perf_event.c 142.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

37
atomic_t perf_task_events __read_mostly;
38 39 40
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
41

P
Peter Zijlstra 已提交
42 43 44 45
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

46
/*
47
 * perf event paranoia level:
48 49
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
50
 *   1 - disallow cpu events for unpriv
51
 *   2 - disallow kernel profiling for unpriv
52
 */
53
int sysctl_perf_event_paranoid __read_mostly = 1;
54

55
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56 57

/*
58
 * max perf event sample rate
59
 */
60
int sysctl_perf_event_sample_rate __read_mostly = 100000;
61

62
static atomic64_t perf_event_id;
63

64
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
65

66
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
67
{
68
	return "pmu";
T
Thomas Gleixner 已提交
69 70
}

P
Peter Zijlstra 已提交
71
void perf_pmu_disable(struct pmu *pmu)
72
{
P
Peter Zijlstra 已提交
73 74 75
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
76 77
}

P
Peter Zijlstra 已提交
78
void perf_pmu_enable(struct pmu *pmu)
79
{
P
Peter Zijlstra 已提交
80 81 82
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
83 84
}

85 86 87 88 89 90 91
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
92
static void perf_pmu_rotate_start(struct pmu *pmu)
93
{
P
Peter Zijlstra 已提交
94
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
	struct list_head *head = &__get_cpu_var(rotation_list);
96

97
	WARN_ON(!irqs_disabled());
98

99 100
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
101 102
}

103
static void get_ctx(struct perf_event_context *ctx)
104
{
105
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 107
}

108 109
static void free_ctx(struct rcu_head *head)
{
110
	struct perf_event_context *ctx;
111

112
	ctx = container_of(head, struct perf_event_context, rcu_head);
113 114 115
	kfree(ctx);
}

116
static void put_ctx(struct perf_event_context *ctx)
117
{
118 119 120
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
121 122 123
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
124
	}
125 126
}

127
static void unclone_ctx(struct perf_event_context *ctx)
128 129 130 131 132 133 134
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

135
/*
136
 * If we inherit events we want to return the parent event id
137 138
 * to userspace.
 */
139
static u64 primary_event_id(struct perf_event *event)
140
{
141
	u64 id = event->id;
142

143 144
	if (event->parent)
		id = event->parent->id;
145 146 147 148

	return id;
}

149
/*
150
 * Get the perf_event_context for a task and lock it.
151 152 153
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
154
static struct perf_event_context *
P
Peter Zijlstra 已提交
155
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156
{
157
	struct perf_event_context *ctx;
158 159

	rcu_read_lock();
P
Peter Zijlstra 已提交
160
retry:
P
Peter Zijlstra 已提交
161
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162 163 164 165
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
166
		 * perf_event_task_sched_out, though the
167 168 169 170 171 172
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
173
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
174
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176 177
			goto retry;
		}
178 179

		if (!atomic_inc_not_zero(&ctx->refcount)) {
180
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 182
			ctx = NULL;
		}
183 184 185 186 187 188 189 190 191 192
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
193 194
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
195
{
196
	struct perf_event_context *ctx;
197 198
	unsigned long flags;

P
Peter Zijlstra 已提交
199
	ctx = perf_lock_task_context(task, ctxn, &flags);
200 201
	if (ctx) {
		++ctx->pin_count;
202
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
203 204 205 206
	}
	return ctx;
}

207
static void perf_unpin_context(struct perf_event_context *ctx)
208 209 210
{
	unsigned long flags;

211
	raw_spin_lock_irqsave(&ctx->lock, flags);
212
	--ctx->pin_count;
213
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
214 215 216
	put_ctx(ctx);
}

217 218
static inline u64 perf_clock(void)
{
219
	return local_clock();
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

245 246 247 248 249 250
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
251 252 253 254 255 256 257 258 259

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

272 273 274 275 276 277 278 279 280
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

281
/*
282
 * Add a event from the lists for its context.
283 284
 * Must be called with ctx->mutex and ctx->lock held.
 */
285
static void
286
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287
{
288 289
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
290 291

	/*
292 293 294
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
295
	 */
296
	if (event->group_leader == event) {
297 298
		struct list_head *list;

299 300 301
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

302 303
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
304
	}
P
Peter Zijlstra 已提交
305

306
	list_add_rcu(&event->event_entry, &ctx->event_list);
307
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
308
		perf_pmu_rotate_start(ctx->pmu);
309 310
	ctx->nr_events++;
	if (event->attr.inherit_stat)
311
		ctx->nr_stat++;
312 313
}

314 315 316 317
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

P
Peter Zijlstra 已提交
318 319 320 321 322 323
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

324 325 326 327 328 329 330 331 332 333 334 335 336
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

337
/*
338
 * Remove a event from the lists for its context.
339
 * Must be called with ctx->mutex and ctx->lock held.
340
 */
341
static void
342
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343
{
344 345 346 347
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348
		return;
349 350 351

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

352 353
	ctx->nr_events--;
	if (event->attr.inherit_stat)
354
		ctx->nr_stat--;
355

356
	list_del_rcu(&event->event_entry);
357

358 359
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
360

361
	update_group_times(event);
362 363 364 365 366 367 368 369 370 371

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
372 373
}

374
static void perf_group_detach(struct perf_event *event)
375 376
{
	struct perf_event *sibling, *tmp;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
398

399
	/*
400 401
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
402
	 * to whatever list we are on.
403
	 */
404
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405 406
		if (list)
			list_move_tail(&sibling->group_entry, list);
407
		sibling->group_leader = sibling;
408 409 410

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
411 412 413
	}
}

414 415 416 417 418 419
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

420 421
static void
event_sched_out(struct perf_event *event,
422
		  struct perf_cpu_context *cpuctx,
423
		  struct perf_event_context *ctx)
424
{
425 426 427 428 429 430 431 432 433 434 435 436 437 438
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

439
	if (event->state != PERF_EVENT_STATE_ACTIVE)
440
		return;
441

442 443 444 445
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
446
	}
447
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
448
	event->pmu->del(event, 0);
449
	event->oncpu = -1;
450

451
	if (!is_software_event(event))
452 453
		cpuctx->active_oncpu--;
	ctx->nr_active--;
454
	if (event->attr.exclusive || !cpuctx->active_oncpu)
455 456 457
		cpuctx->exclusive = 0;
}

458
static void
459
group_sched_out(struct perf_event *group_event,
460
		struct perf_cpu_context *cpuctx,
461
		struct perf_event_context *ctx)
462
{
463
	struct perf_event *event;
464
	int state = group_event->state;
465

466
	event_sched_out(group_event, cpuctx, ctx);
467 468 469 470

	/*
	 * Schedule out siblings (if any):
	 */
471 472
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
473

474
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
475 476 477
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
478 479 480 481 482 483
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
484
/*
485
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
486
 *
487
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
488 489
 * remove it from the context list.
 */
490
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
491
{
492 493
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
494
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
495 496 497 498 499 500

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
501
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
502 503
		return;

504
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
505

506
	event_sched_out(event, cpuctx, ctx);
507

508
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
509

510
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
511 512 513 514
}


/*
515
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
516
 *
517
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
518
 *
519
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
520
 * call when the task is on a CPU.
521
 *
522 523
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
524 525
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
526
 * When called from perf_event_exit_task, it's OK because the
527
 * context has been detached from its task.
T
Thomas Gleixner 已提交
528
 */
529
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
530
{
531
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
532 533 534 535
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
536
		 * Per cpu events are removed via an smp call and
537
		 * the removal is always successful.
T
Thomas Gleixner 已提交
538
		 */
539 540 541
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
542 543 544 545
		return;
	}

retry:
546 547
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
548

549
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
550 551 552
	/*
	 * If the context is active we need to retry the smp call.
	 */
553
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
554
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
555 556 557 558 559
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
560
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
561 562
	 * succeed.
	 */
P
Peter Zijlstra 已提交
563
	if (!list_empty(&event->group_entry))
564
		list_del_event(event, ctx);
565
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
566 567
}

568
/*
569
 * Cross CPU call to disable a performance event
570
 */
571
static void __perf_event_disable(void *info)
572
{
573 574
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
575
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
576 577

	/*
578 579
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
580
	 */
581
	if (ctx->task && cpuctx->task_ctx != ctx)
582 583
		return;

584
	raw_spin_lock(&ctx->lock);
585 586

	/*
587
	 * If the event is on, turn it off.
588 589
	 * If it is in error state, leave it in error state.
	 */
590
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
591
		update_context_time(ctx);
592 593 594
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
595
		else
596 597
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
598 599
	}

600
	raw_spin_unlock(&ctx->lock);
601 602 603
}

/*
604
 * Disable a event.
605
 *
606 607
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
608
 * remains valid.  This condition is satisifed when called through
609 610 611 612
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
613
 * is the current context on this CPU and preemption is disabled,
614
 * hence we can't get into perf_event_task_sched_out for this context.
615
 */
616
void perf_event_disable(struct perf_event *event)
617
{
618
	struct perf_event_context *ctx = event->ctx;
619 620 621 622
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
623
		 * Disable the event on the cpu that it's on
624
		 */
625 626
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
627 628 629
		return;
	}

P
Peter Zijlstra 已提交
630
retry:
631
	task_oncpu_function_call(task, __perf_event_disable, event);
632

633
	raw_spin_lock_irq(&ctx->lock);
634
	/*
635
	 * If the event is still active, we need to retry the cross-call.
636
	 */
637
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
638
		raw_spin_unlock_irq(&ctx->lock);
639 640 641 642 643 644 645
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
646 647 648
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
649
	}
650

651
	raw_spin_unlock_irq(&ctx->lock);
652 653
}

654
static int
655
event_sched_in(struct perf_event *event,
656
		 struct perf_cpu_context *cpuctx,
657
		 struct perf_event_context *ctx)
658
{
659
	if (event->state <= PERF_EVENT_STATE_OFF)
660 661
		return 0;

662
	event->state = PERF_EVENT_STATE_ACTIVE;
663
	event->oncpu = smp_processor_id();
664 665 666 667 668
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
669
	if (event->pmu->add(event, PERF_EF_START)) {
670 671
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
672 673 674
		return -EAGAIN;
	}

675 676
	event->tstamp_running += ctx->time - event->tstamp_stopped;

677
	if (!is_software_event(event))
678
		cpuctx->active_oncpu++;
679 680
	ctx->nr_active++;

681
	if (event->attr.exclusive)
682 683
		cpuctx->exclusive = 1;

684 685 686
	return 0;
}

687
static int
688
group_sched_in(struct perf_event *group_event,
689
	       struct perf_cpu_context *cpuctx,
690
	       struct perf_event_context *ctx)
691
{
692
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
693
	struct pmu *pmu = group_event->pmu;
694 695
	u64 now = ctx->time;
	bool simulate = false;
696

697
	if (group_event->state == PERF_EVENT_STATE_OFF)
698 699
		return 0;

P
Peter Zijlstra 已提交
700
	pmu->start_txn(pmu);
701

702
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
703
		pmu->cancel_txn(pmu);
704
		return -EAGAIN;
705
	}
706 707 708 709

	/*
	 * Schedule in siblings as one group (if any):
	 */
710
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
711
		if (event_sched_in(event, cpuctx, ctx)) {
712
			partial_group = event;
713 714 715 716
			goto group_error;
		}
	}

717
	if (!pmu->commit_txn(pmu))
718
		return 0;
719

720 721 722 723
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
724 725 726 727 728 729 730 731 732 733
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
734
	 */
735 736
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
737 738 739 740 741 742 743 744
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
745
	}
746
	event_sched_out(group_event, cpuctx, ctx);
747

P
Peter Zijlstra 已提交
748
	pmu->cancel_txn(pmu);
749

750 751 752
	return -EAGAIN;
}

753
/*
754
 * Work out whether we can put this event group on the CPU now.
755
 */
756
static int group_can_go_on(struct perf_event *event,
757 758 759 760
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
761
	 * Groups consisting entirely of software events can always go on.
762
	 */
763
	if (event->group_flags & PERF_GROUP_SOFTWARE)
764 765 766
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
767
	 * events can go on.
768 769 770 771 772
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
773
	 * events on the CPU, it can't go on.
774
	 */
775
	if (event->attr.exclusive && cpuctx->active_oncpu)
776 777 778 779 780 781 782 783
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

784 785
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
786
{
787
	list_add_event(event, ctx);
788
	perf_group_attach(event);
789 790 791
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
792 793
}

T
Thomas Gleixner 已提交
794
/*
795
 * Cross CPU call to install and enable a performance event
796 797
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
798 799 800
 */
static void __perf_install_in_context(void *info)
{
801 802 803
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
804
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
805
	int err;
T
Thomas Gleixner 已提交
806 807 808 809 810

