perf_event.c 140.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

37 38 39 40
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
41

P
Peter Zijlstra 已提交
42 43 44 45
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

46
/*
47
 * perf event paranoia level:
48 49
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
50
 *   1 - disallow cpu events for unpriv
51
 *   2 - disallow kernel profiling for unpriv
52
 */
53
int sysctl_perf_event_paranoid __read_mostly = 1;
54

55
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56 57

/*
58
 * max perf event sample rate
59
 */
60
int sysctl_perf_event_sample_rate __read_mostly = 100000;
61

62
static atomic64_t perf_event_id;
63

64
void __weak perf_event_print_debug(void)	{ }
65

P
Peter Zijlstra 已提交
66
void perf_pmu_disable(struct pmu *pmu)
67
{
P
Peter Zijlstra 已提交
68 69 70
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
71 72
}

P
Peter Zijlstra 已提交
73
void perf_pmu_enable(struct pmu *pmu)
74
{
P
Peter Zijlstra 已提交
75 76 77
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
78 79
}

P
Peter Zijlstra 已提交
80
static void perf_pmu_rotate_start(struct pmu *pmu)
81
{
P
Peter Zijlstra 已提交
82
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83 84 85 86 87 88 89 90 91

	if (hrtimer_active(&cpuctx->timer))
		return;

	__hrtimer_start_range_ns(&cpuctx->timer,
			ns_to_ktime(cpuctx->timer_interval), 0,
			HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
92
static void perf_pmu_rotate_stop(struct pmu *pmu)
93
{
P
Peter Zijlstra 已提交
94
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 96 97 98

	hrtimer_cancel(&cpuctx->timer);
}

99
static void get_ctx(struct perf_event_context *ctx)
100
{
101
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 103
}

104 105
static void free_ctx(struct rcu_head *head)
{
106
	struct perf_event_context *ctx;
107

108
	ctx = container_of(head, struct perf_event_context, rcu_head);
109 110 111
	kfree(ctx);
}

112
static void put_ctx(struct perf_event_context *ctx)
113
{
114 115 116
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
117 118 119
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
120
	}
121 122
}

123
static void unclone_ctx(struct perf_event_context *ctx)
124 125 126 127 128 129 130
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

131
/*
132
 * If we inherit events we want to return the parent event id
133 134
 * to userspace.
 */
135
static u64 primary_event_id(struct perf_event *event)
136
{
137
	u64 id = event->id;
138

139 140
	if (event->parent)
		id = event->parent->id;
141 142 143 144

	return id;
}

145
/*
146
 * Get the perf_event_context for a task and lock it.
147 148 149
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
150
static struct perf_event_context *
P
Peter Zijlstra 已提交
151
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
152
{
153
	struct perf_event_context *ctx;
154 155

	rcu_read_lock();
P
Peter Zijlstra 已提交
156
retry:
P
Peter Zijlstra 已提交
157
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
158 159 160 161
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
162
		 * perf_event_task_sched_out, though the
163 164 165 166 167 168
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
169
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
170
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
171
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172 173
			goto retry;
		}
174 175

		if (!atomic_inc_not_zero(&ctx->refcount)) {
176
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 178
			ctx = NULL;
		}
179 180 181 182 183 184 185 186 187 188
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
189 190
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
191
{
192
	struct perf_event_context *ctx;
193 194
	unsigned long flags;

P
Peter Zijlstra 已提交
195
	ctx = perf_lock_task_context(task, ctxn, &flags);
196 197
	if (ctx) {
		++ctx->pin_count;
198
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
199 200 201 202
	}
	return ctx;
}

203
static void perf_unpin_context(struct perf_event_context *ctx)
204 205 206
{
	unsigned long flags;

207
	raw_spin_lock_irqsave(&ctx->lock, flags);
208
	--ctx->pin_count;
209
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
210 211 212
	put_ctx(ctx);
}

213 214
static inline u64 perf_clock(void)
{
215
	return local_clock();
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

241 242 243 244 245 246
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
247 248 249 250 251 252 253 254 255

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

256 257 258 259 260 261 262 263 264 265 266 267
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

268 269 270 271 272 273 274 275 276
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

277
/*
278
 * Add a event from the lists for its context.
279 280
 * Must be called with ctx->mutex and ctx->lock held.
 */
281
static void
282
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283
{
284 285
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
286 287

	/*
288 289 290
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
291
	 */
292
	if (event->group_leader == event) {
293 294
		struct list_head *list;

295 296 297
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

298 299
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
300
	}
P
Peter Zijlstra 已提交
301

302
	list_add_rcu(&event->event_entry, &ctx->event_list);
303
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
304
		perf_pmu_rotate_start(ctx->pmu);
305 306
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

328
/*
329
 * Remove a event from the lists for its context.
330
 * Must be called with ctx->mutex and ctx->lock held.
331
 */
332
static void
333
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334
{
335 336 337 338
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339
		return;
340 341 342

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

343 344
	ctx->nr_events--;
	if (event->attr.inherit_stat)
345
		ctx->nr_stat--;
346

347
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
351

352
	update_group_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363 364
}

365
static void perf_group_detach(struct perf_event *event)
366 367
{
	struct perf_event *sibling, *tmp;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
389

390
	/*
391 392
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
393
	 * to whatever list we are on.
394
	 */
395
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 397
		if (list)
			list_move_tail(&sibling->group_entry, list);
398
		sibling->group_leader = sibling;
399 400 401

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
402 403 404
	}
}

405 406 407 408 409 410
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

411
static void
412
event_sched_out(struct perf_event *event,
413
		  struct perf_cpu_context *cpuctx,
414
		  struct perf_event_context *ctx)
415
{
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

430
	if (event->state != PERF_EVENT_STATE_ACTIVE)
431 432
		return;

433 434 435 436
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
437
	}
438
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
439
	event->pmu->del(event, 0);
440
	event->oncpu = -1;
441

442
	if (!is_software_event(event))
443 444
		cpuctx->active_oncpu--;
	ctx->nr_active--;
445
	if (event->attr.exclusive || !cpuctx->active_oncpu)
446 447 448
		cpuctx->exclusive = 0;
}

449
static void
450
group_sched_out(struct perf_event *group_event,
451
		struct perf_cpu_context *cpuctx,
452
		struct perf_event_context *ctx)
453
{
454
	struct perf_event *event;
455
	int state = group_event->state;
456

457
	event_sched_out(group_event, cpuctx, ctx);
458 459 460 461

	/*
	 * Schedule out siblings (if any):
	 */
462 463
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
464

465
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 467 468
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
469 470 471 472 473 474
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
475
/*
476
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
477
 *
478
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
479 480
 * remove it from the context list.
 */
481
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
482
{
483 484
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
485
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
486 487 488 489 490 491

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
492
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
493 494
		return;

495
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
496

497
	event_sched_out(event, cpuctx, ctx);
498

499
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
500

501
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
502 503 504 505
}


/*
506
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
507
 *
508
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
509
 *
510
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
511
 * call when the task is on a CPU.
512
 *
513 514
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
515 516
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
517
 * When called from perf_event_exit_task, it's OK because the
518
 * context has been detached from its task.
T
Thomas Gleixner 已提交
519
 */
520
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
521
{
522
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
523 524 525 526
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
527
		 * Per cpu events are removed via an smp call and
528
		 * the removal is always successful.
T
Thomas Gleixner 已提交
529
		 */
530 531 532
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
533 534 535 536
		return;
	}

retry:
537 538
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
539

540
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
541 542 543
	/*
	 * If the context is active we need to retry the smp call.
	 */
544
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
545
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
546 547 548 549 550
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
551
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
552 553
	 * succeed.
	 */
P
Peter Zijlstra 已提交
554
	if (!list_empty(&event->group_entry))
555
		list_del_event(event, ctx);
556
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
557 558
}

559
/*
560
 * Cross CPU call to disable a performance event
561
 */
562
static void __perf_event_disable(void *info)
563
{
564 565
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
566
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
567 568

	/*
569 570
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
571
	 */
572
	if (ctx->task && cpuctx->task_ctx != ctx)
573 574
		return;

575
	raw_spin_lock(&ctx->lock);
576 577

	/*
578
	 * If the event is on, turn it off.
579 580
	 * If it is in error state, leave it in error state.
	 */
581
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
582
		update_context_time(ctx);
583 584 585
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
586
		else
587 588
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
589 590
	}

591
	raw_spin_unlock(&ctx->lock);
592 593 594
}

/*
595
 * Disable a event.
596
 *
597 598
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
599
 * remains valid.  This condition is satisifed when called through
600 601 602 603
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
604
 * is the current context on this CPU and preemption is disabled,
605
 * hence we can't get into perf_event_task_sched_out for this context.
606
 */
607
void perf_event_disable(struct perf_event *event)
608
{
609
	struct perf_event_context *ctx = event->ctx;
610 611 612 613
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
614
		 * Disable the event on the cpu that it's on
615
		 */
616 617
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
618 619 620
		return;
	}

P
Peter Zijlstra 已提交
621
retry:
622
	task_oncpu_function_call(task, __perf_event_disable, event);
623

624
	raw_spin_lock_irq(&ctx->lock);
625
	/*
626
	 * If the event is still active, we need to retry the cross-call.
627
	 */
628
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
629
		raw_spin_unlock_irq(&ctx->lock);
630 631 632 633 634 635 636
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
637 638 639
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
640
	}
641

642
	raw_spin_unlock_irq(&ctx->lock);
643 644
}

645
static int
646
event_sched_in(struct perf_event *event,
647
		 struct perf_cpu_context *cpuctx,
648
		 struct perf_event_context *ctx)
649
{
650
	if (event->state <= PERF_EVENT_STATE_OFF)
651 652
		return 0;

653
	event->state = PERF_EVENT_STATE_ACTIVE;
654
	event->oncpu = smp_processor_id();
655 656 657 658 659
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
660
	if (event->pmu->add(event, PERF_EF_START)) {
661 662
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
663 664 665
		return -EAGAIN;
	}

666
	event->tstamp_running += ctx->time - event->tstamp_stopped;
667

668
	if (!is_software_event(event))
669
		cpuctx->active_oncpu++;
670 671
	ctx->nr_active++;

672
	if (event->attr.exclusive)
673 674
		cpuctx->exclusive = 1;

675 676 677
	return 0;
}

678
static int
679
group_sched_in(struct perf_event *group_event,
680
	       struct perf_cpu_context *cpuctx,
681
	       struct perf_event_context *ctx)
682
{
683
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
684
	struct pmu *pmu = group_event->pmu;
685

686
	if (group_event->state == PERF_EVENT_STATE_OFF)
687 688
		return 0;

P
Peter Zijlstra 已提交
689
	pmu->start_txn(pmu);
690

691
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
692
		pmu->cancel_txn(pmu);
693
		return -EAGAIN;
694
	}
695 696 697 698

	/*
	 * Schedule in siblings as one group (if any):
	 */
699
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700
		if (event_sched_in(event, cpuctx, ctx)) {
701
			partial_group = event;
702 703 704 705
			goto group_error;
		}
	}

P
Peter Zijlstra 已提交
706
	if (!pmu->commit_txn(pmu))
707
		return 0;
708

709 710 711 712 713
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
714 715
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
716
			break;
717
		event_sched_out(event, cpuctx, ctx);
718
	}
719
	event_sched_out(group_event, cpuctx, ctx);
720

P
Peter Zijlstra 已提交
721
	pmu->cancel_txn(pmu);
722

723 724 725
	return -EAGAIN;
}

726
/*
727
 * Work out whether we can put this event group on the CPU now.
728
 */
729
static int group_can_go_on(struct perf_event *event,
730 731 732 733
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
734
	 * Groups consisting entirely of software events can always go on.
735
	 */
736
	if (event->group_flags & PERF_GROUP_SOFTWARE)
737 738 739
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
740
	 * events can go on.
741 742 743 744 745
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
746
	 * events on the CPU, it can't go on.
747
	 */
748
	if (event->attr.exclusive && cpuctx->active_oncpu)
749 750 751 752 753 754 755 756
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

757 758
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
759
{
760
	list_add_event(event, ctx);
761
	perf_group_attach(event);
762 763 764
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
765 766
}

