perf_event.c 121.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
206
		raw_spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 210
			goto retry;
		}
211 212

		if (!atomic_inc_not_zero(&ctx->refcount)) {
213
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 215
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
234
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
235 236 237 238
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242
{
	unsigned long flags;

243
	raw_spin_lock_irqsave(&ctx->lock, flags);
244
	--ctx->pin_count;
245
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 247 248
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

277 278 279 280 281 282
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
283 284 285 286 287 288 289 290 291

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

292
/*
293
 * Add a event from the lists for its context.
294 295
 * Must be called with ctx->mutex and ctx->lock held.
 */
296
static void
297
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298
{
299
	struct perf_event *group_leader = event->group_leader;
300 301

	/*
302 303
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
304 305
	 * leader's sibling list:
	 */
306 307
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
308
	else {
309
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
310 311
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
312

313 314 315
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
316
		ctx->nr_stat++;
317 318
}

319
/*
320
 * Remove a event from the lists for its context.
321
 * Must be called with ctx->mutex and ctx->lock held.
322
 */
323
static void
324
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325
{
326
	struct perf_event *sibling, *tmp;
327

328
	if (list_empty(&event->group_entry))
329
		return;
330 331
	ctx->nr_events--;
	if (event->attr.inherit_stat)
332
		ctx->nr_stat--;
333

334 335
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
336

337 338
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
339

340
	update_event_times(event);
341 342 343 344 345 346 347 348 349 350

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
351

352
	/*
353 354
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
355 356
	 * to the context list directly:
	 */
357
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
358

359
		list_move_tail(&sibling->group_entry, &ctx->group_list);
360 361 362 363
		sibling->group_leader = sibling;
	}
}

364
static void
365
event_sched_out(struct perf_event *event,
366
		  struct perf_cpu_context *cpuctx,
367
		  struct perf_event_context *ctx)
368
{
369
	if (event->state != PERF_EVENT_STATE_ACTIVE)
370 371
		return;

372 373 374 375
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
376
	}
377 378 379
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
380

381
	if (!is_software_event(event))
382 383
		cpuctx->active_oncpu--;
	ctx->nr_active--;
384
	if (event->attr.exclusive || !cpuctx->active_oncpu)
385 386 387
		cpuctx->exclusive = 0;
}

388
static void
389
group_sched_out(struct perf_event *group_event,
390
		struct perf_cpu_context *cpuctx,
391
		struct perf_event_context *ctx)
392
{
393
	struct perf_event *event;
394

395
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 397
		return;

398
	event_sched_out(group_event, cpuctx, ctx);
399 400 401 402

	/*
	 * Schedule out siblings (if any):
	 */
403 404
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
405

406
	if (group_event->attr.exclusive)
407 408 409
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
410
/*
411
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
412
 *
413
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
414 415
 * remove it from the context list.
 */
416
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
417 418
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 420
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
421 422 423 424 425 426

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
427
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
428 429
		return;

430
	raw_spin_lock(&ctx->lock);
431 432
	/*
	 * Protect the list operation against NMI by disabling the
433
	 * events on a global level.
434 435
	 */
	perf_disable();
T
Thomas Gleixner 已提交
436

437
	event_sched_out(event, cpuctx, ctx);
438

439
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
440 441 442

	if (!ctx->task) {
		/*
443
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
444 445 446
		 * reservation:
		 */
		cpuctx->max_pertask =
447 448
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
449 450
	}

451
	perf_enable();
452
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
453 454 455 456
}


/*
457
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
458
 *
459
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
460
 *
461
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
462
 * call when the task is on a CPU.
463
 *
464 465
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
466 467
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
468
 * When called from perf_event_exit_task, it's OK because the
469
 * context has been detached from its task.
T
Thomas Gleixner 已提交
470
 */
471
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
472
{
473
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
474 475 476 477
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
478
		 * Per cpu events are removed via an smp call and
479
		 * the removal is always successful.
T
Thomas Gleixner 已提交
480
		 */
481 482 483
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
484 485 486 487
		return;
	}

retry:
488 489
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
490

491
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
492 493 494
	/*
	 * If the context is active we need to retry the smp call.
	 */
495
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
496
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
497 498 499 500 501
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
502
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
503 504
	 * succeed.
	 */
P
Peter Zijlstra 已提交
505
	if (!list_empty(&event->group_entry))
506
		list_del_event(event, ctx);
507
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
508 509
}

510
/*
511
 * Update total_time_enabled and total_time_running for all events in a group.
512
 */
513
static void update_group_times(struct perf_event *leader)
514
{
515
	struct perf_event *event;
516

517 518 519
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
520 521
}

522
/*
523
 * Cross CPU call to disable a performance event
524
 */
525
static void __perf_event_disable(void *info)
526
{
527
	struct perf_event *event = info;
528
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529
	struct perf_event_context *ctx = event->ctx;
530 531

	/*
532 533
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
534
	 */
535
	if (ctx->task && cpuctx->task_ctx != ctx)
536 537
		return;

538
	raw_spin_lock(&ctx->lock);
539 540

	/*
541
	 * If the event is on, turn it off.
542 543
	 * If it is in error state, leave it in error state.
	 */
544
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545
		update_context_time(ctx);
546 547 548
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
549
		else
550 551
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
552 553
	}

554
	raw_spin_unlock(&ctx->lock);
555 556 557
}

/*
558
 * Disable a event.
559
 *
560 561
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
562
 * remains valid.  This condition is satisifed when called through
563 564 565 566
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
567
 * is the current context on this CPU and preemption is disabled,
568
 * hence we can't get into perf_event_task_sched_out for this context.
569
 */
570
void perf_event_disable(struct perf_event *event)
571
{
572
	struct perf_event_context *ctx = event->ctx;
573 574 575 576
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
577
		 * Disable the event on the cpu that it's on
578
		 */
579 580
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
581 582 583 584
		return;
	}

 retry:
585
	task_oncpu_function_call(task, __perf_event_disable, event);
586

587
	raw_spin_lock_irq(&ctx->lock);
588
	/*
589
	 * If the event is still active, we need to retry the cross-call.
590
	 */
591
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
592
		raw_spin_unlock_irq(&ctx->lock);
593 594 595 596 597 598 599
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
600 601 602
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
603
	}
604

605
	raw_spin_unlock_irq(&ctx->lock);
606 607
}

608
static int
609
event_sched_in(struct perf_event *event,
610
		 struct perf_cpu_context *cpuctx,
611
		 struct perf_event_context *ctx,
612 613
		 int cpu)
{
614
	if (event->state <= PERF_EVENT_STATE_OFF)
615 616
		return 0;

617 618
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
619 620 621 622 623
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

624 625 626
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
627 628 629
		return -EAGAIN;
	}

630
	event->tstamp_running += ctx->time - event->tstamp_stopped;
631

632
	if (!is_software_event(event))
633
		cpuctx->active_oncpu++;
634 635
	ctx->nr_active++;

636
	if (event->attr.exclusive)
637 638
		cpuctx->exclusive = 1;

639 640 641
	return 0;
}

642
static int
643
group_sched_in(struct perf_event *group_event,
644
	       struct perf_cpu_context *cpuctx,
645
	       struct perf_event_context *ctx,
646 647
	       int cpu)
{
648
	struct perf_event *event, *partial_group;
649 650
	int ret;

651
	if (group_event->state == PERF_EVENT_STATE_OFF)
652 653
		return 0;

654
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 656 657
	if (ret)
		return ret < 0 ? ret : 0;

658
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 660 661 662 663
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
664 665 666
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
667 668 669 670 671 672 673 674 675 676 677
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
678 679
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
680
			break;
681
		event_sched_out(event, cpuctx, ctx);
682
	}
683
	event_sched_out(group_event, cpuctx, ctx);
684 685 686 687

	return -EAGAIN;
}

688
/*
689 690
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
691
 */
692
static int is_software_only_group(struct perf_event *leader)
693
{
694
	struct perf_event *event;
695

696
	if (!is_software_event(leader))
697
		return 0;
P
Peter Zijlstra 已提交
698

699 700
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
701
			return 0;
P
Peter Zijlstra 已提交
702

703 704 705 706
	return 1;
}

/*
707
 * Work out whether we can put this event group on the CPU now.
708
 */
709
static int group_can_go_on(struct perf_event *event,
710 711 712 713
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
714
	 * Groups consisting entirely of software events can always go on.
715
	 */
716
	if (is_software_only_group(event))
717 718 719
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
720
	 * events can go on.
721 722 723 724 725
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
726
	 * events on the CPU, it can't go on.
727
	 */
728
	if (event->attr.exclusive && cpuctx->active_oncpu)
729 730 731 732 733 734 735 736
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

737 738
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
739
{
740 741 742 743
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
744 745
}

T
Thomas Gleixner 已提交
746
/*
747
 * Cross CPU call to install and enable a performance event
748 749
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
750 751 752 753
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 755 756
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
757
	int cpu = smp_processor_id();
758
	int err;
T
Thomas Gleixner 已提交
759 760 761 762 763

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
764
	 * Or possibly this is the right context but it isn't
765
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
766
	 */
767
	if (ctx->task && cpuctx->task_ctx != ctx) {
768
		if (cpuctx->task_ctx || ctx->task != current)
769 770 771
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
772

773
	raw_spin_lock(&ctx->lock);
774
	ctx->is_active = 1;
775
	update_context_time(ctx);
T
Thomas Gleixner 已提交
776 777 778

	/*
	 * Protect the list operation against NMI by disabling the
779
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
780
	 */
781
	perf_disable();
T
Thomas Gleixner 已提交
782

783
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
784

785 786 787
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

788
	/*
789
	 * Don't put the event on if it is disabled or if
790 791
	 * it is in a group and the group isn't on.
	 */
792 793
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
794 795
		goto unlock;

796
	/*
797 798 799
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
800
	 */
801
	if (!group_can_go_on(event, cpuctx, 1))
802 803
		err = -EEXIST;
	else
804
		err = event_sched_in(event, cpuctx, ctx, cpu);
805

806 807
	if (err) {
		/*
808
		 * This event couldn't go on.  If it is in a group
809
		 * then we have to pull the whole group off.
810
		 * If the event group is pinned then put it in error state.
811
		 */
812
		if (leader != event)
813
			group_sched_out(leader, cpuctx, ctx);
814
		if (leader->attr.pinned) {
815
			update_group_times(leader);
816
			leader->state = PERF_EVENT_STATE_ERROR;
817
		}
818
	}
T
Thomas Gleixner 已提交
819

820
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
821 822
		cpuctx->max_pertask--;

823
 unlock:
824
	perf_enable();
825

826
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
827 828 829
}

/*
830
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
831
 *
832 833
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
834
 *
835
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
836 837
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
838 839
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
840 841
 */
static void
842 843
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
844 845 846 847 848 849
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
850
		 * Per cpu events are installed via an smp call and
851
		 * the install is always successful.
T
Thomas Gleixner 已提交
852 853
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
854
					 event, 1);
T
Thomas Gleixner 已提交
855 856 857 858 859
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
860
				 event);
T
Thomas Gleixner 已提交
861