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
811
	 * Or possibly this is the right context but it isn't
812
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
813
	 */
814
	if (ctx->task && cpuctx->task_ctx != ctx) {
815
		if (cpuctx->task_ctx || ctx->task != current)
816 817 818
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
819

820
	raw_spin_lock(&ctx->lock);
821
	ctx->is_active = 1;
822
	update_context_time(ctx);
T
Thomas Gleixner 已提交
823

824
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
825

826 827 828
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

829
	/*
830
	 * Don't put the event on if it is disabled or if
831 832
	 * it is in a group and the group isn't on.
	 */
833 834
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
835 836
		goto unlock;

837
	/*
838 839 840
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
841
	 */
842
	if (!group_can_go_on(event, cpuctx, 1))
843 844
		err = -EEXIST;
	else
845
		err = event_sched_in(event, cpuctx, ctx);
846

847 848
	if (err) {
		/*
849
		 * This event couldn't go on.  If it is in a group
850
		 * then we have to pull the whole group off.
851
		 * If the event group is pinned then put it in error state.
852
		 */
853
		if (leader != event)
854
			group_sched_out(leader, cpuctx, ctx);
855
		if (leader->attr.pinned) {
856
			update_group_times(leader);
857
			leader->state = PERF_EVENT_STATE_ERROR;
858
		}
859
	}
T
Thomas Gleixner 已提交
860

P
Peter Zijlstra 已提交
861
unlock:
862
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
863 864 865
}

/*
866
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
867
 *
868 869
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
870
 *
871
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
872 873
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
874 875
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
876 877
 */
static void
878 879
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
880 881 882 883
			int cpu)
{
	struct task_struct *task = ctx->task;

884 885
	event->ctx = ctx;

T
Thomas Gleixner 已提交
886 887
	if (!task) {
		/*
888
		 * Per cpu events are installed via an smp call and
889
		 * the install is always successful.
T
Thomas Gleixner 已提交
890 891
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
892
					 event, 1);
T
Thomas Gleixner 已提交
893 894 895 896 897
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
898
				 event);
T
Thomas Gleixner 已提交
899

900
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
901 902 903
	/*
	 * we need to retry the smp call.
	 */
904
	if (ctx->is_active && list_empty(&event->group_entry)) {
905
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
906 907 908 909 910
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
911
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
912 913
	 * succeed.
	 */
914 915
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
916
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
917 918
}

919
/*
920
 * Put a event into inactive state and update time fields.
921 922 923 924 925 926
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
927 928
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
929
{
930
	struct perf_event *sub;
931

932 933
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
934 935
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
936 937
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
938 939
		}
	}
940 941
}

942
/*
943
 * Cross CPU call to enable a performance event
944
 */
945
static void __perf_event_enable(void *info)
946
{
947 948 949
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
950
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
951
	int err;
952

953
	/*
954 955
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
956
	 */
957
	if (ctx->task && cpuctx->task_ctx != ctx) {
958
		if (cpuctx->task_ctx || ctx->task != current)
959 960 961
			return;
		cpuctx->task_ctx = ctx;
	}
962

963
	raw_spin_lock(&ctx->lock);
964
	ctx->is_active = 1;
965
	update_context_time(ctx);
966

967
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
968
		goto unlock;
969
	__perf_event_mark_enabled(event, ctx);
970

971 972 973
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

974
	/*
975
	 * If the event is in a group and isn't the group leader,
976
	 * then don't put it on unless the group is on.
977
	 */
978
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
979
		goto unlock;
980

981
	if (!group_can_go_on(event, cpuctx, 1)) {
982
		err = -EEXIST;
983
	} else {
984
		if (event == leader)
985
			err = group_sched_in(event, cpuctx, ctx);
986
		else
987
			err = event_sched_in(event, cpuctx, ctx);
988
	}
989 990 991

	if (err) {
		/*
992
		 * If this event can't go on and it's part of a
993 994
		 * group, then the whole group has to come off.
		 */
995
		if (leader != event)
996
			group_sched_out(leader, cpuctx, ctx);
997
		if (leader->attr.pinned) {
998
			update_group_times(leader);
999
			leader->state = PERF_EVENT_STATE_ERROR;
1000
		}
1001 1002
	}

P
Peter Zijlstra 已提交
1003
unlock:
1004
	raw_spin_unlock(&ctx->lock);
1005 1006 1007
}

/*
1008
 * Enable a event.
1009
 *
1010 1011
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1012
 * remains valid.  This condition is satisfied when called through
1013 1014
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1015
 */
1016
void perf_event_enable(struct perf_event *event)
1017
{
1018
	struct perf_event_context *ctx = event->ctx;
1019 1020 1021 1022
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1023
		 * Enable the event on the cpu that it's on
1024
		 */
1025 1026
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1027 1028 1029
		return;
	}

1030
	raw_spin_lock_irq(&ctx->lock);
1031
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1032 1033 1034
		goto out;

	/*
1035 1036
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1037 1038 1039 1040
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1041 1042
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1043

P
Peter Zijlstra 已提交
1044
retry:
1045
	raw_spin_unlock_irq(&ctx->lock);
1046
	task_oncpu_function_call(task, __perf_event_enable, event);
1047

1048
	raw_spin_lock_irq(&ctx->lock);
1049 1050

	/*
1051
	 * If the context is active and the event is still off,
1052 1053
	 * we need to retry the cross-call.
	 */
1054
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1055 1056 1057 1058 1059 1060
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1061 1062
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1063

P
Peter Zijlstra 已提交
1064
out:
1065
	raw_spin_unlock_irq(&ctx->lock);
1066 1067
}

1068
static int perf_event_refresh(struct perf_event *event, int refresh)
1069
{
1070
	/*
1071
	 * not supported on inherited events
1072
	 */
1073
	if (event->attr.inherit)
1074 1075
		return -EINVAL;

1076 1077
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1078 1079

	return 0;
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1091
{
1092
	struct perf_event *event;
1093

1094
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1095
	perf_pmu_disable(ctx->pmu);
1096
	ctx->is_active = 0;
1097
	if (likely(!ctx->nr_events))
1098
		goto out;
1099
	update_context_time(ctx);
1100

1101
	if (!ctx->nr_active)
1102
		goto out;
1103

P
Peter Zijlstra 已提交
1104
	if (event_type & EVENT_PINNED) {
1105 1106
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1107
	}
1108

P
Peter Zijlstra 已提交
1109
	if (event_type & EVENT_FLEXIBLE) {
1110
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1111
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1112 1113
	}
out:
P
Peter Zijlstra 已提交
1114
	perf_pmu_enable(ctx->pmu);
1115
	raw_spin_unlock(&ctx->lock);
1116 1117
}

1118 1119 1120
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1121 1122 1123 1124
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1125
 * in them directly with an fd; we can only enable/disable all
1126
 * events via prctl, or enable/disable all events in a family
1127 1128
 * via ioctl, which will have the same effect on both contexts.
 */
1129 1130
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1131 1132
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1133
		&& ctx1->parent_gen == ctx2->parent_gen
1134
		&& !ctx1->pin_count && !ctx2->pin_count;
1135 1136
}

1137 1138
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1139 1140 1141
{
	u64 value;

1142
	if (!event->attr.inherit_stat)
1143 1144 1145
		return;

	/*
1146
	 * Update the event value, we cannot use perf_event_read()
1147 1148
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1149
	 * we know the event must be on the current CPU, therefore we
1150 1151
	 * don't need to use it.
	 */
1152 1153
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1154 1155
		event->pmu->read(event);
		/* fall-through */
1156

1157 1158
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1159 1160 1161 1162 1163 1164 1165
		break;

	default:
		break;
	}

	/*
1166
	 * In order to keep per-task stats reliable we need to flip the event
1167 1168
	 * values when we flip the contexts.
	 */
1169 1170 1171
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1172

1173 1174
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1175

1176
	/*
1177
	 * Since we swizzled the values, update the user visible data too.
1178
	 */
1179 1180
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1181 1182 1183 1184 1185
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1186 1187
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1188
{
1189
	struct perf_event *event, *next_event;
1190 1191 1192 1193

	if (!ctx->nr_stat)
		return;

1194 1195
	update_context_time(ctx);

1196 1197
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1198

1199 1200
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1201

1202 1203
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1204

1205
		__perf_event_sync_stat(event, next_event);
1206

1207 1208
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1209 1210 1211
	}
}

P
Peter Zijlstra 已提交
1212 1213
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1214
{
P
Peter Zijlstra 已提交
1215
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1216 1217
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1218
	struct perf_cpu_context *cpuctx;
1219
	int do_switch = 1;
T
Thomas Gleixner 已提交
1220

P
Peter Zijlstra 已提交
1221 1222
	if (likely(!ctx))
		return;
1223

P
Peter Zijlstra 已提交
1224 1225
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1226 1227
		return;

1228 1229
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1230
	next_ctx = next->perf_event_ctxp[ctxn];
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1242 1243
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1244
		if (context_equiv(ctx, next_ctx)) {
1245 1246
			/*
			 * XXX do we need a memory barrier of sorts
1247
			 * wrt to rcu_dereference() of perf_event_ctxp
1248
			 */
P
Peter Zijlstra 已提交
1249 1250
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1251 1252 1253
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1254

1255
			perf_event_sync_stat(ctx, next_ctx);
1256
		}
1257 1258
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1259
	}
1260
	rcu_read_unlock();
1261

1262
	if (do_switch) {
1263
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1264 1265
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1266 1267
}

P
Peter Zijlstra 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1282 1283
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292
{
	int ctxn;

	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1293 1294
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1295
{
P
Peter Zijlstra 已提交
1296
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1297

1298 1299
	if (!cpuctx->task_ctx)
		return;
1300 1301 1302 1303

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1304
	ctx_sched_out(ctx, cpuctx, event_type);
1305 1306 1307
	cpuctx->task_ctx = NULL;
}

1308 1309 1310 1311 1312 1313 1314
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1315 1316
}

1317
static void
1318
ctx_pinned_sched_in(struct perf_event_context *ctx,
1319
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1320
{
1321
	struct perf_event *event;
T
Thomas Gleixner 已提交
1322

1323 1324
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1325
			continue;
1326
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1327 1328
			continue;

1329
		if (group_can_go_on(event, cpuctx, 1))
1330
			group_sched_in(event, cpuctx, ctx);
1331 1332 1333 1334 1335

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1336 1337 1338
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1339
		}
1340
	}
1341 1342 1343 1344
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1345
		      struct perf_cpu_context *cpuctx)
1346 1347 1348
{
	struct perf_event *event;
	int can_add_hw = 1;
1349

1350 1351 1352
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1353
			continue;
1354 1355
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1356
		 * of events:
1357
		 */
1358
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1359 1360
			continue;

P
Peter Zijlstra 已提交
1361
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1362
			if (group_sched_in(event, cpuctx, ctx))
1363
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1364
		}
T
Thomas Gleixner 已提交
1365
	}
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1385
		ctx_pinned_sched_in(ctx, cpuctx);
1386 1387 1388

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1389
		ctx_flexible_sched_in(ctx, cpuctx);
1390

P
Peter Zijlstra 已提交
1391
out:
1392
	raw_spin_unlock(&ctx->lock);
1393 1394
}

1395 1396 1397 1398 1399 1400 1401 1402
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1403
static void task_ctx_sched_in(struct perf_event_context *ctx,
1404 1405
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1406
	struct perf_cpu_context *cpuctx;
1407

P
Peter Zijlstra 已提交
1408
       	cpuctx = __get_cpu_context(ctx);
1409 1410
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1411

1412 1413 1414
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
1415

P
Peter Zijlstra 已提交
1416
void perf_event_context_sched_in(struct perf_event_context *ctx)
1417
{
P
Peter Zijlstra 已提交
1418
	struct perf_cpu_context *cpuctx;
1419

P
Peter Zijlstra 已提交
1420
	cpuctx = __get_cpu_context(ctx);
1421 1422 1423
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
1424
	perf_pmu_disable(ctx->pmu);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1437

1438 1439 1440 1441
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1442
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
1443
	perf_pmu_enable(ctx->pmu);
1444 1445
}

P
Peter Zijlstra 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
1457
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
1469 1470
}

1471 1472
#define MAX_INTERRUPTS (~0ULL)

1473
static void perf_log_throttle(struct perf_event *event, int enable);
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1542 1543 1544
	if (!divisor)
		return dividend;

1545 1546 1547 1548
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1549
{
1550
	struct hw_perf_event *hwc = &event->hw;
1551
	s64 period, sample_period;
1552 1553
	s64 delta;

1554
	period = perf_calculate_period(event, nsec, count);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1565

1566
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1567
		event->pmu->stop(event, PERF_EF_UPDATE);
1568
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1569
		event->pmu->start(event, PERF_EF_RELOAD);
1570
	}
1571 1572
}

