_lock(&ctx->lock);
1512

1513 1514
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1515
			continue;
1516 1517
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1518
			continue;
1519
		__perf_event_mark_enabled(event, ctx);
1520 1521 1522 1523
		enabled = 1;
	}

	/*
1524
	 * Unclone this context if we enabled any event.
1525
	 */
1526 1527
	if (enabled)
		unclone_ctx(ctx);
1528

1529
	raw_spin_unlock(&ctx->lock);
1530

1531
	perf_event_task_sched_in(task);
1532 1533 1534 1535
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1536
/*
1537
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1538
 */
1539
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1540
{
1541
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1542 1543
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1544

1545 1546 1547 1548
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1549 1550
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1551 1552 1553 1554
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1555
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1556
	update_context_time(ctx);
1557
	update_event_times(event);
1558
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1559

P
Peter Zijlstra 已提交
1560
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1561 1562
}

1563
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1564 1565
{
	/*
1566 1567
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1568
	 */
1569 1570 1571 1572
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1573 1574 1575
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1576
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1577
		update_context_time(ctx);
1578
		update_event_times(event);
1579
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1580 1581
	}

1582
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1583 1584
}

1585
/*
1586
 * Initialize the perf_event context in a task_struct:
1587 1588
 */
static void
1589
__perf_event_init_context(struct perf_event_context *ctx,
1590 1591
			    struct task_struct *task)
{
1592
	raw_spin_lock_init(&ctx->lock);
1593
	mutex_init(&ctx->mutex);
1594
	INIT_LIST_HEAD(&ctx->group_list);
1595 1596 1597 1598 1599
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1600
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1601
{
1602
	struct perf_event_context *ctx;
1603
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1604
	struct task_struct *task;
1605
	unsigned long flags;
1606
	int err;
T
Thomas Gleixner 已提交
1607

1608
	if (pid == -1 && cpu != -1) {
1609
		/* Must be root to operate on a CPU event: */
1610
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1611 1612
			return ERR_PTR(-EACCES);

1613
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1614 1615 1616
			return ERR_PTR(-EINVAL);

		/*
1617
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1618 1619 1620
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1621
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1622 1623 1624 1625
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1626
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1643
	/*
1644
	 * Can't attach events to a dying task.
1645 1646 1647 1648 1649
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1650
	/* Reuse ptrace permission checks for now. */
1651 1652 1653 1654 1655
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1656
	ctx = perf_lock_task_context(task, &flags);
1657
	if (ctx) {
1658
		unclone_ctx(ctx);
1659
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1660 1661
	}

1662
	if (!ctx) {
1663
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1664 1665 1666
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1667
		__perf_event_init_context(ctx, task);
1668
		get_ctx(ctx);
1669
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1670 1671 1672 1673 1674
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1675
			goto retry;
1676
		}
1677
		get_task_struct(task);
1678 1679
	}

1680
	put_task_struct(task);
T
Thomas Gleixner 已提交
1681
	return ctx;
1682 1683 1684 1685

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1686 1687
}

L
Li Zefan 已提交
1688 1689
static void perf_event_free_filter(struct perf_event *event);

1690
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1691
{
1692
	struct perf_event *event;
P
Peter Zijlstra 已提交
1693

1694 1695 1696
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1697
	perf_event_free_filter(event);
1698
	kfree(event);
P
Peter Zijlstra 已提交
1699 1700
}

1701
static void perf_pending_sync(struct perf_event *event);
1702

1703
static void free_event(struct perf_event *event)
1704
{
1705
	perf_pending_sync(event);
1706

1707 1708 1709 1710 1711 1712 1713 1714
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1715
	}
1716

1717 1718 1719
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1720 1721
	}

1722 1723
	if (event->destroy)
		event->destroy(event);
1724

1725 1726
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1727 1728
}

1729
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1730
{
1731
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1732

1733
	WARN_ON_ONCE(ctx->parent_ctx);
1734
	mutex_lock(&ctx->mutex);
1735
	perf_event_remove_from_context(event);
1736
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1737

1738 1739 1740 1741
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1742

1743
	free_event(event);
T
Thomas Gleixner 已提交
1744 1745 1746

	return 0;
}
1747
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1748

1749 1750 1751 1752
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1753
{
1754
	struct perf_event *event = file->private_data;
1755

1756
	file->private_data = NULL;
1757

1758
	return perf_event_release_kernel(event);
1759 1760
}

1761
static int perf_event_read_size(struct perf_event *event)
1762 1763 1764 1765 1766
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1767
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1768 1769
		size += sizeof(u64);

1770
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1771 1772
		size += sizeof(u64);

1773
	if (event->attr.read_format & PERF_FORMAT_ID)
1774 1775
		entry += sizeof(u64);

1776 1777
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1778 1779 1780 1781 1782 1783 1784 1785
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1786
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1787
{
1788
	struct perf_event *child;
1789 1790
	u64 total = 0;

1791 1792 1793
	*enabled = 0;
	*running = 0;

1794
	mutex_lock(&event->child_mutex);
1795
	total += perf_event_read(event);
1796 1797 1798 1799 1800 1801
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1802
		total += perf_event_read(child);
1803 1804 1805
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1806
	mutex_unlock(&event->child_mutex);
1807 1808 1809

	return total;
}
1810
EXPORT_SYMBOL_GPL(perf_event_read_value);
1811

1812
static int perf_event_read_group(struct perf_event *event,
1813 1814
				   u64 read_format, char __user *buf)
{
1815
	struct perf_event *leader = event->group_leader, *sub;
1816 1817
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1818
	u64 values[5];
1819
	u64 count, enabled, running;
1820

1821
	mutex_lock(&ctx->mutex);
1822
	count = perf_event_read_value(leader, &enabled, &running);
1823 1824

	values[n++] = 1 + leader->nr_siblings;
1825 1826 1827 1828
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1829 1830 1831
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1832 1833 1834 1835

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1836
		goto unlock;
1837

1838
	ret = size;
1839

1840
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1841
		n = 0;
1842

1843
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1844 1845 1846 1847 1848
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1849
		if (copy_to_user(buf + ret, values, size)) {
1850 1851 1852
			ret = -EFAULT;
			goto unlock;
		}
1853 1854

		ret += size;
1855
	}
1856 1857
unlock:
	mutex_unlock(&ctx->mutex);
1858

1859
	return ret;
1860 1861
}

1862
static int perf_event_read_one(struct perf_event *event,
1863 1864
				 u64 read_format, char __user *buf)
{
1865
	u64 enabled, running;
1866 1867 1868
	u64 values[4];
	int n = 0;

1869 1870 1871 1872 1873
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1874
	if (read_format & PERF_FORMAT_ID)
1875
		values[n++] = primary_event_id(event);
1876 1877 1878 1879 1880 1881 1882

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1883
/*
1884
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1885 1886
 */
static ssize_t
1887
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1888
{
1889
	u64 read_format = event->attr.read_format;
1890
	int ret;
T
Thomas Gleixner 已提交
1891

1892
	/*
1893
	 * Return end-of-file for a read on a event that is in
1894 1895 1896
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1897
	if (event->state == PERF_EVENT_STATE_ERROR)
1898 1899
		return 0;

1900
	if (count < perf_event_read_size(event))
1901 1902
		return -ENOSPC;

1903
	WARN_ON_ONCE(event->ctx->parent_ctx);
1904
	if (read_format & PERF_FORMAT_GROUP)
1905
		ret = perf_event_read_group(event, read_format, buf);
1906
	else
1907
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
1908

1909
	return ret;
T
Thomas Gleixner 已提交
1910 1911 1912 1913 1914
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1915
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1916

1917
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1918 1919 1920 1921
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1922
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1923
	struct perf_mmap_data *data;
1924
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1925 1926

	rcu_read_lock();
1927
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1928
	if (data)
1929
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1930
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1931

1932
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1933 1934 1935 1936

	return events;
}

1937
static void perf_event_reset(struct perf_event *event)
1938
{
1939 1940 1941
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1942 1943
}

