perf_event.c 140.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

37 38 39 40
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
41

P
Peter Zijlstra 已提交
42 43 44 45
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

46
/*
47
 * perf event paranoia level:
48 49
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
50
 *   1 - disallow cpu events for unpriv
51
 *   2 - disallow kernel profiling for unpriv
52
 */
53
int sysctl_perf_event_paranoid __read_mostly = 1;
54

55
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56 57

/*
58
 * max perf event sample rate
59
 */
60
int sysctl_perf_event_sample_rate __read_mostly = 100000;
61

62
static atomic64_t perf_event_id;
63

64
void __weak perf_event_print_debug(void)	{ }
65

P
Peter Zijlstra 已提交
66
void perf_pmu_disable(struct pmu *pmu)
67
{
P
Peter Zijlstra 已提交
68 69 70
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
71 72
}

P
Peter Zijlstra 已提交
73
void perf_pmu_enable(struct pmu *pmu)
74
{
P
Peter Zijlstra 已提交
75 76 77
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
78 79
}

P
Peter Zijlstra 已提交
80
static void perf_pmu_rotate_start(struct pmu *pmu)
81
{
P
Peter Zijlstra 已提交
82
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83 84 85 86 87 88 89 90 91

	if (hrtimer_active(&cpuctx->timer))
		return;

	__hrtimer_start_range_ns(&cpuctx->timer,
			ns_to_ktime(cpuctx->timer_interval), 0,
			HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
92
static void perf_pmu_rotate_stop(struct pmu *pmu)
93
{
P
Peter Zijlstra 已提交
94
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 96 97 98

	hrtimer_cancel(&cpuctx->timer);
}

99
static void get_ctx(struct perf_event_context *ctx)
100
{
101
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 103
}

104 105
static void free_ctx(struct rcu_head *head)
{
106
	struct perf_event_context *ctx;
107

108
	ctx = container_of(head, struct perf_event_context, rcu_head);
109 110 111
	kfree(ctx);
}

112
static void put_ctx(struct perf_event_context *ctx)
113
{
114 115 116
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
117 118 119
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
120
	}
121 122
}

123
static void unclone_ctx(struct perf_event_context *ctx)
124 125 126 127 128 129 130
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

131
/*
132
 * If we inherit events we want to return the parent event id
133 134
 * to userspace.
 */
135
static u64 primary_event_id(struct perf_event *event)
136
{
137
	u64 id = event->id;
138

139 140
	if (event->parent)
		id = event->parent->id;
141 142 143 144

	return id;
}

145
/*
146
 * Get the perf_event_context for a task and lock it.
147 148 149
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
150
static struct perf_event_context *
P
Peter Zijlstra 已提交
151
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
152
{
153
	struct perf_event_context *ctx;
154 155

	rcu_read_lock();
P
Peter Zijlstra 已提交
156
retry:
P
Peter Zijlstra 已提交
157
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
158 159 160 161
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
162
		 * perf_event_task_sched_out, though the
163 164 165 166 167 168
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
169
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
170
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
171
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172 173
			goto retry;
		}
174 175

		if (!atomic_inc_not_zero(&ctx->refcount)) {
176
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 178
			ctx = NULL;
		}
179 180 181 182 183 184 185 186 187 188
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
189 190
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
191
{
192
	struct perf_event_context *ctx;
193 194
	unsigned long flags;

P
Peter Zijlstra 已提交
195
	ctx = perf_lock_task_context(task, ctxn, &flags);
196 197
	if (ctx) {
		++ctx->pin_count;
198
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
199 200 201 202
	}
	return ctx;
}

203
static void perf_unpin_context(struct perf_event_context *ctx)
204 205 206
{
	unsigned long flags;

207
	raw_spin_lock_irqsave(&ctx->lock, flags);
208
	--ctx->pin_count;
209
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
210 211 212
	put_ctx(ctx);
}

213 214
static inline u64 perf_clock(void)
{
215
	return local_clock();
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

241 242 243 244 245 246
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
247 248 249 250 251 252 253 254 255

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

256 257 258 259 260 261 262 263 264 265 266 267
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

268 269 270 271 272 273 274 275 276
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

277
/*
278
 * Add a event from the lists for its context.
279 280
 * Must be called with ctx->mutex and ctx->lock held.
 */
281
static void
282
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283
{
284 285
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
286 287

	/*
288 289 290
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
291
	 */
292
	if (event->group_leader == event) {
293 294
		struct list_head *list;

295 296 297
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

298 299
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
300
	}
P
Peter Zijlstra 已提交
301

302
	list_add_rcu(&event->event_entry, &ctx->event_list);
303
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
304
		perf_pmu_rotate_start(ctx->pmu);
305 306
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

328
/*
329
 * Remove a event from the lists for its context.
330
 * Must be called with ctx->mutex and ctx->lock held.
331
 */
332
static void
333
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334
{
335 336 337 338
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339
		return;
340 341 342

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

343 344
	ctx->nr_events--;
	if (event->attr.inherit_stat)
345
		ctx->nr_stat--;
346

347
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
351

352
	update_group_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363 364
}

365
static void perf_group_detach(struct perf_event *event)
366 367
{
	struct perf_event *sibling, *tmp;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
389

390
	/*
391 392
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
393
	 * to whatever list we are on.
394
	 */
395
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 397
		if (list)
			list_move_tail(&sibling->group_entry, list);
398
		sibling->group_leader = sibling;
399 400 401

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
402 403 404
	}
}

405 406 407 408 409 410
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

411
static void
412
event_sched_out(struct perf_event *event,
413
		  struct perf_cpu_context *cpuctx,
414
		  struct perf_event_context *ctx)
415
{
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

430
	if (event->state != PERF_EVENT_STATE_ACTIVE)
431 432
		return;

433 434 435 436
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
437
	}
438
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
439
	event->pmu->del(event, 0);
440
	event->oncpu = -1;
441

442
	if (!is_software_event(event))
443 444
		cpuctx->active_oncpu--;
	ctx->nr_active--;
445
	if (event->attr.exclusive || !cpuctx->active_oncpu)
446 447 448
		cpuctx->exclusive = 0;
}

449
static void
450
group_sched_out(struct perf_event *group_event,
451
		struct perf_cpu_context *cpuctx,
452
		struct perf_event_context *ctx)
453
{
454
	struct perf_event *event;
455
	int state = group_event->state;
456

457
	event_sched_out(group_event, cpuctx, ctx);
458 459 460 461

	/*
	 * Schedule out siblings (if any):
	 */
462 463
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
464