862
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
863 864 865
	/*
	 * we need to retry the smp call.
	 */
866
	if (ctx->is_active && list_empty(&event->group_entry)) {
867
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
868 869 870 871 872
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
873
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
874 875
	 * succeed.
	 */
876 877
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
878
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
879 880
}

881
/*
882
 * Put a event into inactive state and update time fields.
883 884 885 886 887 888
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
889 890
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
891
{
892
	struct perf_event *sub;
893

894 895 896 897
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
898 899 900 901
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

902
/*
903
 * Cross CPU call to enable a performance event
904
 */
905
static void __perf_event_enable(void *info)
906
{
907
	struct perf_event *event = info;
908
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
909 910
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
911
	int err;
912

913
	/*
914 915
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
916
	 */
917
	if (ctx->task && cpuctx->task_ctx != ctx) {
918
		if (cpuctx->task_ctx || ctx->task != current)
919 920 921
			return;
		cpuctx->task_ctx = ctx;
	}
922

923
	raw_spin_lock(&ctx->lock);
924
	ctx->is_active = 1;
925
	update_context_time(ctx);
926

927
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
928
		goto unlock;
929
	__perf_event_mark_enabled(event, ctx);
930

931 932 933
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

934
	/*
935
	 * If the event is in a group and isn't the group leader,
936
	 * then don't put it on unless the group is on.
937
	 */
938
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
939
		goto unlock;
940

941
	if (!group_can_go_on(event, cpuctx, 1)) {
942
		err = -EEXIST;
943
	} else {
944
		perf_disable();
945 946
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
947 948
					     smp_processor_id());
		else
949
			err = event_sched_in(event, cpuctx, ctx,
950
					       smp_processor_id());
951
		perf_enable();
952
	}
953 954 955

	if (err) {
		/*
956
		 * If this event can't go on and it's part of a
957 958
		 * group, then the whole group has to come off.
		 */
959
		if (leader != event)
960
			group_sched_out(leader, cpuctx, ctx);
961
		if (leader->attr.pinned) {
962
			update_group_times(leader);
963
			leader->state = PERF_EVENT_STATE_ERROR;
964
		}
965 966 967
	}

 unlock:
968
	raw_spin_unlock(&ctx->lock);
969 970 971
}

/*
972
 * Enable a event.
973
 *
974 975
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
976
 * remains valid.  This condition is satisfied when called through
977 978
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
979
 */
980
void perf_event_enable(struct perf_event *event)
981
{
982
	struct perf_event_context *ctx = event->ctx;
983 984 985 986
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
987
		 * Enable the event on the cpu that it's on
988
		 */
989 990
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
991 992 993
		return;
	}

994
	raw_spin_lock_irq(&ctx->lock);
995
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
996 997 998
		goto out;

	/*
999 1000
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1001 1002 1003 1004
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1005 1006
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1007 1008

 retry:
1009
	raw_spin_unlock_irq(&ctx->lock);
1010
	task_oncpu_function_call(task, __perf_event_enable, event);
1011

1012
	raw_spin_lock_irq(&ctx->lock);
1013 1014

	/*
1015
	 * If the context is active and the event is still off,
1016 1017
	 * we need to retry the cross-call.
	 */
1018
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1019 1020 1021 1022 1023 1024
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1025 1026
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1027

1028
 out:
1029
	raw_spin_unlock_irq(&ctx->lock);
1030 1031
}

1032
static int perf_event_refresh(struct perf_event *event, int refresh)
1033
{
1034
	/*
1035
	 * not supported on inherited events
1036
	 */
1037
	if (event->attr.inherit)
1038 1039
		return -EINVAL;

1040 1041
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1042 1043

	return 0;
1044 1045
}

1046
void __perf_event_sched_out(struct perf_event_context *ctx,
1047 1048
			      struct perf_cpu_context *cpuctx)
{
1049
	struct perf_event *event;
1050

1051
	raw_spin_lock(&ctx->lock);
1052
	ctx->is_active = 0;
1053
	if (likely(!ctx->nr_events))
1054
		goto out;
1055
	update_context_time(ctx);
1056

1057
	perf_disable();
P
Peter Zijlstra 已提交
1058
	if (ctx->nr_active) {
1059 1060
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1061
	}
1062
	perf_enable();
1063
 out:
1064
	raw_spin_unlock(&ctx->lock);
1065 1066
}

1067 1068 1069
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1070 1071 1072 1073
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1074
 * in them directly with an fd; we can only enable/disable all
1075
 * events via prctl, or enable/disable all events in a family
1076 1077
 * via ioctl, which will have the same effect on both contexts.
 */
1078 1079
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1080 1081
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082
		&& ctx1->parent_gen == ctx2->parent_gen
1083
		&& !ctx1->pin_count && !ctx2->pin_count;
1084 1085
}

1086 1087
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1088 1089 1090
{
	u64 value;

1091
	if (!event->attr.inherit_stat)
1092 1093 1094
		return;

	/*
1095
	 * Update the event value, we cannot use perf_event_read()
1096 1097
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1098
	 * we know the event must be on the current CPU, therefore we
1099 1100
	 * don't need to use it.
	 */
1101 1102
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1103 1104
		event->pmu->read(event);
		/* fall-through */
1105

1106 1107
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1108 1109 1110 1111 1112 1113 1114
		break;

	default:
		break;
	}

	/*
1115
	 * In order to keep per-task stats reliable we need to flip the event
1116 1117
	 * values when we flip the contexts.
	 */
1118 1119 1120
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1121

1122 1123
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1124

1125
	/*
1126
	 * Since we swizzled the values, update the user visible data too.
1127
	 */
1128 1129
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1130 1131 1132 1133 1134
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1135 1136
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1137
{
1138
	struct perf_event *event, *next_event;
1139 1140 1141 1142

	if (!ctx->nr_stat)
		return;

1143 1144
	update_context_time(ctx);

1145 1146
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1147

1148 1149
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1150

1151 1152
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1153

1154
		__perf_event_sync_stat(event, next_event);
1155

1156 1157
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1158 1159 1160
	}
}

T
Thomas Gleixner 已提交
1161
/*
1162
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1163 1164
 * with interrupts disabled.
 *
1165
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1166
 *
I
Ingo Molnar 已提交
1167
 * This does not protect us against NMI, but disable()
1168 1169 1170
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1171
 */
1172
void perf_event_task_sched_out(struct task_struct *task,
1173
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1174 1175
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1176 1177 1178
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1179
	struct pt_regs *regs;
1180
	int do_switch = 1;
T
Thomas Gleixner 已提交
1181

1182
	regs = task_pt_regs(task);
1183
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1184

1185
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1186 1187
		return;

1188 1189
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1190
	next_ctx = next->perf_event_ctxp;
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1202 1203
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1204
		if (context_equiv(ctx, next_ctx)) {
1205 1206
			/*
			 * XXX do we need a memory barrier of sorts
1207
			 * wrt to rcu_dereference() of perf_event_ctxp
1208
			 */
1209 1210
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1211 1212 1213
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1214

1215
			perf_event_sync_stat(ctx, next_ctx);
1216
		}
1217 1218
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1219
	}
1220
	rcu_read_unlock();
1221

1222
	if (do_switch) {
1223
		__perf_event_sched_out(ctx, cpuctx);
1224 1225
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1226 1227
}

1228 1229 1230
/*
 * Called with IRQs disabled
 */
1231
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1232 1233 1234
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1235 1236
	if (!cpuctx->task_ctx)
		return;
1237 1238 1239 1240

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1241
	__perf_event_sched_out(ctx, cpuctx);
1242 1243 1244
	cpuctx->task_ctx = NULL;
}

1245 1246 1247
/*
 * Called with IRQs disabled
 */
1248
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1249
{
1250
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1251 1252
}

1253
static void
1254
__perf_event_sched_in(struct perf_event_context *ctx,
1255
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1256
{
1257
	struct perf_event *event;
1258
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1259

1260
	raw_spin_lock(&ctx->lock);
1261
	ctx->is_active = 1;
1262
	if (likely(!ctx->nr_events))
1263
		goto out;
T
Thomas Gleixner 已提交
1264

1265
	ctx->timestamp = perf_clock();
1266

1267
	perf_disable();
1268 1269 1270 1271 1272

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1273 1274 1275
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1276
			continue;
1277
		if (event->cpu != -1 && event->cpu != cpu)
1278 1279
			continue;

1280 1281
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1282 1283 1284 1285 1286

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1287 1288 1289
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1290
		}
1291 1292
	}

1293
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1294
		/*
1295 1296
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1297
		 */
1298 1299
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1300 1301
			continue;

1302 1303
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1304
		 * of events:
1305
		 */
1306
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1307 1308
			continue;

1309 1310
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1311
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1312
	}
1313
	perf_enable();
1314
 out:
1315
	raw_spin_unlock(&ctx->lock);
1316 1317 1318
}

/*
1319
 * Called from scheduler to add the events of the current task
1320 1321
 * with interrupts disabled.
 *
1322
 * We restore the event value and then enable it.
1323 1324
 *
 * This does not protect us against NMI, but enable()
1325 1326 1327
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1328
 */
1329
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1330 1331
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1332
	struct perf_event_context *ctx = task->perf_event_ctxp;
1333

1334 1335
	if (likely(!ctx))
		return;
1336 1337
	if (cpuctx->task_ctx == ctx)
		return;
1338
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1339 1340 1341
	cpuctx->task_ctx = ctx;
}

1342
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1343
{
1344
	struct perf_event_context *ctx = &cpuctx->ctx;
1345

1346
	__perf_event_sched_in(ctx, cpuctx, cpu);
1347 1348
}

1349 1350
#define MAX_INTERRUPTS (~0ULL)

1351
static void perf_log_throttle(struct perf_event *event, int enable);
1352

1353
static void perf_adjust_period(struct perf_event *event, u64 events)
1354
{
1355
	struct hw_perf_event *hwc = &event->hw;
1356 1357 1358 1359
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1360
	period = div64_u64(events, event->attr.sample_freq);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1373
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1374
{
1375 1376
	struct perf_event *event;
	struct hw_perf_event *hwc;
1377
	u64 interrupts, freq;
1378

1379
	raw_spin_lock(&ctx->lock);
1380
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1381
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1382 1383
			continue;

1384
		hwc = &event->hw;
1385 1386 1387

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1388

1389
		/*
1390
		 * unthrottle events on the tick
1391
		 */
1392
		if (interrupts == MAX_INTERRUPTS) {
1393 1394 1395
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1396 1397
		}

1398
		if (!event->attr.freq || !event->attr.sample_freq)
1399 1400
			continue;

1401 1402 1403
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1404 1405
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1419
		perf_adjust_period(event, freq * interrupts);
1420