1573
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1574
{
1575 1576
	struct perf_event *event;
	struct hw_perf_event *hwc;
1577 1578
	u64 interrupts, now;
	s64 delta;
1579

1580
	raw_spin_lock(&ctx->lock);
1581
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1582
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1583 1584
			continue;

1585 1586 1587
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1588
		hwc = &event->hw;
1589 1590 1591

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1592

1593
		/*
1594
		 * unthrottle events on the tick
1595
		 */
1596
		if (interrupts == MAX_INTERRUPTS) {
1597
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1598
			event->pmu->start(event, 0);
1599 1600
		}

1601
		if (!event->attr.freq || !event->attr.sample_freq)
1602 1603
			continue;

1604
		event->pmu->read(event);
1605
		now = local64_read(&event->count);
1606 1607
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1608

1609
		if (delta > 0)
1610
			perf_adjust_period(event, period, delta);
1611
	}
1612
	raw_spin_unlock(&ctx->lock);
1613 1614
}

1615
/*
1616
 * Round-robin a context's events:
1617
 */
1618
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1619
{
1620
	raw_spin_lock(&ctx->lock);
1621 1622 1623 1624

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1625
	raw_spin_unlock(&ctx->lock);
1626 1627
}

1628
/*
1629 1630 1631
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
1632
 */
1633
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1634
{
1635
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
1636
	struct perf_event_context *ctx = NULL;
1637
	int rotate = 0, remove = 1;
1638

1639
	if (cpuctx->ctx.nr_events) {
1640
		remove = 0;
1641 1642 1643
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1644

P
Peter Zijlstra 已提交
1645
	ctx = cpuctx->task_ctx;
1646
	if (ctx && ctx->nr_events) {
1647
		remove = 0;
1648 1649 1650
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1651

P
Peter Zijlstra 已提交
1652
	perf_pmu_disable(cpuctx->ctx.pmu);
1653
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1654
	if (ctx)
1655
		perf_ctx_adjust_freq(ctx, interval);
1656

1657
	if (!rotate)
1658
		goto done;
1659

1660
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1661
	if (ctx)
1662
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1663

1664
	rotate_ctx(&cpuctx->ctx);
1665 1666
	if (ctx)
		rotate_ctx(ctx);
1667

1668
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1669
	if (ctx)
P
Peter Zijlstra 已提交
1670
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1671 1672

done:
1673 1674 1675
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
1676
	perf_pmu_enable(cpuctx->ctx.pmu);
1677 1678 1679 1680 1681 1682
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
1683

1684 1685 1686 1687 1688 1689 1690
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
1691 1692
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1708
/*
1709
 * Enable all of a task's events that have been marked enable-on-exec.
1710 1711
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1712
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1713
{
1714
	struct perf_event *event;
1715 1716
	unsigned long flags;
	int enabled = 0;
1717
	int ret;
1718 1719

	local_irq_save(flags);
1720
	if (!ctx || !ctx->nr_events)
1721 1722
		goto out;

P
Peter Zijlstra 已提交
1723
	task_ctx_sched_out(ctx, EVENT_ALL);
1724

1725
	raw_spin_lock(&ctx->lock);
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1737 1738 1739
	}

	/*
1740
	 * Unclone this context if we enabled any event.
1741
	 */
1742 1743
	if (enabled)
		unclone_ctx(ctx);
1744

1745
	raw_spin_unlock(&ctx->lock);
1746

P
Peter Zijlstra 已提交
1747
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1748
out:
1749 1750 1751
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1752
/*
1753
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1754
 */
1755
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1756
{
1757 1758
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1759
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1760

1761 1762 1763 1764
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1765 1766
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1767 1768 1769 1770
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1771
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1772
	update_context_time(ctx);
1773
	update_event_times(event);
1774
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1775

P
Peter Zijlstra 已提交
1776
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1777 1778
}

P
Peter Zijlstra 已提交
1779 1780
static inline u64 perf_event_count(struct perf_event *event)
{
1781
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1782 1783
}

1784
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1785 1786
{
	/*
1787 1788
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1789
	 */
1790 1791 1792 1793
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1794 1795 1796
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1797
		raw_spin_lock_irqsave(&ctx->lock, flags);
1798 1799 1800 1801 1802 1803 1804
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
		if (ctx->is_active)
			update_context_time(ctx);
1805
		update_event_times(event);
1806
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1807 1808
	}

P
Peter Zijlstra 已提交
1809
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1810 1811
}

1812
/*
1813
 * Callchain support
1814
 */
1815 1816 1817 1818 1819 1820

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1821
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1822 1823 1824 1825 1826 1827 1828
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
1829 1830 1831
{
}

1832 1833
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
1834
{
1835
}
T
Thomas Gleixner 已提交
1836

1837 1838 1839 1840
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
1841

1842
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
1843

1844 1845
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
1846

1847 1848
	kfree(entries);
}
T
Thomas Gleixner 已提交
1849

1850 1851 1852
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1853

1854 1855 1856 1857
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
1858

1859 1860 1861 1862 1863
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1864

1865
	/*
1866 1867 1868
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
1869
	 */
1870 1871
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();
1872

1873 1874 1875
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
1876

1877
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
1878

1879 1880 1881 1882 1883
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
1884 1885
	}

1886
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2022
/*
2023
 * Initialize the perf_event context in a task_struct:
2024
 */
2025
static void __perf_event_init_context(struct perf_event_context *ctx)
2026
{
2027
	raw_spin_lock_init(&ctx->lock);
2028
	mutex_init(&ctx->mutex);
2029 2030
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2031 2032
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2048
	}
2049 2050 2051
	ctx->pmu = pmu;

	return ctx;
2052 2053
}

2054 2055 2056 2057 2058
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2059 2060

	rcu_read_lock();
2061
	if (!vpid)
T
Thomas Gleixner 已提交
2062 2063
		task = current;
	else
2064
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2065 2066 2067 2068 2069 2070 2071
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2072
	/*
2073
	 * Can't attach events to a dying task.
2074 2075 2076 2077 2078
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2079
	/* Reuse ptrace permission checks for now. */
2080 2081 2082 2083
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2084 2085 2086 2087 2088 2089 2090
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

P
Peter Zijlstra 已提交
2091
static struct perf_event_context *
M
Matt Helsley 已提交
2092
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2093
{
2094
	struct perf_event_context *ctx;
2095
	struct perf_cpu_context *cpuctx;
2096
	unsigned long flags;
P
Peter Zijlstra 已提交
2097
	int ctxn, err;
T
Thomas Gleixner 已提交
2098

M
Matt Helsley 已提交
2099
	if (!task && cpu != -1) {
2100
		/* Must be root to operate on a CPU event: */
2101
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2102 2103
			return ERR_PTR(-EACCES);

2104
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2105 2106 2107
			return ERR_PTR(-EINVAL);

		/*
2108
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2109 2110 2111
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2112
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2113 2114
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2115
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2116
		ctx = &cpuctx->ctx;
2117
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2118 2119 2120 2121

		return ctx;
	}

P
Peter Zijlstra 已提交
2122 2123 2124 2125 2126
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2127
retry:
P
Peter Zijlstra 已提交
2128
	ctx = perf_lock_task_context(task, ctxn, &flags);
2129
	if (ctx) {
2130
		unclone_ctx(ctx);
2131
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2132 2133
	}

2134
	if (!ctx) {
2135
		ctx = alloc_perf_context(pmu, task);
2136 2137 2138
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2139

2140
		get_ctx(ctx);
2141

P
Peter Zijlstra 已提交
2142
		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2143 2144 2145 2146
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2147
			put_task_struct(task);
2148
			kfree(ctx);
2149
			goto retry;
2150 2151 2152
		}
	}

T
Thomas Gleixner 已提交
2153
	return ctx;
2154

P
Peter Zijlstra 已提交
2155
errout:
2156
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2157 2158
}

L
Li Zefan 已提交
2159 2160
static void perf_event_free_filter(struct perf_event *event);

2161
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2162
{
2163
	struct perf_event *event;
P
Peter Zijlstra 已提交
2164

2165 2166 2167
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2168
	perf_event_free_filter(event);
2169
	kfree(event);
P
Peter Zijlstra 已提交
2170 2171
}

2172
static void perf_buffer_put(struct perf_buffer *buffer);
2173

2174
static void free_event(struct perf_event *event)
2175
{
2176
	irq_work_sync(&event->pending);
2177

2178
	if (!event->parent) {
2179 2180
		if (event->attach_state & PERF_ATTACH_TASK)
			jump_label_dec(&perf_task_events);
2181
		if (event->attr.mmap || event->attr.mmap_data)
2182 2183 2184 2185 2186
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2187 2188
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2189
	}
2190

2191 2192 2193
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2194 2195
	}

2196 2197
	if (event->destroy)
		event->destroy(event);
2198

P
Peter Zijlstra 已提交
2199 2200 2201
	if (event->ctx)
		put_ctx(event->ctx);

2202
	call_rcu(&event->rcu_head, free_event_rcu);
2203 2204
}

2205
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2206
{
2207
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2208

2209 2210 2211 2212 2213 2214
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2215
	WARN_ON_ONCE(ctx->parent_ctx);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2229
	raw_spin_lock_irq(&ctx->lock);
2230
	perf_group_detach(event);
2231 2232
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2233
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2234

2235 2236 2237 2238
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2239

2240
	free_event(event);
T
Thomas Gleixner 已提交
2241 2242 2243

	return 0;
}
2244
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2245

2246 2247 2248 2249
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2250
{
2251
	struct perf_event *event = file->private_data;
2252

2253
	file->private_data = NULL;
2254

2255
	return perf_event_release_kernel(event);
2256 2257
}

2258
static int perf_event_read_size(struct perf_event *event)
2259 2260 2261 2262 2263
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2264
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2265 2266
		size += sizeof(u64);

2267
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2268 2269
		size += sizeof(u64);

2270
	if (event->attr.read_format & PERF_FORMAT_ID)
2271 2272
		entry += sizeof(u64);

2273 2274
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2275 2276 2277 2278 2279 2280 2281 2282
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2283
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2284
{
2285
	struct perf_event *child;
2286 2287
	u64 total = 0;

2288 2289 2290
	*enabled = 0;
	*running = 0;

2291
	mutex_lock(&event->child_mutex);
2292
	total += perf_event_read(event);
2293 2294 2295 2296 2297 2298
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2299
		total += perf_event_read(child);
2300 2301 2302
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2303
	mutex_unlock(&event->child_mutex);
2304 2305 2306

	return total;
}
2307
EXPORT_SYMBOL_GPL(perf_event_read_value);
2308

2309
static int perf_event_read_group(struct perf_event *event,
2310 2311
				   u64 read_format, char __user *buf)
{
2312
	struct perf_event *leader = event->group_leader, *sub;
2313 2314
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2315
	u64 values[5];
2316
	u64 count, enabled, running;
2317

2318
	mutex_lock(&ctx->mutex);
2319
	count = perf_event_read_value(leader, &enabled, &running);
2320 2321

	values[n++] = 1 + leader->nr_siblings;
2322 2323 2324 2325
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2326 2327 2328
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2329 2330 2331 2332

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2333
		goto unlock;
2334

2335
	ret = size;
2336

2337
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2338
		n = 0;
2339

2340
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2341 2342 2343 2344 2345
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2346
		if (copy_to_user(buf + ret, values, size)) {
2347 2348 2349
			ret = -EFAULT;
			goto unlock;
		}
2350 2351

		ret += size;
2352
	}
2353 2354
unlock:
	mutex_unlock(&ctx->mutex);
2355

2356
	return ret;
2357 2358
}

2359
static int perf_event_read_one(struct perf_event *event,
2360 2361
				 u64 read_format, char __user *buf)
{
2362
	u64 enabled, running;
2363 2364 2365
	u64 values[4];
	int n = 0;

2366 2367 2368 2369 2370
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2371
	if (read_format & PERF_FORMAT_ID)
2372
		values[n++] = primary_event_id(event);
2373 2374 2375 2376 2377 2378 2379

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2380
/*
2381
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2382 2383
 */
static ssize_t
2384
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2385
{
2386
	u64 read_format = event->attr.read_format;
2387
	int ret;
T
Thomas Gleixner 已提交
2388

2389
	/*
2390
	 * Return end-of-file for a read on a event that is in
2391 2392 2393
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2394
	if (event->state == PERF_EVENT_STATE_ERROR)
2395 2396
		return 0;

2397
	if (count < perf_event_read_size(event))
2398 2399
		return -ENOSPC;

2400
	WARN_ON_ONCE(event->ctx->parent_ctx);
2401
	if (read_format & PERF_FORMAT_GROUP)
2402
		ret = perf_event_read_group(event, read_format, buf);
2403
	else
2404
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2405