465
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 467 468
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
469 470 471 472 473 474
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
475
/*
476
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
477
 *
478
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
479 480
 * remove it from the context list.
 */
481
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
482
{
483 484
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
485
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
486 487 488 489 490 491

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
492
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
493 494
		return;

495
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
496

497
	event_sched_out(event, cpuctx, ctx);
498

499
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
500

501
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
502 503 504 505
}


/*
506
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
507
 *
508
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
509
 *
510
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
511
 * call when the task is on a CPU.
512
 *
513 514
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
515 516
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
517
 * When called from perf_event_exit_task, it's OK because the
518
 * context has been detached from its task.
T
Thomas Gleixner 已提交
519
 */
520
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
521
{
522
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
523 524 525 526
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
527
		 * Per cpu events are removed via an smp call and
528
		 * the removal is always successful.
T
Thomas Gleixner 已提交
529
		 */
530 531 532
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
533 534 535 536
		return;
	}

retry:
537 538
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
539

540
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
541 542 543
	/*
	 * If the context is active we need to retry the smp call.
	 */
544
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
545
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
546 547 548 549 550
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
551
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
552 553
	 * succeed.
	 */
P
Peter Zijlstra 已提交
554
	if (!list_empty(&event->group_entry))
555
		list_del_event(event, ctx);
556
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
557 558
}

559
/*
560
 * Cross CPU call to disable a performance event
561
 */
562
static void __perf_event_disable(void *info)
563
{
564 565
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
566
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
567 568

	/*
569 570
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
571
	 */
572
	if (ctx->task && cpuctx->task_ctx != ctx)
573 574
		return;

575
	raw_spin_lock(&ctx->lock);
576 577

	/*
578
	 * If the event is on, turn it off.
579 580
	 * If it is in error state, leave it in error state.
	 */
581
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
582
		update_context_time(ctx);
583 584 585
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
586
		else
587 588
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
589 590
	}

591
	raw_spin_unlock(&ctx->lock);
592 593 594
}

/*
595
 * Disable a event.
596
 *
597 598
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
599
 * remains valid.  This condition is satisifed when called through
600 601 602 603
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
604
 * is the current context on this CPU and preemption is disabled,
605
 * hence we can't get into perf_event_task_sched_out for this context.
606
 */
607
void perf_event_disable(struct perf_event *event)
608
{
609
	struct perf_event_context *ctx = event->ctx;
610 611 612 613
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
614
		 * Disable the event on the cpu that it's on
615
		 */
616 617
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
618 619 620
		return;
	}

P
Peter Zijlstra 已提交
621
retry:
622
	task_oncpu_function_call(task, __perf_event_disable, event);
623

624
	raw_spin_lock_irq(&ctx->lock);
625
	/*
626
	 * If the event is still active, we need to retry the cross-call.
627
	 */
628
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
629
		raw_spin_unlock_irq(&ctx->lock);
630 631 632 633 634 635 636
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
637 638 639
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
640
	}
641

642
	raw_spin_unlock_irq(&ctx->lock);
643 644
}

645
static int
646
event_sched_in(struct perf_event *event,
647
		 struct perf_cpu_context *cpuctx,
648
		 struct perf_event_context *ctx)
649
{
650
	if (event->state <= PERF_EVENT_STATE_OFF)
651 652
		return 0;

653
	event->state = PERF_EVENT_STATE_ACTIVE;
654
	event->oncpu = smp_processor_id();
655 656 657 658 659
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
660
	if (event->pmu->add(event, PERF_EF_START)) {
661 662
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
663 664 665
		return -EAGAIN;
	}

666
	event->tstamp_running += ctx->time - event->tstamp_stopped;
667

668
	if (!is_software_event(event))
669
		cpuctx->active_oncpu++;
670 671
	ctx->nr_active++;

672
	if (event->attr.exclusive)
673 674
		cpuctx->exclusive = 1;

675 676 677
	return 0;
}

678
static int
679
group_sched_in(struct perf_event *group_event,
680
	       struct perf_cpu_context *cpuctx,
681
	       struct perf_event_context *ctx)
682
{
683
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
684
	struct pmu *pmu = group_event->pmu;
685

686
	if (group_event->state == PERF_EVENT_STATE_OFF)
687 688
		return 0;

P
Peter Zijlstra 已提交
689
	pmu->start_txn(pmu);
690

691
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
692
		pmu->cancel_txn(pmu);
693
		return -EAGAIN;
694
	}
695 696 697 698

	/*
	 * Schedule in siblings as one group (if any):
	 */
699
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700
		if (event_sched_in(event, cpuctx, ctx)) {
701
			partial_group = event;
702 703 704 705
			goto group_error;
		}
	}

P
Peter Zijlstra 已提交
706
	if (!pmu->commit_txn(pmu))
707
		return 0;
708

709 710 711 712 713
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
714 715
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
716
			break;
717
		event_sched_out(event, cpuctx, ctx);
718
	}
719
	event_sched_out(group_event, cpuctx, ctx);
720

P
Peter Zijlstra 已提交
721
	pmu->cancel_txn(pmu);
722

723 724 725
	return -EAGAIN;
}

726
/*
727
 * Work out whether we can put this event group on the CPU now.
728
 */
729
static int group_can_go_on(struct perf_event *event,
730 731 732 733
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
734
	 * Groups consisting entirely of software events can always go on.
735
	 */
736
	if (event->group_flags & PERF_GROUP_SOFTWARE)
737 738 739
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
740
	 * events can go on.
741 742 743 744 745
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
746
	 * events on the CPU, it can't go on.
747
	 */
748
	if (event->attr.exclusive && cpuctx->active_oncpu)
749 750 751 752 753 754 755 756
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

757 758
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
759
{
760
	list_add_event(event, ctx);
761
	perf_group_attach(event);
762 763 764
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
765 766
}

T
Thomas Gleixner 已提交
767
/*
768
 * Cross CPU call to install and enable a performance event
769 770
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
771 772 773
 */
static void __perf_install_in_context(void *info)
{
774 775 776
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
777
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
778
	int err;
T
Thomas Gleixner 已提交
779 780 781 782 783

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
784
	 * Or possibly this is the right context but it isn't
785
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
786
	 */
787
	if (ctx->task && cpuctx->task_ctx != ctx) {
788
		if (cpuctx->task_ctx || ctx->task != current)
789 790 791
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
792

793
	raw_spin_lock(&ctx->lock);
794
	ctx->is_active = 1;
795
	update_context_time(ctx);
T
Thomas Gleixner 已提交
796