T
Thomas Gleixner 已提交
767
/*
768
 * Cross CPU call to install and enable a performance event
769 770
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
771 772 773
 */
static void __perf_install_in_context(void *info)
{
774 775 776
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
777
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
778
	int err;
T
Thomas Gleixner 已提交
779 780 781 782 783

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
784
	 * Or possibly this is the right context but it isn't
785
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
786
	 */
787
	if (ctx->task && cpuctx->task_ctx != ctx) {
788
		if (cpuctx->task_ctx || ctx->task != current)
789 790 791
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
792

793
	raw_spin_lock(&ctx->lock);
794
	ctx->is_active = 1;
795
	update_context_time(ctx);
T
Thomas Gleixner 已提交
796

797
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
798

799 800 801
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

802
	/*
803
	 * Don't put the event on if it is disabled or if
804 805
	 * it is in a group and the group isn't on.
	 */
806 807
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 809
		goto unlock;

810
	/*
811 812 813
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
814
	 */
815
	if (!group_can_go_on(event, cpuctx, 1))
816 817
		err = -EEXIST;
	else
818
		err = event_sched_in(event, cpuctx, ctx);
819

820 821
	if (err) {
		/*
822
		 * This event couldn't go on.  If it is in a group
823
		 * then we have to pull the whole group off.
824
		 * If the event group is pinned then put it in error state.
825
		 */
826
		if (leader != event)
827
			group_sched_out(leader, cpuctx, ctx);
828
		if (leader->attr.pinned) {
829
			update_group_times(leader);
830
			leader->state = PERF_EVENT_STATE_ERROR;
831
		}
832
	}
T
Thomas Gleixner 已提交
833

P
Peter Zijlstra 已提交
834
unlock:
835
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
836 837 838
}

/*
839
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
840
 *
841 842
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
843
 *
844
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
845 846
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
847 848
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
849 850
 */
static void
851 852
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
853 854 855 856
			int cpu)
{
	struct task_struct *task = ctx->task;

857 858
	event->ctx = ctx;

T
Thomas Gleixner 已提交
859 860
	if (!task) {
		/*
861
		 * Per cpu events are installed via an smp call and
862
		 * the install is always successful.
T
Thomas Gleixner 已提交
863 864
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
865
					 event, 1);
T
Thomas Gleixner 已提交
866 867 868 869 870
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
871
				 event);
T
Thomas Gleixner 已提交
872

873
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
874 875 876
	/*
	 * we need to retry the smp call.
	 */
877
	if (ctx->is_active && list_empty(&event->group_entry)) {
878
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
879 880 881 882 883
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
884
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
885 886
	 * succeed.
	 */
887 888
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
889
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
890 891
}

892
/*
893
 * Put a event into inactive state and update time fields.
894 895 896 897 898 899
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
900 901
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
902
{
903
	struct perf_event *sub;
904

905 906
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
907 908
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
909 910
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
911 912
		}
	}
913 914
}

915
/*
916
 * Cross CPU call to enable a performance event
917
 */
918
static void __perf_event_enable(void *info)
919
{
920 921 922
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
923
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
924
	int err;
925

926
	/*
927 928
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
929
	 */
930
	if (ctx->task && cpuctx->task_ctx != ctx) {
931
		if (cpuctx->task_ctx || ctx->task != current)
932 933 934
			return;
		cpuctx->task_ctx = ctx;
	}
935

936
	raw_spin_lock(&ctx->lock);
937
	ctx->is_active = 1;
938
	update_context_time(ctx);
939

940
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
941
		goto unlock;
942
	__perf_event_mark_enabled(event, ctx);
943

944 945 946
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

947
	/*
948
	 * If the event is in a group and isn't the group leader,
949
	 * then don't put it on unless the group is on.
950
	 */
951
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
952
		goto unlock;
953

954
	if (!group_can_go_on(event, cpuctx, 1)) {
955
		err = -EEXIST;
956
	} else {
957
		if (event == leader)
958
			err = group_sched_in(event, cpuctx, ctx);
959
		else
960
			err = event_sched_in(event, cpuctx, ctx);
961
	}
962 963 964

	if (err) {
		/*
965
		 * If this event can't go on and it's part of a
966 967
		 * group, then the whole group has to come off.
		 */
968
		if (leader != event)
969
			group_sched_out(leader, cpuctx, ctx);
970
		if (leader->attr.pinned) {
971
			update_group_times(leader);
972
			leader->state = PERF_EVENT_STATE_ERROR;
973
		}
974 975
	}

P
Peter Zijlstra 已提交
976
unlock:
977
	raw_spin_unlock(&ctx->lock);
978 979 980
}

/*
981
 * Enable a event.
982
 *
983 984
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
985
 * remains valid.  This condition is satisfied when called through
986 987
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
988
 */
989
void perf_event_enable(struct perf_event *event)
990
{
991
	struct perf_event_context *ctx = event->ctx;
992 993 994 995
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
996
		 * Enable the event on the cpu that it's on
997
		 */
998 999
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1000 1001 1002
		return;
	}

1003
	raw_spin_lock_irq(&ctx->lock);
1004
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1005 1006 1007
		goto out;

	/*
1008 1009
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1010 1011 1012 1013
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1014 1015
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1016

P
Peter Zijlstra 已提交
1017
retry:
1018
	raw_spin_unlock_irq(&ctx->lock);
1019
	task_oncpu_function_call(task, __perf_event_enable, event);
1020

1021
	raw_spin_lock_irq(&ctx->lock);
1022 1023

	/*
1024
	 * If the context is active and the event is still off,
1025 1026
	 * we need to retry the cross-call.
	 */
1027
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1028 1029 1030 1031 1032 1033
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1034 1035
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1036

P
Peter Zijlstra 已提交
1037
out:
1038
	raw_spin_unlock_irq(&ctx->lock);
1039 1040
}

1041
static int perf_event_refresh(struct perf_event *event, int refresh)
1042
{
1043
	/*
1044
	 * not supported on inherited events
1045
	 */
1046
	if (event->attr.inherit)
1047 1048
		return -EINVAL;

1049 1050
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1051 1052

	return 0;
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062 1063
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1064
{
1065
	struct perf_event *event;
1066

1067
	raw_spin_lock(&ctx->lock);
1068
	ctx->is_active = 0;
1069
	if (likely(!ctx->nr_events))
1070
		goto out;
1071
	update_context_time(ctx);
1072

1073
	if (!ctx->nr_active)
1074
		goto out;
1075

P
Peter Zijlstra 已提交
1076
	if (event_type & EVENT_PINNED) {
1077 1078
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1079
	}
1080

P
Peter Zijlstra 已提交
1081
	if (event_type & EVENT_FLEXIBLE) {
1082
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1083
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1084 1085
	}
out:
1086
	raw_spin_unlock(&ctx->lock);
1087 1088
}

1089 1090 1091
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1092 1093 1094 1095
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1096
 * in them directly with an fd; we can only enable/disable all
1097
 * events via prctl, or enable/disable all events in a family
1098 1099
 * via ioctl, which will have the same effect on both contexts.
 */
1100 1101
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1102 1103
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1104
		&& ctx1->parent_gen == ctx2->parent_gen
1105
		&& !ctx1->pin_count && !ctx2->pin_count;
1106 1107
}

1108 1109
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1110 1111 1112
{
	u64 value;

1113
	if (!event->attr.inherit_stat)
1114 1115 1116
		return;

	/*
1117
	 * Update the event value, we cannot use perf_event_read()
1118 1119
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1120
	 * we know the event must be on the current CPU, therefore we
1121 1122
	 * don't need to use it.
	 */
1123 1124
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1125 1126
		event->pmu->read(event);
		/* fall-through */
1127

1128 1129
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1130 1131 1132 1133 1134 1135 1136
		break;

	default:
		break;
	}

	/*
1137
	 * In order to keep per-task stats reliable we need to flip the event
1138 1139
	 * values when we flip the contexts.
	 */
1140 1141 1142
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1143

1144 1145
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1146

1147
	/*
1148
	 * Since we swizzled the values, update the user visible data too.
1149
	 */
1150 1151
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1152 1153 1154 1155 1156
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1157 1158
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1159
{
1160
	struct perf_event *event, *next_event;
1161 1162 1163 1164

	if (!ctx->nr_stat)
		return;

1165 1166
	update_context_time(ctx);

1167 1168
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1169

1170 1171
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1172

1173 1174
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1175

1176
		__perf_event_sync_stat(event, next_event);
1177

1178 1179
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1180 1181 1182
	}
}

P
Peter Zijlstra 已提交
1183 1184
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1185
{
P
Peter Zijlstra 已提交
1186
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1187 1188
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1189
	struct perf_cpu_context *cpuctx;
1190
	int do_switch = 1;
T
Thomas Gleixner 已提交
1191

P
Peter Zijlstra 已提交
1192 1193 1194 1195 1196
	if (likely(!ctx))
		return;

	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1197 1198
		return;

1199 1200
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1201
	next_ctx = next->perf_event_ctxp[ctxn];
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1213 1214
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1215
		if (context_equiv(ctx, next_ctx)) {
1216 1217
			/*
			 * XXX do we need a memory barrier of sorts
1218
			 * wrt to rcu_dereference() of perf_event_ctxp
1219
			 */
P
Peter Zijlstra 已提交
1220 1221
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1222 1223 1224
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1225

1226
			perf_event_sync_stat(ctx, next_ctx);
1227
		}
1228 1229
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1230
	}
1231
	rcu_read_unlock();
1232

1233
	if (do_switch) {
1234
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1235 1236
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1237 1238
}

P
Peter Zijlstra 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
void perf_event_task_sched_out(struct task_struct *task,
			       struct task_struct *next)
{
	int ctxn;

	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1264 1265
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1266
{
P
Peter Zijlstra 已提交
1267
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1268

1269 1270
	if (!cpuctx->task_ctx)
		return;
1271 1272 1273 1274

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1275
	ctx_sched_out(ctx, cpuctx, event_type);
1276 1277 1278
	cpuctx->task_ctx = NULL;
}

1279 1280 1281
/*
 * Called with IRQs disabled
 */
1282
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1283
{
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1294 1295
}

1296
static void
1297
ctx_pinned_sched_in(struct perf_event_context *ctx,
1298
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1299
{
1300
	struct perf_event *event;
T
Thomas Gleixner 已提交
1301

1302 1303
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1304
			continue;
1305
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1306 1307
			continue;

1308
		if (group_can_go_on(event, cpuctx, 1))
1309
			group_sched_in(event, cpuctx, ctx);
1310 1311 1312 1313 1314

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1315 1316 1317
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1318
		}
1319
	}
1320 1321 1322 1323
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1324
		      struct perf_cpu_context *cpuctx)
1325 1326 1327
{
	struct perf_event *event;
	int can_add_hw = 1;
1328

1329 1330 1331
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1332
			continue;
1333 1334
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1335
		 * of events:
1336
		 */
1337
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1338 1339
			continue;

P
Peter Zijlstra 已提交
1340
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1341
			if (group_sched_in(event, cpuctx, ctx))
1342
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1343
		}
T
Thomas Gleixner 已提交
1344
	}
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1364
		ctx_pinned_sched_in(ctx, cpuctx);
1365 1366 1367

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1368
		ctx_flexible_sched_in(ctx, cpuctx);
1369

P
Peter Zijlstra 已提交
1370
out:
1371
	raw_spin_unlock(&ctx->lock);
1372 1373
}

1374 1375 1376 1377 1378 1379 1380 1381
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1382
static void task_ctx_sched_in(struct perf_event_context *ctx,
1383 1384
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1385
	struct perf_cpu_context *cpuctx;
1386

P
Peter Zijlstra 已提交
1387
       	cpuctx = __get_cpu_context(ctx);
1388 1389
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1390

1391 1392 1393
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
P
Peter Zijlstra 已提交
1394 1395

void perf_event_context_sched_in(struct perf_event_context *ctx)
1396
{
P
Peter Zijlstra 已提交
1397
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1398

P
Peter Zijlstra 已提交
1399
	cpuctx = __get_cpu_context(ctx);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1415 1416 1417 1418 1419

	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1420
	perf_pmu_rotate_start(ctx->pmu);
1421 1422
}

P
Peter Zijlstra 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
void perf_event_task_sched_in(struct task_struct *task)
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
}