2406
	return ret;
T
Thomas Gleixner 已提交
2407 2408 2409 2410 2411
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2412
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2413

2414
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2415 2416 2417 2418
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2419
	struct perf_event *event = file->private_data;
2420
	struct perf_buffer *buffer;
2421
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2422 2423

	rcu_read_lock();
2424 2425 2426
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2427
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2428

2429
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2430 2431 2432 2433

	return events;
}

2434
static void perf_event_reset(struct perf_event *event)
2435
{
2436
	(void)perf_event_read(event);
2437
	local64_set(&event->count, 0);
2438
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2439 2440
}

2441
/*
2442 2443 2444 2445
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2446
 */
2447 2448
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2449
{
2450
	struct perf_event *child;
P
Peter Zijlstra 已提交
2451

2452 2453 2454 2455
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2456
		func(child);
2457
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2458 2459
}

2460 2461
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2462
{
2463 2464
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2465

2466 2467
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2468
	event = event->group_leader;
2469

2470 2471 2472 2473
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2474
	mutex_unlock(&ctx->mutex);
2475 2476
}

2477
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2478
{
2479
	struct perf_event_context *ctx = event->ctx;
2480 2481 2482
	int ret = 0;
	u64 value;

2483
	if (!event->attr.sample_period)
2484 2485
		return -EINVAL;

2486
	if (copy_from_user(&value, arg, sizeof(value)))
2487 2488 2489 2490 2491
		return -EFAULT;

	if (!value)
		return -EINVAL;

2492
	raw_spin_lock_irq(&ctx->lock);
2493 2494
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2495 2496 2497 2498
			ret = -EINVAL;
			goto unlock;
		}

2499
		event->attr.sample_freq = value;
2500
	} else {
2501 2502
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2503 2504
	}
unlock:
2505
	raw_spin_unlock_irq(&ctx->lock);
2506 2507 2508 2509

	return ret;
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2531
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2532

2533 2534
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2535 2536
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2537
	u32 flags = arg;
2538 2539

	switch (cmd) {
2540 2541
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2542
		break;
2543 2544
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2545
		break;
2546 2547
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2548
		break;
P
Peter Zijlstra 已提交
2549

2550 2551
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2552

2553 2554
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2555

2556
	case PERF_EVENT_IOC_SET_OUTPUT:
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2574

L
Li Zefan 已提交
2575 2576 2577
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2578
	default:
P
Peter Zijlstra 已提交
2579
		return -ENOTTY;
2580
	}
P
Peter Zijlstra 已提交
2581 2582

	if (flags & PERF_IOC_FLAG_GROUP)
2583
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2584
	else
2585
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2586 2587

	return 0;
2588 2589
}

2590
int perf_event_task_enable(void)
2591
{
2592
	struct perf_event *event;
2593

2594 2595 2596 2597
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2598 2599 2600 2601

	return 0;
}

2602
int perf_event_task_disable(void)
2603
{
2604
	struct perf_event *event;
2605

2606 2607 2608 2609
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2610 2611 2612 2613

	return 0;
}

2614 2615
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2616 2617
#endif

2618
static int perf_event_index(struct perf_event *event)
2619
{
P
Peter Zijlstra 已提交
2620 2621 2622
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2623
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2624 2625
		return 0;

2626
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2627 2628
}

2629 2630 2631 2632 2633
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2634
void perf_event_update_userpage(struct perf_event *event)
2635
{
2636
	struct perf_event_mmap_page *userpg;
2637
	struct perf_buffer *buffer;
2638 2639

	rcu_read_lock();
2640 2641
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2642 2643
		goto unlock;

2644
	userpg = buffer->user_page;
2645

2646 2647 2648 2649 2650
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2651
	++userpg->lock;
2652
	barrier();
2653
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2654
	userpg->offset = perf_event_count(event);
2655
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2656
		userpg->offset -= local64_read(&event->hw.prev_count);
2657

2658 2659
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2660

2661 2662
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2663

2664
	barrier();
2665
	++userpg->lock;
2666
	preempt_enable();
2667
unlock:
2668
	rcu_read_unlock();
2669 2670
}

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2690
#ifndef CONFIG_PERF_USE_VMALLOC
2691

2692 2693 2694
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2695

2696
static struct page *
2697
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2698
{
2699
	if (pgoff > buffer->nr_pages)
2700
		return NULL;
2701

2702
	if (pgoff == 0)
2703
		return virt_to_page(buffer->user_page);
2704

2705
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2706 2707
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2721
static struct perf_buffer *
2722
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2723
{
2724
	struct perf_buffer *buffer;
2725 2726 2727
	unsigned long size;
	int i;

2728
	size = sizeof(struct perf_buffer);
2729 2730
	size += nr_pages * sizeof(void *);

2731 2732
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2733 2734
		goto fail;

2735
	buffer->user_page = perf_mmap_alloc_page(cpu);
2736
	if (!buffer->user_page)
2737 2738 2739
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2740
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2741
		if (!buffer->data_pages[i])
2742 2743 2744
			goto fail_data_pages;
	}

2745
	buffer->nr_pages = nr_pages;
2746

2747 2748
	perf_buffer_init(buffer, watermark, flags);

2749
	return buffer;
2750 2751 2752

fail_data_pages:
	for (i--; i >= 0; i--)
2753
		free_page((unsigned long)buffer->data_pages[i]);
2754

2755
	free_page((unsigned long)buffer->user_page);
2756 2757

fail_user_page:
2758
	kfree(buffer);
2759 2760

fail:
2761
	return NULL;
2762 2763
}

2764 2765
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2766
	struct page *page = virt_to_page((void *)addr);
2767 2768 2769 2770 2771

	page->mapping = NULL;
	__free_page(page);
}

2772
static void perf_buffer_free(struct perf_buffer *buffer)
2773 2774 2775
{
	int i;

2776 2777 2778 2779
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2780 2781
}

2782
static inline int page_order(struct perf_buffer *buffer)
2783 2784 2785 2786
{
	return 0;
}

2787 2788 2789 2790 2791 2792 2793 2794
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2795
static inline int page_order(struct perf_buffer *buffer)
2796
{
2797
	return buffer->page_order;
2798 2799
}

2800
static struct page *
2801
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2802
{
2803
	if (pgoff > (1UL << page_order(buffer)))
2804 2805
		return NULL;

2806
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2807 2808 2809 2810 2811 2812 2813 2814 2815
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2816
static void perf_buffer_free_work(struct work_struct *work)
2817
{
2818
	struct perf_buffer *buffer;
2819 2820 2821
	void *base;
	int i, nr;

2822 2823
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2824

2825
	base = buffer->user_page;
2826 2827 2828 2829
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2830
	kfree(buffer);
2831 2832
}

2833
static void perf_buffer_free(struct perf_buffer *buffer)
2834
{
2835
	schedule_work(&buffer->work);
2836 2837
}

2838
static struct perf_buffer *
2839
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2840
{
2841
	struct perf_buffer *buffer;
2842 2843 2844
	unsigned long size;
	void *all_buf;

2845
	size = sizeof(struct perf_buffer);
2846 2847
	size += sizeof(void *);

2848 2849
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2850 2851
		goto fail;

2852
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2853 2854 2855 2856 2857

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2858 2859 2860 2861
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2862

2863 2864
	perf_buffer_init(buffer, watermark, flags);

2865
	return buffer;
2866 2867

fail_all_buf:
2868
	kfree(buffer);
2869 2870 2871 2872 2873 2874 2875

fail:
	return NULL;
}

#endif

2876
static unsigned long perf_data_size(struct perf_buffer *buffer)
2877
{
2878
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2879 2880
}

2881 2882 2883
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2884
	struct perf_buffer *buffer;
2885 2886 2887 2888 2889 2890 2891 2892 2893
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2894 2895
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2896 2897 2898 2899 2900
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2901
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2916
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2917
{
2918
	struct perf_buffer *buffer;
2919

2920 2921
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2922 2923
}

2924
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2925
{
2926
	struct perf_buffer *buffer;
2927

2928
	rcu_read_lock();
2929 2930 2931 2932
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2933 2934 2935
	}
	rcu_read_unlock();

2936
	return buffer;
2937 2938
}

2939
static void perf_buffer_put(struct perf_buffer *buffer)
2940
{
2941
	if (!atomic_dec_and_test(&buffer->refcount))
2942
		return;
2943

2944
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2945 2946 2947 2948
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2949
	struct perf_event *event = vma->vm_file->private_data;
2950

2951
	atomic_inc(&event->mmap_count);
2952 2953 2954 2955
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2956
	struct perf_event *event = vma->vm_file->private_data;
2957

2958
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2959
		unsigned long size = perf_data_size(event->buffer);
2960
		struct user_struct *user = event->mmap_user;
2961
		struct perf_buffer *buffer = event->buffer;
2962

2963
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2964
		vma->vm_mm->locked_vm -= event->mmap_locked;
2965
		rcu_assign_pointer(event->buffer, NULL);
2966
		mutex_unlock(&event->mmap_mutex);
2967

2968
		perf_buffer_put(buffer);
2969
		free_uid(user);
2970
	}
2971 2972
}

2973
static const struct vm_operations_struct perf_mmap_vmops = {
2974 2975 2976 2977
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2978 2979 2980 2981
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2982
	struct perf_event *event = file->private_data;
2983
	unsigned long user_locked, user_lock_limit;
2984
	struct user_struct *user = current_user();
2985
	unsigned long locked, lock_limit;
2986
	struct perf_buffer *buffer;
2987 2988
	unsigned long vma_size;
	unsigned long nr_pages;
2989
	long user_extra, extra;
2990
	int ret = 0, flags = 0;
2991

2992 2993 2994 2995 2996 2997 2998 2999
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3000
	if (!(vma->vm_flags & VM_SHARED))
3001
		return -EINVAL;
3002 3003 3004 3005

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3006
	/*
3007
	 * If we have buffer pages ensure they're a power-of-two number, so we
3008 3009 3010
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3011 3012
		return -EINVAL;

3013
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3014 3015
		return -EINVAL;

3016 3017
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3018

3019 3020
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3021 3022 3023
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3024
		else
3025 3026 3027 3028
			ret = -EINVAL;
		goto unlock;
	}

3029
	user_extra = nr_pages + 1;
3030
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3031 3032 3033 3034 3035 3036

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3037
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3038

3039 3040 3041
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3042

3043
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3044
	lock_limit >>= PAGE_SHIFT;
3045
	locked = vma->vm_mm->locked_vm + extra;
3046

3047 3048
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3049 3050 3051
		ret = -EPERM;
		goto unlock;
	}
3052

3053
	WARN_ON(event->buffer);
3054

3055 3056 3057 3058 3059
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3060
	if (!buffer) {
3061
		ret = -ENOMEM;
3062
		goto unlock;
3063
	}
3064
	rcu_assign_pointer(event->buffer, buffer);
3065

3066 3067 3068 3069 3070
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3071
unlock:
3072 3073
	if (!ret)
		atomic_inc(&event->mmap_count);
3074
	mutex_unlock(&event->mmap_mutex);
3075 3076 3077

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3078 3079

	return ret;
3080 3081
}

P
Peter Zijlstra 已提交
3082 3083 3084
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3085
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3086 3087 3088
	int retval;

	mutex_lock(&inode->i_mutex);
3089
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3090 3091 3092 3093 3094 3095 3096 3097
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3098
static const struct file_operations perf_fops = {
3099
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3100 3101 3102
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3103 3104
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3105
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3106
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3107 3108
};

3109
/*
3110
 * Perf event wakeup
3111 3112 3113 3114 3115
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3116
void perf_event_wakeup(struct perf_event *event)
3117
{
3118
	wake_up_all(&event->waitq);
3119

3120 3121 3122
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3123
	}
3124 3125
}

3126
static void perf_pending_event(struct irq_work *entry)
3127
{
3128 3129
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3130

3131 3132 3133
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3134 3135
	}

3136 3137 3138
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3139 3140 3141
	}
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3163 3164 3165
/*
 * Output
 */
3166
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3167
			      unsigned long offset, unsigned long head)
3168 3169 3170
{
	unsigned long mask;

3171
	if (!buffer->writable)
3172 3173
		return true;

3174
	mask = perf_data_size(buffer) - 1;
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3185
static void perf_output_wakeup(struct perf_output_handle *handle)
3186
{
3187
	atomic_set(&handle->buffer->poll, POLL_IN);
3188

3189
	if (handle->nmi) {
3190
		handle->event->pending_wakeup = 1;
3191
		irq_work_queue(&handle->event->pending);
3192
	} else
3193
		perf_event_wakeup(handle->event);
3194 3195
}