797
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
798

799 800 801
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

802
	/*
803
	 * Don't put the event on if it is disabled or if
804 805
	 * it is in a group and the group isn't on.
	 */
806 807
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 809
		goto unlock;

810
	/*
811 812 813
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
814
	 */
815
	if (!group_can_go_on(event, cpuctx, 1))
816 817
		err = -EEXIST;
	else
818
		err = event_sched_in(event, cpuctx, ctx);
819

820 821
	if (err) {
		/*
822
		 * This event couldn't go on.  If it is in a group
823
		 * then we have to pull the whole group off.
824
		 * If the event group is pinned then put it in error state.
825
		 */
826
		if (leader != event)
827
			group_sched_out(leader, cpuctx, ctx);
828
		if (leader->attr.pinned) {
829
			update_group_times(leader);
830
			leader->state = PERF_EVENT_STATE_ERROR;
831
		}
832
	}
T
Thomas Gleixner 已提交
833

P
Peter Zijlstra 已提交
834
unlock:
835
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
836 837 838
}

/*
839
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
840
 *
841 842
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
843
 *
844
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
845 846
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
847 848
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
849 850
 */
static void
851 852
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
853 854 855 856
			int cpu)
{
	struct task_struct *task = ctx->task;

857 858
	event->ctx = ctx;

T
Thomas Gleixner 已提交
859 860
	if (!task) {
		/*
861
		 * Per cpu events are installed via an smp call and
862
		 * the install is always successful.
T
Thomas Gleixner 已提交
863 864
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
865
					 event, 1);
T
Thomas Gleixner 已提交
866 867 868 869 870
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
871
				 event);
T
Thomas Gleixner 已提交
872

873
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
874 875 876
	/*
	 * we need to retry the smp call.
	 */
877
	if (ctx->is_active && list_empty(&event->group_entry)) {
878
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
879 880 881 882 883
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
884
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
885 886
	 * succeed.
	 */
887 888
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
889
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
890 891
}

892
/*
893
 * Put a event into inactive state and update time fields.
894 895 896 897 898 899
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
900 901
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
902
{
903
	struct perf_event *sub;
904

905 906
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
907 908
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
909 910
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
911 912
		}
	}
913 914
}

915
/*
916
 * Cross CPU call to enable a performance event
917
 */
918
static void __perf_event_enable(void *info)
919
{
920 921 922
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
923
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
924
	int err;
925

926
	/*
927 928
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
929
	 */
930
	if (ctx->task && cpuctx->task_ctx != ctx) {
931
		if (cpuctx->task_ctx || ctx->task != current)
932 933 934
			return;
		cpuctx->task_ctx = ctx;
	}
935

936
	raw_spin_lock(&ctx->lock);
937
	ctx->is_active = 1;
938
	update_context_time(ctx);
939

940
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
941
		goto unlock;
942
	__perf_event_mark_enabled(event, ctx);
943

944 945 946
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

947
	/*
948
	 * If the event is in a group and isn't the group leader,
949
	 * then don't put it on unless the group is on.
950
	 */
951
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
952
		goto unlock;
953

954
	if (!group_can_go_on(event, cpuctx, 1)) {
955
		err = -EEXIST;
956
	} else {
957
		if (event == leader)
958
			err = group_sched_in(event, cpuctx, ctx);
959
		else
960
			err = event_sched_in(event, cpuctx, ctx);
961
	}
962 963 964

	if (err) {
		/*
965
		 * If this event can't go on and it's part of a
966 967
		 * group, then the whole group has to come off.
		 */
968
		if (leader != event)
969
			group_sched_out(leader, cpuctx, ctx);
970
		if (leader->attr.pinned) {
971
			update_group_times(leader);
972
			leader->state = PERF_EVENT_STATE_ERROR;
973
		}
974 975
	}

P
Peter Zijlstra 已提交
976
unlock:
977
	raw_spin_unlock(&ctx->lock);
978 979 980
}

/*
981
 * Enable a event.
982
 *
983 984
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
985
 * remains valid.  This condition is satisfied when called through
986 987
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
988
 */
989
void perf_event_enable(struct perf_event *event)
990
{
991
	struct perf_event_context *ctx = event->ctx;
992 993 994 995
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
996
		 * Enable the event on the cpu that it's on
997
		 */
998 999
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1000 1001 1002
		return;
	}

1003
	raw_spin_lock_irq(&ctx->lock);
1004
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1005 1006 1007
		goto out;

	/*
1008 1009
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1010 1011 1012 1013
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1014 1015
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1016

P
Peter Zijlstra 已提交
1017
retry:
1018
	raw_spin_unlock_irq(&ctx->lock);
1019
	task_oncpu_function_call(task, __perf_event_enable, event);
1020

1021
	raw_spin_lock_irq(&ctx->lock);
1022 1023

	/*
1024
	 * If the context is active and the event is still off,
1025 1026
	 * we need to retry the cross-call.
	 */
1027
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1028 1029 1030 1031 1032 1033
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1034 1035
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1036

P
Peter Zijlstra 已提交
1037
out:
1038
	raw_spin_unlock_irq(&ctx->lock);
1039 1040
}

1041
static int perf_event_refresh(struct perf_event *event, int refresh)
1042
{
1043
	/*
1044
	 * not supported on inherited events
1045
	 */
1046
	if (event->attr.inherit)
1047 1048
		return -EINVAL;

1049 1050
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1051 1052

	return 0;
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062 1063
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1064
{
1065
	struct perf_event *event;
1066

1067
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1068
	perf_pmu_disable(ctx->pmu);
1069
	ctx->is_active = 0;
1070
	if (likely(!ctx->nr_events))
1071
		goto out;
1072
	update_context_time(ctx);
1073

1074
	if (!ctx->nr_active)
1075
		goto out;
1076

P
Peter Zijlstra 已提交
1077
	if (event_type & EVENT_PINNED) {
1078 1079
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1080
	}
1081

P
Peter Zijlstra 已提交
1082
	if (event_type & EVENT_FLEXIBLE) {
1083
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1084
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1085 1086
	}
out:
P
Peter Zijlstra 已提交
1087
	perf_pmu_enable(ctx->pmu);
1088
	raw_spin_unlock(&ctx->lock);
1089 1090
}

1091 1092 1093
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1094 1095 1096 1097
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1098
 * in them directly with an fd; we can only enable/disable all
1099
 * events via prctl, or enable/disable all events in a family
1100 1101
 * via ioctl, which will have the same effect on both contexts.
 */
1102 1103
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1104 1105
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1106
		&& ctx1->parent_gen == ctx2->parent_gen
1107
		&& !ctx1->pin_count && !ctx2->pin_count;
1108 1109
}