1448 1449
#define MAX_INTERRUPTS (~0ULL)

1450
static void perf_log_throttle(struct perf_event *event, int enable);
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1519 1520 1521
	if (!divisor)
		return dividend;

1522 1523 1524 1525
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1526
{
1527
	struct hw_perf_event *hwc = &event->hw;
1528
	s64 period, sample_period;
1529 1530
	s64 delta;

1531
	period = perf_calculate_period(event, nsec, count);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1542

1543
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1544
		event->pmu->stop(event, PERF_EF_UPDATE);
1545
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1546
		event->pmu->start(event, PERF_EF_RELOAD);
1547
	}
1548 1549
}

1550
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1551
{
1552 1553
	struct perf_event *event;
	struct hw_perf_event *hwc;
1554 1555
	u64 interrupts, now;
	s64 delta;
1556

1557
	raw_spin_lock(&ctx->lock);
1558
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1559
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1560 1561
			continue;

1562 1563 1564
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1565
		hwc = &event->hw;
1566 1567 1568

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1569

1570
		/*
1571
		 * unthrottle events on the tick
1572
		 */
1573
		if (interrupts == MAX_INTERRUPTS) {
1574
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1575
			event->pmu->start(event, 0);
1576 1577
		}

1578
		if (!event->attr.freq || !event->attr.sample_freq)
1579 1580
			continue;

1581
		event->pmu->read(event);
1582
		now = local64_read(&event->count);
1583 1584
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1585

1586
		if (delta > 0)
1587
			perf_adjust_period(event, period, delta);
1588
	}
1589
	raw_spin_unlock(&ctx->lock);
1590 1591
}

1592
/*
1593
 * Round-robin a context's events:
1594
 */
1595
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1596
{
1597
	raw_spin_lock(&ctx->lock);
1598 1599 1600 1601

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1602
	raw_spin_unlock(&ctx->lock);
1603 1604
}

1605 1606 1607 1608 1609 1610
/*
 * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
 * context, and ->pmu_rotate_start() is called with irqs disabled (both are
 * cpu affine, so there are no SMP races).
 */
static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1611
{
1612
	enum hrtimer_restart restart = HRTIMER_NORESTART;
1613
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1614
	struct perf_event_context *ctx = NULL;
1615
	int rotate = 0;
1616

1617
	cpuctx = container_of(timer, struct perf_cpu_context, timer);
1618

1619 1620 1621 1622 1623
	if (cpuctx->ctx.nr_events) {
		restart = HRTIMER_RESTART;
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1624

P
Peter Zijlstra 已提交
1625
	ctx = cpuctx->task_ctx;
1626 1627 1628 1629 1630
	if (ctx && ctx->nr_events) {
		restart = HRTIMER_RESTART;
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1631

1632
	perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1633
	if (ctx)
1634
		perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1635

1636
	if (!rotate)
1637
		goto done;
1638

1639
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1640
	if (ctx)
1641
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1642

1643
	rotate_ctx(&cpuctx->ctx);
1644 1645
	if (ctx)
		rotate_ctx(ctx);
1646

1647
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1648
	if (ctx)
P
Peter Zijlstra 已提交
1649
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1650 1651 1652 1653 1654

done:
	hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));

	return restart;
T
Thomas Gleixner 已提交
1655 1656
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1672
/*
1673
 * Enable all of a task's events that have been marked enable-on-exec.
1674 1675
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1676
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1677
{
1678
	struct perf_event *event;
1679 1680
	unsigned long flags;
	int enabled = 0;
1681
	int ret;
1682 1683

	local_irq_save(flags);
1684
	if (!ctx || !ctx->nr_events)
1685 1686
		goto out;

P
Peter Zijlstra 已提交
1687
	task_ctx_sched_out(ctx, EVENT_ALL);
1688

1689
	raw_spin_lock(&ctx->lock);
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1701 1702 1703
	}

	/*
1704
	 * Unclone this context if we enabled any event.
1705
	 */
1706 1707
	if (enabled)
		unclone_ctx(ctx);
1708

1709
	raw_spin_unlock(&ctx->lock);
1710

P
Peter Zijlstra 已提交
1711
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1712
out:
1713 1714 1715
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1716
/*
1717
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1718
 */
1719
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1720
{
1721 1722
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1723
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1724

1725 1726 1727 1728
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1729 1730
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1731 1732 1733 1734
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1735
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1736
	update_context_time(ctx);
1737
	update_event_times(event);
1738
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1739

P
Peter Zijlstra 已提交
1740
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1741 1742
}

P
Peter Zijlstra 已提交
1743 1744
static inline u64 perf_event_count(struct perf_event *event)
{
1745
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1746 1747
}

1748
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1749 1750
{
	/*
1751 1752
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1753
	 */
1754 1755 1756 1757
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1758 1759 1760
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1761
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1762
		update_context_time(ctx);
1763
		update_event_times(event);
1764
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1765 1766
	}

P
Peter Zijlstra 已提交
1767
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1768 1769
}

1770 1771 1772 1773 1774 1775 1776 1777 1778
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1779
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1835
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1980
/*
1981
 * Initialize the perf_event context in a task_struct:
1982
 */
1983
static void __perf_event_init_context(struct perf_event_context *ctx)
1984
{
1985
	raw_spin_lock_init(&ctx->lock);
1986
	mutex_init(&ctx->mutex);
1987 1988
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1989 1990
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
	}
	ctx->pmu = pmu;

	return ctx;
2010 2011
}

P
Peter Zijlstra 已提交
2012 2013
static struct perf_event_context *
find_get_context(struct pmu *pmu, pid_t pid, int cpu)
T
Thomas Gleixner 已提交
2014
{
2015
	struct perf_event_context *ctx;
2016
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2017
	struct task_struct *task;
2018
	unsigned long flags;
P
Peter Zijlstra 已提交
2019
	int ctxn, err;
T
Thomas Gleixner 已提交
2020

2021
	if (pid == -1 && cpu != -1) {
2022
		/* Must be root to operate on a CPU event: */
2023
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2024 2025
			return ERR_PTR(-EACCES);

2026
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2027 2028 2029
			return ERR_PTR(-EINVAL);

		/*
2030
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2031 2032 2033
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2034
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2035 2036
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2037
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2038
		ctx = &cpuctx->ctx;
2039
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2056
	/*
2057
	 * Can't attach events to a dying task.
2058 2059 2060 2061 2062
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2063
	/* Reuse ptrace permission checks for now. */
2064 2065 2066 2067
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

P
Peter Zijlstra 已提交
2068 2069 2070 2071 2072
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2073
retry:
P
Peter Zijlstra 已提交
2074
	ctx = perf_lock_task_context(task, ctxn, &flags);
2075
	if (ctx) {
2076
		unclone_ctx(ctx);
2077
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2078 2079
	}

2080
	if (!ctx) {
2081
		ctx = alloc_perf_context(pmu, task);
2082 2083 2084
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2085

2086
		get_ctx(ctx);
2087

P
Peter Zijlstra 已提交
2088
		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2089 2090 2091 2092
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2093
			put_task_struct(task);
2094
			kfree(ctx);
2095
			goto retry;
2096 2097 2098
		}
	}

2099
	put_task_struct(task);
T
Thomas Gleixner 已提交
2100
	return ctx;
2101

P
Peter Zijlstra 已提交
2102
errout:
2103 2104
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2105 2106
}

L
Li Zefan 已提交
2107 2108
static void perf_event_free_filter(struct perf_event *event);

2109
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2110
{
2111
	struct perf_event *event;
P
Peter Zijlstra 已提交
2112

2113 2114 2115
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2116
	perf_event_free_filter(event);
2117
	kfree(event);
P
Peter Zijlstra 已提交
2118 2119
}

2120
static void perf_pending_sync(struct perf_event *event);
2121
static void perf_buffer_put(struct perf_buffer *buffer);
2122

2123
static void free_event(struct perf_event *event)
2124
{
2125
	perf_pending_sync(event);
2126

2127 2128
	if (!event->parent) {
		atomic_dec(&nr_events);
2129
		if (event->attr.mmap || event->attr.mmap_data)
2130 2131 2132 2133 2134
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2135 2136
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2137
	}
2138

2139 2140 2141
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2142 2143
	}

2144 2145
	if (event->destroy)
		event->destroy(event);
2146

2147 2148
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2149 2150
}

2151
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2152
{
2153
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2154

2155 2156 2157 2158 2159 2160
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2161
	WARN_ON_ONCE(ctx->parent_ctx);
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2175
	raw_spin_lock_irq(&ctx->lock);
2176
	perf_group_detach(event);
2177 2178
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2179
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2180

2181 2182 2183 2184
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2185

2186
	free_event(event);
T
Thomas Gleixner 已提交
2187 2188 2189

	return 0;
}
2190
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2191

2192 2193 2194 2195
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2196
{
2197
	struct perf_event *event = file->private_data;
2198

2199
	file->private_data = NULL;
2200

2201
	return perf_event_release_kernel(event);
2202 2203
}

2204
static int perf_event_read_size(struct perf_event *event)
2205 2206 2207 2208 2209
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2210
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2211 2212
		size += sizeof(u64);

2213
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2214 2215
		size += sizeof(u64);

2216
	if (event->attr.read_format & PERF_FORMAT_ID)
2217 2218
		entry += sizeof(u64);

2219 2220
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2221 2222 2223 2224 2225 2226 2227 2228
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2229
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2230
{
2231
	struct perf_event *child;
2232 2233
	u64 total = 0;

2234 2235 2236
	*enabled = 0;
	*running = 0;

2237
	mutex_lock(&event->child_mutex);
2238
	total += perf_event_read(event);
2239 2240 2241 2242 2243 2244
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2245
		total += perf_event_read(child);
2246 2247 2248
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2249
	mutex_unlock(&event->child_mutex);
2250 2251 2252

	return total;
}
2253
EXPORT_SYMBOL_GPL(perf_event_read_value);
2254

2255
static int perf_event_read_group(struct perf_event *event,
2256 2257
				   u64 read_format, char __user *buf)
{
2258
	struct perf_event *leader = event->group_leader, *sub;
2259 2260
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2261
	u64 values[5];
2262
	u64 count, enabled, running;
2263

2264
	mutex_lock(&ctx->mutex);
2265
	count = perf_event_read_value(leader, &enabled, &running);
2266 2267

	values[n++] = 1 + leader->nr_siblings;
2268 2269 2270 2271
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2272 2273 2274
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2275 2276 2277 2278

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2279
		goto unlock;
2280

2281
	ret = size;
2282

2283
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2284
		n = 0;
2285

2286
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2287 2288 2289 2290 2291
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2292
		if (copy_to_user(buf + ret, values, size)) {
2293 2294 2295
			ret = -EFAULT;
			goto unlock;
		}
2296 2297

		ret += size;
2298
	}
2299 2300
unlock:
	mutex_unlock(&ctx->mutex);
2301

2302
	return ret;
2303 2304
}

2305
static int perf_event_read_one(struct perf_event *event,
2306 2307
				 u64 read_format, char __user *buf)
{
2308
	u64 enabled, running;
2309 2310 2311
	u64 values[4];
	int n = 0;

2312 2313 2314 2315 2316
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2317
	if (read_format & PERF_FORMAT_ID)
2318
		values[n++] = primary_event_id(event);
2319 2320 2321 2322 2323 2324 2325

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2326
/*
2327
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2328 2329
 */
static ssize_t
2330
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2331
{
2332
	u64 read_format = event->attr.read_format;
2333
	int ret;
T
Thomas Gleixner 已提交
2334

2335
	/*
2336
	 * Return end-of-file for a read on a event that is in
2337 2338 2339
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2340
	if (event->state == PERF_EVENT_STATE_ERROR)
2341 2342
		return 0;

2343
	if (count < perf_event_read_size(event))
2344 2345
		return -ENOSPC;

2346
	WARN_ON_ONCE(event->ctx->parent_ctx);
2347
	if (read_format & PERF_FORMAT_GROUP)
2348
		ret = perf_event_read_group(event, read_format, buf);
2349
	else
2350
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2351

2352
	return ret;
T
Thomas Gleixner 已提交
2353 2354 2355 2356 2357
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2358
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2359