1421 1422 1423 1424 1425 1426 1427
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1428
			event->pmu->disable(event);
1429
			atomic64_set(&hwc->period_left, 0);
1430
			event->pmu->enable(event);
1431 1432
			perf_enable();
		}
1433
	}
1434
	raw_spin_unlock(&ctx->lock);
1435 1436
}

1437
/*
1438
 * Round-robin a context's events:
1439
 */
1440
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1441
{
1442
	struct perf_event *event;
T
Thomas Gleixner 已提交
1443

1444
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1445 1446
		return;

1447
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
1448
	/*
1449
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1450
	 */
1451
	perf_disable();
1452 1453
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1454 1455
		break;
	}
1456
	perf_enable();
T
Thomas Gleixner 已提交
1457

1458
	raw_spin_unlock(&ctx->lock);
1459 1460
}

1461
void perf_event_task_tick(struct task_struct *curr, int cpu)
1462
{
1463
	struct perf_cpu_context *cpuctx;
1464
	struct perf_event_context *ctx;
1465

1466
	if (!atomic_read(&nr_events))
1467 1468 1469
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1470
	ctx = curr->perf_event_ctxp;
1471

1472
	perf_ctx_adjust_freq(&cpuctx->ctx);
1473
	if (ctx)
1474
		perf_ctx_adjust_freq(ctx);
1475

1476
	perf_event_cpu_sched_out(cpuctx);
1477
	if (ctx)
1478
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1479

1480
	rotate_ctx(&cpuctx->ctx);
1481 1482
	if (ctx)
		rotate_ctx(ctx);
1483

1484
	perf_event_cpu_sched_in(cpuctx, cpu);
1485
	if (ctx)
1486
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1487 1488
}

1489
/*
1490
 * Enable all of a task's events that have been marked enable-on-exec.
1491 1492
 * This expects task == current.
 */
1493
static void perf_event_enable_on_exec(struct task_struct *task)
1494
{
1495 1496
	struct perf_event_context *ctx;
	struct perf_event *event;
1497 1498 1499 1500
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1501 1502
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1503 1504
		goto out;

1505
	__perf_event_task_sched_out(ctx);
1506

1507
	raw_spin_lock(&ctx->lock);
1508

1509 1510
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1511
			continue;
1512 1513
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1514
			continue;
1515
		__perf_event_mark_enabled(event, ctx);
1516 1517 1518 1519
		enabled = 1;
	}

	/*
1520
	 * Unclone this context if we enabled any event.
1521
	 */
1522 1523
	if (enabled)
		unclone_ctx(ctx);
1524

1525
	raw_spin_unlock(&ctx->lock);
1526

1527
	perf_event_task_sched_in(task, smp_processor_id());
1528 1529 1530 1531
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1532
/*
1533
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1534
 */
1535
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1536
{
1537
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1538 1539
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1540

1541 1542 1543 1544
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1545 1546
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1547 1548 1549 1550
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1551
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1552
	update_context_time(ctx);
1553
	update_event_times(event);
1554
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1555

P
Peter Zijlstra 已提交
1556
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1557 1558
}

1559
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1560 1561
{
	/*
1562 1563
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1564
	 */
1565 1566 1567 1568
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1569 1570 1571
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1572
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1573
		update_context_time(ctx);
1574
		update_event_times(event);
1575
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1576 1577
	}

1578
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1579 1580
}

1581
/*
1582
 * Initialize the perf_event context in a task_struct:
1583 1584
 */
static void
1585
__perf_event_init_context(struct perf_event_context *ctx,
1586 1587
			    struct task_struct *task)
{
1588
	raw_spin_lock_init(&ctx->lock);
1589
	mutex_init(&ctx->mutex);
1590
	INIT_LIST_HEAD(&ctx->group_list);
1591 1592 1593 1594 1595
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1596
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1597
{
1598
	struct perf_event_context *ctx;
1599
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1600
	struct task_struct *task;
1601
	unsigned long flags;
1602
	int err;
T
Thomas Gleixner 已提交
1603

1604
	if (pid == -1 && cpu != -1) {
1605
		/* Must be root to operate on a CPU event: */
1606
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1607 1608
			return ERR_PTR(-EACCES);

1609
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1610 1611 1612
			return ERR_PTR(-EINVAL);

		/*
1613
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1614 1615 1616 1617 1618 1619 1620 1621
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1622
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1639
	/*
1640
	 * Can't attach events to a dying task.
1641 1642 1643 1644 1645
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1646
	/* Reuse ptrace permission checks for now. */
1647 1648 1649 1650 1651
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1652
	ctx = perf_lock_task_context(task, &flags);
1653
	if (ctx) {
1654
		unclone_ctx(ctx);
1655
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1656 1657
	}

1658
	if (!ctx) {
1659
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1660 1661 1662
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1663
		__perf_event_init_context(ctx, task);
1664
		get_ctx(ctx);
1665
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1666 1667 1668 1669 1670
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1671
			goto retry;
1672
		}
1673
		get_task_struct(task);
1674 1675
	}

1676
	put_task_struct(task);
T
Thomas Gleixner 已提交
1677
	return ctx;
1678 1679 1680 1681

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1682 1683
}

L
Li Zefan 已提交
1684 1685
static void perf_event_free_filter(struct perf_event *event);

1686
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1687
{
1688
	struct perf_event *event;
P
Peter Zijlstra 已提交
1689

1690 1691 1692
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1693
	perf_event_free_filter(event);
1694
	kfree(event);
P
Peter Zijlstra 已提交
1695 1696
}

1697
static void perf_pending_sync(struct perf_event *event);
1698

1699
static void free_event(struct perf_event *event)
1700
{
1701
	perf_pending_sync(event);
1702

1703 1704 1705 1706 1707 1708 1709 1710
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1711
	}
1712

1713 1714 1715
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1716 1717
	}

1718 1719
	if (event->destroy)
		event->destroy(event);
1720

1721 1722
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1723 1724
}

1725
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1726
{
1727
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1728

1729
	WARN_ON_ONCE(ctx->parent_ctx);
1730
	mutex_lock(&ctx->mutex);
1731
	perf_event_remove_from_context(event);
1732
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1733

1734 1735 1736 1737
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1738

1739
	free_event(event);
T
Thomas Gleixner 已提交
1740 1741 1742

	return 0;
}
1743
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1744

1745 1746 1747 1748
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1749
{
1750
	struct perf_event *event = file->private_data;
1751

1752
	file->private_data = NULL;
1753

1754
	return perf_event_release_kernel(event);
1755 1756
}

1757
static int perf_event_read_size(struct perf_event *event)
1758 1759 1760 1761 1762
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1763
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1764 1765
		size += sizeof(u64);

1766
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1767 1768
		size += sizeof(u64);

1769
	if (event->attr.read_format & PERF_FORMAT_ID)
1770 1771
		entry += sizeof(u64);

1772 1773
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1774 1775 1776 1777 1778 1779 1780 1781
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1782
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1783
{
1784
	struct perf_event *child;
1785 1786
	u64 total = 0;

1787 1788 1789
	*enabled = 0;
	*running = 0;

1790
	mutex_lock(&event->child_mutex);
1791
	total += perf_event_read(event);
1792 1793 1794 1795 1796 1797
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1798
		total += perf_event_read(child);
1799 1800 1801
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1802
	mutex_unlock(&event->child_mutex);
1803 1804 1805

	return total;
}
1806
EXPORT_SYMBOL_GPL(perf_event_read_value);
1807

1808
static int perf_event_read_group(struct perf_event *event,
1809 1810
				   u64 read_format, char __user *buf)
{
1811
	struct perf_event *leader = event->group_leader, *sub;
1812 1813
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1814
	u64 values[5];
1815
	u64 count, enabled, running;
1816

1817
	mutex_lock(&ctx->mutex);
1818
	count = perf_event_read_value(leader, &enabled, &running);
1819 1820

	values[n++] = 1 + leader->nr_siblings;
1821 1822 1823 1824
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1825 1826 1827
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1828 1829 1830 1831

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1832
		goto unlock;
1833

1834
	ret = size;
1835

1836
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1837
		n = 0;
1838

1839
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1840 1841 1842 1843 1844
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1845
		if (copy_to_user(buf + ret, values, size)) {
1846 1847 1848
			ret = -EFAULT;
			goto unlock;
		}
1849 1850

		ret += size;
1851
	}
1852 1853
unlock:
	mutex_unlock(&ctx->mutex);
1854

1855
	return ret;
1856 1857
}

1858
static int perf_event_read_one(struct perf_event *event,
1859 1860
				 u64 read_format, char __user *buf)
{
1861
	u64 enabled, running;
1862 1863 1864
	u64 values[4];
	int n = 0;

1865 1866 1867 1868 1869
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1870
	if (read_format & PERF_FORMAT_ID)
1871
		values[n++] = primary_event_id(event);
1872 1873 1874 1875 1876 1877 1878

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1879
/*
1880
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1881 1882
 */
static ssize_t
1883
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1884
{
1885
	u64 read_format = event->attr.read_format;
1886
	int ret;
T
Thomas Gleixner 已提交
1887

1888
	/*
1889
	 * Return end-of-file for a read on a event that is in
1890 1891 1892
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1893
	if (event->state == PERF_EVENT_STATE_ERROR)
1894 1895
		return 0;

1896
	if (count < perf_event_read_size(event))
1897 1898
		return -ENOSPC;

1899
	WARN_ON_ONCE(event->ctx->parent_ctx);
1900
	if (read_format & PERF_FORMAT_GROUP)
1901
		ret = perf_event_read_group(event, read_format, buf);
1902
	else
1903
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
1904

1905
	return ret;
T
Thomas Gleixner 已提交
1906 1907 1908 1909 1910
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1911
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1912

1913
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1914 1915 1916 1917
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1918
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1919
	struct perf_mmap_data *data;
1920
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1921 1922

	rcu_read_lock();
1923
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1924
	if (data)
1925
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1926
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1927

1928
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1929 1930 1931 1932

	return events;
}

1933
static void perf_event_reset(struct perf_event *event)
1934
{
1935 1936 1937
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1938 1939
}

1940
/*
1941 1942 1943 1944
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1945
 */
1946 1947
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1948
{
1949
	struct perf_event *child;
P
Peter Zijlstra 已提交
1950

1951 1952 1953 1954
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1955
		func(child);
1956
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1957 1958
}

1959 1960
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1961
{
1962 1963
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1964

1965 1966
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1967
	event = event->group_leader;
1968

1969 1970 1971 1972
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1973
	mutex_unlock(&ctx->mutex);
1974 1975
}

1976
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1977
{
1978
	struct perf_event_context *ctx = event->ctx;
1979 1980 1981 1982
	unsigned long size;
	int ret = 0;
	u64 value;

1983
	if (!event->attr.sample_period)
1984 1985 1986 1987 1988 1989 1990 1991 1992
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