1944
/*
1945 1946 1947 1948
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1949
 */
1950 1951
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1952
{
1953
	struct perf_event *child;
P
Peter Zijlstra 已提交
1954

1955 1956 1957 1958
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1959
		func(child);
1960
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1961 1962
}

1963 1964
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1965
{
1966 1967
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1968

1969 1970
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1971
	event = event->group_leader;
1972

1973 1974 1975 1976
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1977
	mutex_unlock(&ctx->mutex);
1978 1979
}

1980
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1981
{
1982
	struct perf_event_context *ctx = event->ctx;
1983 1984 1985 1986
	unsigned long size;
	int ret = 0;
	u64 value;

1987
	if (!event->attr.sample_period)
1988 1989 1990 1991 1992 1993 1994 1995 1996
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

1997
	raw_spin_lock_irq(&ctx->lock);
1998 1999
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2000 2001 2002 2003
			ret = -EINVAL;
			goto unlock;
		}

2004
		event->attr.sample_freq = value;
2005
	} else {
2006 2007
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2008 2009
	}
unlock:
2010
	raw_spin_unlock_irq(&ctx->lock);
2011 2012 2013 2014

	return ret;
}

L
Li Zefan 已提交
2015 2016
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2017

2018 2019
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2020 2021
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2022
	u32 flags = arg;
2023 2024

	switch (cmd) {
2025 2026
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2027
		break;
2028 2029
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2030
		break;
2031 2032
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2033
		break;
P
Peter Zijlstra 已提交
2034

2035 2036
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2037

2038 2039
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2040

2041 2042
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2043

L
Li Zefan 已提交
2044 2045 2046
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2047
	default:
P
Peter Zijlstra 已提交
2048
		return -ENOTTY;
2049
	}
P
Peter Zijlstra 已提交
2050 2051

	if (flags & PERF_IOC_FLAG_GROUP)
2052
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2053
	else
2054
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2055 2056

	return 0;
2057 2058
}

2059
int perf_event_task_enable(void)
2060
{
2061
	struct perf_event *event;
2062

2063 2064 2065 2066
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2067 2068 2069 2070

	return 0;
}

2071
int perf_event_task_disable(void)
2072
{
2073
	struct perf_event *event;
2074

2075 2076 2077 2078
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2079 2080 2081 2082

	return 0;
}

2083 2084
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2085 2086
#endif

2087
static int perf_event_index(struct perf_event *event)
2088
{
2089
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2090 2091
		return 0;

2092
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2093 2094
}

2095 2096 2097 2098 2099
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2100
void perf_event_update_userpage(struct perf_event *event)
2101
{
2102
	struct perf_event_mmap_page *userpg;
2103
	struct perf_mmap_data *data;
2104 2105

	rcu_read_lock();
2106
	data = rcu_dereference(event->data);
2107 2108 2109 2110
	if (!data)
		goto unlock;

	userpg = data->user_page;
2111

2112 2113 2114 2115 2116
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2117
	++userpg->lock;
2118
	barrier();
2119 2120 2121 2122
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2123

2124 2125
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2126

2127 2128
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2129

2130
	barrier();
2131
	++userpg->lock;
2132
	preempt_enable();
2133
unlock:
2134
	rcu_read_unlock();
2135 2136
}

2137
static unsigned long perf_data_size(struct perf_mmap_data *data)
2138
{
2139 2140
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2141

2142
#ifndef CONFIG_PERF_USE_VMALLOC
2143

2144 2145 2146
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2147

2148 2149 2150 2151 2152
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2153

2154 2155
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2156

2157
	return virt_to_page(data->data_pages[pgoff - 1]);
2158 2159
}

2160 2161
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2162 2163 2164 2165 2166
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2167
	WARN_ON(atomic_read(&event->mmap_count));
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2186
	data->data_order = 0;
2187 2188
	data->nr_pages = nr_pages;

2189
	return data;
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2201
	return NULL;
2202 2203
}

2204 2205
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2206
	struct page *page = virt_to_page((void *)addr);
2207 2208 2209 2210 2211

	page->mapping = NULL;
	__free_page(page);
}

2212
static void perf_mmap_data_free(struct perf_mmap_data *data)
2213 2214 2215
{
	int i;

2216
	perf_mmap_free_page((unsigned long)data->user_page);
2217
	for (i = 0; i < data->nr_pages; i++)
2218
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2219
	kfree(data);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2260
	kfree(data);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2354
		data->watermark = max_size / 2;
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2366 2367
}

2368
static void perf_mmap_data_release(struct perf_event *event)
2369
{
2370
	struct perf_mmap_data *data = event->data;
2371

2372
	WARN_ON(atomic_read(&event->mmap_count));
2373

2374
	rcu_assign_pointer(event->data, NULL);
2375
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2376 2377 2378 2379
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2380
	struct perf_event *event = vma->vm_file->private_data;
2381

2382
	atomic_inc(&event->mmap_count);
2383 2384 2385 2386
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2387
	struct perf_event *event = vma->vm_file->private_data;
2388

2389 2390
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2391
		unsigned long size = perf_data_size(event->data);
2392 2393
		struct user_struct *user = current_user();

2394
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2395
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2396
		perf_mmap_data_release(event);
2397
		mutex_unlock(&event->mmap_mutex);
2398
	}
2399 2400
}

2401
static const struct vm_operations_struct perf_mmap_vmops = {
2402 2403 2404 2405
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2406 2407 2408 2409
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2410
	struct perf_event *event = file->private_data;
2411
	unsigned long user_locked, user_lock_limit;
2412
	struct user_struct *user = current_user();
2413
	unsigned long locked, lock_limit;
2414
	struct perf_mmap_data *data;
2415 2416
	unsigned long vma_size;
	unsigned long nr_pages;
2417
	long user_extra, extra;
2418
	int ret = 0;
2419

2420
	if (!(vma->vm_flags & VM_SHARED))
2421
		return -EINVAL;
2422 2423 2424 2425

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2426 2427 2428 2429 2430
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2431 2432
		return -EINVAL;

2433
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2434 2435
		return -EINVAL;

2436 2437
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2438

2439 2440 2441
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2442 2443 2444 2445
		ret = -EINVAL;
		goto unlock;
	}

2446 2447
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2448 2449 2450 2451
			ret = -EINVAL;
		goto unlock;
	}

2452
	user_extra = nr_pages + 1;
2453
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2454 2455 2456 2457 2458 2459

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2460
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2461

2462 2463 2464
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2465 2466 2467

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2468
	locked = vma->vm_mm->locked_vm + extra;
2469

2470 2471
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2472 2473 2474
		ret = -EPERM;
		goto unlock;
	}
2475

2476
	WARN_ON(event->data);
2477 2478 2479 2480

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2481 2482
		goto unlock;

2483 2484 2485
	ret = 0;
	perf_mmap_data_init(event, data);

2486
	atomic_set(&event->mmap_count, 1);
2487
	atomic_long_add(user_extra, &user->locked_vm);
2488
	vma->vm_mm->locked_vm += extra;
2489
	event->data->nr_locked = extra;
2490
	if (vma->vm_flags & VM_WRITE)
2491
		event->data->writable = 1;
2492

2493
unlock:
2494
	mutex_unlock(&event->mmap_mutex);
2495 2496 2497

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2498 2499

	return ret;
2500 2501
}

P
Peter Zijlstra 已提交
2502 2503 2504
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2505
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2506 2507 2508
	int retval;

	mutex_lock(&inode->i_mutex);
2509
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2510 2511 2512 2513 2514 2515 2516 2517
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2518 2519 2520 2521
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2522 2523
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2524
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2525
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2526 2527
};

2528
/*
2529
 * Perf event wakeup
2530 2531 2532 2533 2534
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2535
void perf_event_wakeup(struct perf_event *event)
2536
{
2537
	wake_up_all(&event->waitq);
2538

2539 2540 2541
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2542
	}
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2554
static void perf_pending_event(struct perf_pending_entry *entry)
2555
{
2556 2557
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2558