2360
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2361 2362 2363 2364
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2365
	struct perf_event *event = file->private_data;
2366
	struct perf_buffer *buffer;
2367
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2368 2369

	rcu_read_lock();
2370 2371 2372
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2373
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2374

2375
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2376 2377 2378 2379

	return events;
}

2380
static void perf_event_reset(struct perf_event *event)
2381
{
2382
	(void)perf_event_read(event);
2383
	local64_set(&event->count, 0);
2384
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2385 2386
}

2387
/*
2388 2389 2390 2391
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2392
 */
2393 2394
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2395
{
2396
	struct perf_event *child;
P
Peter Zijlstra 已提交
2397

2398 2399 2400 2401
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2402
		func(child);
2403
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2404 2405
}

2406 2407
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2408
{
2409 2410
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2411

2412 2413
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2414
	event = event->group_leader;
2415

2416 2417 2418 2419
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2420
	mutex_unlock(&ctx->mutex);
2421 2422
}

2423
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2424
{
2425
	struct perf_event_context *ctx = event->ctx;
2426 2427 2428 2429
	unsigned long size;
	int ret = 0;
	u64 value;

2430
	if (!event->attr.sample_period)
2431 2432 2433 2434 2435 2436 2437 2438 2439
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2440
	raw_spin_lock_irq(&ctx->lock);
2441 2442
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2443 2444 2445 2446
			ret = -EINVAL;
			goto unlock;
		}

2447
		event->attr.sample_freq = value;
2448
	} else {
2449 2450
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2451 2452
	}
unlock:
2453
	raw_spin_unlock_irq(&ctx->lock);
2454 2455 2456 2457

	return ret;
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2479
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2480

2481 2482
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2483 2484
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2485
	u32 flags = arg;
2486 2487

	switch (cmd) {
2488 2489
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2490
		break;
2491 2492
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2493
		break;
2494 2495
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2496
		break;
P
Peter Zijlstra 已提交
2497

2498 2499
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2500

2501 2502
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2503

2504
	case PERF_EVENT_IOC_SET_OUTPUT:
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2522

L
Li Zefan 已提交
2523 2524 2525
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2526
	default:
P
Peter Zijlstra 已提交
2527
		return -ENOTTY;
2528
	}
P
Peter Zijlstra 已提交
2529 2530

	if (flags & PERF_IOC_FLAG_GROUP)
2531
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2532
	else
2533
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2534 2535

	return 0;
2536 2537
}

2538
int perf_event_task_enable(void)
2539
{
2540
	struct perf_event *event;
2541

2542 2543 2544 2545
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2546 2547 2548 2549

	return 0;
}

2550
int perf_event_task_disable(void)
2551
{
2552
	struct perf_event *event;
2553

2554 2555 2556 2557
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2558 2559 2560 2561

	return 0;
}

2562 2563
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2564 2565
#endif

2566
static int perf_event_index(struct perf_event *event)
2567
{
P
Peter Zijlstra 已提交
2568 2569 2570
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2571
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2572 2573
		return 0;

2574
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2575 2576
}

2577 2578 2579 2580 2581
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2582
void perf_event_update_userpage(struct perf_event *event)
2583
{
2584
	struct perf_event_mmap_page *userpg;
2585
	struct perf_buffer *buffer;
2586 2587

	rcu_read_lock();
2588 2589
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2590 2591
		goto unlock;

2592
	userpg = buffer->user_page;
2593

2594 2595 2596 2597 2598
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2599
	++userpg->lock;
2600
	barrier();
2601
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2602
	userpg->offset = perf_event_count(event);
2603
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2604
		userpg->offset -= local64_read(&event->hw.prev_count);
2605

2606 2607
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2608

2609 2610
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2611

2612
	barrier();
2613
	++userpg->lock;
2614
	preempt_enable();
2615
unlock:
2616
	rcu_read_unlock();
2617 2618
}

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2638
#ifndef CONFIG_PERF_USE_VMALLOC
2639

2640 2641 2642
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2643

2644
static struct page *
2645
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2646
{
2647
	if (pgoff > buffer->nr_pages)
2648
		return NULL;
2649

2650
	if (pgoff == 0)
2651
		return virt_to_page(buffer->user_page);
2652

2653
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2654 2655
}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2669
static struct perf_buffer *
2670
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2671
{
2672
	struct perf_buffer *buffer;
2673 2674 2675
	unsigned long size;
	int i;

2676
	size = sizeof(struct perf_buffer);
2677 2678
	size += nr_pages * sizeof(void *);

2679 2680
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2681 2682
		goto fail;

2683
	buffer->user_page = perf_mmap_alloc_page(cpu);
2684
	if (!buffer->user_page)
2685 2686 2687
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2688
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2689
		if (!buffer->data_pages[i])
2690 2691 2692
			goto fail_data_pages;
	}

2693
	buffer->nr_pages = nr_pages;
2694

2695 2696
	perf_buffer_init(buffer, watermark, flags);

2697
	return buffer;
2698 2699 2700

fail_data_pages:
	for (i--; i >= 0; i--)
2701
		free_page((unsigned long)buffer->data_pages[i]);
2702

2703
	free_page((unsigned long)buffer->user_page);
2704 2705

fail_user_page:
2706
	kfree(buffer);
2707 2708

fail:
2709
	return NULL;
2710 2711
}

2712 2713
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2714
	struct page *page = virt_to_page((void *)addr);
2715 2716 2717 2718 2719

	page->mapping = NULL;
	__free_page(page);
}

2720
static void perf_buffer_free(struct perf_buffer *buffer)
2721 2722 2723
{
	int i;

2724 2725 2726 2727
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2728 2729
}

2730
static inline int page_order(struct perf_buffer *buffer)
2731 2732 2733 2734
{
	return 0;
}

2735 2736 2737 2738 2739 2740 2741 2742
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2743
static inline int page_order(struct perf_buffer *buffer)
2744
{
2745
	return buffer->page_order;
2746 2747
}

2748
static struct page *
2749
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2750
{
2751
	if (pgoff > (1UL << page_order(buffer)))
2752 2753
		return NULL;

2754
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2755 2756 2757 2758 2759 2760 2761 2762 2763
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2764
static void perf_buffer_free_work(struct work_struct *work)
2765
{
2766
	struct perf_buffer *buffer;
2767 2768 2769
	void *base;
	int i, nr;

2770 2771
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2772

2773
	base = buffer->user_page;
2774 2775 2776 2777
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2778
	kfree(buffer);
2779 2780
}

2781
static void perf_buffer_free(struct perf_buffer *buffer)
2782
{
2783
	schedule_work(&buffer->work);
2784 2785
}

2786
static struct perf_buffer *
2787
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2788
{
2789
	struct perf_buffer *buffer;
2790 2791 2792
	unsigned long size;
	void *all_buf;

2793
	size = sizeof(struct perf_buffer);
2794 2795
	size += sizeof(void *);

2796 2797
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2798 2799
		goto fail;

2800
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2801 2802 2803 2804 2805

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2806 2807 2808 2809
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2810

2811 2812
	perf_buffer_init(buffer, watermark, flags);

2813
	return buffer;
2814 2815

fail_all_buf:
2816
	kfree(buffer);
2817 2818 2819 2820 2821 2822 2823

fail:
	return NULL;
}

#endif

2824
static unsigned long perf_data_size(struct perf_buffer *buffer)
2825
{
2826
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2827 2828
}

2829 2830 2831
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2832
	struct perf_buffer *buffer;
2833 2834 2835 2836 2837 2838 2839 2840 2841
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2842 2843
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2844 2845 2846 2847 2848
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2849
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2864
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2865
{
2866
	struct perf_buffer *buffer;
2867

2868 2869
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2870 2871
}

2872
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2873
{
2874
	struct perf_buffer *buffer;
2875

2876
	rcu_read_lock();
2877 2878 2879 2880
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2881 2882 2883
	}
	rcu_read_unlock();

2884
	return buffer;
2885 2886
}

2887
static void perf_buffer_put(struct perf_buffer *buffer)
2888
{
2889
	if (!atomic_dec_and_test(&buffer->refcount))
2890
		return;
2891

2892
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2893 2894 2895 2896
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2897
	struct perf_event *event = vma->vm_file->private_data;
2898

2899
	atomic_inc(&event->mmap_count);
2900 2901 2902 2903
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2904
	struct perf_event *event = vma->vm_file->private_data;
2905

2906
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2907
		unsigned long size = perf_data_size(event->buffer);
2908
		struct user_struct *user = event->mmap_user;
2909
		struct perf_buffer *buffer = event->buffer;
2910

2911
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2912
		vma->vm_mm->locked_vm -= event->mmap_locked;
2913
		rcu_assign_pointer(event->buffer, NULL);
2914
		mutex_unlock(&event->mmap_mutex);
2915

2916
		perf_buffer_put(buffer);
2917
		free_uid(user);
2918
	}
2919 2920
}

2921
static const struct vm_operations_struct perf_mmap_vmops = {
2922 2923 2924 2925
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2926 2927 2928 2929
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2930
	struct perf_event *event = file->private_data;
2931
	unsigned long user_locked, user_lock_limit;
2932
	struct user_struct *user = current_user();
2933
	unsigned long locked, lock_limit;
2934
	struct perf_buffer *buffer;
2935 2936
	unsigned long vma_size;
	unsigned long nr_pages;
2937
	long user_extra, extra;
2938
	int ret = 0, flags = 0;
2939

2940 2941 2942 2943 2944 2945 2946 2947
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2948
	if (!(vma->vm_flags & VM_SHARED))
2949
		return -EINVAL;
2950 2951 2952 2953

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2954
	/*
2955
	 * If we have buffer pages ensure they're a power-of-two number, so we
2956 2957 2958
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2959 2960
		return -EINVAL;

2961
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2962 2963
		return -EINVAL;

2964 2965
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2966

2967 2968
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2969 2970 2971
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2972
		else
2973 2974 2975 2976
			ret = -EINVAL;
		goto unlock;
	}

2977
	user_extra = nr_pages + 1;
2978
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2979 2980 2981 2982 2983 2984

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2985
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2986

2987 2988 2989
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2990

2991
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2992
	lock_limit >>= PAGE_SHIFT;
2993
	locked = vma->vm_mm->locked_vm + extra;
2994

2995 2996
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2997 2998 2999
		ret = -EPERM;
		goto unlock;
	}
3000

3001
	WARN_ON(event->buffer);
3002

3003 3004 3005 3006 3007
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3008
	if (!buffer) {
3009
		ret = -ENOMEM;
3010
		goto unlock;
3011
	}
3012
	rcu_assign_pointer(event->buffer, buffer);
3013

3014 3015 3016 3017 3018
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3019
unlock:
3020 3021
	if (!ret)
		atomic_inc(&event->mmap_count);
3022
	mutex_unlock(&event->mmap_mutex);
3023 3024 3025

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3026 3027

	return ret;
3028 3029
}

P
Peter Zijlstra 已提交
3030 3031 3032
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3033
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3034 3035 3036
	int retval;

	mutex_lock(&inode->i_mutex);
3037
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3038 3039 3040 3041 3042 3043 3044 3045
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3046
static const struct file_operations perf_fops = {
3047
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3048 3049 3050
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3051 3052
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3053
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3054
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3055 3056
};

3057
/*
3058
 * Perf event wakeup
3059 3060 3061 3062 3063
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3064
void perf_event_wakeup(struct perf_event *event)
3065
{
3066
	wake_up_all(&event->waitq);
3067

3068 3069 3070
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3071
	}
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3083
static void perf_pending_event(struct perf_pending_entry *entry)
3084
{
3085 3086
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3087

3088 3089 3090
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3091 3092
	}

3093 3094 3095
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3096 3097 3098
	}
}

3099
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3100

3101
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3102 3103 3104
	PENDING_TAIL,
};

3105 3106
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3107
{
3108
	struct perf_pending_entry **head;
3109

3110
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3111 3112
		return;

3113 3114 3115
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3116 3117

	do {
3118 3119
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3120

3121
	set_perf_event_pending();
3122

3123
	put_cpu_var(perf_pending_head);
3124 3125 3126 3127
}

static int __perf_pending_run(void)
{
3128
	struct perf_pending_entry *list;
3129 3130
	int nr = 0;

3131
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3132
	while (list != PENDING_TAIL) {
3133 3134
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3135 3136 3137

		list = list->next;