1993
	raw_spin_lock_irq(&ctx->lock);
1994 1995
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1996 1997 1998 1999
			ret = -EINVAL;
			goto unlock;
		}

2000
		event->attr.sample_freq = value;
2001
	} else {
2002 2003
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2004 2005
	}
unlock:
2006
	raw_spin_unlock_irq(&ctx->lock);
2007 2008 2009 2010

	return ret;
}

L
Li Zefan 已提交
2011 2012
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2013

2014 2015
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2016 2017
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2018
	u32 flags = arg;
2019 2020

	switch (cmd) {
2021 2022
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2023
		break;
2024 2025
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2026
		break;
2027 2028
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2029
		break;
P
Peter Zijlstra 已提交
2030

2031 2032
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2033

2034 2035
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2036

2037 2038
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2039

L
Li Zefan 已提交
2040 2041 2042
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2043
	default:
P
Peter Zijlstra 已提交
2044
		return -ENOTTY;
2045
	}
P
Peter Zijlstra 已提交
2046 2047

	if (flags & PERF_IOC_FLAG_GROUP)
2048
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2049
	else
2050
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2051 2052

	return 0;
2053 2054
}

2055
int perf_event_task_enable(void)
2056
{
2057
	struct perf_event *event;
2058

2059 2060 2061 2062
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2063 2064 2065 2066

	return 0;
}

2067
int perf_event_task_disable(void)
2068
{
2069
	struct perf_event *event;
2070

2071 2072 2073 2074
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2075 2076 2077 2078

	return 0;
}

2079 2080
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2081 2082
#endif

2083
static int perf_event_index(struct perf_event *event)
2084
{
2085
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2086 2087
		return 0;

2088
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2089 2090
}

2091 2092 2093 2094 2095
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2096
void perf_event_update_userpage(struct perf_event *event)
2097
{
2098
	struct perf_event_mmap_page *userpg;
2099
	struct perf_mmap_data *data;
2100 2101

	rcu_read_lock();
2102
	data = rcu_dereference(event->data);
2103 2104 2105 2106
	if (!data)
		goto unlock;

	userpg = data->user_page;
2107

2108 2109 2110 2111 2112
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2113
	++userpg->lock;
2114
	barrier();
2115 2116 2117 2118
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2119

2120 2121
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2122

2123 2124
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2125

2126
	barrier();
2127
	++userpg->lock;
2128
	preempt_enable();
2129
unlock:
2130
	rcu_read_unlock();
2131 2132
}

2133
static unsigned long perf_data_size(struct perf_mmap_data *data)
2134
{
2135 2136
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2137

2138
#ifndef CONFIG_PERF_USE_VMALLOC
2139

2140 2141 2142
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2143

2144 2145 2146 2147 2148
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2149

2150 2151
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2152

2153
	return virt_to_page(data->data_pages[pgoff - 1]);
2154 2155
}

2156 2157
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2158 2159 2160 2161 2162
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2163
	WARN_ON(atomic_read(&event->mmap_count));
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2182
	data->data_order = 0;
2183 2184
	data->nr_pages = nr_pages;

2185
	return data;
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2197
	return NULL;
2198 2199
}

2200 2201
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2202
	struct page *page = virt_to_page((void *)addr);
2203 2204 2205 2206 2207

	page->mapping = NULL;
	__free_page(page);
}

2208
static void perf_mmap_data_free(struct perf_mmap_data *data)
2209 2210 2211
{
	int i;

2212
	perf_mmap_free_page((unsigned long)data->user_page);
2213
	for (i = 0; i < data->nr_pages; i++)
2214
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2215
	kfree(data);
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2256
	kfree(data);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2272

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2350
		data->watermark = max_size / 2;
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2362 2363
}

2364
static void perf_mmap_data_release(struct perf_event *event)
2365
{
2366
	struct perf_mmap_data *data = event->data;
2367

2368
	WARN_ON(atomic_read(&event->mmap_count));
2369

2370
	rcu_assign_pointer(event->data, NULL);
2371
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2372 2373 2374 2375
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2376
	struct perf_event *event = vma->vm_file->private_data;
2377

2378
	atomic_inc(&event->mmap_count);
2379 2380 2381 2382
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2383
	struct perf_event *event = vma->vm_file->private_data;
2384

2385 2386
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2387
		unsigned long size = perf_data_size(event->data);
2388 2389
		struct user_struct *user = current_user();

2390
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2391
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2392
		perf_mmap_data_release(event);
2393
		mutex_unlock(&event->mmap_mutex);
2394
	}
2395 2396
}

2397
static const struct vm_operations_struct perf_mmap_vmops = {
2398 2399 2400 2401
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2402 2403 2404 2405
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2406
	struct perf_event *event = file->private_data;
2407
	unsigned long user_locked, user_lock_limit;
2408
	struct user_struct *user = current_user();
2409
	unsigned long locked, lock_limit;
2410
	struct perf_mmap_data *data;
2411 2412
	unsigned long vma_size;
	unsigned long nr_pages;
2413
	long user_extra, extra;
2414
	int ret = 0;
2415

2416
	if (!(vma->vm_flags & VM_SHARED))
2417
		return -EINVAL;
2418 2419 2420 2421

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2422 2423 2424 2425 2426
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2427 2428
		return -EINVAL;

2429
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2430 2431
		return -EINVAL;

2432 2433
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2434

2435 2436 2437
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2438 2439 2440 2441
		ret = -EINVAL;
		goto unlock;
	}

2442 2443
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2444 2445 2446 2447
			ret = -EINVAL;
		goto unlock;
	}

2448
	user_extra = nr_pages + 1;
2449
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2450 2451 2452 2453 2454 2455

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2456
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2457

2458 2459 2460
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2461 2462 2463

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2464
	locked = vma->vm_mm->locked_vm + extra;
2465

2466 2467
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2468 2469 2470
		ret = -EPERM;
		goto unlock;
	}
2471

2472
	WARN_ON(event->data);
2473 2474 2475 2476

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2477 2478
		goto unlock;

2479 2480 2481
	ret = 0;
	perf_mmap_data_init(event, data);

2482
	atomic_set(&event->mmap_count, 1);
2483
	atomic_long_add(user_extra, &user->locked_vm);
2484
	vma->vm_mm->locked_vm += extra;
2485
	event->data->nr_locked = extra;
2486
	if (vma->vm_flags & VM_WRITE)
2487
		event->data->writable = 1;
2488

2489
unlock:
2490
	mutex_unlock(&event->mmap_mutex);
2491 2492 2493

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2494 2495

	return ret;
2496 2497
}

P
Peter Zijlstra 已提交
2498 2499 2500
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2501
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2502 2503 2504
	int retval;

	mutex_lock(&inode->i_mutex);
2505
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2506 2507 2508 2509 2510 2511 2512 2513
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2514 2515 2516 2517
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2518 2519
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2520
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2521
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2522 2523
};

2524
/*
2525
 * Perf event wakeup
2526 2527 2528 2529 2530
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2531
void perf_event_wakeup(struct perf_event *event)
2532
{
2533
	wake_up_all(&event->waitq);
2534

2535 2536 2537
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2538
	}
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2550
static void perf_pending_event(struct perf_pending_entry *entry)
2551
{
2552 2553
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2554

2555 2556 2557
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2558 2559
	}

2560 2561 2562
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2563 2564 2565
	}
}

2566
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2567

2568
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2569 2570 2571
	PENDING_TAIL,
};

2572 2573
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2574
{
2575
	struct perf_pending_entry **head;
2576

2577
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2578 2579
		return;

2580 2581 2582
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2583 2584

	do {
2585 2586
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2587

2588
	set_perf_event_pending();
2589

2590
	put_cpu_var(perf_pending_head);
2591 2592 2593 2594
}

static int __perf_pending_run(void)
{
2595
	struct perf_pending_entry *list;
2596 2597
	int nr = 0;

2598
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2599
	while (list != PENDING_TAIL) {
2600 2601
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2602 2603 2604

		list = list->next;

2605 2606
		func = entry->func;
		entry->next = NULL;
2607 2608 2609 2610 2611 2612 2613
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2614
		func(entry);
2615 2616 2617 2618 2619 2620
		nr++;
	}

	return nr;
}

2621
static inline int perf_not_pending(struct perf_event *event)
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2636
	return event->pending.next == NULL;
2637 2638
}

2639
static void perf_pending_sync(struct perf_event *event)
2640
{
2641
	wait_event(event->waitq, perf_not_pending(event));
2642 2643
}

2644
void perf_event_do_pending(void)
2645 2646 2647 2648
{
	__perf_pending_run();
}

2649 2650 2651 2652
/*
 * Callchain support -- arch specific
 */

2653
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2654 2655 2656 2657
{
	return NULL;
}

2658 2659 2660
/*
 * Output
 */
2661 2662
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2663 2664 2665 2666 2667 2668
{
	unsigned long mask;

	if (!data->writable)
		return true;

2669
	mask = perf_data_size(data) - 1;
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2680
static void perf_output_wakeup(struct perf_output_handle *handle)
2681
{
2682 2683
	atomic_set(&handle->data->poll, POLL_IN);

2684
	if (handle->nmi) {
2685 2686 2687
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2688
	} else
2689
		perf_event_wakeup(handle->event);
2690 2691
}

2692 2693 2694
/*
 * Curious locking construct.
 *
2695 2696
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2697 2698 2699 2700 2701 2702
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2703
 * event_id completes.
2704 2705 2706 2707
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2708
	int cur, cpu = get_cpu();
2709 2710 2711

	handle->locked = 0;

2712 2713 2714 2715 2716 2717 2718 2719
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2720 2721

		cpu_relax();
2722
	}
2723 2724 2725 2726 2727
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2728 2729
	unsigned long head;
	int cpu;
2730

2731
	data->done_head = data->head;
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2742
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2743 2744 2745
		data->user_page->data_head = head;

	/*
2746
	 * NMI can happen here, which means we can miss a done_head update.
2747 2748
	 */

2749
	cpu = atomic_xchg(&data->lock, -1);
2750 2751 2752 2753 2754
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2755
	if (unlikely(atomic_long_read(&data->done_head))) {
2756 2757 2758
		/*
		 * Since we had it locked, we can lock it again.
		 */
2759
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2760 2761 2762 2763 2764
			cpu_relax();

		goto again;
	}

2765
	if (atomic_xchg(&data->wakeup, 0))
2766 2767
		perf_output_wakeup(handle);
out:
2768
	put_cpu();
2769 2770
}

2771 2772
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2773 2774
{
	unsigned int pages_mask;
2775
	unsigned long offset;
2776 2777 2778 2779 2780 2781 2782 2783
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2784 2785
		unsigned long page_offset;
		unsigned long page_size;
2786 2787 2788
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2789 2790 2791
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2809
int perf_output_begin(struct perf_output_handle *handle,
2810
		      struct perf_event *event, unsigned int size,
2811
		      int nmi, int sample)
2812
{
2813
	struct perf_event *output_event;
2814
	struct perf_mmap_data *data;
2815
	unsigned long tail, offset, head;
2816 2817 2818 2819 2820 2821
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2822