2559 2560 2561
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2562 2563
	}

2564 2565 2566
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2567 2568 2569
	}
}

2570
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2571

2572
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2573 2574 2575
	PENDING_TAIL,
};

2576 2577
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2578
{
2579
	struct perf_pending_entry **head;
2580

2581
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2582 2583
		return;

2584 2585 2586
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2587 2588

	do {
2589 2590
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2591

2592
	set_perf_event_pending();
2593

2594
	put_cpu_var(perf_pending_head);
2595 2596 2597 2598
}

static int __perf_pending_run(void)
{
2599
	struct perf_pending_entry *list;
2600 2601
	int nr = 0;

2602
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2603
	while (list != PENDING_TAIL) {
2604 2605
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2606 2607 2608

		list = list->next;

2609 2610
		func = entry->func;
		entry->next = NULL;
2611 2612 2613 2614 2615 2616 2617
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2618
		func(entry);
2619 2620 2621 2622 2623 2624
		nr++;
	}

	return nr;
}

2625
static inline int perf_not_pending(struct perf_event *event)
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2640
	return event->pending.next == NULL;
2641 2642
}

2643
static void perf_pending_sync(struct perf_event *event)
2644
{
2645
	wait_event(event->waitq, perf_not_pending(event));
2646 2647
}

2648
void perf_event_do_pending(void)
2649 2650 2651 2652
{
	__perf_pending_run();
}

2653 2654 2655 2656
/*
 * Callchain support -- arch specific
 */

2657
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2658 2659 2660 2661
{
	return NULL;
}

2662 2663 2664
/*
 * Output
 */
2665 2666
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2667 2668 2669 2670 2671 2672
{
	unsigned long mask;

	if (!data->writable)
		return true;

2673
	mask = perf_data_size(data) - 1;
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2684
static void perf_output_wakeup(struct perf_output_handle *handle)
2685
{
2686 2687
	atomic_set(&handle->data->poll, POLL_IN);

2688
	if (handle->nmi) {
2689 2690 2691
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2692
	} else
2693
		perf_event_wakeup(handle->event);
2694 2695
}

2696 2697 2698
/*
 * Curious locking construct.
 *
2699 2700
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2701 2702 2703 2704 2705 2706
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2707
 * event_id completes.
2708 2709 2710 2711
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2712
	int cur, cpu = get_cpu();
2713 2714 2715

	handle->locked = 0;

2716 2717 2718 2719 2720 2721 2722 2723
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2724 2725

		cpu_relax();
2726
	}
2727 2728 2729 2730 2731
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2732 2733
	unsigned long head;
	int cpu;
2734

2735
	data->done_head = data->head;
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2746
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2747 2748 2749
		data->user_page->data_head = head;

	/*
2750
	 * NMI can happen here, which means we can miss a done_head update.
2751 2752
	 */

2753
	cpu = atomic_xchg(&data->lock, -1);
2754 2755 2756 2757 2758
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2759
	if (unlikely(atomic_long_read(&data->done_head))) {
2760 2761 2762
		/*
		 * Since we had it locked, we can lock it again.
		 */
2763
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2764 2765 2766 2767 2768
			cpu_relax();

		goto again;
	}

2769
	if (atomic_xchg(&data->wakeup, 0))
2770 2771
		perf_output_wakeup(handle);
out:
2772
	put_cpu();
2773 2774
}

2775 2776
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2777 2778
{
	unsigned int pages_mask;
2779
	unsigned long offset;
2780 2781 2782 2783 2784 2785 2786 2787
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2788 2789
		unsigned long page_offset;
		unsigned long page_size;
2790 2791 2792
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2793 2794 2795
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2813
int perf_output_begin(struct perf_output_handle *handle,
2814
		      struct perf_event *event, unsigned int size,
2815
		      int nmi, int sample)
2816
{
2817
	struct perf_event *output_event;
2818
	struct perf_mmap_data *data;
2819
	unsigned long tail, offset, head;
2820 2821 2822 2823 2824 2825
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2826

2827
	rcu_read_lock();
2828
	/*
2829
	 * For inherited events we send all the output towards the parent.
2830
	 */
2831 2832
	if (event->parent)
		event = event->parent;
2833

2834 2835 2836
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2837

2838
	data = rcu_dereference(event->data);
2839 2840 2841
	if (!data)
		goto out;

2842
	handle->data	= data;
2843
	handle->event	= event;
2844 2845
	handle->nmi	= nmi;
	handle->sample	= sample;
2846

2847
	if (!data->nr_pages)
2848
		goto fail;
2849

2850 2851 2852 2853
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2854 2855
	perf_output_lock(handle);

2856
	do {
2857 2858 2859 2860 2861 2862 2863
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2864
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2865
		head += size;
2866
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2867
			goto fail;
2868
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2869

2870
	handle->offset	= offset;
2871
	handle->head	= head;
2872

2873
	if (head - tail > data->watermark)
2874
		atomic_set(&data->wakeup, 1);
2875

2876
	if (have_lost) {
2877
		lost_event.header.type = PERF_RECORD_LOST;
2878 2879
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2880
		lost_event.id          = event->id;
2881 2882 2883 2884 2885
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2886
	return 0;
2887

2888
fail:
2889 2890
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2891 2892
out:
	rcu_read_unlock();
2893

2894 2895
	return -ENOSPC;
}
2896

2897
void perf_output_end(struct perf_output_handle *handle)
2898
{
2899
	struct perf_event *event = handle->event;
2900 2901
	struct perf_mmap_data *data = handle->data;

2902
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2903

2904
	if (handle->sample && wakeup_events) {
2905
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2906
		if (events >= wakeup_events) {
2907
			atomic_sub(wakeup_events, &data->events);
2908
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2909
		}
2910 2911 2912
	}

	perf_output_unlock(handle);
2913
	rcu_read_unlock();
2914 2915
}

2916
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2917 2918
{
	/*
2919
	 * only top level events have the pid namespace they were created in
2920
	 */
2921 2922
	if (event->parent)
		event = event->parent;
2923

2924
	return task_tgid_nr_ns(p, event->ns);
2925 2926
}

2927
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2928 2929
{
	/*
2930
	 * only top level events have the pid namespace they were created in
2931
	 */
2932 2933
	if (event->parent)
		event = event->parent;
2934

2935
	return task_pid_nr_ns(p, event->ns);
2936 2937
}

2938
static void perf_output_read_one(struct perf_output_handle *handle,
2939
				 struct perf_event *event)
2940
{
2941
	u64 read_format = event->attr.read_format;
2942 2943 2944
	u64 values[4];
	int n = 0;

2945
	values[n++] = atomic64_read(&event->count);
2946
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2947 2948
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2949 2950
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2951 2952
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2953 2954
	}
	if (read_format & PERF_FORMAT_ID)
2955
		values[n++] = primary_event_id(event);
2956 2957 2958 2959 2960

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2961
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2962 2963
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2964
			    struct perf_event *event)
2965
{
2966 2967
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2979
	if (leader != event)
2980 2981 2982 2983
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2984
		values[n++] = primary_event_id(leader);
2985 2986 2987

	perf_output_copy(handle, values, n * sizeof(u64));

2988
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2989 2990
		n = 0;

2991
		if (sub != event)
2992 2993 2994 2995
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2996
			values[n++] = primary_event_id(sub);
2997 2998 2999 3000 3001 3002

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3003
			     struct perf_event *event)
3004
{
3005 3006
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3007
	else
3008
		perf_output_read_one(handle, event);
3009 3010
}

3011 3012 3013
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3014
			struct perf_event *event)
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3045
		perf_output_read(handle, event);
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3083
			 struct perf_event *event,
3084
			 struct pt_regs *regs)
3085
{
3086
	u64 sample_type = event->attr.sample_type;
3087

3088
	data->type = sample_type;
3089

3090
	header->type = PERF_RECORD_SAMPLE;
3091 3092 3093 3094
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3095