3138 3139
		func = entry->func;
		entry->next = NULL;
3140 3141 3142 3143 3144 3145 3146
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3147
		func(entry);
3148 3149 3150 3151 3152 3153
		nr++;
	}

	return nr;
}

3154
static inline int perf_not_pending(struct perf_event *event)
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3169
	return event->pending.next == NULL;
3170 3171
}

3172
static void perf_pending_sync(struct perf_event *event)
3173
{
3174
	wait_event(event->waitq, perf_not_pending(event));
3175 3176
}

3177
void perf_event_do_pending(void)
3178 3179 3180 3181
{
	__perf_pending_run();
}

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3203 3204 3205
/*
 * Output
 */
3206
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3207
			      unsigned long offset, unsigned long head)
3208 3209 3210
{
	unsigned long mask;

3211
	if (!buffer->writable)
3212 3213
		return true;

3214
	mask = perf_data_size(buffer) - 1;
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3225
static void perf_output_wakeup(struct perf_output_handle *handle)
3226
{
3227
	atomic_set(&handle->buffer->poll, POLL_IN);
3228

3229
	if (handle->nmi) {
3230 3231 3232
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3233
	} else
3234
		perf_event_wakeup(handle->event);
3235 3236
}

3237
/*
3238
 * We need to ensure a later event_id doesn't publish a head when a former
3239
 * event isn't done writing. However since we need to deal with NMIs we
3240 3241 3242
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3243
 * event completes.
3244
 */
3245
static void perf_output_get_handle(struct perf_output_handle *handle)
3246
{
3247
	struct perf_buffer *buffer = handle->buffer;
3248

3249
	preempt_disable();
3250 3251
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3252 3253
}

3254
static void perf_output_put_handle(struct perf_output_handle *handle)
3255
{
3256
	struct perf_buffer *buffer = handle->buffer;
3257
	unsigned long head;
3258 3259

again:
3260
	head = local_read(&buffer->head);
3261 3262

	/*
3263
	 * IRQ/NMI can happen here, which means we can miss a head update.
3264 3265
	 */

3266
	if (!local_dec_and_test(&buffer->nest))
3267
		goto out;
3268 3269

	/*
3270
	 * Publish the known good head. Rely on the full barrier implied
3271
	 * by atomic_dec_and_test() order the buffer->head read and this
3272
	 * write.
3273
	 */
3274
	buffer->user_page->data_head = head;
3275

3276 3277
	/*
	 * Now check if we missed an update, rely on the (compiler)
3278
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3279
	 */
3280 3281
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3282 3283 3284
		goto again;
	}

3285
	if (handle->wakeup != local_read(&buffer->wakeup))
3286
		perf_output_wakeup(handle);
3287

P
Peter Zijlstra 已提交
3288
out:
3289
	preempt_enable();
3290 3291
}

3292
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3293
		      const void *buf, unsigned int len)
3294
{
3295
	do {
3296
		unsigned long size = min_t(unsigned long, handle->size, len);
3297 3298 3299 3300 3301

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3302
		buf += size;
3303 3304
		handle->size -= size;
		if (!handle->size) {
3305
			struct perf_buffer *buffer = handle->buffer;
3306

3307
			handle->page++;
3308 3309 3310
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3311 3312
		}
	} while (len);
3313 3314
}

3315
int perf_output_begin(struct perf_output_handle *handle,
3316
		      struct perf_event *event, unsigned int size,
3317
		      int nmi, int sample)
3318
{
3319
	struct perf_buffer *buffer;
3320
	unsigned long tail, offset, head;
3321 3322 3323 3324 3325 3326
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3327

3328
	rcu_read_lock();
3329
	/*
3330
	 * For inherited events we send all the output towards the parent.
3331
	 */
3332 3333
	if (event->parent)
		event = event->parent;
3334

3335 3336
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3337 3338
		goto out;

3339
	handle->buffer	= buffer;
3340
	handle->event	= event;
3341 3342
	handle->nmi	= nmi;
	handle->sample	= sample;
3343

3344
	if (!buffer->nr_pages)
3345
		goto out;
3346

3347
	have_lost = local_read(&buffer->lost);
3348 3349 3350
	if (have_lost)
		size += sizeof(lost_event);

3351
	perf_output_get_handle(handle);
3352

3353
	do {
3354 3355 3356 3357 3358
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3359
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3360
		smp_rmb();
3361
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3362
		head += size;
3363
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3364
			goto fail;
3365
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3366

3367 3368
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3369

3370 3371 3372 3373
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3374
	handle->addr += handle->size;
3375
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3376

3377
	if (have_lost) {
3378
		lost_event.header.type = PERF_RECORD_LOST;
3379 3380
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3381
		lost_event.id          = event->id;
3382
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3383 3384 3385 3386

		perf_output_put(handle, lost_event);
	}

3387
	return 0;
3388

3389
fail:
3390
	local_inc(&buffer->lost);
3391
	perf_output_put_handle(handle);
3392 3393
out:
	rcu_read_unlock();
3394

3395 3396
	return -ENOSPC;
}
3397

3398
void perf_output_end(struct perf_output_handle *handle)
3399
{
3400
	struct perf_event *event = handle->event;
3401
	struct perf_buffer *buffer = handle->buffer;
3402

3403
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3404

3405
	if (handle->sample && wakeup_events) {
3406
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3407
		if (events >= wakeup_events) {
3408 3409
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3410
		}
3411 3412
	}

3413
	perf_output_put_handle(handle);
3414
	rcu_read_unlock();
3415 3416
}

3417
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3418 3419
{
	/*
3420
	 * only top level events have the pid namespace they were created in
3421
	 */
3422 3423
	if (event->parent)
		event = event->parent;
3424

3425
	return task_tgid_nr_ns(p, event->ns);
3426 3427
}

3428
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3429 3430
{
	/*
3431
	 * only top level events have the pid namespace they were created in
3432
	 */
3433 3434
	if (event->parent)
		event = event->parent;
3435

3436
	return task_pid_nr_ns(p, event->ns);
3437 3438
}

3439
static void perf_output_read_one(struct perf_output_handle *handle,
3440
				 struct perf_event *event)
3441
{
3442
	u64 read_format = event->attr.read_format;
3443 3444 3445
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3446
	values[n++] = perf_event_count(event);
3447
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3448 3449
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3450 3451
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3452 3453
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3454 3455
	}
	if (read_format & PERF_FORMAT_ID)
3456
		values[n++] = primary_event_id(event);
3457 3458 3459 3460 3461

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3462
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3463 3464
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3465
			    struct perf_event *event)
3466
{
3467 3468
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3480
	if (leader != event)
3481 3482
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3483
	values[n++] = perf_event_count(leader);
3484
	if (read_format & PERF_FORMAT_ID)
3485
		values[n++] = primary_event_id(leader);
3486 3487 3488

	perf_output_copy(handle, values, n * sizeof(u64));

3489
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3490 3491
		n = 0;

3492
		if (sub != event)
3493 3494
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3495
		values[n++] = perf_event_count(sub);
3496
		if (read_format & PERF_FORMAT_ID)
3497
			values[n++] = primary_event_id(sub);
3498 3499 3500 3501 3502 3503

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3504
			     struct perf_event *event)
3505
{
3506 3507
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3508
	else
3509
		perf_output_read_one(handle, event);
3510 3511
}

3512 3513 3514
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3515
			struct perf_event *event)
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3546
		perf_output_read(handle, event);
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3584
			 struct perf_event *event,
3585
			 struct pt_regs *regs)
3586
{
3587
	u64 sample_type = event->attr.sample_type;
3588

3589
	data->type = sample_type;
3590

3591
	header->type = PERF_RECORD_SAMPLE;
3592 3593 3594 3595
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3596

3597
	if (sample_type & PERF_SAMPLE_IP) {
3598 3599 3600
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3601
	}
3602

3603
	if (sample_type & PERF_SAMPLE_TID) {
3604
		/* namespace issues */
3605 3606
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3607

3608
		header->size += sizeof(data->tid_entry);
3609 3610
	}

3611
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3612
		data->time = perf_clock();
3613

3614
		header->size += sizeof(data->time);
3615 3616
	}

3617
	if (sample_type & PERF_SAMPLE_ADDR)
3618
		header->size += sizeof(data->addr);
3619

3620
	if (sample_type & PERF_SAMPLE_ID) {
3621
		data->id = primary_event_id(event);
3622

3623 3624 3625 3626
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3627
		data->stream_id = event->id;
3628 3629 3630

		header->size += sizeof(data->stream_id);
	}
3631

3632
	if (sample_type & PERF_SAMPLE_CPU) {
3633 3634
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3635

3636
		header->size += sizeof(data->cpu_entry);
3637 3638
	}

3639
	if (sample_type & PERF_SAMPLE_PERIOD)
3640
		header->size += sizeof(data->period);
3641

3642
	if (sample_type & PERF_SAMPLE_READ)
3643
		header->size += perf_event_read_size(event);
3644

3645
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3646
		int size = 1;
3647

3648 3649 3650 3651 3652 3653
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3654 3655
	}

3656
	if (sample_type & PERF_SAMPLE_RAW) {
3657 3658 3659 3660 3661 3662 3663 3664
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3665
		header->size += size;
3666
	}
3667
}
3668

3669
static void perf_event_output(struct perf_event *event, int nmi,
3670 3671 3672 3673 3674
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3675

3676 3677 3678
	/* protect the callchain buffers */
	rcu_read_lock();

3679
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3680

3681
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3682
		goto exit;
3683

3684
	perf_output_sample(&handle, &header, data, event);
3685

3686
	perf_output_end(&handle);
3687 3688 3689

exit:
	rcu_read_unlock();
3690 3691
}

3692
/*
3693
 * read event_id
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3704
perf_event_read_event(struct perf_event *event,
3705 3706 3707
			struct task_struct *task)
{
	struct perf_output_handle handle;
3708
	struct perf_read_event read_event = {
3709
		.header = {
3710
			.type = PERF_RECORD_READ,
3711
			.misc = 0,
3712
			.size = sizeof(read_event) + perf_event_read_size(event),
3713
		},
3714 3715
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3716
	};
3717
	int ret;
3718

3719
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3720 3721 3722
	if (ret)
		return;

3723
	perf_output_put(&handle, read_event);
3724
	perf_output_read(&handle, event);
3725

3726 3727 3728
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3729
/*
P
Peter Zijlstra 已提交
3730 3731
 * task tracking -- fork/exit
 *
3732
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3733 3734
 */

P
Peter Zijlstra 已提交
3735
struct perf_task_event {
3736
	struct task_struct		*task;
3737
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3738 3739 3740 3741 3742 3743

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3744 3745
		u32				tid;
		u32				ptid;
3746
		u64				time;
3747
	} event_id;
P
Peter Zijlstra 已提交
3748 3749
};

3750
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3751
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3752 3753
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3754
	struct task_struct *task = task_event->task;
3755 3756
	int size, ret;

3757 3758
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3759

3760
	if (ret)
P
Peter Zijlstra 已提交
3761 3762
		return;

3763 3764
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3765

3766 3767
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3768

3769
	perf_output_put(&handle, task_event->event_id);
3770

P
Peter Zijlstra 已提交
3771 3772 3773
	perf_output_end(&handle);
}

3774
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3775
{
P
Peter Zijlstra 已提交
3776
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3777 3778
		return 0;

3779 3780 3781
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3782 3783
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3784 3785 3786 3787 3788
		return 1;

	return 0;
}

3789
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3790
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3791
{
3792
	struct perf_event *event;
P
Peter Zijlstra 已提交
3793

3794 3795 3796
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3797 3798 3799
	}
}

3800
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3801
{
P
Peter Zijlstra 已提交
3802
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3803
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3804
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3805
	int ctxn;
P
Peter Zijlstra 已提交
3806

P
Peter Zijlstra 已提交
3807 3808 3809 3810
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
				continue;
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3821 3822
	}
	rcu_read_unlock_sched();
P
Peter Zijlstra 已提交
3823 3824
}

3825 3826
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3827
			      int new)
P
Peter Zijlstra 已提交
3828
{
P
Peter Zijlstra 已提交
3829
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3830

3831 3832 3833
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3834 3835
		return;