2823
	rcu_read_lock();
2824
	/*
2825
	 * For inherited events we send all the output towards the parent.
2826
	 */
2827 2828
	if (event->parent)
		event = event->parent;
2829

2830 2831 2832
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2833

2834
	data = rcu_dereference(event->data);
2835 2836 2837
	if (!data)
		goto out;

2838
	handle->data	= data;
2839
	handle->event	= event;
2840 2841
	handle->nmi	= nmi;
	handle->sample	= sample;
2842

2843
	if (!data->nr_pages)
2844
		goto fail;
2845

2846 2847 2848 2849
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2850 2851
	perf_output_lock(handle);

2852
	do {
2853 2854 2855 2856 2857 2858 2859
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2860
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2861
		head += size;
2862
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2863
			goto fail;
2864
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2865

2866
	handle->offset	= offset;
2867
	handle->head	= head;
2868

2869
	if (head - tail > data->watermark)
2870
		atomic_set(&data->wakeup, 1);
2871

2872
	if (have_lost) {
2873
		lost_event.header.type = PERF_RECORD_LOST;
2874 2875
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2876
		lost_event.id          = event->id;
2877 2878 2879 2880 2881
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2882
	return 0;
2883

2884
fail:
2885 2886
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2887 2888
out:
	rcu_read_unlock();
2889

2890 2891
	return -ENOSPC;
}
2892

2893
void perf_output_end(struct perf_output_handle *handle)
2894
{
2895
	struct perf_event *event = handle->event;
2896 2897
	struct perf_mmap_data *data = handle->data;

2898
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2899

2900
	if (handle->sample && wakeup_events) {
2901
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2902
		if (events >= wakeup_events) {
2903
			atomic_sub(wakeup_events, &data->events);
2904
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2905
		}
2906 2907 2908
	}

	perf_output_unlock(handle);
2909
	rcu_read_unlock();
2910 2911
}

2912
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2913 2914
{
	/*
2915
	 * only top level events have the pid namespace they were created in
2916
	 */
2917 2918
	if (event->parent)
		event = event->parent;
2919

2920
	return task_tgid_nr_ns(p, event->ns);
2921 2922
}

2923
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2924 2925
{
	/*
2926
	 * only top level events have the pid namespace they were created in
2927
	 */
2928 2929
	if (event->parent)
		event = event->parent;
2930

2931
	return task_pid_nr_ns(p, event->ns);
2932 2933
}

2934
static void perf_output_read_one(struct perf_output_handle *handle,
2935
				 struct perf_event *event)
2936
{
2937
	u64 read_format = event->attr.read_format;
2938 2939 2940
	u64 values[4];
	int n = 0;

2941
	values[n++] = atomic64_read(&event->count);
2942
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2943 2944
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2945 2946
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2947 2948
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2949 2950
	}
	if (read_format & PERF_FORMAT_ID)
2951
		values[n++] = primary_event_id(event);
2952 2953 2954 2955 2956

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2957
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2958 2959
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2960
			    struct perf_event *event)
2961
{
2962 2963
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2975
	if (leader != event)
2976 2977 2978 2979
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2980
		values[n++] = primary_event_id(leader);
2981 2982 2983

	perf_output_copy(handle, values, n * sizeof(u64));

2984
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2985 2986
		n = 0;

2987
		if (sub != event)
2988 2989 2990 2991
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2992
			values[n++] = primary_event_id(sub);
2993 2994 2995 2996 2997 2998

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2999
			     struct perf_event *event)
3000
{
3001 3002
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3003
	else
3004
		perf_output_read_one(handle, event);
3005 3006
}

3007 3008 3009
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3010
			struct perf_event *event)
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3041
		perf_output_read(handle, event);
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3079
			 struct perf_event *event,
3080
			 struct pt_regs *regs)
3081
{
3082
	u64 sample_type = event->attr.sample_type;
3083

3084
	data->type = sample_type;
3085

3086
	header->type = PERF_RECORD_SAMPLE;
3087 3088 3089 3090
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3091

3092
	if (sample_type & PERF_SAMPLE_IP) {
3093 3094 3095
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3096
	}
3097

3098
	if (sample_type & PERF_SAMPLE_TID) {
3099
		/* namespace issues */
3100 3101
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3102

3103
		header->size += sizeof(data->tid_entry);
3104 3105
	}

3106
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3107
		data->time = perf_clock();
3108

3109
		header->size += sizeof(data->time);
3110 3111
	}

3112
	if (sample_type & PERF_SAMPLE_ADDR)
3113
		header->size += sizeof(data->addr);
3114

3115
	if (sample_type & PERF_SAMPLE_ID) {
3116
		data->id = primary_event_id(event);
3117

3118 3119 3120 3121
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3122
		data->stream_id = event->id;
3123 3124 3125

		header->size += sizeof(data->stream_id);
	}
3126

3127
	if (sample_type & PERF_SAMPLE_CPU) {
3128 3129
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3130

3131
		header->size += sizeof(data->cpu_entry);
3132 3133
	}

3134
	if (sample_type & PERF_SAMPLE_PERIOD)
3135
		header->size += sizeof(data->period);
3136

3137
	if (sample_type & PERF_SAMPLE_READ)
3138
		header->size += perf_event_read_size(event);
3139

3140
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3141
		int size = 1;
3142

3143 3144 3145 3146 3147 3148
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3149 3150
	}

3151
	if (sample_type & PERF_SAMPLE_RAW) {
3152 3153 3154 3155 3156 3157 3158 3159
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3160
		header->size += size;
3161
	}
3162
}
3163

3164
static void perf_event_output(struct perf_event *event, int nmi,
3165 3166 3167 3168 3169
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3170

3171
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3172

3173
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3174
		return;
3175

3176
	perf_output_sample(&handle, &header, data, event);
3177

3178
	perf_output_end(&handle);
3179 3180
}

3181
/*
3182
 * read event_id
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3193
perf_event_read_event(struct perf_event *event,
3194 3195 3196
			struct task_struct *task)
{
	struct perf_output_handle handle;
3197
	struct perf_read_event read_event = {
3198
		.header = {
3199
			.type = PERF_RECORD_READ,
3200
			.misc = 0,
3201
			.size = sizeof(read_event) + perf_event_read_size(event),
3202
		},
3203 3204
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3205
	};
3206
	int ret;
3207

3208
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3209 3210 3211
	if (ret)
		return;

3212
	perf_output_put(&handle, read_event);
3213
	perf_output_read(&handle, event);
3214

3215 3216 3217
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3218
/*
P
Peter Zijlstra 已提交
3219 3220 3221
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3222 3223
 */

P
Peter Zijlstra 已提交
3224
struct perf_task_event {
3225
	struct task_struct		*task;
3226
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3227 3228 3229 3230 3231 3232

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3233 3234
		u32				tid;
		u32				ptid;
3235
		u64				time;
3236
	} event_id;
P
Peter Zijlstra 已提交
3237 3238
};

3239
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3240
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3241 3242
{
	struct perf_output_handle handle;
3243
	int size;
P
Peter Zijlstra 已提交
3244
	struct task_struct *task = task_event->task;
3245 3246
	int ret;

3247 3248
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3249 3250 3251 3252

	if (ret)
		return;

3253 3254
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3255

3256 3257
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3258

3259
	task_event->event_id.time = perf_clock();
3260

3261
	perf_output_put(&handle, task_event->event_id);
3262

P
Peter Zijlstra 已提交
3263 3264 3265
	perf_output_end(&handle);
}

3266
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3267
{
3268
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3269 3270 3271 3272 3273
		return 1;

	return 0;
}

3274
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3275
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3276
{
3277
	struct perf_event *event;
P
Peter Zijlstra 已提交
3278

3279 3280 3281
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3282 3283 3284
	}
}

3285
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3286 3287
{
	struct perf_cpu_context *cpuctx;
3288
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3289

3290
	rcu_read_lock();
P
Peter Zijlstra 已提交
3291
	cpuctx = &get_cpu_var(perf_cpu_context);
3292
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3293 3294
	put_cpu_var(perf_cpu_context);

3295
	if (!ctx)
3296
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3297
	if (ctx)
3298
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3299 3300 3301
	rcu_read_unlock();
}

3302 3303
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3304
			      int new)
P
Peter Zijlstra 已提交
3305
{
P
Peter Zijlstra 已提交
3306
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3307

3308 3309 3310
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3311 3312
		return;

P
Peter Zijlstra 已提交
3313
	task_event = (struct perf_task_event){
3314 3315
		.task	  = task,
		.task_ctx = task_ctx,
3316
		.event_id    = {
P
Peter Zijlstra 已提交
3317
			.header = {
3318
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3319
				.misc = 0,
3320
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3321
			},
3322 3323
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3324 3325
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3326 3327 3328
		},
	};

3329
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3330 3331
}

3332
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3333
{
3334
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3335 3336
}

3337 3338 3339 3340 3341
/*
 * comm tracking
 */

struct perf_comm_event {
3342 3343
	struct task_struct	*task;
	char			*comm;
3344 3345 3346 3347 3348 3349 3350
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3351
	} event_id;
3352 3353
};

3354
static void perf_event_comm_output(struct perf_event *event,
3355 3356 3357
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3358 3359
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3360 3361 3362 3363

	if (ret)
		return;

3364 3365
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3366

3367
	perf_output_put(&handle, comm_event->event_id);
3368 3369 3370 3371 3372
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3373
static int perf_event_comm_match(struct perf_event *event)
3374
{
3375
	if (event->attr.comm)
3376 3377 3378 3379 3380
		return 1;

	return 0;
}

3381
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3382 3383
				  struct perf_comm_event *comm_event)
{
3384
	struct perf_event *event;
3385

3386 3387 3388
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3389 3390 3391
	}
}

3392
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3393 3394
{
	struct perf_cpu_context *cpuctx;
3395
	struct perf_event_context *ctx;
3396
	unsigned int size;
3397
	char comm[TASK_COMM_LEN];
3398

3399
	memset(comm, 0, sizeof(comm));
3400
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3401
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3402 3403 3404 3405

	comm_event->comm = comm;
	comm_event->comm_size = size;

3406
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3407

3408
	rcu_read_lock();
3409
	cpuctx = &get_cpu_var(perf_cpu_context);
3410
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3411
	put_cpu_var(perf_cpu_context);
3412 3413 3414 3415 3416

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3417
	ctx = rcu_dereference(current->perf_event_ctxp);
3418
	if (ctx)
3419
		perf_event_comm_ctx(ctx, comm_event);
3420
	rcu_read_unlock();
3421 3422
}

3423
void perf_event_comm(struct task_struct *task)
3424
{
3425 3426
	struct perf_comm_event comm_event;