1110 1111
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1112 1113 1114
{
	u64 value;

1115
	if (!event->attr.inherit_stat)
1116 1117 1118
		return;

	/*
1119
	 * Update the event value, we cannot use perf_event_read()
1120 1121
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1122
	 * we know the event must be on the current CPU, therefore we
1123 1124
	 * don't need to use it.
	 */
1125 1126
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1127 1128
		event->pmu->read(event);
		/* fall-through */
1129

1130 1131
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1132 1133 1134 1135 1136 1137 1138
		break;

	default:
		break;
	}

	/*
1139
	 * In order to keep per-task stats reliable we need to flip the event
1140 1141
	 * values when we flip the contexts.
	 */
1142 1143 1144
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1145

1146 1147
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1148

1149
	/*
1150
	 * Since we swizzled the values, update the user visible data too.
1151
	 */
1152 1153
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1154 1155 1156 1157 1158
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1159 1160
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1161
{
1162
	struct perf_event *event, *next_event;
1163 1164 1165 1166

	if (!ctx->nr_stat)
		return;

1167 1168
	update_context_time(ctx);

1169 1170
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1171

1172 1173
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1174

1175 1176
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1177

1178
		__perf_event_sync_stat(event, next_event);
1179

1180 1181
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1182 1183 1184
	}
}

P
Peter Zijlstra 已提交
1185 1186
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1187
{
P
Peter Zijlstra 已提交
1188
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1189 1190
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1191
	struct perf_cpu_context *cpuctx;
1192
	int do_switch = 1;
T
Thomas Gleixner 已提交
1193

P
Peter Zijlstra 已提交
1194 1195 1196 1197 1198
	if (likely(!ctx))
		return;

	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1199 1200
		return;

1201 1202
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1203
	next_ctx = next->perf_event_ctxp[ctxn];
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1215 1216
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1217
		if (context_equiv(ctx, next_ctx)) {
1218 1219
			/*
			 * XXX do we need a memory barrier of sorts
1220
			 * wrt to rcu_dereference() of perf_event_ctxp
1221
			 */
P
Peter Zijlstra 已提交
1222 1223
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1224 1225 1226
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1227

1228
			perf_event_sync_stat(ctx, next_ctx);
1229
		}
1230 1231
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1232
	}
1233
	rcu_read_unlock();
1234

1235
	if (do_switch) {
1236
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1237 1238
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1239 1240
}

P
Peter Zijlstra 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
void perf_event_task_sched_out(struct task_struct *task,
			       struct task_struct *next)
{
	int ctxn;

	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1266 1267
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1268
{
P
Peter Zijlstra 已提交
1269
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1270

1271 1272
	if (!cpuctx->task_ctx)
		return;
1273 1274 1275 1276

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1277
	ctx_sched_out(ctx, cpuctx, event_type);
1278 1279 1280
	cpuctx->task_ctx = NULL;
}

1281 1282 1283
/*
 * Called with IRQs disabled
 */
1284
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285
{
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 1297
}

1298
static void
1299
ctx_pinned_sched_in(struct perf_event_context *ctx,
1300
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1301
{
1302
	struct perf_event *event;
T
Thomas Gleixner 已提交
1303

1304 1305
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1306
			continue;
1307
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1308 1309
			continue;

1310
		if (group_can_go_on(event, cpuctx, 1))
1311
			group_sched_in(event, cpuctx, ctx);
1312 1313 1314 1315 1316

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1317 1318 1319
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1320
		}
1321
	}
1322 1323 1324 1325
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1326
		      struct perf_cpu_context *cpuctx)
1327 1328 1329
{
	struct perf_event *event;
	int can_add_hw = 1;
1330

1331 1332 1333
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1334
			continue;
1335 1336
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1337
		 * of events:
1338
		 */
1339
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1340 1341
			continue;

P
Peter Zijlstra 已提交
1342
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1343
			if (group_sched_in(event, cpuctx, ctx))
1344
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1345
		}
T
Thomas Gleixner 已提交
1346
	}
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1366
		ctx_pinned_sched_in(ctx, cpuctx);
1367 1368 1369

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1370
		ctx_flexible_sched_in(ctx, cpuctx);
1371

P
Peter Zijlstra 已提交
1372
out:
1373
	raw_spin_unlock(&ctx->lock);
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1384
static void task_ctx_sched_in(struct perf_event_context *ctx,
1385 1386
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1387
	struct perf_cpu_context *cpuctx;
1388

P
Peter Zijlstra 已提交
1389
       	cpuctx = __get_cpu_context(ctx);
1390 1391
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1392

1393 1394 1395
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
P
Peter Zijlstra 已提交
1396 1397

void perf_event_context_sched_in(struct perf_event_context *ctx)
1398
{
P
Peter Zijlstra 已提交
1399
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1400

P
Peter Zijlstra 已提交
1401
	cpuctx = __get_cpu_context(ctx);
1402 1403 1404
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
1405
	perf_pmu_disable(ctx->pmu);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1418 1419 1420 1421 1422

	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1423
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
1424
	perf_pmu_enable(ctx->pmu);
1425 1426
}

P
Peter Zijlstra 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
void perf_event_task_sched_in(struct task_struct *task)
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
}

1452 1453
#define MAX_INTERRUPTS (~0ULL)

1454
static void perf_log_throttle(struct perf_event *event, int enable);
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1523 1524 1525
	if (!divisor)
		return dividend;

1526 1527 1528 1529
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530
{
1531
	struct hw_perf_event *hwc = &event->hw;
1532
	s64 period, sample_period;
1533 1534
	s64 delta;

1535
	period = perf_calculate_period(event, nsec, count);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1546

1547
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1548
		event->pmu->stop(event, PERF_EF_UPDATE);
1549
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1550
		event->pmu->start(event, PERF_EF_RELOAD);
1551
	}
1552 1553
}

1554
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1555
{
1556 1557
	struct perf_event *event;
	struct hw_perf_event *hwc;
1558 1559
	u64 interrupts, now;
	s64 delta;
1560

1561
	raw_spin_lock(&ctx->lock);
1562
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1563
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1564 1565
			continue;

1566 1567 1568
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1569
		hwc = &event->hw;
1570 1571 1572