3196
/*
3197
 * We need to ensure a later event_id doesn't publish a head when a former
3198
 * event isn't done writing. However since we need to deal with NMIs we
3199 3200 3201
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3202
 * event completes.
3203
 */
3204
static void perf_output_get_handle(struct perf_output_handle *handle)
3205
{
3206
	struct perf_buffer *buffer = handle->buffer;
3207

3208
	preempt_disable();
3209 3210
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3211 3212
}

3213
static void perf_output_put_handle(struct perf_output_handle *handle)
3214
{
3215
	struct perf_buffer *buffer = handle->buffer;
3216
	unsigned long head;
3217 3218

again:
3219
	head = local_read(&buffer->head);
3220 3221

	/*
3222
	 * IRQ/NMI can happen here, which means we can miss a head update.
3223 3224
	 */

3225
	if (!local_dec_and_test(&buffer->nest))
3226
		goto out;
3227 3228

	/*
3229
	 * Publish the known good head. Rely on the full barrier implied
3230
	 * by atomic_dec_and_test() order the buffer->head read and this
3231
	 * write.
3232
	 */
3233
	buffer->user_page->data_head = head;
3234

3235 3236
	/*
	 * Now check if we missed an update, rely on the (compiler)
3237
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3238
	 */
3239 3240
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3241 3242 3243
		goto again;
	}

3244
	if (handle->wakeup != local_read(&buffer->wakeup))
3245
		perf_output_wakeup(handle);
3246

P
Peter Zijlstra 已提交
3247
out:
3248
	preempt_enable();
3249 3250
}

3251
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3252
		      const void *buf, unsigned int len)
3253
{
3254
	do {
3255
		unsigned long size = min_t(unsigned long, handle->size, len);
3256 3257 3258 3259 3260

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3261
		buf += size;
3262 3263
		handle->size -= size;
		if (!handle->size) {
3264
			struct perf_buffer *buffer = handle->buffer;
3265

3266
			handle->page++;
3267 3268 3269
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3270 3271
		}
	} while (len);
3272 3273
}

3274
int perf_output_begin(struct perf_output_handle *handle,
3275
		      struct perf_event *event, unsigned int size,
3276
		      int nmi, int sample)
3277
{
3278
	struct perf_buffer *buffer;
3279
	unsigned long tail, offset, head;
3280 3281 3282 3283 3284 3285
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3286

3287
	rcu_read_lock();
3288
	/*
3289
	 * For inherited events we send all the output towards the parent.
3290
	 */
3291 3292
	if (event->parent)
		event = event->parent;
3293

3294 3295
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3296 3297
		goto out;

3298
	handle->buffer	= buffer;
3299
	handle->event	= event;
3300 3301
	handle->nmi	= nmi;
	handle->sample	= sample;
3302

3303
	if (!buffer->nr_pages)
3304
		goto out;
3305

3306
	have_lost = local_read(&buffer->lost);
3307 3308 3309
	if (have_lost)
		size += sizeof(lost_event);

3310
	perf_output_get_handle(handle);
3311

3312
	do {
3313 3314 3315 3316 3317
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3318
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3319
		smp_rmb();
3320
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3321
		head += size;
3322
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3323
			goto fail;
3324
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3325

3326 3327
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3328

3329 3330 3331 3332
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3333
	handle->addr += handle->size;
3334
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3335

3336
	if (have_lost) {
3337
		lost_event.header.type = PERF_RECORD_LOST;
3338 3339
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3340
		lost_event.id          = event->id;
3341
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3342 3343 3344 3345

		perf_output_put(handle, lost_event);
	}

3346
	return 0;
3347

3348
fail:
3349
	local_inc(&buffer->lost);
3350
	perf_output_put_handle(handle);
3351 3352
out:
	rcu_read_unlock();
3353

3354 3355
	return -ENOSPC;
}
3356

3357
void perf_output_end(struct perf_output_handle *handle)
3358
{
3359
	struct perf_event *event = handle->event;
3360
	struct perf_buffer *buffer = handle->buffer;
3361

3362
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3363

3364
	if (handle->sample && wakeup_events) {
3365
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3366
		if (events >= wakeup_events) {
3367 3368
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3369
		}
3370 3371
	}

3372
	perf_output_put_handle(handle);
3373
	rcu_read_unlock();
3374 3375
}

3376
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3377 3378
{
	/*
3379
	 * only top level events have the pid namespace they were created in
3380
	 */
3381 3382
	if (event->parent)
		event = event->parent;
3383

3384
	return task_tgid_nr_ns(p, event->ns);
3385 3386
}

3387
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3388 3389
{
	/*
3390
	 * only top level events have the pid namespace they were created in
3391
	 */
3392 3393
	if (event->parent)
		event = event->parent;
3394

3395
	return task_pid_nr_ns(p, event->ns);
3396 3397
}

3398
static void perf_output_read_one(struct perf_output_handle *handle,
3399
				 struct perf_event *event)
3400
{
3401
	u64 read_format = event->attr.read_format;
3402 3403 3404
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3405
	values[n++] = perf_event_count(event);
3406
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3407 3408
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3409 3410
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3411 3412
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3413 3414
	}
	if (read_format & PERF_FORMAT_ID)
3415
		values[n++] = primary_event_id(event);
3416 3417 3418 3419 3420

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3421
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3422 3423
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3424
			    struct perf_event *event)
3425
{
3426 3427
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3439
	if (leader != event)
3440 3441
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3442
	values[n++] = perf_event_count(leader);
3443
	if (read_format & PERF_FORMAT_ID)
3444
		values[n++] = primary_event_id(leader);
3445 3446 3447

	perf_output_copy(handle, values, n * sizeof(u64));

3448
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3449 3450
		n = 0;

3451
		if (sub != event)
3452 3453
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3454
		values[n++] = perf_event_count(sub);
3455
		if (read_format & PERF_FORMAT_ID)
3456
			values[n++] = primary_event_id(sub);
3457 3458 3459 3460 3461 3462

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3463
			     struct perf_event *event)
3464
{
3465 3466
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3467
	else
3468
		perf_output_read_one(handle, event);
3469 3470
}

3471 3472 3473
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3474
			struct perf_event *event)
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3505
		perf_output_read(handle, event);
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3543
			 struct perf_event *event,
3544
			 struct pt_regs *regs)
3545
{
3546
	u64 sample_type = event->attr.sample_type;
3547

3548
	data->type = sample_type;
3549

3550
	header->type = PERF_RECORD_SAMPLE;
3551 3552 3553 3554
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3555

3556
	if (sample_type & PERF_SAMPLE_IP) {
3557 3558 3559
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3560
	}
3561

3562
	if (sample_type & PERF_SAMPLE_TID) {
3563
		/* namespace issues */
3564 3565
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3566

3567
		header->size += sizeof(data->tid_entry);
3568 3569
	}

3570
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3571
		data->time = perf_clock();
3572

3573
		header->size += sizeof(data->time);
3574 3575
	}

3576
	if (sample_type & PERF_SAMPLE_ADDR)
3577
		header->size += sizeof(data->addr);
3578

3579
	if (sample_type & PERF_SAMPLE_ID) {
3580
		data->id = primary_event_id(event);
3581

3582 3583 3584 3585
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3586
		data->stream_id = event->id;
3587 3588 3589

		header->size += sizeof(data->stream_id);
	}
3590

3591
	if (sample_type & PERF_SAMPLE_CPU) {
3592 3593
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3594

3595
		header->size += sizeof(data->cpu_entry);
3596 3597
	}

3598
	if (sample_type & PERF_SAMPLE_PERIOD)
3599
		header->size += sizeof(data->period);
3600

3601
	if (sample_type & PERF_SAMPLE_READ)
3602
		header->size += perf_event_read_size(event);
3603

3604
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3605
		int size = 1;
3606

3607 3608 3609 3610 3611 3612
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3613 3614
	}

3615
	if (sample_type & PERF_SAMPLE_RAW) {
3616 3617 3618 3619 3620 3621 3622 3623
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3624
		header->size += size;
3625
	}
3626
}
3627

3628
static void perf_event_output(struct perf_event *event, int nmi,
3629 3630 3631 3632 3633
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3634

3635 3636 3637
	/* protect the callchain buffers */
	rcu_read_lock();

3638
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3639

3640
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3641
		goto exit;
3642

3643
	perf_output_sample(&handle, &header, data, event);
3644

3645
	perf_output_end(&handle);
3646 3647 3648

exit:
	rcu_read_unlock();
3649 3650
}

3651
/*
3652
 * read event_id
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3663
perf_event_read_event(struct perf_event *event,
3664 3665 3666
			struct task_struct *task)
{
	struct perf_output_handle handle;
3667
	struct perf_read_event read_event = {
3668
		.header = {
3669
			.type = PERF_RECORD_READ,
3670
			.misc = 0,
3671
			.size = sizeof(read_event) + perf_event_read_size(event),
3672
		},
3673 3674
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3675
	};
3676
	int ret;
3677

3678
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3679 3680 3681
	if (ret)
		return;

3682
	perf_output_put(&handle, read_event);
3683
	perf_output_read(&handle, event);
3684

3685 3686 3687
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3688
/*
P
Peter Zijlstra 已提交
3689 3690
 * task tracking -- fork/exit
 *
3691
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3692 3693
 */

P
Peter Zijlstra 已提交
3694
struct perf_task_event {
3695
	struct task_struct		*task;
3696
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3697 3698 3699 3700 3701 3702

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3703 3704
		u32				tid;
		u32				ptid;
3705
		u64				time;
3706
	} event_id;
P
Peter Zijlstra 已提交
3707 3708
};

3709
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3710
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3711 3712
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3713
	struct task_struct *task = task_event->task;
3714 3715
	int size, ret;

3716 3717
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3718

3719
	if (ret)
P
Peter Zijlstra 已提交
3720 3721
		return;

3722 3723
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3724

3725 3726
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3727

3728
	perf_output_put(&handle, task_event->event_id);
3729

P
Peter Zijlstra 已提交
3730 3731 3732
	perf_output_end(&handle);
}

3733
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3734
{
P
Peter Zijlstra 已提交
3735
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3736 3737
		return 0;

3738 3739 3740
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3741 3742
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3743 3744 3745 3746 3747
		return 1;

	return 0;
}

3748
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3749
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3750
{
3751
	struct perf_event *event;
P
Peter Zijlstra 已提交
3752

3753 3754 3755
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3756 3757 3758
	}
}

3759
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3760 3761
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3762
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3763
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3764
	int ctxn;
P
Peter Zijlstra 已提交
3765

3766
	rcu_read_lock();
P
Peter Zijlstra 已提交
3767
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3768
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3769
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3770 3771 3772 3773 3774

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
3775
				goto next;
P
Peter Zijlstra 已提交
3776 3777 3778 3779
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
3780 3781
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3782
	}
P
Peter Zijlstra 已提交
3783 3784 3785
	rcu_read_unlock();
}

3786 3787
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3788
			      int new)
P
Peter Zijlstra 已提交
3789
{
P
Peter Zijlstra 已提交
3790
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3791

3792 3793 3794
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3795 3796
		return;

P
Peter Zijlstra 已提交
3797
	task_event = (struct perf_task_event){
3798 3799
		.task	  = task,
		.task_ctx = task_ctx,
3800
		.event_id    = {
P
Peter Zijlstra 已提交
3801
			.header = {
3802
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3803
				.misc = 0,
3804
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3805
			},
3806 3807
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3808 3809
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3810
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3811 3812 3813
		},
	};

3814
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3815 3816
}

3817
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3818
{
3819
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3820 3821
}

3822 3823 3824 3825 3826
/*
 * comm tracking
 */

struct perf_comm_event {
3827 3828
	struct task_struct	*task;
	char			*comm;
3829 3830 3831 3832 3833 3834 3835
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3836
	} event_id;
3837 3838
};

3839
static void perf_event_comm_output(struct perf_event *event,
3840 3841 3842
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3843 3844
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3845 3846 3847 3848

	if (ret)
		return;

3849 3850
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3851

3852
	perf_output_put(&handle, comm_event->event_id);
3853 3854 3855 3856 3857
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3858
static int perf_event_comm_match(struct perf_event *event)
3859
{
P
Peter Zijlstra 已提交
3860
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3861 3862
		return 0;

3863 3864 3865
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3866
	if (event->attr.comm)
3867 3868 3869 3870 3871
		return 1;

	return 0;
}

3872
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3873 3874
				  struct perf_comm_event *comm_event)
{
3875
	struct perf_event *event;
3876

3877 3878 3879
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3880 3881 3882
	}
}

3883
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3884 3885
{
	struct perf_cpu_context *cpuctx;
3886
	struct perf_event_context *ctx;
3887
	char comm[TASK_COMM_LEN];
3888
	unsigned int size;
P
Peter Zijlstra 已提交
3889
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3890
	int ctxn;
3891