3096
	if (sample_type & PERF_SAMPLE_IP) {
3097 3098 3099
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3100
	}
3101

3102
	if (sample_type & PERF_SAMPLE_TID) {
3103
		/* namespace issues */
3104 3105
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3106

3107
		header->size += sizeof(data->tid_entry);
3108 3109
	}

3110
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3111
		data->time = perf_clock();
3112

3113
		header->size += sizeof(data->time);
3114 3115
	}

3116
	if (sample_type & PERF_SAMPLE_ADDR)
3117
		header->size += sizeof(data->addr);
3118

3119
	if (sample_type & PERF_SAMPLE_ID) {
3120
		data->id = primary_event_id(event);
3121

3122 3123 3124 3125
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3126
		data->stream_id = event->id;
3127 3128 3129

		header->size += sizeof(data->stream_id);
	}
3130

3131
	if (sample_type & PERF_SAMPLE_CPU) {
3132 3133
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3134

3135
		header->size += sizeof(data->cpu_entry);
3136 3137
	}

3138
	if (sample_type & PERF_SAMPLE_PERIOD)
3139
		header->size += sizeof(data->period);
3140

3141
	if (sample_type & PERF_SAMPLE_READ)
3142
		header->size += perf_event_read_size(event);
3143

3144
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3145
		int size = 1;
3146

3147 3148 3149 3150 3151 3152
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3153 3154
	}

3155
	if (sample_type & PERF_SAMPLE_RAW) {
3156 3157 3158 3159 3160 3161 3162 3163
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3164
		header->size += size;
3165
	}
3166
}
3167

3168
static void perf_event_output(struct perf_event *event, int nmi,
3169 3170 3171 3172 3173
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3174

3175
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3176

3177
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3178
		return;
3179

3180
	perf_output_sample(&handle, &header, data, event);
3181

3182
	perf_output_end(&handle);
3183 3184
}

3185
/*
3186
 * read event_id
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3197
perf_event_read_event(struct perf_event *event,
3198 3199 3200
			struct task_struct *task)
{
	struct perf_output_handle handle;
3201
	struct perf_read_event read_event = {
3202
		.header = {
3203
			.type = PERF_RECORD_READ,
3204
			.misc = 0,
3205
			.size = sizeof(read_event) + perf_event_read_size(event),
3206
		},
3207 3208
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3209
	};
3210
	int ret;
3211

3212
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3213 3214 3215
	if (ret)
		return;

3216
	perf_output_put(&handle, read_event);
3217
	perf_output_read(&handle, event);
3218

3219 3220 3221
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3222
/*
P
Peter Zijlstra 已提交
3223 3224 3225
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3226 3227
 */

P
Peter Zijlstra 已提交
3228
struct perf_task_event {
3229
	struct task_struct		*task;
3230
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3231 3232 3233 3234 3235 3236

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3237 3238
		u32				tid;
		u32				ptid;
3239
		u64				time;
3240
	} event_id;
P
Peter Zijlstra 已提交
3241 3242
};

3243
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3244
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3245 3246
{
	struct perf_output_handle handle;
3247
	int size;
P
Peter Zijlstra 已提交
3248
	struct task_struct *task = task_event->task;
3249 3250
	int ret;

3251 3252
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3253 3254 3255 3256

	if (ret)
		return;

3257 3258
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3259

3260 3261
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3262

3263
	task_event->event_id.time = perf_clock();
3264

3265
	perf_output_put(&handle, task_event->event_id);
3266

P
Peter Zijlstra 已提交
3267 3268 3269
	perf_output_end(&handle);
}

3270
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3271
{
3272 3273 3274
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3275
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3276 3277 3278 3279 3280
		return 1;

	return 0;
}

3281
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3282
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3283
{
3284
	struct perf_event *event;
P
Peter Zijlstra 已提交
3285

3286 3287 3288
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3289 3290 3291
	}
}

3292
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3293 3294
{
	struct perf_cpu_context *cpuctx;
3295
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3296

3297
	rcu_read_lock();
P
Peter Zijlstra 已提交
3298
	cpuctx = &get_cpu_var(perf_cpu_context);
3299
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3300
	if (!ctx)
3301
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3302
	if (ctx)
3303
		perf_event_task_ctx(ctx, task_event);
3304
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3305 3306 3307
	rcu_read_unlock();
}

3308 3309
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3310
			      int new)
P
Peter Zijlstra 已提交
3311
{
P
Peter Zijlstra 已提交
3312
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3313

3314 3315 3316
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3317 3318
		return;

P
Peter Zijlstra 已提交
3319
	task_event = (struct perf_task_event){
3320 3321
		.task	  = task,
		.task_ctx = task_ctx,
3322
		.event_id    = {
P
Peter Zijlstra 已提交
3323
			.header = {
3324
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3325
				.misc = 0,
3326
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3327
			},
3328 3329
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3330 3331
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3332 3333 3334
		},
	};

3335
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3336 3337
}

3338
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3339
{
3340
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3341 3342
}

3343 3344 3345 3346 3347
/*
 * comm tracking
 */

struct perf_comm_event {
3348 3349
	struct task_struct	*task;
	char			*comm;
3350 3351 3352 3353 3354 3355 3356
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3357
	} event_id;
3358 3359
};

3360
static void perf_event_comm_output(struct perf_event *event,
3361 3362 3363
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3364 3365
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3366 3367 3368 3369

	if (ret)
		return;

3370 3371
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3372

3373
	perf_output_put(&handle, comm_event->event_id);
3374 3375 3376 3377 3378
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3379
static int perf_event_comm_match(struct perf_event *event)
3380
{
3381 3382 3383
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3384
	if (event->attr.comm)
3385 3386 3387 3388 3389
		return 1;

	return 0;
}

3390
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3391 3392
				  struct perf_comm_event *comm_event)
{
3393
	struct perf_event *event;
3394

3395 3396 3397
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3398 3399 3400
	}
}

3401
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3402 3403
{
	struct perf_cpu_context *cpuctx;
3404
	struct perf_event_context *ctx;
3405
	unsigned int size;
3406
	char comm[TASK_COMM_LEN];
3407

3408
	memset(comm, 0, sizeof(comm));
3409
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3410
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3411 3412 3413 3414

	comm_event->comm = comm;
	comm_event->comm_size = size;

3415
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3416

3417
	rcu_read_lock();
3418
	cpuctx = &get_cpu_var(perf_cpu_context);
3419 3420
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3421
	if (ctx)
3422
		perf_event_comm_ctx(ctx, comm_event);
3423
	put_cpu_var(perf_cpu_context);
3424
	rcu_read_unlock();
3425 3426
}

3427
void perf_event_comm(struct task_struct *task)
3428
{
3429 3430
	struct perf_comm_event comm_event;

3431 3432
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3433

3434
	if (!atomic_read(&nr_comm_events))
3435
		return;
3436

3437
	comm_event = (struct perf_comm_event){
3438
		.task	= task,
3439 3440
		/* .comm      */
		/* .comm_size */
3441
		.event_id  = {
3442
			.header = {
3443
				.type = PERF_RECORD_COMM,
3444 3445 3446 3447 3448
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3449 3450 3451
		},
	};

3452
	perf_event_comm_event(&comm_event);
3453 3454
}

3455 3456 3457 3458 3459
/*
 * mmap tracking
 */

struct perf_mmap_event {
3460 3461 3462 3463
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3464 3465 3466 3467 3468 3469 3470 3471 3472

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3473
	} event_id;
3474 3475
};

3476
static void perf_event_mmap_output(struct perf_event *event,
3477 3478 3479
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3480 3481
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3482 3483 3484 3485

	if (ret)
		return;

3486 3487
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3488

3489
	perf_output_put(&handle, mmap_event->event_id);
3490 3491
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3492
	perf_output_end(&handle);
3493 3494
}

3495
static int perf_event_mmap_match(struct perf_event *event,
3496 3497
				   struct perf_mmap_event *mmap_event)
{
3498 3499 3500
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3501
	if (event->attr.mmap)
3502 3503 3504 3505 3506
		return 1;

	return 0;
}

3507
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3508 3509
				  struct perf_mmap_event *mmap_event)
{
3510
	struct perf_event *event;
3511