P
Peter Zijlstra 已提交
3836
	task_event = (struct perf_task_event){
3837 3838
		.task	  = task,
		.task_ctx = task_ctx,
3839
		.event_id    = {
P
Peter Zijlstra 已提交
3840
			.header = {
3841
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3842
				.misc = 0,
3843
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3844
			},
3845 3846
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3847 3848
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3849
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3850 3851 3852
		},
	};

3853
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3854 3855
}

3856
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3857
{
3858
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3859 3860
}

3861 3862 3863 3864 3865
/*
 * comm tracking
 */

struct perf_comm_event {
3866 3867
	struct task_struct	*task;
	char			*comm;
3868 3869 3870 3871 3872 3873 3874
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3875
	} event_id;
3876 3877
};

3878
static void perf_event_comm_output(struct perf_event *event,
3879 3880 3881
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3882 3883
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3884 3885 3886 3887

	if (ret)
		return;

3888 3889
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3890

3891
	perf_output_put(&handle, comm_event->event_id);
3892 3893 3894 3895 3896
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3897
static int perf_event_comm_match(struct perf_event *event)
3898
{
P
Peter Zijlstra 已提交
3899
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3900 3901
		return 0;

3902 3903 3904
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3905
	if (event->attr.comm)
3906 3907 3908 3909 3910
		return 1;

	return 0;
}

3911
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3912 3913
				  struct perf_comm_event *comm_event)
{
3914
	struct perf_event *event;
3915

3916 3917 3918
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3919 3920 3921
	}
}

3922
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3923 3924
{
	struct perf_cpu_context *cpuctx;
3925
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3926
	char comm[TASK_COMM_LEN];
3927
	unsigned int size;
P
Peter Zijlstra 已提交
3928
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3929
	int ctxn;
3930

3931
	memset(comm, 0, sizeof(comm));
3932
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3933
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3934 3935 3936 3937

	comm_event->comm = comm;
	comm_event->comm_size = size;

3938
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3939

P
Peter Zijlstra 已提交
3940 3941 3942 3943
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
3944 3945 3946 3947 3948 3949 3950 3951

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			continue;

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
P
Peter Zijlstra 已提交
3952 3953
	}
	rcu_read_unlock_sched();
3954 3955
}

3956
void perf_event_comm(struct task_struct *task)
3957
{
3958
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
3959 3960
	struct perf_event_context *ctx;
	int ctxn;
3961

P
Peter Zijlstra 已提交
3962 3963 3964 3965 3966 3967 3968
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
3969

3970
	if (!atomic_read(&nr_comm_events))
3971
		return;
3972

3973
	comm_event = (struct perf_comm_event){
3974
		.task	= task,
3975 3976
		/* .comm      */
		/* .comm_size */
3977
		.event_id  = {
3978
			.header = {
3979
				.type = PERF_RECORD_COMM,
3980 3981 3982 3983 3984
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3985 3986 3987
		},
	};

3988
	perf_event_comm_event(&comm_event);
3989 3990
}

3991 3992 3993 3994 3995
/*
 * mmap tracking
 */

struct perf_mmap_event {
3996 3997 3998 3999
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4000 4001 4002 4003 4004 4005 4006 4007 4008

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4009
	} event_id;
4010 4011
};

4012
static void perf_event_mmap_output(struct perf_event *event,
4013 4014 4015
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4016 4017
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
4018 4019 4020 4021

	if (ret)
		return;

4022 4023
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4024

4025
	perf_output_put(&handle, mmap_event->event_id);
4026 4027
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4028
	perf_output_end(&handle);
4029 4030
}

4031
static int perf_event_mmap_match(struct perf_event *event,
4032 4033
				   struct perf_mmap_event *mmap_event,
				   int executable)
4034
{
P
Peter Zijlstra 已提交
4035
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4036 4037
		return 0;

4038 4039 4040
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4041 4042
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4043 4044 4045 4046 4047
		return 1;

	return 0;
}

4048
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4049 4050
				  struct perf_mmap_event *mmap_event,
				  int executable)
4051
{
4052
	struct perf_event *event;
4053

4054
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4055
		if (perf_event_mmap_match(event, mmap_event, executable))
4056
			perf_event_mmap_output(event, mmap_event);
4057 4058 4059
	}
}

4060
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4061 4062
{
	struct perf_cpu_context *cpuctx;
4063
	struct perf_event_context *ctx;
4064 4065
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4066 4067 4068
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4069
	const char *name;
P
Peter Zijlstra 已提交
4070
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4071
	int ctxn;
4072

4073 4074
	memset(tmp, 0, sizeof(tmp));

4075
	if (file) {
4076 4077 4078 4079 4080 4081
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4082 4083 4084 4085
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4086
		name = d_path(&file->f_path, buf, PATH_MAX);
4087 4088 4089 4090 4091
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4092 4093 4094
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4095
			goto got_name;
4096
		}
4097 4098 4099 4100

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4101 4102 4103 4104 4105 4106 4107 4108
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4109 4110
		}

4111 4112 4113 4114 4115
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4116
	size = ALIGN(strlen(name)+1, sizeof(u64));
4117 4118 4119 4120

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4121
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4122

P
Peter Zijlstra 已提交
4123 4124 4125 4126 4127
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			continue;

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
P
Peter Zijlstra 已提交
4138 4139
	}
	rcu_read_unlock_sched();
4140

4141 4142 4143
	kfree(buf);
}

4144
void perf_event_mmap(struct vm_area_struct *vma)
4145
{
4146 4147
	struct perf_mmap_event mmap_event;

4148
	if (!atomic_read(&nr_mmap_events))
4149 4150 4151
		return;

	mmap_event = (struct perf_mmap_event){
4152
		.vma	= vma,
4153 4154
		/* .file_name */
		/* .file_size */
4155
		.event_id  = {
4156
			.header = {
4157
				.type = PERF_RECORD_MMAP,
4158
				.misc = PERF_RECORD_MISC_USER,
4159 4160 4161 4162
				/* .size */
			},
			/* .pid */
			/* .tid */
4163 4164
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4165
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4166 4167 4168
		},
	};

4169
	perf_event_mmap_event(&mmap_event);
4170 4171
}

4172 4173 4174 4175
/*
 * IRQ throttle logging
 */

4176
static void perf_log_throttle(struct perf_event *event, int enable)
4177 4178 4179 4180 4181 4182 4183
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4184
		u64				id;
4185
		u64				stream_id;
4186 4187
	} throttle_event = {
		.header = {
4188
			.type = PERF_RECORD_THROTTLE,
4189 4190 4191
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4192
		.time		= perf_clock(),
4193 4194
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4195 4196
	};

4197
	if (enable)
4198
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4199

4200
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4201 4202 4203 4204 4205 4206 4207
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4208
/*
4209
 * Generic event overflow handling, sampling.
4210 4211
 */

4212
static int __perf_event_overflow(struct perf_event *event, int nmi,
4213 4214
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4215
{
4216 4217
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4218 4219
	int ret = 0;

4220
	if (!throttle) {
4221
		hwc->interrupts++;
4222
	} else {
4223 4224
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4225
			if (HZ * hwc->interrupts >
4226
					(u64)sysctl_perf_event_sample_rate) {
4227
				hwc->interrupts = MAX_INTERRUPTS;
4228
				perf_log_throttle(event, 0);
4229 4230 4231 4232
				ret = 1;
			}
		} else {
			/*
4233
			 * Keep re-disabling events even though on the previous
4234
			 * pass we disabled it - just in case we raced with a
4235
			 * sched-in and the event got enabled again:
4236
			 */
4237 4238 4239
			ret = 1;
		}
	}
4240

4241
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4242
		u64 now = perf_clock();
4243
		s64 delta = now - hwc->freq_time_stamp;
4244

4245
		hwc->freq_time_stamp = now;
4246

4247 4248
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4249 4250
	}

4251 4252
	/*
	 * XXX event_limit might not quite work as expected on inherited
4253
	 * events
4254 4255
	 */

4256 4257
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4258
		ret = 1;
4259
		event->pending_kill = POLL_HUP;
4260
		if (nmi) {
4261 4262 4263
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4264
		} else
4265
			perf_event_disable(event);
4266 4267
	}

4268 4269 4270 4271 4272
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4273
	return ret;
4274 4275
}

4276
int perf_event_overflow(struct perf_event *event, int nmi,
4277 4278
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4279
{
4280
	return __perf_event_overflow(event, nmi, 1, data, regs);
4281 4282
}

4283
/*
4284
 * Generic software event infrastructure
4285 4286
 */

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4298
/*
4299 4300
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4301 4302 4303 4304
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4305
static u64 perf_swevent_set_period(struct perf_event *event)
4306
{
4307
	struct hw_perf_event *hwc = &event->hw;
4308 4309 4310 4311 4312
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4313 4314

again:
4315
	old = val = local64_read(&hwc->period_left);
4316 4317
	if (val < 0)
		return 0;
4318

4319 4320 4321
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4322
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4323
		goto again;
4324

4325
	return nr;
4326 4327
}

4328
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4329 4330
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4331
{
4332
	struct hw_perf_event *hwc = &event->hw;
4333
	int throttle = 0;
4334

4335
	data->period = event->hw.last_period;
4336 4337
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4338

4339 4340
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4341

4342
	for (; overflow; overflow--) {
4343
		if (__perf_event_overflow(event, nmi, throttle,
4344
					    data, regs)) {
4345 4346 4347 4348 4349 4350
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4351
		throttle = 1;
4352
	}
4353 4354
}

P
Peter Zijlstra 已提交
4355
static void perf_swevent_event(struct perf_event *event, u64 nr,
4356 4357
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4358
{
4359
	struct hw_perf_event *hwc = &event->hw;
4360

4361
	local64_add(nr, &event->count);
4362

4363 4364 4365
	if (!regs)
		return;

4366 4367
	if (!hwc->sample_period)
		return;
4368

4369 4370 4371
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4372
	if (local64_add_negative(nr, &hwc->period_left))
4373
		return;
4374

4375
	perf_swevent_overflow(event, 0, nmi, data, regs);
4376 4377
}

4378 4379 4380
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4381 4382 4383
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4395
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4396
				enum perf_type_id type,
L
Li Zefan 已提交
4397 4398 4399
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4400
{
4401
	if (event->attr.type != type)
4402
		return 0;
4403

4404
	if (event->attr.config != event_id)
4405 4406
		return 0;

4407 4408
	if (perf_exclude_event(event, regs))
		return 0;
4409 4410 4411 4412

	return 1;
}

4413 4414 4415 4416 4417 4418 4419
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4420 4421
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4422
{
4423 4424 4425 4426
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4427

4428 4429
/* For the read side: events when they trigger */
static inline struct hlist_head *
4430
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4431 4432
{
	struct swevent_hlist *hlist;
4433

4434
	hlist = rcu_dereference(swhash->swevent_hlist);
4435 4436 4437
	if (!hlist)
		return NULL;

4438 4439 4440 4441 4442
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4443
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4454
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4455 4456 4457 4458 4459
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4460 4461 4462 4463 4464 4465
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4466
{
4467
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4468
	struct perf_event *event;
4469 4470
	struct hlist_node *node;
	struct hlist_head *head;
4471

4472
	rcu_read_lock();
4473
	head = find_swevent_head_rcu(swhash, type, event_id);
4474 4475 4476 4477
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4478
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4479
			perf_swevent_event(event, nr, nmi, data, regs);
4480
	}
4481 4482
end:
	rcu_read_unlock();
4483 4484
}

4485
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4486
{
4487
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4488

4489
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4490
}
I
Ingo Molnar 已提交
4491
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4492

4493
void inline perf_swevent_put_recursion_context(int rctx)
4494
{
4495
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4496

4497
	put_recursion_context(swhash->recursion, rctx);
4498
}
4499

4500
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4501
			    struct pt_regs *regs, u64 addr)
4502
{
4503
	struct perf_sample_data data;
4504 4505
	int rctx;

4506
	preempt_disable_notrace();
4507 4508 4509
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4510

4511
	perf_sample_data_init(&data, addr);
4512

4513
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4514 4515

	perf_swevent_put_recursion_context(rctx);
4516
	preempt_enable_notrace();
4517 4518
}