3892
	memset(comm, 0, sizeof(comm));
3893
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3894
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3895 3896 3897 3898

	comm_event->comm = comm;
	comm_event->comm_size = size;

3899
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3900

3901
	rcu_read_lock();
P
Peter Zijlstra 已提交
3902
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3903
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3904
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
3905 3906 3907

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
3908
			goto next;
P
Peter Zijlstra 已提交
3909 3910 3911 3912

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
3913 3914
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3915
	}
3916
	rcu_read_unlock();
3917 3918
}

3919
void perf_event_comm(struct task_struct *task)
3920
{
3921
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
3922 3923
	struct perf_event_context *ctx;
	int ctxn;
3924

P
Peter Zijlstra 已提交
3925 3926 3927 3928
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
3929

P
Peter Zijlstra 已提交
3930 3931
		perf_event_enable_on_exec(ctx);
	}
3932

3933
	if (!atomic_read(&nr_comm_events))
3934
		return;
3935

3936
	comm_event = (struct perf_comm_event){
3937
		.task	= task,
3938 3939
		/* .comm      */
		/* .comm_size */
3940
		.event_id  = {
3941
			.header = {
3942
				.type = PERF_RECORD_COMM,
3943 3944 3945 3946 3947
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3948 3949 3950
		},
	};

3951
	perf_event_comm_event(&comm_event);
3952 3953
}

3954 3955 3956 3957 3958
/*
 * mmap tracking
 */

struct perf_mmap_event {
3959 3960 3961 3962
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3963 3964 3965 3966 3967 3968 3969 3970 3971

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3972
	} event_id;
3973 3974
};

3975
static void perf_event_mmap_output(struct perf_event *event,
3976 3977 3978
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3979 3980
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3981 3982 3983 3984

	if (ret)
		return;

3985 3986
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3987

3988
	perf_output_put(&handle, mmap_event->event_id);
3989 3990
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3991
	perf_output_end(&handle);
3992 3993
}

3994
static int perf_event_mmap_match(struct perf_event *event,
3995 3996
				   struct perf_mmap_event *mmap_event,
				   int executable)
3997
{
P
Peter Zijlstra 已提交
3998
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3999 4000
		return 0;

4001 4002 4003
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4004 4005
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4006 4007 4008 4009 4010
		return 1;

	return 0;
}

4011
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4012 4013
				  struct perf_mmap_event *mmap_event,
				  int executable)
4014
{
4015
	struct perf_event *event;
4016

4017
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4018
		if (perf_event_mmap_match(event, mmap_event, executable))
4019
			perf_event_mmap_output(event, mmap_event);
4020 4021 4022
	}
}

4023
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4024 4025
{
	struct perf_cpu_context *cpuctx;
4026
	struct perf_event_context *ctx;
4027 4028
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4029 4030 4031
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4032
	const char *name;
P
Peter Zijlstra 已提交
4033
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4034
	int ctxn;
4035

4036 4037
	memset(tmp, 0, sizeof(tmp));

4038
	if (file) {
4039 4040 4041 4042 4043 4044
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4045 4046 4047 4048
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4049
		name = d_path(&file->f_path, buf, PATH_MAX);
4050 4051 4052 4053 4054
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4055 4056 4057
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4058
			goto got_name;
4059
		}
4060 4061 4062 4063

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4064 4065 4066 4067 4068 4069 4070 4071
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4072 4073
		}

4074 4075 4076 4077 4078
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4079
	size = ALIGN(strlen(name)+1, sizeof(u64));
4080 4081 4082 4083

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4084
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4085

4086
	rcu_read_lock();
P
Peter Zijlstra 已提交
4087
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4088
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4089 4090
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4091 4092 4093

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4094
			goto next;
P
Peter Zijlstra 已提交
4095 4096 4097 4098 4099 4100

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4101 4102
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4103
	}
4104 4105
	rcu_read_unlock();

4106 4107 4108
	kfree(buf);
}

4109
void perf_event_mmap(struct vm_area_struct *vma)
4110
{
4111 4112
	struct perf_mmap_event mmap_event;

4113
	if (!atomic_read(&nr_mmap_events))
4114 4115 4116
		return;

	mmap_event = (struct perf_mmap_event){
4117
		.vma	= vma,
4118 4119
		/* .file_name */
		/* .file_size */
4120
		.event_id  = {
4121
			.header = {
4122
				.type = PERF_RECORD_MMAP,
4123
				.misc = PERF_RECORD_MISC_USER,
4124 4125 4126 4127
				/* .size */
			},
			/* .pid */
			/* .tid */
4128 4129
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4130
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4131 4132 4133
		},
	};

4134
	perf_event_mmap_event(&mmap_event);
4135 4136
}

4137 4138 4139 4140
/*
 * IRQ throttle logging
 */

4141
static void perf_log_throttle(struct perf_event *event, int enable)
4142 4143 4144 4145 4146 4147 4148
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4149
		u64				id;
4150
		u64				stream_id;
4151 4152
	} throttle_event = {
		.header = {
4153
			.type = PERF_RECORD_THROTTLE,
4154 4155 4156
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4157
		.time		= perf_clock(),
4158 4159
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4160 4161
	};

4162
	if (enable)
4163
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4164

4165
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4166 4167 4168 4169 4170 4171 4172
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4173
/*
4174
 * Generic event overflow handling, sampling.
4175 4176
 */

4177
static int __perf_event_overflow(struct perf_event *event, int nmi,
4178 4179
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4180
{
4181 4182
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4183 4184
	int ret = 0;

4185
	if (!throttle) {
4186
		hwc->interrupts++;
4187
	} else {
4188 4189
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4190
			if (HZ * hwc->interrupts >
4191
					(u64)sysctl_perf_event_sample_rate) {
4192
				hwc->interrupts = MAX_INTERRUPTS;
4193
				perf_log_throttle(event, 0);
4194 4195 4196 4197
				ret = 1;
			}
		} else {
			/*
4198
			 * Keep re-disabling events even though on the previous
4199
			 * pass we disabled it - just in case we raced with a
4200
			 * sched-in and the event got enabled again:
4201
			 */
4202 4203 4204
			ret = 1;
		}
	}
4205

4206
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4207
		u64 now = perf_clock();
4208
		s64 delta = now - hwc->freq_time_stamp;
4209

4210
		hwc->freq_time_stamp = now;
4211

4212 4213
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4214 4215
	}

4216 4217
	/*
	 * XXX event_limit might not quite work as expected on inherited
4218
	 * events
4219 4220
	 */

4221 4222
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4223
		ret = 1;
4224
		event->pending_kill = POLL_HUP;
4225
		if (nmi) {
4226
			event->pending_disable = 1;
4227
			irq_work_queue(&event->pending);
4228
		} else
4229
			perf_event_disable(event);
4230 4231
	}

4232 4233 4234 4235 4236
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4237
	return ret;
4238 4239
}

4240
int perf_event_overflow(struct perf_event *event, int nmi,
4241 4242
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4243
{
4244
	return __perf_event_overflow(event, nmi, 1, data, regs);
4245 4246
}

4247
/*
4248
 * Generic software event infrastructure
4249 4250
 */

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4262
/*
4263 4264
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4265 4266 4267 4268
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4269
static u64 perf_swevent_set_period(struct perf_event *event)
4270
{
4271
	struct hw_perf_event *hwc = &event->hw;
4272 4273 4274 4275 4276
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4277 4278

again:
4279
	old = val = local64_read(&hwc->period_left);
4280 4281
	if (val < 0)
		return 0;
4282

4283 4284 4285
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4286
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4287
		goto again;
4288

4289
	return nr;
4290 4291
}

4292
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4293 4294
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4295
{
4296
	struct hw_perf_event *hwc = &event->hw;
4297
	int throttle = 0;
4298

4299
	data->period = event->hw.last_period;
4300 4301
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4302

4303 4304
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4305

4306
	for (; overflow; overflow--) {
4307
		if (__perf_event_overflow(event, nmi, throttle,
4308
					    data, regs)) {
4309 4310 4311 4312 4313 4314
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4315
		throttle = 1;
4316
	}
4317 4318
}

P
Peter Zijlstra 已提交
4319
static void perf_swevent_event(struct perf_event *event, u64 nr,
4320 4321
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4322
{
4323
	struct hw_perf_event *hwc = &event->hw;
4324

4325
	local64_add(nr, &event->count);
4326

4327 4328 4329
	if (!regs)
		return;

4330 4331
	if (!hwc->sample_period)
		return;
4332

4333 4334 4335
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4336
	if (local64_add_negative(nr, &hwc->period_left))
4337
		return;
4338

4339
	perf_swevent_overflow(event, 0, nmi, data, regs);
4340 4341
}

4342 4343 4344
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4345 4346 4347
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4359
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4360
				enum perf_type_id type,
L
Li Zefan 已提交
4361 4362 4363
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4364
{
4365
	if (event->attr.type != type)
4366
		return 0;
4367

4368
	if (event->attr.config != event_id)
4369 4370
		return 0;

4371 4372
	if (perf_exclude_event(event, regs))
		return 0;
4373 4374 4375 4376

	return 1;
}

4377 4378 4379 4380 4381 4382 4383
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4384 4385
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4386
{
4387 4388 4389 4390
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4391

4392 4393
/* For the read side: events when they trigger */
static inline struct hlist_head *
4394
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4395 4396
{
	struct swevent_hlist *hlist;
4397

4398
	hlist = rcu_dereference(swhash->swevent_hlist);
4399 4400 4401
	if (!hlist)
		return NULL;

4402 4403 4404 4405 4406
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4407
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4418
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4419 4420 4421 4422 4423
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4424 4425 4426 4427 4428 4429
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4430
{
4431
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4432
	struct perf_event *event;
4433 4434
	struct hlist_node *node;
	struct hlist_head *head;
4435

4436
	rcu_read_lock();
4437
	head = find_swevent_head_rcu(swhash, type, event_id);
4438 4439 4440 4441
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4442
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4443
			perf_swevent_event(event, nr, nmi, data, regs);
4444
	}
4445 4446
end:
	rcu_read_unlock();
4447 4448
}

4449
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4450
{
4451
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4452

4453
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4454
}
I
Ingo Molnar 已提交
4455
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4456

4457
void inline perf_swevent_put_recursion_context(int rctx)
4458
{
4459
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4460

4461
	put_recursion_context(swhash->recursion, rctx);
4462
}
4463

4464
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4465
			    struct pt_regs *regs, u64 addr)
4466
{
4467
	struct perf_sample_data data;
4468 4469
	int rctx;

4470
	preempt_disable_notrace();
4471 4472 4473
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4474

4475
	perf_sample_data_init(&data, addr);
4476

4477
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4478 4479

	perf_swevent_put_recursion_context(rctx);
4480
	preempt_enable_notrace();
4481 4482
}

4483
static void perf_swevent_read(struct perf_event *event)
4484 4485 4486
{
}

P
Peter Zijlstra 已提交
4487
static int perf_swevent_add(struct perf_event *event, int flags)
4488
{
4489
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4490
	struct hw_perf_event *hwc = &event->hw;
4491 4492
	struct hlist_head *head;

4493 4494
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4495
		perf_swevent_set_period(event);
4496
	}
4497

P
Peter Zijlstra 已提交
4498 4499
	hwc->state = !(flags & PERF_EF_START);

4500
	head = find_swevent_head(swhash, event);
4501 4502 4503 4504 4505
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4506 4507 4508
	return 0;
}

P
Peter Zijlstra 已提交
4509
static void perf_swevent_del(struct perf_event *event, int flags)
4510
{
4511
	hlist_del_rcu(&event->hlist_entry);
4512 4513
}

P
Peter Zijlstra 已提交
4514
static void perf_swevent_start(struct perf_event *event, int flags)
4515
{
P
Peter Zijlstra 已提交
4516
	event->hw.state = 0;
4517
}
I
Ingo Molnar 已提交
4518

P
Peter Zijlstra 已提交
4519
static void perf_swevent_stop(struct perf_event *event, int flags)
4520
{
P
Peter Zijlstra 已提交
4521
	event->hw.state = PERF_HES_STOPPED;
4522 4523
}

4524 4525
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4526
swevent_hlist_deref(struct swevent_htable *swhash)
4527
{
4528 4529
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4530 4531
}

4532 4533 4534 4535 4536 4537 4538 4539
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4540
static void swevent_hlist_release(struct swevent_htable *swhash)
4541
{
4542
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4543

4544
	if (!hlist)
4545 4546
		return;

4547
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4548 4549 4550 4551 4552
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4553
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4554

4555
	mutex_lock(&swhash->hlist_mutex);
4556

4557 4558
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4559

4560
	mutex_unlock(&swhash->hlist_mutex);
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4578
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4579 4580
	int err = 0;