3512 3513 3514
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3515 3516 3517
	}
}

3518
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3519 3520
{
	struct perf_cpu_context *cpuctx;
3521
	struct perf_event_context *ctx;
3522 3523
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3524 3525 3526
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3527
	const char *name;
3528

3529 3530
	memset(tmp, 0, sizeof(tmp));

3531
	if (file) {
3532 3533 3534 3535 3536 3537
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3538 3539 3540 3541
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3542
		name = d_path(&file->f_path, buf, PATH_MAX);
3543 3544 3545 3546 3547
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3548 3549 3550
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3551
			goto got_name;
3552
		}
3553 3554 3555 3556 3557 3558

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3559 3560 3561 3562 3563
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3564
	size = ALIGN(strlen(name)+1, sizeof(u64));
3565 3566 3567 3568

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3569
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3570

3571
	rcu_read_lock();
3572
	cpuctx = &get_cpu_var(perf_cpu_context);
3573 3574
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3575
	if (ctx)
3576
		perf_event_mmap_ctx(ctx, mmap_event);
3577
	put_cpu_var(perf_cpu_context);
3578 3579
	rcu_read_unlock();

3580 3581 3582
	kfree(buf);
}

3583
void __perf_event_mmap(struct vm_area_struct *vma)
3584
{
3585 3586
	struct perf_mmap_event mmap_event;

3587
	if (!atomic_read(&nr_mmap_events))
3588 3589 3590
		return;

	mmap_event = (struct perf_mmap_event){
3591
		.vma	= vma,
3592 3593
		/* .file_name */
		/* .file_size */
3594
		.event_id  = {
3595
			.header = {
3596
				.type = PERF_RECORD_MMAP,
3597 3598 3599 3600 3601
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3602 3603 3604
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3605 3606 3607
		},
	};

3608
	perf_event_mmap_event(&mmap_event);
3609 3610
}

3611 3612 3613 3614
/*
 * IRQ throttle logging
 */

3615
static void perf_log_throttle(struct perf_event *event, int enable)
3616 3617 3618 3619 3620 3621 3622
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3623
		u64				id;
3624
		u64				stream_id;
3625 3626
	} throttle_event = {
		.header = {
3627
			.type = PERF_RECORD_THROTTLE,
3628 3629 3630
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3631
		.time		= perf_clock(),
3632 3633
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3634 3635
	};

3636
	if (enable)
3637
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3638

3639
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3640 3641 3642 3643 3644 3645 3646
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3647
/*
3648
 * Generic event overflow handling, sampling.
3649 3650
 */

3651
static int __perf_event_overflow(struct perf_event *event, int nmi,
3652 3653
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3654
{
3655 3656
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3657 3658
	int ret = 0;

3659
	throttle = (throttle && event->pmu->unthrottle != NULL);
3660

3661
	if (!throttle) {
3662
		hwc->interrupts++;
3663
	} else {
3664 3665
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3666
			if (HZ * hwc->interrupts >
3667
					(u64)sysctl_perf_event_sample_rate) {
3668
				hwc->interrupts = MAX_INTERRUPTS;
3669
				perf_log_throttle(event, 0);
3670 3671 3672 3673
				ret = 1;
			}
		} else {
			/*
3674
			 * Keep re-disabling events even though on the previous
3675
			 * pass we disabled it - just in case we raced with a
3676
			 * sched-in and the event got enabled again:
3677
			 */
3678 3679 3680
			ret = 1;
		}
	}
3681

3682
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3683
		u64 now = perf_clock();
3684 3685 3686 3687 3688
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3689
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3690 3691
	}

3692 3693
	/*
	 * XXX event_limit might not quite work as expected on inherited
3694
	 * events
3695 3696
	 */

3697 3698
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3699
		ret = 1;
3700
		event->pending_kill = POLL_HUP;
3701
		if (nmi) {
3702 3703 3704
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3705
		} else
3706
			perf_event_disable(event);
3707 3708
	}

3709 3710 3711 3712 3713
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3714
	return ret;
3715 3716
}

3717
int perf_event_overflow(struct perf_event *event, int nmi,
3718 3719
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3720
{
3721
	return __perf_event_overflow(event, nmi, 1, data, regs);
3722 3723
}

3724
/*
3725
 * Generic software event infrastructure
3726 3727
 */

3728
/*
3729 3730
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3731 3732 3733 3734
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3735
static u64 perf_swevent_set_period(struct perf_event *event)
3736
{
3737
	struct hw_perf_event *hwc = &event->hw;
3738 3739 3740 3741 3742
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3743 3744

again:
3745 3746 3747
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3748

3749 3750 3751 3752 3753
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3754

3755
	return nr;
3756 3757
}

3758
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3759 3760
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3761
{
3762
	struct hw_perf_event *hwc = &event->hw;
3763
	int throttle = 0;
3764

3765
	data->period = event->hw.last_period;
3766 3767
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3768

3769 3770
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3771

3772
	for (; overflow; overflow--) {
3773
		if (__perf_event_overflow(event, nmi, throttle,
3774
					    data, regs)) {
3775 3776 3777 3778 3779 3780
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3781
		throttle = 1;
3782
	}
3783 3784
}

3785
static void perf_swevent_unthrottle(struct perf_event *event)
3786 3787
{
	/*
3788
	 * Nothing to do, we already reset hwc->interrupts.
3789
	 */
3790
}
3791

3792
static void perf_swevent_add(struct perf_event *event, u64 nr,
3793 3794
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3795
{
3796
	struct hw_perf_event *hwc = &event->hw;
3797

3798
	atomic64_add(nr, &event->count);
3799

3800 3801 3802
	if (!regs)
		return;

3803 3804
	if (!hwc->sample_period)
		return;
3805

3806 3807 3808 3809
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3810
		return;
3811

3812
	perf_swevent_overflow(event, 0, nmi, data, regs);
3813 3814
}

3815
static int perf_swevent_is_counting(struct perf_event *event)
3816
{
3817
	/*
3818
	 * The event is active, we're good!
3819
	 */
3820
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3821 3822
		return 1;

3823
	/*
3824
	 * The event is off/error, not counting.
3825
	 */
3826
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3827 3828 3829
		return 0;

	/*
3830
	 * The event is inactive, if the context is active
3831 3832
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3833
	 */
3834
	if (event->ctx->is_active)
3835 3836 3837 3838 3839 3840 3841 3842
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3843 3844
}

L
Li Zefan 已提交
3845 3846 3847
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

3862
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3863
				enum perf_type_id type,
L
Li Zefan 已提交
3864 3865 3866
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3867
{
3868 3869 3870
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3871
	if (!perf_swevent_is_counting(event))
3872 3873
		return 0;

3874
	if (event->attr.type != type)
3875
		return 0;
3876

3877
	if (event->attr.config != event_id)
3878 3879
		return 0;

3880 3881
	if (perf_exclude_event(event, regs))
		return 0;
3882

L
Li Zefan 已提交
3883 3884 3885 3886
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3887 3888 3889
	return 1;
}

3890
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3891
				     enum perf_type_id type,
3892
				     u32 event_id, u64 nr, int nmi,
3893 3894
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3895
{
3896
	struct perf_event *event;
3897

3898
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3899
		if (perf_swevent_match(event, type, event_id, data, regs))
3900
			perf_swevent_add(event, nr, nmi, data, regs);
3901 3902 3903
	}
}

3904
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
3905
{
3906 3907
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
3908

P
Peter Zijlstra 已提交
3909
	if (in_nmi())
3910
		rctx = 3;
3911
	else if (in_irq())
3912
		rctx = 2;
3913
	else if (in_softirq())
3914
		rctx = 1;
3915
	else
3916
		rctx = 0;
P
Peter Zijlstra 已提交
3917

3918 3919
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
3920
		return -1;
3921
	}
P
Peter Zijlstra 已提交
3922