4519
static void perf_swevent_read(struct perf_event *event)
4520 4521 4522
{
}

P
Peter Zijlstra 已提交
4523
static int perf_swevent_add(struct perf_event *event, int flags)
4524
{
4525
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4526
	struct hw_perf_event *hwc = &event->hw;
4527 4528
	struct hlist_head *head;

4529 4530
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4531
		perf_swevent_set_period(event);
4532
	}
4533

P
Peter Zijlstra 已提交
4534 4535
	hwc->state = !(flags & PERF_EF_START);

4536
	head = find_swevent_head(swhash, event);
4537 4538 4539 4540 4541
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4542 4543 4544
	return 0;
}

P
Peter Zijlstra 已提交
4545
static void perf_swevent_del(struct perf_event *event, int flags)
4546
{
4547
	hlist_del_rcu(&event->hlist_entry);
4548 4549
}

P
Peter Zijlstra 已提交
4550
static void perf_swevent_start(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4551
{
P
Peter Zijlstra 已提交
4552
	event->hw.state = 0;
P
Peter Zijlstra 已提交
4553 4554
}

P
Peter Zijlstra 已提交
4555
static void perf_swevent_stop(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4556
{
P
Peter Zijlstra 已提交
4557
	event->hw.state = PERF_HES_STOPPED;
P
Peter Zijlstra 已提交
4558 4559
}

4560 4561
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4562
swevent_hlist_deref(struct swevent_htable *swhash)
4563
{
4564 4565
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4566 4567
}

4568 4569 4570 4571 4572 4573 4574 4575
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4576
static void swevent_hlist_release(struct swevent_htable *swhash)
4577
{
4578
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4579

4580
	if (!hlist)
4581 4582
		return;

4583
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4584 4585 4586 4587 4588
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4589
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4590

4591
	mutex_lock(&swhash->hlist_mutex);
4592

4593 4594
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4595

4596
	mutex_unlock(&swhash->hlist_mutex);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4614
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4615 4616
	int err = 0;

4617
	mutex_lock(&swhash->hlist_mutex);
4618

4619
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4620 4621 4622 4623 4624 4625 4626
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4627
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4628
	}
4629
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4630
exit:
4631
	mutex_unlock(&swhash->hlist_mutex);
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4655
fail:
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4666
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4667

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4712 4713
	.task_ctx_nr	= perf_sw_context,

4714
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4715 4716 4717 4718
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4719 4720 4721
	.read		= perf_swevent_read,
};

4722 4723
#ifdef CONFIG_EVENT_TRACING

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4738 4739 4740 4741
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4742 4743 4744 4745 4746 4747 4748 4749 4750
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4751
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4752 4753
{
	struct perf_sample_data data;
4754 4755 4756
	struct perf_event *event;
	struct hlist_node *node;

4757 4758 4759 4760 4761 4762 4763 4764
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4765 4766
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4767
			perf_swevent_event(event, count, 1, &data, regs);
4768
	}
4769 4770

	perf_swevent_put_recursion_context(rctx);
4771 4772 4773
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4774
static void tp_perf_event_destroy(struct perf_event *event)
4775
{
4776
	perf_trace_destroy(event);
4777 4778
}

4779
static int perf_tp_event_init(struct perf_event *event)
4780
{
4781 4782
	int err;

4783 4784 4785
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4786 4787 4788 4789
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4790
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4791
			perf_paranoid_tracepoint_raw() &&
4792
			!capable(CAP_SYS_ADMIN))
4793
		return -EPERM;
4794

4795 4796
	err = perf_trace_init(event);
	if (err)
4797
		return err;
4798

4799
	event->destroy = tp_perf_event_destroy;
4800

4801 4802 4803 4804
	return 0;
}

static struct pmu perf_tracepoint = {
4805 4806
	.task_ctx_nr	= perf_sw_context,

4807
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4808 4809 4810 4811
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4812 4813 4814 4815 4816 4817
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4818
}
L
Li Zefan 已提交
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4843
#else
L
Li Zefan 已提交
4844

4845
static inline void perf_tp_register(void)
4846 4847
{
}
L
Li Zefan 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4858
#endif /* CONFIG_EVENT_TRACING */
4859

4860
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4861
void perf_bp_event(struct perf_event *bp, void *data)
4862
{
4863 4864 4865 4866 4867
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4868 4869
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4870
}
4871 4872 4873 4874 4875
#endif

/*
 * hrtimer based swevent callback
 */
4876

4877
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4878
{
4879 4880 4881 4882 4883
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4884

4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4897

4898 4899
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4900

4901
	return ret;
4902 4903
}

4904
static void perf_swevent_start_hrtimer(struct perf_event *event)
4905
{
4906
	struct hw_perf_event *hwc = &event->hw;
4907

4908 4909 4910
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4911
		s64 period = local64_read(&hwc->period_left);
4912

P
Peter Zijlstra 已提交
4913 4914
		if (period) {
			if (period < 0)
4915
				period = 10000;
P
Peter Zijlstra 已提交
4916 4917

			local64_set(&hwc->period_left, 0);
4918 4919 4920 4921 4922
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4923
				HRTIMER_MODE_REL_PINNED, 0);
4924
	}
4925
}
4926 4927

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4928
{
4929 4930 4931 4932
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4933
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4934 4935 4936

		hrtimer_cancel(&hwc->hrtimer);
	}
4937 4938
}

4939 4940 4941 4942 4943
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4944
{
4945 4946 4947
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4948
	now = local_clock();
4949 4950
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4951 4952
}

P
Peter Zijlstra 已提交
4953
static void cpu_clock_event_start(struct perf_event *event, int flags)
4954
{
P
Peter Zijlstra 已提交
4955
	local64_set(&event->hw.prev_count, local_clock());
4956 4957 4958
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4959
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4960
{
4961 4962 4963
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4964

P
Peter Zijlstra 已提交
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4978 4979 4980 4981
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4982

4983 4984 4985 4986 4987 4988 4989 4990 4991
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4992 4993
}

4994
static struct pmu perf_cpu_clock = {
4995 4996
	.task_ctx_nr	= perf_sw_context,

4997
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
4998 4999 5000 5001
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5002 5003 5004 5005 5006 5007 5008 5009
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5010
{
5011 5012
	u64 prev;
	s64 delta;
5013

5014 5015 5016 5017
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5018

P
Peter Zijlstra 已提交
5019
static void task_clock_event_start(struct perf_event *event, int flags)
5020
{
P
Peter Zijlstra 已提交
5021
	local64_set(&event->hw.prev_count, event->ctx->time);
5022 5023 5024
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5025
static void task_clock_event_stop(struct perf_event *event, int flags)
5026 5027 5028
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5029 5030 5031 5032 5033 5034
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5035

P
Peter Zijlstra 已提交
5036 5037 5038 5039 5040 5041
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
5072 5073
	.task_ctx_nr	= perf_sw_context,

5074
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5075 5076 5077 5078
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5079 5080 5081
	.read		= task_clock_event_read,
};

P
Peter Zijlstra 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
static void perf_pmu_nop_void(struct pmu *pmu)
{
}

static int perf_pmu_nop_int(struct pmu *pmu)
{
	return 0;
}

static void perf_pmu_start_txn(struct pmu *pmu)
{
	perf_pmu_disable(pmu);
}

static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}

static void perf_pmu_cancel_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
}

P
Peter Zijlstra 已提交
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
{
	struct pmu *pmu;

	if (ctxn < 0)
		return NULL;

	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}

	return NULL;
}

static void free_pmu_context(void * __percpu cpu_context)
{
	struct pmu *pmu;

	mutex_lock(&pmus_lock);
	/*
	 * Like a real lame refcount.
	 */
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->pmu_cpu_context == cpu_context)
			goto out;
	}

	free_percpu(cpu_context);
out:
	mutex_unlock(&pmus_lock);
}

5144 5145
int perf_pmu_register(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
5146
	int cpu, ret;
P
Peter Zijlstra 已提交
5147

5148
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5149 5150 5151 5152
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
P
Peter Zijlstra 已提交
5153

P
Peter Zijlstra 已提交
5154 5155 5156 5157
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;

P
Peter Zijlstra 已提交
5158 5159 5160 5161 5162 5163 5164 5165
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5166
		__perf_event_init_context(&cpuctx->ctx);
P
Peter Zijlstra 已提交
5167 5168 5169 5170 5171 5172
		cpuctx->ctx.pmu = pmu;
		cpuctx->timer_interval = TICK_NSEC;
		hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		cpuctx->timer.function = perf_event_context_tick;
	}

P
Peter Zijlstra 已提交
5173
got_cpu_context:
P
Peter Zijlstra 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5196
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5197 5198
	ret = 0;
unlock:
5199 5200
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5201
	return ret;
P
Peter Zijlstra 已提交
5202 5203 5204 5205

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5206 5207 5208 5209 5210 5211 5212 5213
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5214 5215 5216 5217
	/*
	 * We use the pmu list either under SRCU or preempt_disable,
	 * synchronize_srcu() implies synchronize_sched() so we're good.
	 */
5218
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5219 5220

	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5221
	free_pmu_context(pmu->pmu_cpu_context);
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
			break;
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
			break;
5237
		}
5238
	}
5239
	srcu_read_unlock(&pmus_srcu, idx);
5240

5241
	return pmu;
5242 5243
}

T
Thomas Gleixner 已提交
5244
/*
5245
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5246
 */
5247
static struct perf_event *
5248
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5249 5250
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5251
		   perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5252
{
P
Peter Zijlstra 已提交
5253
	struct pmu *pmu;
5254 5255
	struct perf_event *event;
	struct hw_perf_event *hwc;
5256
	long err;
T
Thomas Gleixner 已提交
5257

5258
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5259
	if (!event)
5260
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5261

5262
	/*
5263
	 * Single events are their own group leaders, with an
5264 5265 5266
	 * empty sibling list:
	 */
	if (!group_leader)
5267
		group_leader = event;
5268

5269 5270
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5271

5272 5273 5274 5275
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5276

5277
	mutex_init(&event->mmap_mutex);
5278

5279 5280 5281 5282 5283
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5284

5285
	event->parent		= parent_event;
5286

5287 5288
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5289

5290
	event->state		= PERF_EVENT_STATE_INACTIVE;
5291

5292 5293
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5294
	
5295
	event->overflow_handler	= overflow_handler;
5296

5297
	if (attr->disabled)
5298
		event->state = PERF_EVENT_STATE_OFF;
5299

5300
	pmu = NULL;
5301

5302
	hwc = &event->hw;
5303
	hwc->sample_period = attr->sample_period;
5304
	if (attr->freq && attr->sample_freq)
5305
		hwc->sample_period = 1;
5306
	hwc->last_period = hwc->sample_period;
5307

5308
	local64_set(&hwc->period_left, hwc->sample_period);
5309

5310
	/*
5311
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5312
	 */
5313
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5314 5315
		goto done;

5316
	pmu = perf_init_event(event);
5317

5318 5319
done:
	err = 0;
5320
	if (!pmu)
5321
		err = -EINVAL;
5322 5323
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5324

5325
	if (err) {
5326 5327 5328
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5329
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5330
	}
5331

5332
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5333

5334 5335
	if (!event->parent) {
		atomic_inc(&nr_events);
5336
		if (event->attr.mmap || event->attr.mmap_data)
5337 5338 5339 5340 5341
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5342 5343 5344 5345 5346 5347 5348
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5349
	}
5350

5351
	return event;
T
Thomas Gleixner 已提交
5352 5353
}

5354 5355
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5356 5357
{
	u32 size;
5358
	int ret;
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5383 5384 5385
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5386 5387
	 */
	if (size > sizeof(*attr)) {
5388 5389 5390
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5391

5392 5393
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5394

5395
		for (; addr < end; addr++) {
5396 5397 5398 5399 5400 5401
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5402
		size = sizeof(*attr);
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5416
	if (attr->__reserved_1)
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5434 5435
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5436
{
5437
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5438 5439
	int ret = -EINVAL;

5440
	if (!output_event)
5441 5442
		goto set;

5443 5444
	/* don't allow circular references */
	if (event == output_event)
5445 5446
		goto out;

5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5459
set:
5460
	mutex_lock(&event->mmap_mutex);
5461 5462 5463
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5464