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1573

1574
		/*
1575
		 * unthrottle events on the tick
1576
		 */
1577
		if (interrupts == MAX_INTERRUPTS) {
1578
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1579
			event->pmu->start(event, 0);
1580 1581
		}

1582
		if (!event->attr.freq || !event->attr.sample_freq)
1583 1584
			continue;

1585
		event->pmu->read(event);
1586
		now = local64_read(&event->count);
1587 1588
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1589

1590
		if (delta > 0)
1591
			perf_adjust_period(event, period, delta);
1592
	}
1593
	raw_spin_unlock(&ctx->lock);
1594 1595
}

1596
/*
1597
 * Round-robin a context's events:
1598
 */
1599
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1600
{
1601
	raw_spin_lock(&ctx->lock);
1602 1603 1604 1605

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1606
	raw_spin_unlock(&ctx->lock);
1607 1608
}

1609 1610 1611 1612 1613 1614
/*
 * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
 * context, and ->pmu_rotate_start() is called with irqs disabled (both are
 * cpu affine, so there are no SMP races).
 */
static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1615
{
1616
	enum hrtimer_restart restart = HRTIMER_NORESTART;
1617
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1618
	struct perf_event_context *ctx = NULL;
1619
	int rotate = 0;
1620

1621
	cpuctx = container_of(timer, struct perf_cpu_context, timer);
1622

1623 1624 1625 1626 1627
	if (cpuctx->ctx.nr_events) {
		restart = HRTIMER_RESTART;
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1628

P
Peter Zijlstra 已提交
1629
	ctx = cpuctx->task_ctx;
1630 1631 1632 1633 1634
	if (ctx && ctx->nr_events) {
		restart = HRTIMER_RESTART;
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1635

P
Peter Zijlstra 已提交
1636
	perf_pmu_disable(cpuctx->ctx.pmu);
1637
	perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1638
	if (ctx)
1639
		perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1640

1641
	if (!rotate)
1642
		goto done;
1643

1644
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1645
	if (ctx)
1646
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1647

1648
	rotate_ctx(&cpuctx->ctx);
1649 1650
	if (ctx)
		rotate_ctx(ctx);
1651

1652
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1653
	if (ctx)
P
Peter Zijlstra 已提交
1654
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1655 1656

done:
P
Peter Zijlstra 已提交
1657
	perf_pmu_enable(cpuctx->ctx.pmu);
1658 1659 1660
	hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));

	return restart;
T
Thomas Gleixner 已提交
1661 1662
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1678
/*
1679
 * Enable all of a task's events that have been marked enable-on-exec.
1680 1681
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1682
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1683
{
1684
	struct perf_event *event;
1685 1686
	unsigned long flags;
	int enabled = 0;
1687
	int ret;
1688 1689

	local_irq_save(flags);
1690
	if (!ctx || !ctx->nr_events)
1691 1692
		goto out;

P
Peter Zijlstra 已提交
1693
	task_ctx_sched_out(ctx, EVENT_ALL);
1694

1695
	raw_spin_lock(&ctx->lock);
1696

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1707 1708 1709
	}

	/*
1710
	 * Unclone this context if we enabled any event.
1711
	 */
1712 1713
	if (enabled)
		unclone_ctx(ctx);
1714

1715
	raw_spin_unlock(&ctx->lock);
1716

P
Peter Zijlstra 已提交
1717
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1718
out:
1719 1720 1721
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1722
/*
1723
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1724
 */
1725
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1726
{
1727 1728
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1729
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1730

1731 1732 1733 1734
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1735 1736
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1737 1738 1739 1740
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1741
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1742
	update_context_time(ctx);
1743
	update_event_times(event);
1744
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1745

P
Peter Zijlstra 已提交
1746
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1747 1748
}

P
Peter Zijlstra 已提交
1749 1750
static inline u64 perf_event_count(struct perf_event *event)
{
1751
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1752 1753
}

1754
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1755 1756
{
	/*
1757 1758
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1759
	 */
1760 1761 1762 1763
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1764 1765 1766
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1767
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1768
		update_context_time(ctx);
1769
		update_event_times(event);
1770
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1771 1772
	}

P
Peter Zijlstra 已提交
1773
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1774 1775
}

1776 1777 1778 1779 1780 1781 1782 1783 1784
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1785
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1841
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1986
/*
1987
 * Initialize the perf_event context in a task_struct:
1988
 */
1989
static void __perf_event_init_context(struct perf_event_context *ctx)
1990
{
1991
	raw_spin_lock_init(&ctx->lock);
1992
	mutex_init(&ctx->mutex);
1993 1994
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1995 1996
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
	}
	ctx->pmu = pmu;

	return ctx;
2016 2017
}

P
Peter Zijlstra 已提交
2018 2019
static struct perf_event_context *
find_get_context(struct pmu *pmu, pid_t pid, int cpu)
T
Thomas Gleixner 已提交
2020
{
2021
	struct perf_event_context *ctx;
2022
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2023
	struct task_struct *task;
2024
	unsigned long flags;
P
Peter Zijlstra 已提交
2025
	int ctxn, err;
T
Thomas Gleixner 已提交
2026

2027
	if (pid == -1 && cpu != -1) {
2028
		/* Must be root to operate on a CPU event: */
2029
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2030 2031
			return ERR_PTR(-EACCES);

2032
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2033 2034 2035
			return ERR_PTR(-EINVAL);

		/*
2036
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2037 2038 2039
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2040
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2041 2042
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2043
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2044
		ctx = &cpuctx->ctx;
2045
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2062
	/*
2063
	 * Can't attach events to a dying task.
2064 2065 2066 2067 2068
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2069
	/* Reuse ptrace permission checks for now. */
2070 2071 2072 2073
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

P
Peter Zijlstra 已提交
2074 2075 2076 2077 2078
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2079
retry:
P
Peter Zijlstra 已提交
2080
	ctx = perf_lock_task_context(task, ctxn, &flags);
2081
	if (ctx) {
2082
		unclone_ctx(ctx);
2083
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2084 2085
	}

2086
	if (!ctx) {
2087
		ctx = alloc_perf_context(pmu, task);
2088 2089 2090
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2091

2092
		get_ctx(ctx);
2093

P
Peter Zijlstra 已提交
2094
		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2095 2096 2097 2098
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2099
			put_task_struct(task);
2100
			kfree(ctx);
2101
			goto retry;
2102 2103 2104
		}
	}

2105
	put_task_struct(task);
T
Thomas Gleixner 已提交
2106
	return ctx;
2107

P
Peter Zijlstra 已提交
2108
errout:
2109 2110
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2111 2112
}