3923 3924
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
3925

3926
	return rctx;
P
Peter Zijlstra 已提交
3927
}
I
Ingo Molnar 已提交
3928
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
3929

3930
void perf_swevent_put_recursion_context(int rctx)
3931
{
3932 3933
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
3934
	cpuctx->recursion[rctx]--;
3935
	put_cpu_var(perf_cpu_context);
3936
}
I
Ingo Molnar 已提交
3937
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
3938

3939 3940 3941 3942
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3943
{
3944
	struct perf_cpu_context *cpuctx;
3945
	struct perf_event_context *ctx;
3946

3947
	cpuctx = &__get_cpu_var(perf_cpu_context);
3948
	rcu_read_lock();
3949
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3950
				 nr, nmi, data, regs);
3951 3952 3953 3954
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3955
	ctx = rcu_dereference(current->perf_event_ctxp);
3956
	if (ctx)
3957
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3958
	rcu_read_unlock();
3959
}
3960

3961
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3962
			    struct pt_regs *regs, u64 addr)
3963
{
3964
	struct perf_sample_data data;
3965 3966 3967 3968 3969
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
3970 3971 3972

	data.addr = addr;
	data.raw  = NULL;
3973

3974
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3975 3976

	perf_swevent_put_recursion_context(rctx);
3977 3978
}

3979
static void perf_swevent_read(struct perf_event *event)
3980 3981 3982
{
}

3983
static int perf_swevent_enable(struct perf_event *event)
3984
{
3985
	struct hw_perf_event *hwc = &event->hw;
3986 3987 3988

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3989
		perf_swevent_set_period(event);
3990
	}
3991 3992 3993
	return 0;
}

3994
static void perf_swevent_disable(struct perf_event *event)
3995 3996 3997
{
}

3998
static const struct pmu perf_ops_generic = {
3999 4000 4001 4002
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4003 4004
};

4005
/*
4006
 * hrtimer based swevent callback
4007 4008
 */

4009
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4010 4011 4012
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4013
	struct pt_regs *regs;
4014
	struct perf_event *event;
4015 4016
	u64 period;

4017 4018
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4019 4020

	data.addr = 0;
4021
	data.raw = NULL;
4022
	data.period = event->hw.last_period;
4023
	regs = get_irq_regs();
4024 4025 4026 4027
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4028 4029
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4030
		regs = task_pt_regs(current);
4031

4032
	if (regs) {
4033 4034 4035
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4036 4037
	}

4038
	period = max_t(u64, 10000, event->hw.sample_period);
4039 4040 4041 4042 4043
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4080
/*
4081
 * Software event: cpu wall time clock
4082 4083
 */

4084
static void cpu_clock_perf_event_update(struct perf_event *event)
4085 4086 4087 4088 4089 4090
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4091
	prev = atomic64_xchg(&event->hw.prev_count, now);
4092
	atomic64_add(now - prev, &event->count);
4093 4094
}

4095
static int cpu_clock_perf_event_enable(struct perf_event *event)
4096
{
4097
	struct hw_perf_event *hwc = &event->hw;
4098 4099 4100
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4101
	perf_swevent_start_hrtimer(event);
4102 4103 4104 4105

	return 0;
}

4106
static void cpu_clock_perf_event_disable(struct perf_event *event)
4107
{
4108
	perf_swevent_cancel_hrtimer(event);
4109
	cpu_clock_perf_event_update(event);
4110 4111
}

4112
static void cpu_clock_perf_event_read(struct perf_event *event)
4113
{
4114
	cpu_clock_perf_event_update(event);
4115 4116
}

4117
static const struct pmu perf_ops_cpu_clock = {
4118 4119 4120
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4121 4122
};

4123
/*
4124
 * Software event: task time clock
4125 4126
 */

4127
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4128
{
4129
	u64 prev;
I
Ingo Molnar 已提交
4130 4131
	s64 delta;

4132
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4133
	delta = now - prev;
4134
	atomic64_add(delta, &event->count);
4135 4136
}

4137
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4138
{
4139
	struct hw_perf_event *hwc = &event->hw;
4140 4141
	u64 now;

4142
	now = event->ctx->time;
4143

4144
	atomic64_set(&hwc->prev_count, now);
4145 4146

	perf_swevent_start_hrtimer(event);
4147 4148

	return 0;
I
Ingo Molnar 已提交
4149 4150
}

4151
static void task_clock_perf_event_disable(struct perf_event *event)
4152
{
4153
	perf_swevent_cancel_hrtimer(event);
4154
	task_clock_perf_event_update(event, event->ctx->time);
4155

4156
}
I
Ingo Molnar 已提交
4157

4158
static void task_clock_perf_event_read(struct perf_event *event)
4159
{
4160 4161 4162
	u64 time;

	if (!in_nmi()) {
4163 4164
		update_context_time(event->ctx);
		time = event->ctx->time;
4165 4166
	} else {
		u64 now = perf_clock();
4167 4168
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4169 4170
	}

4171
	task_clock_perf_event_update(event, time);
4172 4173
}

4174
static const struct pmu perf_ops_task_clock = {
4175 4176 4177
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4178 4179
};

4180
#ifdef CONFIG_EVENT_TRACING
L
Li Zefan 已提交
4181

4182
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4183
			  int entry_size)
4184
{
4185
	struct perf_raw_record raw = {
4186
		.size = entry_size,
4187
		.data = record,
4188 4189
	};

4190
	struct perf_sample_data data = {
4191
		.addr = addr,
4192
		.raw = &raw,
4193
	};
4194

4195 4196 4197 4198
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4199

4200
	/* Trace events already protected against recursion */
4201
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4202
				&data, regs);
4203
}
4204
EXPORT_SYMBOL_GPL(perf_tp_event);
4205

L
Li Zefan 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4215

4216
static void tp_perf_event_destroy(struct perf_event *event)
4217
{
4218
	ftrace_profile_disable(event->attr.config);
4219 4220
}

4221
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4222
{
4223 4224 4225 4226
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4227
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4228
			perf_paranoid_tracepoint_raw() &&
4229 4230 4231
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4232
	if (ftrace_profile_enable(event->attr.config))
4233 4234
		return NULL;

4235
	event->destroy = tp_perf_event_destroy;
4236 4237 4238

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4263
#else
L
Li Zefan 已提交
4264 4265 4266 4267 4268 4269 4270

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4271
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4272 4273 4274
{
	return NULL;
}
L
Li Zefan 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4285
#endif /* CONFIG_EVENT_TRACING */
4286

4287 4288 4289 4290 4291 4292 4293 4294 4295
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4296 4297

	err = register_perf_hw_breakpoint(bp);
4298 4299 4300 4301 4302 4303 4304 4305
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4306
void perf_bp_event(struct perf_event *bp, void *data)
4307
{
4308 4309 4310
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4311
	sample.raw = NULL;
4312 4313 4314 4315
	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4328
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4329

4330
static void sw_perf_event_destroy(struct perf_event *event)
4331
{
4332
	u64 event_id = event->attr.config;
4333

4334
	WARN_ON(event->parent);
4335

4336
	atomic_dec(&perf_swevent_enabled[event_id]);
4337 4338
}

4339
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4340
{
4341
	const struct pmu *pmu = NULL;
4342
	u64 event_id = event->attr.config;
4343

4344
	/*
4345
	 * Software events (currently) can't in general distinguish
4346 4347 4348 4349 4350
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4351
	switch (event_id) {
4352
	case PERF_COUNT_SW_CPU_CLOCK:
4353
		pmu = &perf_ops_cpu_clock;
4354

4355
		break;
4356
	case PERF_COUNT_SW_TASK_CLOCK:
4357
		/*
4358 4359
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4360
		 */
4361
		if (event->ctx->task)
4362
			pmu = &perf_ops_task_clock;
4363
		else
4364
			pmu = &perf_ops_cpu_clock;
4365