3427 3428
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3429

3430
	if (!atomic_read(&nr_comm_events))
3431
		return;
3432

3433
	comm_event = (struct perf_comm_event){
3434
		.task	= task,
3435 3436
		/* .comm      */
		/* .comm_size */
3437
		.event_id  = {
3438
			.header = {
3439
				.type = PERF_RECORD_COMM,
3440 3441 3442 3443 3444
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3445 3446 3447
		},
	};

3448
	perf_event_comm_event(&comm_event);
3449 3450
}

3451 3452 3453 3454 3455
/*
 * mmap tracking
 */

struct perf_mmap_event {
3456 3457 3458 3459
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3460 3461 3462 3463 3464 3465 3466 3467 3468

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3469
	} event_id;
3470 3471
};

3472
static void perf_event_mmap_output(struct perf_event *event,
3473 3474 3475
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3476 3477
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3478 3479 3480 3481

	if (ret)
		return;

3482 3483
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3484

3485
	perf_output_put(&handle, mmap_event->event_id);
3486 3487
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3488
	perf_output_end(&handle);
3489 3490
}

3491
static int perf_event_mmap_match(struct perf_event *event,
3492 3493
				   struct perf_mmap_event *mmap_event)
{
3494
	if (event->attr.mmap)
3495 3496 3497 3498 3499
		return 1;

	return 0;
}

3500
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3501 3502
				  struct perf_mmap_event *mmap_event)
{
3503
	struct perf_event *event;
3504

3505 3506 3507
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3508 3509 3510
	}
}

3511
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3512 3513
{
	struct perf_cpu_context *cpuctx;
3514
	struct perf_event_context *ctx;
3515 3516
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3517 3518 3519
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3520
	const char *name;
3521

3522 3523
	memset(tmp, 0, sizeof(tmp));

3524
	if (file) {
3525 3526 3527 3528 3529 3530
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3531 3532 3533 3534
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3535
		name = d_path(&file->f_path, buf, PATH_MAX);
3536 3537 3538 3539 3540
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3541 3542 3543
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3544
			goto got_name;
3545
		}
3546 3547 3548 3549 3550 3551

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3552 3553 3554 3555 3556
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3557
	size = ALIGN(strlen(name)+1, sizeof(u64));
3558 3559 3560 3561

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3562
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3563

3564
	rcu_read_lock();
3565
	cpuctx = &get_cpu_var(perf_cpu_context);
3566
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3567 3568
	put_cpu_var(perf_cpu_context);

3569 3570 3571 3572
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3573
	ctx = rcu_dereference(current->perf_event_ctxp);
3574
	if (ctx)
3575
		perf_event_mmap_ctx(ctx, mmap_event);
3576 3577
	rcu_read_unlock();

3578 3579 3580
	kfree(buf);
}

3581
void __perf_event_mmap(struct vm_area_struct *vma)
3582
{
3583 3584
	struct perf_mmap_event mmap_event;

3585
	if (!atomic_read(&nr_mmap_events))
3586 3587 3588
		return;

	mmap_event = (struct perf_mmap_event){
3589
		.vma	= vma,
3590 3591
		/* .file_name */
		/* .file_size */
3592
		.event_id  = {
3593
			.header = {
3594
				.type = PERF_RECORD_MMAP,
3595 3596 3597 3598 3599
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3600 3601 3602
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3603 3604 3605
		},
	};

3606
	perf_event_mmap_event(&mmap_event);
3607 3608
}

3609 3610 3611 3612
/*
 * IRQ throttle logging
 */

3613
static void perf_log_throttle(struct perf_event *event, int enable)
3614 3615 3616 3617 3618 3619 3620
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3621
		u64				id;
3622
		u64				stream_id;
3623 3624
	} throttle_event = {
		.header = {
3625
			.type = PERF_RECORD_THROTTLE,
3626 3627 3628
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3629
		.time		= perf_clock(),
3630 3631
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3632 3633
	};

3634
	if (enable)
3635
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3636

3637
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3638 3639 3640 3641 3642 3643 3644
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3645
/*
3646
 * Generic event overflow handling, sampling.
3647 3648
 */

3649
static int __perf_event_overflow(struct perf_event *event, int nmi,
3650 3651
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3652
{
3653 3654
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3655 3656
	int ret = 0;

3657
	throttle = (throttle && event->pmu->unthrottle != NULL);
3658

3659
	if (!throttle) {
3660
		hwc->interrupts++;
3661
	} else {
3662 3663
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3664
			if (HZ * hwc->interrupts >
3665
					(u64)sysctl_perf_event_sample_rate) {
3666
				hwc->interrupts = MAX_INTERRUPTS;
3667
				perf_log_throttle(event, 0);
3668 3669 3670 3671
				ret = 1;
			}
		} else {
			/*
3672
			 * Keep re-disabling events even though on the previous
3673
			 * pass we disabled it - just in case we raced with a
3674
			 * sched-in and the event got enabled again:
3675
			 */
3676 3677 3678
			ret = 1;
		}
	}
3679

3680
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3681
		u64 now = perf_clock();
3682 3683 3684 3685 3686
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3687
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3688 3689
	}

3690 3691
	/*
	 * XXX event_limit might not quite work as expected on inherited
3692
	 * events
3693 3694
	 */

3695 3696
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3697
		ret = 1;
3698
		event->pending_kill = POLL_HUP;
3699
		if (nmi) {
3700 3701 3702
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3703
		} else
3704
			perf_event_disable(event);
3705 3706
	}

3707 3708 3709 3710 3711
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3712
	return ret;
3713 3714
}

3715
int perf_event_overflow(struct perf_event *event, int nmi,
3716 3717
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3718
{
3719
	return __perf_event_overflow(event, nmi, 1, data, regs);
3720 3721
}

3722
/*
3723
 * Generic software event infrastructure
3724 3725
 */

3726
/*
3727 3728
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3729 3730 3731 3732
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3733
static u64 perf_swevent_set_period(struct perf_event *event)
3734
{
3735
	struct hw_perf_event *hwc = &event->hw;
3736 3737 3738 3739 3740
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3741 3742

again:
3743 3744 3745
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3746

3747 3748 3749 3750 3751
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3752

3753
	return nr;
3754 3755
}

3756
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3757 3758
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3759
{
3760
	struct hw_perf_event *hwc = &event->hw;
3761
	int throttle = 0;
3762

3763
	data->period = event->hw.last_period;
3764 3765
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3766

3767 3768
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3769

3770
	for (; overflow; overflow--) {
3771
		if (__perf_event_overflow(event, nmi, throttle,
3772
					    data, regs)) {
3773 3774 3775 3776 3777 3778
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3779
		throttle = 1;
3780
	}
3781 3782
}

3783
static void perf_swevent_unthrottle(struct perf_event *event)
3784 3785
{
	/*
3786
	 * Nothing to do, we already reset hwc->interrupts.
3787
	 */
3788
}
3789

3790
static void perf_swevent_add(struct perf_event *event, u64 nr,
3791 3792
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3793
{
3794
	struct hw_perf_event *hwc = &event->hw;
3795

3796
	atomic64_add(nr, &event->count);
3797

3798 3799 3800
	if (!regs)
		return;

3801 3802
	if (!hwc->sample_period)
		return;
3803

3804 3805 3806 3807
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3808
		return;
3809

3810
	perf_swevent_overflow(event, 0, nmi, data, regs);
3811 3812
}

3813
static int perf_swevent_is_counting(struct perf_event *event)
3814
{
3815
	/*
3816
	 * The event is active, we're good!
3817
	 */
3818
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3819 3820
		return 1;

3821
	/*
3822
	 * The event is off/error, not counting.
3823
	 */
3824
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3825 3826 3827
		return 0;

	/*
3828
	 * The event is inactive, if the context is active
3829 3830
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3831
	 */
3832
	if (event->ctx->is_active)
3833 3834 3835 3836 3837 3838 3839 3840
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3841 3842
}

L
Li Zefan 已提交
3843 3844 3845
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

3860
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3861
				enum perf_type_id type,
L
Li Zefan 已提交
3862 3863 3864
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3865
{
3866
	if (!perf_swevent_is_counting(event))
3867 3868
		return 0;

3869
	if (event->attr.type != type)
3870
		return 0;
3871

3872
	if (event->attr.config != event_id)
3873 3874
		return 0;

3875 3876
	if (perf_exclude_event(event, regs))
		return 0;
3877

L
Li Zefan 已提交
3878 3879 3880 3881
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3882 3883 3884
	return 1;
}

3885
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3886
				     enum perf_type_id type,
3887
				     u32 event_id, u64 nr, int nmi,
3888 3889
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3890
{
3891
	struct perf_event *event;
3892

3893
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3894
		if (perf_swevent_match(event, type, event_id, data, regs))
3895
			perf_swevent_add(event, nr, nmi, data, regs);
3896 3897 3898
	}
}

3899
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
3900
{
3901 3902
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
3903

P
Peter Zijlstra 已提交
3904
	if (in_nmi())
3905
		rctx = 3;
3906
	else if (in_irq())
3907
		rctx = 2;
3908
	else if (in_softirq())
3909
		rctx = 1;
3910
	else
3911
		rctx = 0;
P
Peter Zijlstra 已提交
3912

3913 3914
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
3915
		return -1;
3916
	}
P
Peter Zijlstra 已提交
3917

3918 3919
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
3920

3921
	return rctx;
P
Peter Zijlstra 已提交
3922
}
I
Ingo Molnar 已提交
3923
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
3924

3925
void perf_swevent_put_recursion_context(int rctx)
3926
{
3927 3928
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
3929
	cpuctx->recursion[rctx]--;
3930
	put_cpu_var(perf_cpu_context);
3931
}
I
Ingo Molnar 已提交
3932
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
3933

3934 3935 3936 3937
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3938
{
3939
	struct perf_cpu_context *cpuctx;
3940
	struct perf_event_context *ctx;
3941

3942
	cpuctx = &__get_cpu_var(perf_cpu_context);
3943
	rcu_read_lock();
3944
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3945
				 nr, nmi, data, regs);
3946 3947 3948 3949
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3950
	ctx = rcu_dereference(current->perf_event_ctxp);
3951
	if (ctx)
3952
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3953
	rcu_read_unlock();
3954
}
3955

3956
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3957
			    struct pt_regs *regs, u64 addr)
3958
{
3959
	struct perf_sample_data data;
3960 3961 3962 3963 3964
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
3965 3966 3967

	data.addr = addr;
	data.raw  = NULL;
3968

3969
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3970 3971

	perf_swevent_put_recursion_context(rctx);
3972 3973
}

3974
static void perf_swevent_read(struct perf_event *event)
3975 3976 3977
{
}

3978
static int perf_swevent_enable(struct perf_event *event)
3979
{
3980
	struct hw_perf_event *hwc = &event->hw;
3981 3982 3983

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3984
		perf_swevent_set_period(event);
3985
	}
3986 3987 3988
	return 0;
}

3989
static void perf_swevent_disable(struct perf_event *event)
3990 3991 3992
{
}