L
Li Zefan 已提交
2113 2114
static void perf_event_free_filter(struct perf_event *event);

2115
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2116
{
2117
	struct perf_event *event;
P
Peter Zijlstra 已提交
2118

2119 2120 2121
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2122
	perf_event_free_filter(event);
2123
	kfree(event);
P
Peter Zijlstra 已提交
2124 2125
}

2126
static void perf_pending_sync(struct perf_event *event);
2127
static void perf_buffer_put(struct perf_buffer *buffer);
2128

2129
static void free_event(struct perf_event *event)
2130
{
2131
	perf_pending_sync(event);
2132

2133 2134
	if (!event->parent) {
		atomic_dec(&nr_events);
2135
		if (event->attr.mmap || event->attr.mmap_data)
2136 2137 2138 2139 2140
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2141 2142
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2143
	}
2144

2145 2146 2147
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2148 2149
	}

2150 2151
	if (event->destroy)
		event->destroy(event);
2152

2153 2154
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2155 2156
}

2157
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2158
{
2159
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2160

2161 2162 2163 2164 2165 2166
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2167
	WARN_ON_ONCE(ctx->parent_ctx);
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2181
	raw_spin_lock_irq(&ctx->lock);
2182
	perf_group_detach(event);
2183 2184
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2185
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2186

2187 2188 2189 2190
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2191

2192
	free_event(event);
T
Thomas Gleixner 已提交
2193 2194 2195

	return 0;
}
2196
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2197

2198 2199 2200 2201
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2202
{
2203
	struct perf_event *event = file->private_data;
2204

2205
	file->private_data = NULL;
2206

2207
	return perf_event_release_kernel(event);
2208 2209
}

2210
static int perf_event_read_size(struct perf_event *event)
2211 2212 2213 2214 2215
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2216
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2217 2218
		size += sizeof(u64);

2219
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2220 2221
		size += sizeof(u64);

2222
	if (event->attr.read_format & PERF_FORMAT_ID)
2223 2224
		entry += sizeof(u64);

2225 2226
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2227 2228 2229 2230 2231 2232 2233 2234
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2235
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2236
{
2237
	struct perf_event *child;
2238 2239
	u64 total = 0;

2240 2241 2242
	*enabled = 0;
	*running = 0;

2243
	mutex_lock(&event->child_mutex);
2244
	total += perf_event_read(event);
2245 2246 2247 2248 2249 2250
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2251
		total += perf_event_read(child);
2252 2253 2254
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2255
	mutex_unlock(&event->child_mutex);
2256 2257 2258

	return total;
}
2259
EXPORT_SYMBOL_GPL(perf_event_read_value);
2260

2261
static int perf_event_read_group(struct perf_event *event,
2262 2263
				   u64 read_format, char __user *buf)
{
2264
	struct perf_event *leader = event->group_leader, *sub;
2265 2266
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2267
	u64 values[5];
2268
	u64 count, enabled, running;
2269

2270
	mutex_lock(&ctx->mutex);
2271
	count = perf_event_read_value(leader, &enabled, &running);
2272 2273

	values[n++] = 1 + leader->nr_siblings;
2274 2275 2276 2277
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2278 2279 2280
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2281 2282 2283 2284

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2285
		goto unlock;
2286

2287
	ret = size;
2288

2289
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2290
		n = 0;
2291

2292
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2293 2294 2295 2296 2297
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2298
		if (copy_to_user(buf + ret, values, size)) {
2299 2300 2301
			ret = -EFAULT;
			goto unlock;
		}
2302 2303

		ret += size;
2304
	}
2305 2306
unlock:
	mutex_unlock(&ctx->mutex);
2307

2308
	return ret;
2309 2310
}

2311
static int perf_event_read_one(struct perf_event *event,
2312 2313
				 u64 read_format, char __user *buf)
{
2314
	u64 enabled, running;
2315 2316 2317
	u64 values[4];
	int n = 0;

2318 2319 2320 2321 2322
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2323
	if (read_format & PERF_FORMAT_ID)
2324
		values[n++] = primary_event_id(event);
2325 2326 2327 2328 2329 2330 2331

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2332
/*
2333
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2334 2335
 */
static ssize_t
2336
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2337
{
2338
	u64 read_format = event->attr.read_format;
2339
	int ret;
T
Thomas Gleixner 已提交
2340

2341
	/*
2342
	 * Return end-of-file for a read on a event that is in
2343 2344 2345
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2346
	if (event->state == PERF_EVENT_STATE_ERROR)
2347 2348
		return 0;

2349
	if (count < perf_event_read_size(event))
2350 2351
		return -ENOSPC;

2352
	WARN_ON_ONCE(event->ctx->parent_ctx);
2353
	if (read_format & PERF_FORMAT_GROUP)
2354
		ret = perf_event_read_group(event, read_format, buf);
2355
	else
2356
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2357

2358
	return ret;
T
Thomas Gleixner 已提交
2359 2360 2361 2362 2363
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2364
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2365

2366
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2367 2368 2369 2370
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2371
	struct perf_event *event = file->private_data;
2372
	struct perf_buffer *buffer;
2373
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2374 2375

	rcu_read_lock();
2376 2377 2378
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2379
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2380

2381
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2382 2383 2384 2385

	return events;
}

2386
static void perf_event_reset(struct perf_event *event)
2387
{
2388
	(void)perf_event_read(event);
2389
	local64_set(&event->count, 0);
2390
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2391 2392
}

2393
/*
2394 2395 2396 2397
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2398
 */
2399 2400
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2401
{
2402
	struct perf_event *child;
P
Peter Zijlstra 已提交
2403

2404 2405 2406 2407
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2408
		func(child);
2409
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2410 2411
}

2412 2413
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2414
{
2415 2416
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2417

2418 2419
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2420
	event = event->group_leader;
2421

2422 2423 2424 2425
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2426
	mutex_unlock(&ctx->mutex);
2427 2428
}

2429
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2430
{
2431
	struct perf_event_context *ctx = event->ctx;
2432 2433 2434 2435
	unsigned long size;
	int ret = 0;
	u64 value;

2436
	if (!event->attr.sample_period)
2437 2438 2439 2440 2441 2442 2443 2444 2445
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2446
	raw_spin_lock_irq(&ctx->lock);
2447 2448
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2449 2450 2451 2452
			ret = -EINVAL;
			goto unlock;
		}

2453
		event->attr.sample_freq = value;
2454
	} else {
2455 2456
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2457 2458
	}
unlock:
2459
	raw_spin_unlock_irq(&ctx->lock);
2460 2461 2462 2463

	return ret;
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2485
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2486