4366
		break;
4367 4368 4369 4370 4371
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4372 4373
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4374 4375 4376
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4377
		}
4378
		pmu = &perf_ops_generic;
4379
		break;
4380
	}
4381

4382
	return pmu;
4383 4384
}

T
Thomas Gleixner 已提交
4385
/*
4386
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4387
 */
4388 4389
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4390
		   int cpu,
4391 4392 4393
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4394
		   perf_overflow_handler_t overflow_handler,
4395
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4396
{
4397
	const struct pmu *pmu;
4398 4399
	struct perf_event *event;
	struct hw_perf_event *hwc;
4400
	long err;
T
Thomas Gleixner 已提交
4401

4402 4403
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4404
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4405

4406
	/*
4407
	 * Single events are their own group leaders, with an
4408 4409 4410
	 * empty sibling list:
	 */
	if (!group_leader)
4411
		group_leader = event;
4412

4413 4414
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4415

4416 4417 4418 4419
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4420

4421
	mutex_init(&event->mmap_mutex);
4422

4423 4424 4425 4426 4427 4428
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4429

4430
	event->parent		= parent_event;
4431

4432 4433
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4434

4435
	event->state		= PERF_EVENT_STATE_INACTIVE;
4436

4437 4438
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4439
	
4440
	event->overflow_handler	= overflow_handler;
4441

4442
	if (attr->disabled)
4443
		event->state = PERF_EVENT_STATE_OFF;
4444

4445
	pmu = NULL;
4446

4447
	hwc = &event->hw;
4448
	hwc->sample_period = attr->sample_period;
4449
	if (attr->freq && attr->sample_freq)
4450
		hwc->sample_period = 1;
4451
	hwc->last_period = hwc->sample_period;
4452 4453

	atomic64_set(&hwc->period_left, hwc->sample_period);
4454

4455
	/*
4456
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4457
	 */
4458
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4459 4460
		goto done;

4461
	switch (attr->type) {
4462
	case PERF_TYPE_RAW:
4463
	case PERF_TYPE_HARDWARE:
4464
	case PERF_TYPE_HW_CACHE:
4465
		pmu = hw_perf_event_init(event);
4466 4467 4468
		break;

	case PERF_TYPE_SOFTWARE:
4469
		pmu = sw_perf_event_init(event);
4470 4471 4472
		break;

	case PERF_TYPE_TRACEPOINT:
4473
		pmu = tp_perf_event_init(event);
4474
		break;
4475

4476 4477 4478 4479 4480
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4481 4482
	default:
		break;
4483
	}
4484 4485
done:
	err = 0;
4486
	if (!pmu)
4487
		err = -EINVAL;
4488 4489
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4490

4491
	if (err) {
4492 4493 4494
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4495
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4496
	}
4497

4498
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4499

4500 4501 4502 4503 4504 4505 4506 4507
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4508
	}
4509

4510
	return event;
T
Thomas Gleixner 已提交
4511 4512
}

4513 4514
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4515 4516
{
	u32 size;
4517
	int ret;
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4542 4543 4544
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4545 4546
	 */
	if (size > sizeof(*attr)) {
4547 4548 4549
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4550

4551 4552
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4553

4554
		for (; addr < end; addr++) {
4555 4556 4557 4558 4559 4560
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4561
		size = sizeof(*attr);
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4575
	if (attr->__reserved_1 || attr->__reserved_2)
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4593
static int perf_event_set_output(struct perf_event *event, int output_fd)
4594
{
4595
	struct perf_event *output_event = NULL;
4596
	struct file *output_file = NULL;
4597
	struct perf_event *old_output;
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4611
	output_event = output_file->private_data;
4612 4613

	/* Don't chain output fds */
4614
	if (output_event->output)
4615 4616 4617
		goto out;

	/* Don't set an output fd when we already have an output channel */
4618
	if (event->data)
4619 4620 4621 4622 4623
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4624 4625 4626 4627
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4628 4629 4630 4631

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4632
		 * is still referencing this event.
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4644
/**
4645
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4646
 *
4647
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4648
 * @pid:		target pid
I
Ingo Molnar 已提交
4649
 * @cpu:		target cpu
4650
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4651
 */
4652 4653
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4654
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4655
{
4656 4657 4658 4659
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4660 4661
	struct file *group_file = NULL;
	int fput_needed = 0;
4662
	int fput_needed2 = 0;
4663
	int err;
T
Thomas Gleixner 已提交
4664

4665
	/* for future expandability... */
4666
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4667 4668
		return -EINVAL;

4669 4670 4671
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4672

4673 4674 4675 4676 4677
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4678
	if (attr.freq) {
4679
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4680 4681 4682
			return -EINVAL;
	}

4683
	/*
I
Ingo Molnar 已提交
4684 4685 4686 4687 4688 4689 4690
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4691
	 * Look up the group leader (we will attach this event to it):
4692 4693
	 */
	group_leader = NULL;
4694
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4695
		err = -EINVAL;
4696 4697
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4698
			goto err_put_context;
4699
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4700
			goto err_put_context;
4701 4702 4703

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4704 4705 4706 4707 4708 4709 4710 4711
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4712
		 */
I
Ingo Molnar 已提交
4713 4714
		if (group_leader->ctx != ctx)
			goto err_put_context;
4715 4716 4717
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4718
		if (attr.exclusive || attr.pinned)
4719
			goto err_put_context;
4720 4721
	}

4722
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4723
				     NULL, NULL, GFP_KERNEL);
4724 4725
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4726 4727
		goto err_put_context;

4728
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4729
	if (err < 0)
4730 4731
		goto err_free_put_context;

4732 4733
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4734 4735
		goto err_free_put_context;

4736
	if (flags & PERF_FLAG_FD_OUTPUT) {
4737
		err = perf_event_set_output(event, group_fd);
4738 4739
		if (err)
			goto err_fput_free_put_context;
4740 4741
	}

4742
	event->filp = event_file;
4743
	WARN_ON_ONCE(ctx->parent_ctx);
4744
	mutex_lock(&ctx->mutex);
4745
	perf_install_in_context(ctx, event, cpu);
4746
	++ctx->generation;
4747
	mutex_unlock(&ctx->mutex);
4748

4749
	event->owner = current;
4750
	get_task_struct(current);
4751 4752 4753
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4754

4755
err_fput_free_put_context:
4756
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4757

4758
err_free_put_context:
4759
	if (err < 0)
4760
		kfree(event);
T
Thomas Gleixner 已提交
4761 4762

err_put_context:
4763 4764 4765 4766
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4767

4768
	return err;
T
Thomas Gleixner 已提交
4769 4770
}

4771 4772 4773 4774 4775 4776 4777 4778 4779
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4780 4781
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4792 4793 4794 4795
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4796 4797

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4798
				 NULL, overflow_handler, GFP_KERNEL);
4799 4800
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4801
		goto err_put_context;
4802
	}
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4819 4820 4821 4822
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4823 4824 4825
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4826
/*
4827
 * inherit a event from parent task to child task:
4828
 */
4829 4830
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4831
	      struct task_struct *parent,
4832
	      struct perf_event_context *parent_ctx,
4833
	      struct task_struct *child,
4834 4835
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4836
{
4837
	struct perf_event *child_event;
4838

4839
	/*
4840 4841
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4842 4843 4844
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4845 4846
	if (parent_event->parent)
		parent_event = parent_event->parent;
4847

4848 4849 4850
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4851
					   NULL, GFP_KERNEL);
4852 4853
	if (IS_ERR(child_event))
		return child_event;
4854
	get_ctx(child_ctx);
4855

4856
	/*
4857
	 * Make the child state follow the state of the parent event,
4858
	 * not its attr.disabled bit.  We hold the parent's mutex,
4859
	 * so we won't race with perf_event_{en, dis}able_family.
4860
	 */
4861 4862
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4863
	else
4864
		child_event->state = PERF_EVENT_STATE_OFF;
4865

4866 4867
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4868

4869 4870
	child_event->overflow_handler = parent_event->overflow_handler;