4581
	mutex_lock(&swhash->hlist_mutex);
4582

4583
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4584 4585 4586 4587 4588 4589 4590
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4591
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4592
	}
4593
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4594
exit:
4595
	mutex_unlock(&swhash->hlist_mutex);
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4619
fail:
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4630
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4631

4632 4633 4634
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4635

4636 4637
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
4638
	jump_label_dec(&perf_swevent_enabled[event_id]);
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
4668
		jump_label_inc(&perf_swevent_enabled[event_id]);
4669 4670 4671 4672 4673 4674 4675
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4676
	.task_ctx_nr	= perf_sw_context,
4677

4678
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4679 4680 4681 4682
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4683 4684 4685
	.read		= perf_swevent_read,
};

4686 4687
#ifdef CONFIG_EVENT_TRACING

4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4702 4703 4704 4705
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4706 4707 4708 4709 4710 4711 4712 4713 4714
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4715
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4716 4717
{
	struct perf_sample_data data;
4718 4719 4720
	struct perf_event *event;
	struct hlist_node *node;

4721 4722 4723 4724 4725 4726 4727 4728
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4729 4730
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4731
			perf_swevent_event(event, count, 1, &data, regs);
4732
	}
4733 4734

	perf_swevent_put_recursion_context(rctx);
4735 4736 4737
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4738
static void tp_perf_event_destroy(struct perf_event *event)
4739
{
4740
	perf_trace_destroy(event);
4741 4742
}

4743
static int perf_tp_event_init(struct perf_event *event)
4744
{
4745 4746
	int err;

4747 4748 4749
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4750 4751 4752 4753
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4754
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4755
			perf_paranoid_tracepoint_raw() &&
4756
			!capable(CAP_SYS_ADMIN))
4757
		return -EPERM;
4758

4759 4760
	err = perf_trace_init(event);
	if (err)
4761
		return err;
4762

4763
	event->destroy = tp_perf_event_destroy;
4764

4765 4766 4767 4768
	return 0;
}

static struct pmu perf_tracepoint = {
4769 4770
	.task_ctx_nr	= perf_sw_context,

4771
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4772 4773 4774 4775
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4776 4777 4778 4779 4780 4781
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4782
}
L
Li Zefan 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4807
#else
L
Li Zefan 已提交
4808

4809
static inline void perf_tp_register(void)
4810 4811
{
}
L
Li Zefan 已提交
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4822
#endif /* CONFIG_EVENT_TRACING */
4823

4824
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4825
void perf_bp_event(struct perf_event *bp, void *data)
4826
{
4827 4828 4829
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4830
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4831

P
Peter Zijlstra 已提交
4832 4833
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4834 4835 4836
}
#endif

4837 4838 4839
/*
 * hrtimer based swevent callback
 */
4840

4841
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4842
{
4843 4844 4845 4846 4847
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4848

4849 4850
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4851

4852 4853 4854 4855 4856 4857 4858 4859 4860
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4861

4862 4863
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4864

4865
	return ret;
4866 4867
}

4868
static void perf_swevent_start_hrtimer(struct perf_event *event)
4869
{
4870
	struct hw_perf_event *hwc = &event->hw;
4871

4872 4873 4874
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4875
		s64 period = local64_read(&hwc->period_left);
4876

P
Peter Zijlstra 已提交
4877 4878
		if (period) {
			if (period < 0)
4879
				period = 10000;
P
Peter Zijlstra 已提交
4880 4881

			local64_set(&hwc->period_left, 0);
4882 4883 4884 4885 4886
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4887
				HRTIMER_MODE_REL_PINNED, 0);
4888
	}
4889
}
4890 4891

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4892
{
4893 4894 4895 4896
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4897
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4898 4899 4900

		hrtimer_cancel(&hwc->hrtimer);
	}
4901 4902
}

4903 4904 4905 4906 4907
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4908
{
4909 4910 4911
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4912
	now = local_clock();
4913 4914
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4915 4916
}

P
Peter Zijlstra 已提交
4917
static void cpu_clock_event_start(struct perf_event *event, int flags)
4918
{
P
Peter Zijlstra 已提交
4919
	local64_set(&event->hw.prev_count, local_clock());
4920 4921 4922
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4923
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4924
{
4925 4926 4927
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4928

P
Peter Zijlstra 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4942 4943 4944 4945
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4946

4947 4948 4949 4950 4951 4952 4953 4954 4955
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4956 4957
}

4958
static struct pmu perf_cpu_clock = {
4959 4960
	.task_ctx_nr	= perf_sw_context,

4961
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
4962 4963 4964 4965
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
4966 4967 4968 4969 4970 4971 4972 4973
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
4974
{
4975 4976
	u64 prev;
	s64 delta;
4977

4978 4979 4980 4981
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
4982

P
Peter Zijlstra 已提交
4983
static void task_clock_event_start(struct perf_event *event, int flags)
4984
{
P
Peter Zijlstra 已提交
4985
	local64_set(&event->hw.prev_count, event->ctx->time);
4986 4987 4988
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4989
static void task_clock_event_stop(struct perf_event *event, int flags)
4990 4991 4992
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
4993 4994 4995 4996 4997 4998
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
4999

P
Peter Zijlstra 已提交
5000 5001 5002 5003 5004 5005
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5025
{
5026 5027 5028 5029 5030 5031 5032
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
L
Li Zefan 已提交
5033 5034
}

5035
static struct pmu perf_task_clock = {
5036 5037
	.task_ctx_nr	= perf_sw_context,

5038
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5039 5040 5041 5042
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5043 5044
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5045

P
Peter Zijlstra 已提交
5046
static void perf_pmu_nop_void(struct pmu *pmu)
5047 5048
{
}
L
Li Zefan 已提交
5049

P
Peter Zijlstra 已提交
5050
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5051
{
P
Peter Zijlstra 已提交
5052
	return 0;
L
Li Zefan 已提交
5053 5054
}

P
Peter Zijlstra 已提交
5055
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5056
{
P
Peter Zijlstra 已提交
5057
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5058 5059
}

P
Peter Zijlstra 已提交
5060 5061 5062 5063 5064
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5065

P
Peter Zijlstra 已提交
5066
static void perf_pmu_cancel_txn(struct pmu *pmu)
5067
{
P
Peter Zijlstra 已提交
5068
	perf_pmu_enable(pmu);
5069 5070
}

P
Peter Zijlstra 已提交
5071 5072 5073 5074 5075
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5076
{
P
Peter Zijlstra 已提交
5077
	struct pmu *pmu;
5078

P
Peter Zijlstra 已提交
5079 5080
	if (ctxn < 0)
		return NULL;
5081

P
Peter Zijlstra 已提交
5082 5083 5084 5085
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5086

P
Peter Zijlstra 已提交
5087
	return NULL;
5088 5089
}

P
Peter Zijlstra 已提交
5090
static void free_pmu_context(void * __percpu cpu_context)
5091
{
P
Peter Zijlstra 已提交
5092
	struct pmu *pmu;
5093

P
Peter Zijlstra 已提交
5094
	mutex_lock(&pmus_lock);
5095
	/*
P
Peter Zijlstra 已提交
5096
	 * Like a real lame refcount.
5097
	 */
P
Peter Zijlstra 已提交
5098 5099 5100 5101
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->pmu_cpu_context == cpu_context)
			goto out;
	}
5102

P
Peter Zijlstra 已提交
5103 5104 5105
	free_percpu(cpu_context);
out:
	mutex_unlock(&pmus_lock);
5106
}
5107

5108
int perf_pmu_register(struct pmu *pmu)
5109
{
P
Peter Zijlstra 已提交
5110
	int cpu, ret;
5111

5112
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5113 5114 5115 5116
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5117

P
Peter Zijlstra 已提交
5118 5119 5120
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5121

P
Peter Zijlstra 已提交
5122 5123 5124
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;
5125

P
Peter Zijlstra 已提交
5126 5127 5128 5129
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5130
		__perf_event_init_context(&cpuctx->ctx);
5131
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5132
		cpuctx->ctx.pmu = pmu;
5133 5134
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
P
Peter Zijlstra 已提交
5135
	}
5136

P
Peter Zijlstra 已提交
5137
got_cpu_context:
P
Peter Zijlstra 已提交
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5152
		}
5153
	}
5154

P
Peter Zijlstra 已提交
5155 5156 5157 5158 5159
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5160
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5161 5162
	ret = 0;
unlock:
5163 5164
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5165
	return ret;
P
Peter Zijlstra 已提交
5166 5167 5168 5169

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5170 5171
}

5172
void perf_pmu_unregister(struct pmu *pmu)
5173
{
5174 5175 5176
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5177

5178
	/*
P
Peter Zijlstra 已提交
5179 5180
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5181
	 */
5182
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5183
	synchronize_rcu();
5184

P
Peter Zijlstra 已提交
5185
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5186
	free_pmu_context(pmu->pmu_cpu_context);
5187
}
5188

5189 5190 5191 5192 5193 5194 5195 5196 5197
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
P
Peter Zijlstra 已提交
5198
			goto unlock;
5199

5200 5201
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5202
			goto unlock;
5203
		}
5204
	}
P
Peter Zijlstra 已提交
5205 5206
	pmu = ERR_PTR(-ENOENT);
unlock:
5207
	srcu_read_unlock(&pmus_srcu, idx);
5208

5209
	return pmu;
5210 5211
}

T
Thomas Gleixner 已提交
5212
/*
5213
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5214
 */
5215
static struct perf_event *
5216
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5217 5218 5219 5220
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5221
{
P
Peter Zijlstra 已提交
5222
	struct pmu *pmu;
5223 5224
	struct perf_event *event;
	struct hw_perf_event *hwc;
5225
	long err;
T
Thomas Gleixner 已提交
5226

5227
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5228
	if (!event)
5229
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5230

5231
	/*
5232
	 * Single events are their own group leaders, with an
5233 5234 5235
	 * empty sibling list:
	 */
	if (!group_leader)
5236
		group_leader = event;
5237

5238 5239
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5240

5241 5242 5243 5244
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5245
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5246

5247
	mutex_init(&event->mmap_mutex);
5248

5249 5250 5251 5252 5253
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5254

5255
	event->parent		= parent_event;
5256

5257 5258
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5259

5260
	event->state		= PERF_EVENT_STATE_INACTIVE;
5261

5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5273 5274
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5275
	
5276
	event->overflow_handler	= overflow_handler;
5277

5278
	if (attr->disabled)
5279
		event->state = PERF_EVENT_STATE_OFF;
5280

5281
	pmu = NULL;
5282

5283
	hwc = &event->hw;
5284
	hwc->sample_period = attr->sample_period;
5285
	if (attr->freq && attr->sample_freq)
5286
		hwc->sample_period = 1;
5287
	hwc->last_period = hwc->sample_period;
5288

5289
	local64_set(&hwc->period_left, hwc->sample_period);
5290

5291
	/*
5292
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5293
	 */
5294
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5295 5296
		goto done;

5297
	pmu = perf_init_event(event);
5298

5299 5300
done:
	err = 0;
5301
	if (!pmu)
5302
		err = -EINVAL;
5303 5304
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5305

5306
	if (err) {
5307 5308 5309
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5310
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5311
	}
5312

5313
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5314

5315
	if (!event->parent) {
5316 5317
		if (event->attach_state & PERF_ATTACH_TASK)
			jump_label_inc(&perf_task_events);
5318
		if (event->attr.mmap || event->attr.mmap_data)
5319 5320 5321 5322 5323
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5324 5325 5326 5327 5328 5329 5330
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5331
	}
5332

5333
	return event;
T
Thomas Gleixner 已提交
5334 5335
}

5336 5337
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5338 5339
{
	u32 size;
5340
	int ret;
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5365 5366 5367
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5368 5369
	 */
	if (size > sizeof(*attr)) {
5370 5371 5372
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5373

5374 5375
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5376

5377
		for (; addr < end; addr++) {
5378 5379 5380 5381 5382 5383
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5384
		size = sizeof(*attr);
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5398
	if (attr->__reserved_1)
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5416 5417
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5418
{
5419
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5420 5421
	int ret = -EINVAL;

5422
	if (!output_event)
5423 5424
		goto set;

5425 5426
	/* don't allow circular references */
	if (event == output_event)
5427 5428
		goto out;

5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5441
set:
5442
	mutex_lock(&event->mmap_mutex);
5443 5444 5445
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5446

5447 5448
	if (output_event) {
		/* get the buffer we want to redirect to */
5449 5450
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5451
			goto unlock;
5452 5453
	}

5454 5455
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5456
	ret = 0;
5457 5458 5459
unlock:
	mutex_unlock(&event->mmap_mutex);

5460 5461
	if (old_buffer)
		perf_buffer_put(old_buffer);
5462 5463 5464 5465
out:
	return ret;
}