2487 2488
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2489 2490
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2491
	u32 flags = arg;
2492 2493

	switch (cmd) {
2494 2495
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2496
		break;
2497 2498
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2499
		break;
2500 2501
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2502
		break;
P
Peter Zijlstra 已提交
2503

2504 2505
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2506

2507 2508
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2509

2510
	case PERF_EVENT_IOC_SET_OUTPUT:
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2528

L
Li Zefan 已提交
2529 2530 2531
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2532
	default:
P
Peter Zijlstra 已提交
2533
		return -ENOTTY;
2534
	}
P
Peter Zijlstra 已提交
2535 2536

	if (flags & PERF_IOC_FLAG_GROUP)
2537
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2538
	else
2539
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2540 2541

	return 0;
2542 2543
}

2544
int perf_event_task_enable(void)
2545
{
2546
	struct perf_event *event;
2547

2548 2549 2550 2551
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2552 2553 2554 2555

	return 0;
}

2556
int perf_event_task_disable(void)
2557
{
2558
	struct perf_event *event;
2559

2560 2561 2562 2563
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2564 2565 2566 2567

	return 0;
}

2568 2569
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2570 2571
#endif

2572
static int perf_event_index(struct perf_event *event)
2573
{
P
Peter Zijlstra 已提交
2574 2575 2576
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2577
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2578 2579
		return 0;

2580
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2581 2582
}

2583 2584 2585 2586 2587
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2588
void perf_event_update_userpage(struct perf_event *event)
2589
{
2590
	struct perf_event_mmap_page *userpg;
2591
	struct perf_buffer *buffer;
2592 2593

	rcu_read_lock();
2594 2595
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2596 2597
		goto unlock;

2598
	userpg = buffer->user_page;
2599

2600 2601 2602 2603 2604
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2605
	++userpg->lock;
2606
	barrier();
2607
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2608
	userpg->offset = perf_event_count(event);
2609
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2610
		userpg->offset -= local64_read(&event->hw.prev_count);
2611

2612 2613
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2614

2615 2616
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2617

2618
	barrier();
2619
	++userpg->lock;
2620
	preempt_enable();
2621
unlock:
2622
	rcu_read_unlock();
2623 2624
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2644
#ifndef CONFIG_PERF_USE_VMALLOC
2645

2646 2647 2648
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2649

2650
static struct page *
2651
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2652
{
2653
	if (pgoff > buffer->nr_pages)
2654
		return NULL;
2655

2656
	if (pgoff == 0)
2657
		return virt_to_page(buffer->user_page);
2658

2659
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2660 2661
}

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2675
static struct perf_buffer *
2676
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2677
{
2678
	struct perf_buffer *buffer;
2679 2680 2681
	unsigned long size;
	int i;

2682
	size = sizeof(struct perf_buffer);
2683 2684
	size += nr_pages * sizeof(void *);

2685 2686
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2687 2688
		goto fail;

2689
	buffer->user_page = perf_mmap_alloc_page(cpu);
2690
	if (!buffer->user_page)
2691 2692 2693
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2694
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2695
		if (!buffer->data_pages[i])
2696 2697 2698
			goto fail_data_pages;
	}

2699
	buffer->nr_pages = nr_pages;
2700

2701 2702
	perf_buffer_init(buffer, watermark, flags);

2703
	return buffer;
2704 2705 2706

fail_data_pages:
	for (i--; i >= 0; i--)
2707
		free_page((unsigned long)buffer->data_pages[i]);
2708

2709
	free_page((unsigned long)buffer->user_page);
2710 2711

fail_user_page:
2712
	kfree(buffer);
2713 2714

fail:
2715
	return NULL;
2716 2717
}

2718 2719
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2720
	struct page *page = virt_to_page((void *)addr);
2721 2722 2723 2724 2725

	page->mapping = NULL;
	__free_page(page);
}

2726
static void perf_buffer_free(struct perf_buffer *buffer)
2727 2728 2729
{
	int i;

2730 2731 2732 2733
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2734 2735
}

2736
static inline int page_order(struct perf_buffer *buffer)
2737 2738 2739 2740
{
	return 0;
}

2741 2742 2743 2744 2745 2746 2747 2748
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2749
static inline int page_order(struct perf_buffer *buffer)
2750
{
2751
	return buffer->page_order;
2752 2753
}

2754
static struct page *
2755
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2756
{
2757
	if (pgoff > (1UL << page_order(buffer)))
2758 2759
		return NULL;

2760
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2761 2762 2763 2764 2765 2766 2767 2768 2769
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2770
static void perf_buffer_free_work(struct work_struct *work)
2771
{
2772
	struct perf_buffer *buffer;
2773 2774 2775
	void *base;
	int i, nr;

2776 2777
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2778

2779
	base = buffer->user_page;
2780 2781 2782 2783
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2784
	kfree(buffer);
2785 2786
}

2787
static void perf_buffer_free(struct perf_buffer *buffer)
2788
{
2789
	schedule_work(&buffer->work);
2790 2791
}

2792
static struct perf_buffer *
2793
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2794
{
2795
	struct perf_buffer *buffer;
2796 2797 2798
	unsigned long size;
	void *all_buf;

2799
	size = sizeof(struct perf_buffer);
2800 2801
	size += sizeof(void *);

2802 2803
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2804 2805
		goto fail;

2806
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2807 2808 2809 2810 2811

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2812 2813 2814 2815
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2816

2817 2818
	perf_buffer_init(buffer, watermark, flags);

2819
	return buffer;
2820 2821

fail_all_buf:
2822
	kfree(buffer);
2823 2824 2825 2826 2827 2828 2829

fail:
	return NULL;
}

#endif

2830
static unsigned long perf_data_size(struct perf_buffer *buffer)
2831
{
2832
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2833 2834
}

2835 2836 2837
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2838
	struct perf_buffer *buffer;
2839 2840 2841 2842 2843 2844 2845 2846 2847
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2848 2849
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2850 2851 2852 2853 2854
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2855
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2870
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2871
{
2872
	struct perf_buffer *buffer;
2873

2874 2875
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2876 2877
}

2878
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2879
{
2880
	struct perf_buffer *buffer;
2881

2882
	rcu_read_lock();
2883 2884 2885 2886
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2887 2888 2889
	}
	rcu_read_unlock();

2890
	return buffer;
2891 2892
}

2893
static void perf_buffer_put(struct perf_buffer *buffer)
2894
{
2895
	if (!atomic_dec_and_test(&buffer->refcount))
2896
		return;
2897