4871 4872 4873
	/*
	 * Link it up in the child's context:
	 */
4874
	add_event_to_ctx(child_event, child_ctx);
4875 4876 4877

	/*
	 * Get a reference to the parent filp - we will fput it
4878
	 * when the child event exits. This is safe to do because
4879 4880 4881
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4882
	atomic_long_inc(&parent_event->filp->f_count);
4883

4884
	/*
4885
	 * Link this into the parent event's child list
4886
	 */
4887 4888 4889 4890
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4891

4892
	return child_event;
4893 4894
}

4895
static int inherit_group(struct perf_event *parent_event,
4896
	      struct task_struct *parent,
4897
	      struct perf_event_context *parent_ctx,
4898
	      struct task_struct *child,
4899
	      struct perf_event_context *child_ctx)
4900
{
4901 4902 4903
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4904

4905
	leader = inherit_event(parent_event, parent, parent_ctx,
4906
				 child, NULL, child_ctx);
4907 4908
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4909 4910
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4911 4912 4913
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4914
	}
4915 4916 4917
	return 0;
}

4918
static void sync_child_event(struct perf_event *child_event,
4919
			       struct task_struct *child)
4920
{
4921
	struct perf_event *parent_event = child_event->parent;
4922
	u64 child_val;
4923

4924 4925
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4926

4927
	child_val = atomic64_read(&child_event->count);
4928 4929 4930 4931

	/*
	 * Add back the child's count to the parent's count:
	 */
4932 4933 4934 4935 4936
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4937 4938

	/*
4939
	 * Remove this event from the parent's list
4940
	 */
4941 4942 4943 4944
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4945 4946

	/*
4947
	 * Release the parent event, if this was the last
4948 4949
	 * reference to it.
	 */
4950
	fput(parent_event->filp);
4951 4952
}

4953
static void
4954 4955
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4956
			 struct task_struct *child)
4957
{
4958
	struct perf_event *parent_event;
4959

4960
	perf_event_remove_from_context(child_event);
4961

4962
	parent_event = child_event->parent;
4963
	/*
4964
	 * It can happen that parent exits first, and has events
4965
	 * that are still around due to the child reference. These
4966
	 * events need to be zapped - but otherwise linger.
4967
	 */
4968 4969 4970
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4971
	}
4972 4973 4974
}

/*
4975
 * When a child task exits, feed back event values to parent events.
4976
 */
4977
void perf_event_exit_task(struct task_struct *child)
4978
{
4979 4980
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4981
	unsigned long flags;
4982

4983 4984
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4985
		return;
P
Peter Zijlstra 已提交
4986
	}
4987

4988
	local_irq_save(flags);
4989 4990 4991 4992 4993 4994
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4995 4996
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4997 4998 4999

	/*
	 * Take the context lock here so that if find_get_context is
5000
	 * reading child->perf_event_ctxp, we wait until it has
5001 5002
	 * incremented the context's refcount before we do put_ctx below.
	 */
5003
	raw_spin_lock(&child_ctx->lock);
5004
	child->perf_event_ctxp = NULL;
5005 5006 5007
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5008
	 * the events from it.
5009 5010
	 */
	unclone_ctx(child_ctx);
5011
	update_context_time(child_ctx);
5012
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5013 5014

	/*
5015 5016 5017
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5018
	 */
5019
	perf_event_task(child, child_ctx, 0);
5020

5021 5022 5023
	/*
	 * We can recurse on the same lock type through:
	 *
5024 5025 5026
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5027 5028 5029 5030 5031 5032
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5033

5034
again:
5035
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5036
				 group_entry)
5037
		__perf_event_exit_task(child_event, child_ctx, child);
5038 5039

	/*
5040
	 * If the last event was a group event, it will have appended all
5041 5042 5043
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5044
	if (!list_empty(&child_ctx->group_list))
5045
		goto again;
5046 5047 5048 5049

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5050 5051
}

5052 5053 5054 5055
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5056
void perf_event_free_task(struct task_struct *task)
5057
{
5058 5059
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5060 5061 5062 5063 5064 5065

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5066 5067
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5068 5069 5070 5071 5072

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5073
		list_del_init(&event->child_list);
5074 5075 5076 5077
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5078 5079
		list_del_event(event, ctx);
		free_event(event);
5080 5081
	}

5082
	if (!list_empty(&ctx->group_list))
5083 5084 5085 5086 5087 5088 5089
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5090
/*
5091
 * Initialize the perf_event context in task_struct
5092
 */
5093
int perf_event_init_task(struct task_struct *child)
5094
{
5095
	struct perf_event_context *child_ctx = NULL, *parent_ctx;
5096 5097
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5098
	struct task_struct *parent = current;
5099
	int inherited_all = 1;
5100
	int ret = 0;
5101

5102
	child->perf_event_ctxp = NULL;
5103

5104 5105
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5106

5107
	if (likely(!parent->perf_event_ctxp))
5108 5109
		return 0;

5110
	/*
5111 5112
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5113
	 */
5114 5115
	parent_ctx = perf_pin_task_context(parent);

5116 5117 5118 5119 5120 5121 5122
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5123 5124 5125 5126
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5127
	mutex_lock(&parent_ctx->mutex);
5128 5129 5130 5131 5132

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5133
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5134

5135
		if (!event->attr.inherit) {
5136
			inherited_all = 0;
5137
			continue;
5138
		}
5139

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
		if (!child->perf_event_ctxp) {
			/*
			 * This is executed from the parent task context, so
			 * inherit events that have been marked for cloning.
			 * First allocate and initialize a context for the
			 * child.
			 */

			child_ctx = kzalloc(sizeof(struct perf_event_context),
					    GFP_KERNEL);
			if (!child_ctx) {
				ret = -ENOMEM;
5152
				break;
5153 5154 5155 5156 5157 5158 5159
			}

			__perf_event_init_context(child_ctx, child);
			child->perf_event_ctxp = child_ctx;
			get_task_struct(child);
		}

5160
		ret = inherit_group(event, parent, parent_ctx,
5161 5162
					     child, child_ctx);
		if (ret) {
5163
			inherited_all = 0;
5164
			break;
5165 5166 5167
		}
	}

5168
	if (child_ctx && inherited_all) {
5169 5170 5171
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5172 5173
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5174
		 * because the list of events and the generation
5175
		 * count can't have changed since we took the mutex.
5176
		 */
5177 5178 5179
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5180
			child_ctx->parent_gen = parent_ctx->parent_gen;
5181 5182 5183 5184 5185
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5186 5187
	}

5188
	mutex_unlock(&parent_ctx->mutex);
5189

5190
	perf_unpin_context(parent_ctx);
5191

5192
	return ret;
5193 5194
}

5195
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5196
{
5197
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5198

5199
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5200
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5201

5202
	spin_lock(&perf_resource_lock);
5203
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5204
	spin_unlock(&perf_resource_lock);
5205

5206
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5207 5208 5209
}

#ifdef CONFIG_HOTPLUG_CPU
5210
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5211 5212
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5213 5214
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5215

5216 5217
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5218
}
5219
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5220
{
5221
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5222
	struct perf_event_context *ctx = &cpuctx->ctx;
5223 5224

	mutex_lock(&ctx->mutex);
5225
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5226
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5227 5228
}
#else
5229
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5241
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5242 5243
		break;

5244 5245
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5246
		hw_perf_event_setup_online(cpu);
5247 5248
		break;

T
Thomas Gleixner 已提交
5249 5250
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5251
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5261 5262 5263
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5264 5265
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5266
	.priority		= 20,
T
Thomas Gleixner 已提交
5267 5268
};

5269
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5270 5271 5272
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5273 5274
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5295
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5296 5297
		return -EINVAL;

5298
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5299 5300 5301
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5302
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5303 5304
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5305
		cpuctx->max_pertask = mpt;
5306
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5307
	}
5308
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5330
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5331
	perf_overcommit = val;
5332
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5359
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5360 5361
};

5362
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5363 5364 5365 5366
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5367
device_initcall(perf_event_sysfs_init);