T
Thomas Gleixner 已提交
5466
/**
5467
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5468
 *
5469
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5470
 * @pid:		target pid
I
Ingo Molnar 已提交
5471
 * @cpu:		target cpu
5472
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5473
 */
5474 5475
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5476
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5477
{
5478 5479
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5480 5481 5482
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5483
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5484
	struct task_struct *task = NULL;
5485
	struct pmu *pmu;
5486
	int event_fd;
5487
	int move_group = 0;
5488
	int fput_needed = 0;
5489
	int err;
T
Thomas Gleixner 已提交
5490

5491
	/* for future expandability... */
5492
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5493 5494
		return -EINVAL;

5495 5496 5497
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5498

5499 5500 5501 5502 5503
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5504
	if (attr.freq) {
5505
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5506 5507 5508
			return -EINVAL;
	}

5509 5510 5511 5512
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5513 5514 5515 5516
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5517
			goto err_fd;
5518 5519 5520 5521 5522 5523 5524 5525
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5526 5527 5528 5529 5530 5531 5532 5533
	if (pid != -1) {
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

5534
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5535 5536
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5537
		goto err_task;
5538 5539
	}

5540 5541 5542 5543 5544
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
5568 5569 5570 5571

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
5572
	ctx = find_get_context(pmu, task, cpu);
5573 5574
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5575
		goto err_alloc;
5576 5577
	}

I
Ingo Molnar 已提交
5578
	/*
5579
	 * Look up the group leader (we will attach this event to it):
5580
	 */
5581
	if (group_leader) {
5582
		err = -EINVAL;
5583 5584

		/*
I
Ingo Molnar 已提交
5585 5586 5587 5588
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5589
			goto err_context;
I
Ingo Molnar 已提交
5590 5591 5592
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5593
		 */
5594 5595 5596 5597 5598 5599 5600 5601
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

5602 5603 5604
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5605
		if (attr.exclusive || attr.pinned)
5606
			goto err_context;
5607 5608 5609 5610 5611
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5612
			goto err_context;
5613
	}
T
Thomas Gleixner 已提交
5614

5615 5616 5617
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5618
		goto err_context;
5619
	}
5620

5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
		perf_event_remove_from_context(group_leader);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_event_remove_from_context(sibling);
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
5633
	}
5634

5635
	event->filp = event_file;
5636
	WARN_ON_ONCE(ctx->parent_ctx);
5637
	mutex_lock(&ctx->mutex);
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

5649
	perf_install_in_context(ctx, event, cpu);
5650
	++ctx->generation;
5651
	mutex_unlock(&ctx->mutex);
5652

5653
	event->owner = current;
5654
	get_task_struct(current);
5655 5656 5657
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5658

5659 5660 5661 5662 5663 5664
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5665 5666 5667
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5668

5669
err_context:
5670
	put_ctx(ctx);
5671
err_alloc:
5672
	free_event(event);
P
Peter Zijlstra 已提交
5673 5674 5675
err_task:
	if (task)
		put_task_struct(task);
5676
err_group_fd:
5677
	fput_light(group_file, fput_needed);
5678 5679
err_fd:
	put_unused_fd(event_fd);
5680
	return err;
T
Thomas Gleixner 已提交
5681 5682
}

5683 5684 5685 5686 5687
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
5688
 * @task: task to profile (NULL for percpu)
5689 5690 5691
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
5692
				 struct task_struct *task,
5693
				 perf_overflow_handler_t overflow_handler)
5694 5695
{
	struct perf_event_context *ctx;
5696
	struct perf_event *event;
5697
	int err;
5698

5699 5700 5701
	/*
	 * Get the target context (task or percpu):
	 */
5702

5703
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5704 5705 5706 5707
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
5708

M
Matt Helsley 已提交
5709
	ctx = find_get_context(event->pmu, task, cpu);
5710 5711
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5712
		goto err_free;
5713
	}
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5730 5731 5732
err_free:
	free_event(event);
err:
5733
	return ERR_PTR(err);
5734
}
5735
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5736

5737
static void sync_child_event(struct perf_event *child_event,
5738
			       struct task_struct *child)
5739
{
5740
	struct perf_event *parent_event = child_event->parent;
5741
	u64 child_val;
5742

5743 5744
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5745

P
Peter Zijlstra 已提交
5746
	child_val = perf_event_count(child_event);
5747 5748 5749 5750

	/*
	 * Add back the child's count to the parent's count:
	 */
5751
	atomic64_add(child_val, &parent_event->child_count);
5752 5753 5754 5755
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5756 5757

	/*
5758
	 * Remove this event from the parent's list
5759
	 */
5760 5761 5762 5763
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5764 5765

	/*
5766
	 * Release the parent event, if this was the last
5767 5768
	 * reference to it.
	 */
5769
	fput(parent_event->filp);
5770 5771
}

5772
static void
5773 5774
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5775
			 struct task_struct *child)
5776
{
5777
	struct perf_event *parent_event;
5778

5779
	perf_event_remove_from_context(child_event);
5780

5781
	parent_event = child_event->parent;
5782
	/*
5783
	 * It can happen that parent exits first, and has events
5784
	 * that are still around due to the child reference. These
5785
	 * events need to be zapped - but otherwise linger.
5786
	 */
5787 5788 5789
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5790
	}
5791 5792
}

P
Peter Zijlstra 已提交
5793
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5794
{
5795 5796
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5797
	unsigned long flags;
5798

P
Peter Zijlstra 已提交
5799
	if (likely(!child->perf_event_ctxp[ctxn])) {
5800
		perf_event_task(child, NULL, 0);
5801
		return;
P
Peter Zijlstra 已提交
5802
	}
5803

5804
	local_irq_save(flags);
5805 5806 5807 5808 5809 5810
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
P
Peter Zijlstra 已提交
5811
	child_ctx = child->perf_event_ctxp[ctxn];
5812
	task_ctx_sched_out(child_ctx, EVENT_ALL);
5813 5814 5815

	/*
	 * Take the context lock here so that if find_get_context is
5816
	 * reading child->perf_event_ctxp, we wait until it has
5817 5818
	 * incremented the context's refcount before we do put_ctx below.
	 */
5819
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
5820
	child->perf_event_ctxp[ctxn] = NULL;
5821 5822 5823
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5824
	 * the events from it.
5825 5826
	 */
	unclone_ctx(child_ctx);
5827
	update_context_time(child_ctx);
5828
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5829 5830

	/*
5831 5832 5833
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5834
	 */
5835
	perf_event_task(child, child_ctx, 0);
5836

5837 5838 5839
	/*
	 * We can recurse on the same lock type through:
	 *
5840 5841 5842
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5843 5844 5845 5846 5847
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5848
	mutex_lock(&child_ctx->mutex);
5849

5850
again:
5851 5852 5853 5854 5855
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5856
				 group_entry)
5857
		__perf_event_exit_task(child_event, child_ctx, child);
5858 5859

	/*
5860
	 * If the last event was a group event, it will have appended all
5861 5862 5863
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5864 5865
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5866
		goto again;
5867 5868 5869 5870

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5871 5872
}

P
Peter Zijlstra 已提交
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5898
	perf_group_detach(event);
5899 5900 5901 5902
	list_del_event(event, ctx);
	free_event(event);
}

5903 5904
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
5905
 * perf_event_init_task below, used by fork() in case of fail.
5906
 */
5907
void perf_event_free_task(struct task_struct *task)
5908
{
P
Peter Zijlstra 已提交
5909
	struct perf_event_context *ctx;
5910
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5911
	int ctxn;
5912

P
Peter Zijlstra 已提交
5913 5914 5915 5916
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5917

P
Peter Zijlstra 已提交
5918
		mutex_lock(&ctx->mutex);
5919
again:
P
Peter Zijlstra 已提交
5920 5921 5922
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
5923

P
Peter Zijlstra 已提交
5924 5925 5926
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
5927

P
Peter Zijlstra 已提交
5928 5929 5930
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
5931

P
Peter Zijlstra 已提交
5932
		mutex_unlock(&ctx->mutex);
5933

P
Peter Zijlstra 已提交
5934 5935
		put_ctx(ctx);
	}
5936 5937
}

5938 5939 5940 5941 5942 5943 5944 5945
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
5958
	unsigned long flags;
P
Peter Zijlstra 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
5971
					   child,
P
Peter Zijlstra 已提交
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

	/*
	 * Link it up in the child's context:
	 */
6004
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6005
	add_event_to_ctx(child_event, child_ctx);
6006
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6048 6049 6050 6051 6052
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6053
		   struct task_struct *child, int ctxn,
6054 6055 6056
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6057
	struct perf_event_context *child_ctx;
6058 6059 6060 6061

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6062 6063
	}

P
Peter Zijlstra 已提交
6064
       	child_ctx = child->perf_event_ctxp[ctxn];
6065 6066 6067 6068 6069 6070 6071
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6072

6073
		child_ctx = alloc_perf_context(event->pmu, child);
6074 6075
		if (!child_ctx)
			return -ENOMEM;
6076

P
Peter Zijlstra 已提交
6077
		child->perf_event_ctxp[ctxn] = child_ctx;
6078 6079 6080 6081 6082 6083 6084 6085 6086
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6087 6088
}

6089
/*
6090
 * Initialize the perf_event context in task_struct
6091
 */
P
Peter Zijlstra 已提交
6092
int perf_event_init_context(struct task_struct *child, int ctxn)
6093
{
6094
	struct perf_event_context *child_ctx, *parent_ctx;
6095 6096
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6097
	struct task_struct *parent = current;
6098
	int inherited_all = 1;
6099
	int ret = 0;
6100

P
Peter Zijlstra 已提交
6101
	child->perf_event_ctxp[ctxn] = NULL;
6102

6103 6104
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
6105

P
Peter Zijlstra 已提交
6106
	if (likely(!parent->perf_event_ctxp[ctxn]))
6107 6108
		return 0;

6109
	/*
6110 6111
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6112
	 */
P
Peter Zijlstra 已提交
6113
	parent_ctx = perf_pin_task_context(parent, ctxn);
6114

6115 6116 6117 6118 6119 6120 6121
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6122 6123 6124 6125
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6126
	mutex_lock(&parent_ctx->mutex);
6127 6128 6129 6130 6131

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6132
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6133 6134
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6135 6136 6137
		if (ret)
			break;
	}
6138

6139
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6140 6141
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6142
		if (ret)
6143
			break;
6144 6145
	}

P
Peter Zijlstra 已提交
6146
	child_ctx = child->perf_event_ctxp[ctxn];
6147

6148
	if (child_ctx && inherited_all) {
6149 6150 6151
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
6152 6153
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
6154
		 * because the list of events and the generation
6155
		 * count can't have changed since we took the mutex.
6156
		 */
6157 6158 6159
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6160
			child_ctx->parent_gen = parent_ctx->parent_gen;
6161 6162 6163 6164 6165
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6166 6167
	}

6168
	mutex_unlock(&parent_ctx->mutex);
6169

6170
	perf_unpin_context(parent_ctx);
6171

6172
	return ret;
6173 6174
}

P
Peter Zijlstra 已提交
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6191 6192
static void __init perf_event_init_all_cpus(void)
{
6193
	struct swevent_htable *swhash;
6194 6195 6196
	int cpu;

	for_each_possible_cpu(cpu) {
6197 6198
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6199
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6200 6201 6202
	}
}

6203
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6204
{
P
Peter Zijlstra 已提交
6205
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6206

6207 6208
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6209 6210
		struct swevent_hlist *hlist;

6211 6212 6213
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6214
	}
6215
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6216 6217 6218
}

#ifdef CONFIG_HOTPLUG_CPU
6219
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6220
{
6221 6222 6223 6224 6225 6226 6227
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6228
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6229
{
P
Peter Zijlstra 已提交
6230
	struct perf_event_context *ctx = __info;
6231
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6232

P
Peter Zijlstra 已提交
6233
	perf_pmu_rotate_stop(ctx->pmu);
6234

6235 6236 6237
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6238
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6239
}
P
Peter Zijlstra 已提交
6240 6241 6242 6243 6244 6245 6246 6247 6248

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6249
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6250 6251 6252 6253 6254 6255 6256 6257

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6258
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6259
{
6260
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6261

6262 6263 6264
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6265

P
Peter Zijlstra 已提交
6266
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6267 6268
}
#else
6269
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6270 6271 6272 6273 6274 6275 6276
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6277
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6278 6279

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6280
	case CPU_DOWN_FAILED:
6281
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6282 6283
		break;

P
Peter Zijlstra 已提交
6284
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6285
	case CPU_DOWN_PREPARE:
6286
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6287 6288 6289 6290 6291 6292 6293 6294 6295
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6296
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6297
{
6298
	perf_event_init_all_cpus();
6299 6300 6301 6302 6303 6304
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6305
}