5465 5466
	if (output_event) {
		/* get the buffer we want to redirect to */
5467 5468
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5469
			goto unlock;
5470 5471
	}

5472 5473
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5474
	ret = 0;
5475 5476 5477
unlock:
	mutex_unlock(&event->mmap_mutex);

5478 5479
	if (old_buffer)
		perf_buffer_put(old_buffer);
5480 5481 5482 5483
out:
	return ret;
}

T
Thomas Gleixner 已提交
5484
/**
5485
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5486
 *
5487
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5488
 * @pid:		target pid
I
Ingo Molnar 已提交
5489
 * @cpu:		target cpu
5490
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5491
 */
5492 5493
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5494
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5495
{
5496
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5497 5498 5499
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5500
	struct file *group_file = NULL;
5501
	struct pmu *pmu;
5502
	int event_fd;
5503
	int fput_needed = 0;
5504
	int err;
T
Thomas Gleixner 已提交
5505

5506
	/* for future expandability... */
5507
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5508 5509
		return -EINVAL;

5510 5511 5512
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5513

5514 5515 5516 5517 5518
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5519
	if (attr.freq) {
5520
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5521 5522 5523
			return -EINVAL;
	}

5524 5525 5526 5527
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5528 5529 5530 5531 5532 5533
	event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err_fd;
	}

5534 5535 5536 5537
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5538
			goto err_alloc;
5539 5540 5541 5542 5543 5544 5545 5546
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
	if ((pmu->task_ctx_nr == perf_sw_context) && group_leader)
		pmu = group_leader->pmu;

	/*
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pmu, pid, cpu);
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_group_fd;
	}

I
Ingo Molnar 已提交
5564
	/*
5565
	 * Look up the group leader (we will attach this event to it):
5566
	 */
5567
	if (group_leader) {
5568
		err = -EINVAL;
5569 5570

		/*
I
Ingo Molnar 已提交
5571 5572 5573 5574
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5575
			goto err_context;
I
Ingo Molnar 已提交
5576 5577 5578
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5579
		 */
I
Ingo Molnar 已提交
5580
		if (group_leader->ctx != ctx)
5581
			goto err_context;
5582 5583 5584
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5585
		if (attr.exclusive || attr.pinned)
5586
			goto err_context;
5587 5588 5589 5590 5591
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5592
			goto err_context;
5593
	}
T
Thomas Gleixner 已提交
5594

5595 5596 5597
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5598
		goto err_context;
5599
	}
5600

5601
	event->filp = event_file;
5602
	WARN_ON_ONCE(ctx->parent_ctx);
5603
	mutex_lock(&ctx->mutex);
5604
	perf_install_in_context(ctx, event, cpu);
5605
	++ctx->generation;
5606
	mutex_unlock(&ctx->mutex);
5607

5608
	event->owner = current;
5609
	get_task_struct(current);
5610 5611 5612
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5613

5614 5615 5616 5617 5618 5619
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5620 5621 5622
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5623

5624
err_context:
5625
	put_ctx(ctx);
5626 5627
err_group_fd:
	fput_light(group_file, fput_needed);
5628 5629
err_alloc:
	free_event(event);
5630 5631
err_fd:
	put_unused_fd(event_fd);
5632
	return err;
T
Thomas Gleixner 已提交
5633 5634
}

5635 5636 5637 5638 5639 5640 5641 5642 5643
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5644 5645
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5646 5647
{
	struct perf_event_context *ctx;
5648
	struct perf_event *event;
5649 5650 5651 5652 5653 5654
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

5655 5656 5657 5658 5659 5660
	event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}

P
Peter Zijlstra 已提交
5661
	ctx = find_get_context(event->pmu, pid, cpu);
5662 5663
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5664
		goto err_free;
5665
	}
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5682 5683 5684
err_free:
	free_event(event);
err:
5685
	return ERR_PTR(err);
5686 5687 5688
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5689
static void sync_child_event(struct perf_event *child_event,
5690
			       struct task_struct *child)
5691
{
5692
	struct perf_event *parent_event = child_event->parent;
5693
	u64 child_val;
5694

5695 5696
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5697

P
Peter Zijlstra 已提交
5698
	child_val = perf_event_count(child_event);
5699 5700 5701 5702

	/*
	 * Add back the child's count to the parent's count:
	 */
5703
	atomic64_add(child_val, &parent_event->child_count);
5704 5705 5706 5707
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5708 5709

	/*
5710
	 * Remove this event from the parent's list
5711
	 */
5712 5713 5714 5715
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5716 5717

	/*
5718
	 * Release the parent event, if this was the last
5719 5720
	 * reference to it.
	 */
5721
	fput(parent_event->filp);
5722 5723
}

5724
static void
5725 5726
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5727
			 struct task_struct *child)
5728
{
5729
	struct perf_event *parent_event;
5730

5731
	perf_event_remove_from_context(child_event);
5732

5733
	parent_event = child_event->parent;
5734
	/*
5735
	 * It can happen that parent exits first, and has events
5736
	 * that are still around due to the child reference. These
5737
	 * events need to be zapped - but otherwise linger.
5738
	 */
5739 5740 5741
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5742
	}
5743 5744
}

P
Peter Zijlstra 已提交
5745
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5746
{
5747 5748
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5749
	unsigned long flags;
5750

P
Peter Zijlstra 已提交
5751
	if (likely(!child->perf_event_ctxp[ctxn])) {
5752
		perf_event_task(child, NULL, 0);
5753
		return;
P
Peter Zijlstra 已提交
5754
	}
5755

5756
	local_irq_save(flags);
5757 5758 5759 5760 5761 5762
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
P
Peter Zijlstra 已提交
5763
	child_ctx = child->perf_event_ctxp[ctxn];
5764
	__perf_event_task_sched_out(child_ctx);
5765 5766 5767

	/*
	 * Take the context lock here so that if find_get_context is
5768
	 * reading child->perf_event_ctxp, we wait until it has
5769 5770
	 * incremented the context's refcount before we do put_ctx below.
	 */
5771
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
5772
	child->perf_event_ctxp[ctxn] = NULL;
5773 5774 5775
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5776
	 * the events from it.
5777 5778
	 */
	unclone_ctx(child_ctx);
5779
	update_context_time(child_ctx);
5780
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5781 5782

	/*
5783 5784 5785
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5786
	 */
5787
	perf_event_task(child, child_ctx, 0);
5788

5789 5790 5791
	/*
	 * We can recurse on the same lock type through:
	 *
5792 5793 5794
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5795 5796 5797 5798 5799
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5800
	mutex_lock(&child_ctx->mutex);
5801

5802
again:
5803 5804 5805 5806 5807
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5808
				 group_entry)
5809
		__perf_event_exit_task(child_event, child_ctx, child);
5810 5811

	/*
5812
	 * If the last event was a group event, it will have appended all
5813 5814 5815
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5816 5817
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5818
		goto again;
5819 5820 5821 5822

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5823 5824
}

P
Peter Zijlstra 已提交
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5850
	perf_group_detach(event);
5851 5852 5853 5854
	list_del_event(event, ctx);
	free_event(event);
}

5855 5856
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
5857
 * perf_event_init_task below, used by fork() in case of fail.
5858
 */
5859
void perf_event_free_task(struct task_struct *task)
5860
{
P
Peter Zijlstra 已提交
5861
	struct perf_event_context *ctx;
5862
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5863
	int ctxn;
5864

P
Peter Zijlstra 已提交
5865 5866 5867 5868
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5869

P
Peter Zijlstra 已提交
5870
		mutex_lock(&ctx->mutex);
5871
again:
P
Peter Zijlstra 已提交
5872 5873 5874
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
5875

P
Peter Zijlstra 已提交
5876 5877 5878
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
5879

P
Peter Zijlstra 已提交
5880 5881 5882
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
5883

P
Peter Zijlstra 已提交
5884
		mutex_unlock(&ctx->mutex);
5885

P
Peter Zijlstra 已提交
5886 5887
		put_ctx(ctx);
	}
5888 5889
}

P
Peter Zijlstra 已提交
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

	/*
	 * Link it up in the child's context:
	 */
	add_event_to_ctx(child_event, child_ctx);

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
}

5990 5991 5992
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
5993
		   struct task_struct *child, int ctxn,
5994 5995 5996
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
5997
	struct perf_event_context *child_ctx;
5998 5999 6000 6001

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6002 6003
	}

P
Peter Zijlstra 已提交
6004
       	child_ctx = child->perf_event_ctxp[ctxn];
6005 6006 6007 6008 6009 6010 6011
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6012

6013
		child_ctx = alloc_perf_context(event->pmu, child);
6014 6015
		if (!child_ctx)
			return -ENOMEM;
6016

P
Peter Zijlstra 已提交
6017
		child->perf_event_ctxp[ctxn] = child_ctx;
6018 6019 6020 6021 6022 6023 6024 6025 6026
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6027 6028
}

6029
/*
6030
 * Initialize the perf_event context in task_struct
6031
 */
P
Peter Zijlstra 已提交
6032
int perf_event_init_context(struct task_struct *child, int ctxn)
6033
{
6034
	struct perf_event_context *child_ctx, *parent_ctx;
6035 6036
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6037
	struct task_struct *parent = current;
6038
	int inherited_all = 1;
6039
	int ret = 0;
6040

P
Peter Zijlstra 已提交
6041
	child->perf_event_ctxp[ctxn] = NULL;
6042

6043 6044
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
6045

P
Peter Zijlstra 已提交
6046
	if (likely(!parent->perf_event_ctxp[ctxn]))
6047 6048
		return 0;

6049
	/*
6050 6051
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6052
	 */
P
Peter Zijlstra 已提交
6053
	parent_ctx = perf_pin_task_context(parent, ctxn);
6054

6055 6056 6057 6058 6059 6060 6061
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6062 6063 6064 6065
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6066
	mutex_lock(&parent_ctx->mutex);
6067 6068 6069 6070 6071

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6072
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6073 6074
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6075 6076 6077
		if (ret)
			break;
	}
6078

6079
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6080 6081
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6082
		if (ret)
6083
			break;
6084 6085
	}

P
Peter Zijlstra 已提交
6086
	child_ctx = child->perf_event_ctxp[ctxn];
6087

6088
	if (child_ctx && inherited_all) {
6089 6090 6091
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
6092 6093
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
6094
		 * because the list of events and the generation
6095
		 * count can't have changed since we took the mutex.
6096
		 */
6097 6098 6099
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6100
			child_ctx->parent_gen = parent_ctx->parent_gen;
6101 6102 6103 6104 6105
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6106 6107
	}

6108
	mutex_unlock(&parent_ctx->mutex);
6109

6110
	perf_unpin_context(parent_ctx);
6111

6112
	return ret;
6113 6114
}

P
Peter Zijlstra 已提交
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6131 6132
static void __init perf_event_init_all_cpus(void)
{
6133 6134
	struct swevent_htable *swhash;
	int cpu;
6135 6136

	for_each_possible_cpu(cpu) {
6137 6138
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6139 6140 6141
	}
}

6142
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6143
{
P
Peter Zijlstra 已提交
6144
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6145 6146 6147

	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6148 6149
		struct swevent_hlist *hlist;

6150 6151 6152
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6153
	}
6154
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6155 6156 6157
}

#ifdef CONFIG_HOTPLUG_CPU
P
Peter Zijlstra 已提交
6158
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6159
{
P
Peter Zijlstra 已提交
6160
	struct perf_event_context *ctx = __info;
6161
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6162

P
Peter Zijlstra 已提交
6163
	perf_pmu_rotate_stop(ctx->pmu);
6164

6165 6166 6167
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6168
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6169
}
P
Peter Zijlstra 已提交
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);

}

6189
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6190
{
6191
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6192

6193 6194 6195
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6196

P
Peter Zijlstra 已提交
6197
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6198 6199
}
#else
6200
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6201 6202 6203 6204 6205 6206 6207
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6208
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6209 6210

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6211
	case CPU_DOWN_FAILED:
6212
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6213 6214
		break;

P
Peter Zijlstra 已提交
6215
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6216
	case CPU_DOWN_PREPARE:
6217
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6218 6219 6220 6221 6222 6223 6224 6225 6226
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6227
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6228
{
6229
	perf_event_init_all_cpus();
6230 6231 6232 6233 6234 6235
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6236
}