3993
static const struct pmu perf_ops_generic = {
3994 3995 3996 3997
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3998 3999
};

4000
/*
4001
 * hrtimer based swevent callback
4002 4003
 */

4004
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4005 4006 4007
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4008
	struct pt_regs *regs;
4009
	struct perf_event *event;
4010 4011
	u64 period;

4012 4013
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4014 4015

	data.addr = 0;
4016
	data.raw = NULL;
4017
	data.period = event->hw.last_period;
4018
	regs = get_irq_regs();
4019 4020 4021 4022
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4023 4024
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4025
		regs = task_pt_regs(current);
4026

4027
	if (regs) {
4028 4029 4030
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4031 4032
	}

4033
	period = max_t(u64, 10000, event->hw.sample_period);
4034 4035 4036 4037 4038
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4075
/*
4076
 * Software event: cpu wall time clock
4077 4078
 */

4079
static void cpu_clock_perf_event_update(struct perf_event *event)
4080 4081 4082 4083 4084 4085
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4086
	prev = atomic64_xchg(&event->hw.prev_count, now);
4087
	atomic64_add(now - prev, &event->count);
4088 4089
}

4090
static int cpu_clock_perf_event_enable(struct perf_event *event)
4091
{
4092
	struct hw_perf_event *hwc = &event->hw;
4093 4094 4095
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4096
	perf_swevent_start_hrtimer(event);
4097 4098 4099 4100

	return 0;
}

4101
static void cpu_clock_perf_event_disable(struct perf_event *event)
4102
{
4103
	perf_swevent_cancel_hrtimer(event);
4104
	cpu_clock_perf_event_update(event);
4105 4106
}

4107
static void cpu_clock_perf_event_read(struct perf_event *event)
4108
{
4109
	cpu_clock_perf_event_update(event);
4110 4111
}

4112
static const struct pmu perf_ops_cpu_clock = {
4113 4114 4115
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4116 4117
};

4118
/*
4119
 * Software event: task time clock
4120 4121
 */

4122
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4123
{
4124
	u64 prev;
I
Ingo Molnar 已提交
4125 4126
	s64 delta;

4127
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4128
	delta = now - prev;
4129
	atomic64_add(delta, &event->count);
4130 4131
}

4132
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4133
{
4134
	struct hw_perf_event *hwc = &event->hw;
4135 4136
	u64 now;

4137
	now = event->ctx->time;
4138

4139
	atomic64_set(&hwc->prev_count, now);
4140 4141

	perf_swevent_start_hrtimer(event);
4142 4143

	return 0;
I
Ingo Molnar 已提交
4144 4145
}

4146
static void task_clock_perf_event_disable(struct perf_event *event)
4147
{
4148
	perf_swevent_cancel_hrtimer(event);
4149
	task_clock_perf_event_update(event, event->ctx->time);
4150

4151
}
I
Ingo Molnar 已提交
4152

4153
static void task_clock_perf_event_read(struct perf_event *event)
4154
{
4155 4156 4157
	u64 time;

	if (!in_nmi()) {
4158 4159
		update_context_time(event->ctx);
		time = event->ctx->time;
4160 4161
	} else {
		u64 now = perf_clock();
4162 4163
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4164 4165
	}

4166
	task_clock_perf_event_update(event, time);
4167 4168
}

4169
static const struct pmu perf_ops_task_clock = {
4170 4171 4172
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4173 4174
};

4175
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4176

4177
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4178
			  int entry_size)
4179
{
4180
	struct perf_raw_record raw = {
4181
		.size = entry_size,
4182
		.data = record,
4183 4184
	};

4185
	struct perf_sample_data data = {
4186
		.addr = addr,
4187
		.raw = &raw,
4188
	};
4189

4190 4191 4192 4193
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4194

4195
	/* Trace events already protected against recursion */
4196
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4197
				&data, regs);
4198
}
4199
EXPORT_SYMBOL_GPL(perf_tp_event);
4200

L
Li Zefan 已提交
4201 4202 4203 4204 4205 4206 4207 4208 4209
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4210

4211
static void tp_perf_event_destroy(struct perf_event *event)
4212
{
4213
	ftrace_profile_disable(event->attr.config);
4214 4215
}

4216
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4217
{
4218 4219 4220 4221
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4222
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4223
			perf_paranoid_tracepoint_raw() &&
4224 4225 4226
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4227
	if (ftrace_profile_enable(event->attr.config))
4228 4229
		return NULL;

4230
	event->destroy = tp_perf_event_destroy;
4231 4232 4233

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4258
#else
L
Li Zefan 已提交
4259 4260 4261 4262 4263 4264 4265

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4266
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4267 4268 4269
{
	return NULL;
}
L
Li Zefan 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4281

4282 4283 4284 4285 4286 4287 4288 4289 4290
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4291 4292

	err = register_perf_hw_breakpoint(bp);
4293 4294 4295 4296 4297 4298 4299 4300
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4301
void perf_bp_event(struct perf_event *bp, void *data)
4302
{
4303 4304 4305
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4306
	sample.raw = NULL;
4307 4308 4309 4310
	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4323
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4324

4325
static void sw_perf_event_destroy(struct perf_event *event)
4326
{
4327
	u64 event_id = event->attr.config;
4328

4329
	WARN_ON(event->parent);
4330

4331
	atomic_dec(&perf_swevent_enabled[event_id]);
4332 4333
}

4334
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4335
{
4336
	const struct pmu *pmu = NULL;
4337
	u64 event_id = event->attr.config;
4338

4339
	/*
4340
	 * Software events (currently) can't in general distinguish
4341 4342 4343 4344 4345
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4346
	switch (event_id) {
4347
	case PERF_COUNT_SW_CPU_CLOCK:
4348
		pmu = &perf_ops_cpu_clock;
4349

4350
		break;
4351
	case PERF_COUNT_SW_TASK_CLOCK:
4352
		/*
4353 4354
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4355
		 */
4356
		if (event->ctx->task)
4357
			pmu = &perf_ops_task_clock;
4358
		else
4359
			pmu = &perf_ops_cpu_clock;
4360

4361
		break;
4362 4363 4364 4365 4366
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4367 4368
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4369 4370 4371
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4372
		}
4373
		pmu = &perf_ops_generic;
4374
		break;
4375
	}
4376

4377
	return pmu;
4378 4379
}

T
Thomas Gleixner 已提交
4380
/*
4381
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4382
 */
4383 4384
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4385
		   int cpu,
4386 4387 4388
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4389
		   perf_overflow_handler_t overflow_handler,
4390
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4391
{
4392
	const struct pmu *pmu;
4393 4394
	struct perf_event *event;
	struct hw_perf_event *hwc;
4395
	long err;
T
Thomas Gleixner 已提交
4396

4397 4398
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4399
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4400

4401
	/*
4402
	 * Single events are their own group leaders, with an
4403 4404 4405
	 * empty sibling list:
	 */
	if (!group_leader)
4406
		group_leader = event;
4407

4408 4409
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4410

4411 4412 4413 4414
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4415

4416
	mutex_init(&event->mmap_mutex);
4417

4418 4419 4420 4421 4422 4423
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4424

4425
	event->parent		= parent_event;
4426

4427 4428
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4429

4430
	event->state		= PERF_EVENT_STATE_INACTIVE;
4431

4432 4433
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4434
	
4435
	event->overflow_handler	= overflow_handler;
4436

4437
	if (attr->disabled)
4438
		event->state = PERF_EVENT_STATE_OFF;
4439

4440
	pmu = NULL;
4441

4442
	hwc = &event->hw;
4443
	hwc->sample_period = attr->sample_period;
4444
	if (attr->freq && attr->sample_freq)
4445
		hwc->sample_period = 1;
4446
	hwc->last_period = hwc->sample_period;
4447 4448

	atomic64_set(&hwc->period_left, hwc->sample_period);
4449

4450
	/*
4451
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4452
	 */
4453
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4454 4455
		goto done;

4456
	switch (attr->type) {
4457
	case PERF_TYPE_RAW:
4458
	case PERF_TYPE_HARDWARE:
4459
	case PERF_TYPE_HW_CACHE:
4460
		pmu = hw_perf_event_init(event);
4461 4462 4463
		break;

	case PERF_TYPE_SOFTWARE:
4464
		pmu = sw_perf_event_init(event);
4465 4466 4467
		break;

	case PERF_TYPE_TRACEPOINT:
4468
		pmu = tp_perf_event_init(event);
4469
		break;
4470

4471 4472 4473 4474 4475
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4476 4477
	default:
		break;
4478
	}
4479 4480
done:
	err = 0;
4481
	if (!pmu)
4482
		err = -EINVAL;
4483 4484
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4485

4486
	if (err) {
4487 4488 4489
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4490
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4491
	}
4492

4493
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4494

4495 4496 4497 4498 4499 4500 4501 4502
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4503
	}
4504

4505
	return event;
T
Thomas Gleixner 已提交
4506 4507
}

4508 4509
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4510 4511
{
	u32 size;
4512
	int ret;
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4537 4538 4539
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4540 4541
	 */
	if (size > sizeof(*attr)) {
4542 4543 4544
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4545

4546 4547
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4548

4549
		for (; addr < end; addr++) {
4550 4551 4552 4553 4554 4555
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4556
		size = sizeof(*attr);
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4570
	if (attr->__reserved_1 || attr->__reserved_2)
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4588
static int perf_event_set_output(struct perf_event *event, int output_fd)
4589
{
4590
	struct perf_event *output_event = NULL;
4591
	struct file *output_file = NULL;
4592
	struct perf_event *old_output;
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4606
	output_event = output_file->private_data;
4607 4608

	/* Don't chain output fds */
4609
	if (output_event->output)
4610 4611 4612
		goto out;

	/* Don't set an output fd when we already have an output channel */
4613
	if (event->data)
4614 4615 4616 4617 4618
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4619 4620 4621 4622
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4623 4624 4625 4626

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4627
		 * is still referencing this event.
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4639
/**
4640
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4641
 *
4642
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4643
 * @pid:		target pid
I
Ingo Molnar 已提交
4644
 * @cpu:		target cpu
4645
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4646
 */
4647 4648
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4649
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4650
{
4651 4652 4653 4654
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4655 4656
	struct file *group_file = NULL;
	int fput_needed = 0;
4657
	int fput_needed2 = 0;
4658
	int err;
T
Thomas Gleixner 已提交
4659

4660
	/* for future expandability... */
4661
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4662 4663
		return -EINVAL;

4664 4665 4666
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4667

4668 4669 4670 4671 4672
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4673
	if (attr.freq) {
4674
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4675 4676 4677
			return -EINVAL;
	}

4678
	/*
I
Ingo Molnar 已提交
4679 4680 4681 4682 4683 4684 4685
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4686
	 * Look up the group leader (we will attach this event to it):
4687 4688
	 */
	group_leader = NULL;
4689
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4690
		err = -EINVAL;
4691 4692
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4693
			goto err_put_context;
4694
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4695
			goto err_put_context;
4696 4697 4698

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4699 4700 4701 4702 4703 4704 4705 4706
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4707
		 */
I
Ingo Molnar 已提交
4708 4709
		if (group_leader->ctx != ctx)
			goto err_put_context;
4710 4711 4712
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4713
		if (attr.exclusive || attr.pinned)
4714
			goto err_put_context;
4715 4716
	}

4717
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4718
				     NULL, NULL, GFP_KERNEL);
4719 4720
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4721 4722
		goto err_put_context;

4723
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4724
	if (err < 0)
4725 4726
		goto err_free_put_context;

4727 4728
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4729 4730
		goto err_free_put_context;

4731
	if (flags & PERF_FLAG_FD_OUTPUT) {
4732
		err = perf_event_set_output(event, group_fd);
4733 4734
		if (err)
			goto err_fput_free_put_context;
4735 4736
	}

4737
	event->filp = event_file;
4738
	WARN_ON_ONCE(ctx->parent_ctx);
4739
	mutex_lock(&ctx->mutex);
4740
	perf_install_in_context(ctx, event, cpu);
4741
	++ctx->generation;
4742
	mutex_unlock(&ctx->mutex);
4743

4744
	event->owner = current;
4745
	get_task_struct(current);
4746 4747 4748
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4749

4750
err_fput_free_put_context:
4751
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4752

4753
err_free_put_context:
4754
	if (err < 0)
4755
		kfree(event);
T
Thomas Gleixner 已提交
4756 4757

err_put_context:
4758 4759 4760 4761
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4762

4763
	return err;
T
Thomas Gleixner 已提交
4764 4765
}

4766 4767 4768 4769 4770 4771 4772 4773 4774
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4775 4776
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4787 4788 4789 4790
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4791 4792

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4793
				 NULL, overflow_handler, GFP_KERNEL);
4794 4795
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4796
		goto err_put_context;
4797
	}
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4814 4815 4816 4817
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4818 4819 4820
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4821
/*
4822
 * inherit a event from parent task to child task:
4823
 */
4824 4825
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4826
	      struct task_struct *parent,
4827
	      struct perf_event_context *parent_ctx,
4828
	      struct task_struct *child,
4829 4830
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4831
{
4832
	struct perf_event *child_event;
4833

4834
	/*
4835 4836
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4837 4838 4839
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4840 4841
	if (parent_event->parent)
		parent_event = parent_event->parent;
4842

4843 4844 4845
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4846
					   NULL, GFP_KERNEL);
4847 4848
	if (IS_ERR(child_event))
		return child_event;
4849
	get_ctx(child_ctx);
4850

4851
	/*
4852
	 * Make the child state follow the state of the parent event,
4853
	 * not its attr.disabled bit.  We hold the parent's mutex,
4854
	 * so we won't race with perf_event_{en, dis}able_family.
4855
	 */
4856 4857
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4858
	else
4859
		child_event->state = PERF_EVENT_STATE_OFF;
4860

4861 4862
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4863

4864 4865
	child_event->overflow_handler = parent_event->overflow_handler;

4866 4867 4868
	/*
	 * Link it up in the child's context:
	 */
4869
	add_event_to_ctx(child_event, child_ctx);
4870 4871 4872

	/*
	 * Get a reference to the parent filp - we will fput it
4873
	 * when the child event exits. This is safe to do because
4874 4875 4876
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4877
	atomic_long_inc(&parent_event->filp->f_count);
4878

4879
	/*
4880
	 * Link this into the parent event's child list
4881
	 */
4882 4883 4884 4885
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4886

4887
	return child_event;
4888 4889
}

4890
static int inherit_group(struct perf_event *parent_event,
4891
	      struct task_struct *parent,
4892
	      struct perf_event_context *parent_ctx,
4893
	      struct task_struct *child,
4894
	      struct perf_event_context *child_ctx)
4895
{
4896 4897 4898
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4899

4900
	leader = inherit_event(parent_event, parent, parent_ctx,
4901
				 child, NULL, child_ctx);
4902 4903
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4904 4905
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4906 4907 4908
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4909
	}
4910 4911 4912
	return 0;
}

4913
static void sync_child_event(struct perf_event *child_event,
4914
			       struct task_struct *child)
4915
{
4916
	struct perf_event *parent_event = child_event->parent;
4917
	u64 child_val;
4918

4919 4920
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4921

4922
	child_val = atomic64_read(&child_event->count);
4923 4924 4925 4926

	/*
	 * Add back the child's count to the parent's count:
	 */
4927 4928 4929 4930 4931
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4932 4933

	/*
4934
	 * Remove this event from the parent's list
4935
	 */
4936 4937 4938 4939
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4940 4941

	/*
4942
	 * Release the parent event, if this was the last
4943 4944
	 * reference to it.
	 */
4945
	fput(parent_event->filp);
4946 4947
}

4948
static void
4949 4950
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4951
			 struct task_struct *child)
4952
{
4953
	struct perf_event *parent_event;
4954

4955
	perf_event_remove_from_context(child_event);
4956

4957
	parent_event = child_event->parent;
4958
	/*
4959
	 * It can happen that parent exits first, and has events
4960
	 * that are still around due to the child reference. These
4961
	 * events need to be zapped - but otherwise linger.
4962
	 */
4963 4964 4965
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4966
	}
4967 4968 4969
}

/*
4970
 * When a child task exits, feed back event values to parent events.
4971
 */
4972
void perf_event_exit_task(struct task_struct *child)
4973
{
4974 4975
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4976
	unsigned long flags;
4977

4978 4979
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4980
		return;
P
Peter Zijlstra 已提交
4981
	}
4982

4983
	local_irq_save(flags);
4984 4985 4986 4987 4988 4989
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4990 4991
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4992 4993 4994

	/*
	 * Take the context lock here so that if find_get_context is
4995
	 * reading child->perf_event_ctxp, we wait until it has
4996 4997
	 * incremented the context's refcount before we do put_ctx below.
	 */
4998
	raw_spin_lock(&child_ctx->lock);
4999
	child->perf_event_ctxp = NULL;
5000 5001 5002
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5003
	 * the events from it.
5004 5005
	 */
	unclone_ctx(child_ctx);
5006
	update_context_time(child_ctx);
5007
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5008 5009

	/*
5010 5011 5012
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5013
	 */
5014
	perf_event_task(child, child_ctx, 0);
5015

5016 5017 5018
	/*
	 * We can recurse on the same lock type through:
	 *
5019 5020 5021
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5022 5023 5024 5025 5026 5027
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5028

5029
again:
5030
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5031
				 group_entry)
5032
		__perf_event_exit_task(child_event, child_ctx, child);
5033 5034

	/*
5035
	 * If the last event was a group event, it will have appended all
5036 5037 5038
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5039
	if (!list_empty(&child_ctx->group_list))
5040
		goto again;
5041 5042 5043 5044

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5045 5046
}

5047 5048 5049 5050
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5051
void perf_event_free_task(struct task_struct *task)
5052
{
5053 5054
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5055 5056 5057 5058 5059 5060

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5061 5062
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5063 5064 5065 5066 5067

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5068
		list_del_init(&event->child_list);
5069 5070 5071 5072
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5073 5074
		list_del_event(event, ctx);
		free_event(event);
5075 5076
	}

5077
	if (!list_empty(&ctx->group_list))
5078 5079 5080 5081 5082 5083 5084
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5085
/*
5086
 * Initialize the perf_event context in task_struct
5087
 */
5088
int perf_event_init_task(struct task_struct *child)
5089
{
5090
	struct perf_event_context *child_ctx = NULL, *parent_ctx;
5091 5092
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5093
	struct task_struct *parent = current;
5094
	int inherited_all = 1;
5095
	int ret = 0;
5096

5097
	child->perf_event_ctxp = NULL;
5098

5099 5100
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5101

5102
	if (likely(!parent->perf_event_ctxp))
5103 5104
		return 0;

5105
	/*
5106 5107
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5108
	 */
5109 5110
	parent_ctx = perf_pin_task_context(parent);

5111 5112 5113 5114 5115 5116 5117
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5118 5119 5120 5121
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5122
	mutex_lock(&parent_ctx->mutex);
5123 5124 5125 5126 5127

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5128
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5129

5130
		if (!event->attr.inherit) {
5131
			inherited_all = 0;
5132
			continue;
5133
		}
5134

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
		if (!child->perf_event_ctxp) {
			/*
			 * This is executed from the parent task context, so
			 * inherit events that have been marked for cloning.
			 * First allocate and initialize a context for the
			 * child.
			 */

			child_ctx = kzalloc(sizeof(struct perf_event_context),
					    GFP_KERNEL);
			if (!child_ctx) {
				ret = -ENOMEM;
				goto exit;
			}

			__perf_event_init_context(child_ctx, child);
			child->perf_event_ctxp = child_ctx;
			get_task_struct(child);
		}

5155
		ret = inherit_group(event, parent, parent_ctx,
5156 5157
					     child, child_ctx);
		if (ret) {
5158
			inherited_all = 0;
5159
			break;
5160 5161 5162 5163 5164 5165 5166
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5167 5168
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5169
		 * because the list of events and the generation
5170
		 * count can't have changed since we took the mutex.
5171
		 */
5172 5173 5174
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5175
			child_ctx->parent_gen = parent_ctx->parent_gen;
5176 5177 5178 5179 5180
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5181 5182
	}

5183
exit:
5184
	mutex_unlock(&parent_ctx->mutex);
5185

5186
	perf_unpin_context(parent_ctx);
5187

5188
	return ret;
5189 5190
}

5191
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5192
{
5193
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5194

5195
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5196
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5197

5198
	spin_lock(&perf_resource_lock);
5199
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5200
	spin_unlock(&perf_resource_lock);
5201

5202
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5203 5204 5205
}

#ifdef CONFIG_HOTPLUG_CPU
5206
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5207 5208
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5209 5210
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5211

5212 5213
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5214
}
5215
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5216
{
5217
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5218
	struct perf_event_context *ctx = &cpuctx->ctx;
5219 5220

	mutex_lock(&ctx->mutex);
5221
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5222
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5223 5224
}
#else
5225
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5237
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5238 5239
		break;

5240 5241
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5242
		hw_perf_event_setup_online(cpu);
5243 5244
		break;

T
Thomas Gleixner 已提交
5245 5246
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5247
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5257 5258 5259
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5260 5261
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5262
	.priority		= 20,
T
Thomas Gleixner 已提交
5263 5264
};

5265
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5266 5267 5268
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5269 5270
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5291
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5292 5293
		return -EINVAL;

5294
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5295 5296 5297
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5298
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5299 5300
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5301
		cpuctx->max_pertask = mpt;
5302
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5303
	}
5304
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5326
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5327
	perf_overcommit = val;
5328
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5355
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5356 5357
};

5358
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5359 5360 5361 5362
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5363
device_initcall(perf_event_sysfs_init);