2898
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2899 2900 2901 2902
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2903
	struct perf_event *event = vma->vm_file->private_data;
2904

2905
	atomic_inc(&event->mmap_count);
2906 2907 2908 2909
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2910
	struct perf_event *event = vma->vm_file->private_data;
2911

2912
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2913
		unsigned long size = perf_data_size(event->buffer);
2914
		struct user_struct *user = event->mmap_user;
2915
		struct perf_buffer *buffer = event->buffer;
2916

2917
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2918
		vma->vm_mm->locked_vm -= event->mmap_locked;
2919
		rcu_assign_pointer(event->buffer, NULL);
2920
		mutex_unlock(&event->mmap_mutex);
2921

2922
		perf_buffer_put(buffer);
2923
		free_uid(user);
2924
	}
2925 2926
}

2927
static const struct vm_operations_struct perf_mmap_vmops = {
2928 2929 2930 2931
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2932 2933 2934 2935
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2936
	struct perf_event *event = file->private_data;
2937
	unsigned long user_locked, user_lock_limit;
2938
	struct user_struct *user = current_user();
2939
	unsigned long locked, lock_limit;
2940
	struct perf_buffer *buffer;
2941 2942
	unsigned long vma_size;
	unsigned long nr_pages;
2943
	long user_extra, extra;
2944
	int ret = 0, flags = 0;
2945

2946 2947 2948 2949 2950 2951 2952 2953
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2954
	if (!(vma->vm_flags & VM_SHARED))
2955
		return -EINVAL;
2956 2957 2958 2959

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2960
	/*
2961
	 * If we have buffer pages ensure they're a power-of-two number, so we
2962 2963 2964
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2965 2966
		return -EINVAL;

2967
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2968 2969
		return -EINVAL;

2970 2971
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2972

2973 2974
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2975 2976 2977
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2978
		else
2979 2980 2981 2982
			ret = -EINVAL;
		goto unlock;
	}

2983
	user_extra = nr_pages + 1;
2984
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2985 2986 2987 2988 2989 2990

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2991
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2992

2993 2994 2995
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2996

2997
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2998
	lock_limit >>= PAGE_SHIFT;
2999
	locked = vma->vm_mm->locked_vm + extra;
3000

3001 3002
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3003 3004 3005
		ret = -EPERM;
		goto unlock;
	}
3006

3007
	WARN_ON(event->buffer);
3008

3009 3010 3011 3012 3013
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3014
	if (!buffer) {
3015
		ret = -ENOMEM;
3016
		goto unlock;
3017
	}
3018
	rcu_assign_pointer(event->buffer, buffer);
3019

3020 3021 3022 3023 3024
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3025
unlock:
3026 3027
	if (!ret)
		atomic_inc(&event->mmap_count);
3028
	mutex_unlock(&event->mmap_mutex);
3029 3030 3031

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3032 3033

	return ret;
3034 3035
}

P
Peter Zijlstra 已提交
3036 3037 3038
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3039
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3040 3041 3042
	int retval;

	mutex_lock(&inode->i_mutex);
3043
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3044 3045 3046 3047 3048 3049 3050 3051
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3052
static const struct file_operations perf_fops = {
3053
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3054 3055 3056
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3057 3058
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3059
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3060
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3061 3062
};

3063
/*
3064
 * Perf event wakeup
3065 3066 3067 3068 3069
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3070
void perf_event_wakeup(struct perf_event *event)
3071
{
3072
	wake_up_all(&event->waitq);
3073

3074 3075 3076
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3077
	}
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3089
static void perf_pending_event(struct perf_pending_entry *entry)
3090
{
3091 3092
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3093

3094 3095 3096
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3097 3098
	}

3099 3100 3101
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3102 3103 3104
	}
}

3105
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3106

3107
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3108 3109 3110
	PENDING_TAIL,
};

3111 3112
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3113
{
3114
	struct perf_pending_entry **head;
3115

3116
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3117 3118
		return;

3119 3120 3121
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3122 3123

	do {
3124 3125
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3126

3127
	set_perf_event_pending();
3128

3129
	put_cpu_var(perf_pending_head);
3130 3131 3132 3133
}

static int __perf_pending_run(void)
{
3134
	struct perf_pending_entry *list;
3135 3136
	int nr = 0;

3137
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3138
	while (list != PENDING_TAIL) {
3139 3140
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3141 3142 3143

		list = list->next;

3144 3145
		func = entry->func;
		entry->next = NULL;
3146 3147 3148 3149 3150 3151 3152
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3153
		func(entry);
3154 3155 3156 3157 3158 3159
		nr++;
	}

	return nr;
}

3160
static inline int perf_not_pending(struct perf_event *event)
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3175
	return event->pending.next == NULL;
3176 3177
}

3178
static void perf_pending_sync(struct perf_event *event)
3179
{
3180
	wait_event(event->waitq, perf_not_pending(event));
3181 3182
}

3183
void perf_event_do_pending(void)
3184 3185 3186 3187
{
	__perf_pending_run();
}

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3209 3210 3211
/*
 * Output
 */
3212
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3213
			      unsigned long offset, unsigned long head)
3214 3215 3216
{
	unsigned long mask;

3217
	if (!buffer->writable)
3218 3219
		return true;

3220
	mask = perf_data_size(buffer) - 1;
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3231
static void perf_output_wakeup(struct perf_output_handle *handle)
3232
{
3233
	atomic_set(&handle->buffer->poll, POLL_IN);
3234

3235
	if (handle->nmi) {
3236 3237 3238
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3239
	} else
3240
		perf_event_wakeup(handle->event);
3241 3242
}

3243
/*
3244
 * We need to ensure a later event_id doesn't publish a head when a former
3245
 * event isn't done writing. However since we need to deal with NMIs we
3246 3247 3248
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3249
 * event completes.
3250
 */
3251
static void perf_output_get_handle(struct perf_output_handle *handle)
3252
{
3253
	struct perf_buffer *buffer = handle->buffer;
3254

3255
	preempt_disable();
3256 3257
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3258 3259
}

3260
static void perf_output_put_handle(struct perf_output_handle *handle)
3261
{
3262
	struct perf_buffer *buffer = handle->buffer;
3263
	unsigned long head;
3264 3265

again:
3266
	head = local_read(&buffer->head);
3267 3268

	/*
3269
	 * IRQ/NMI can happen here, which means we can miss a head update.
3270 3271
	 */

3272
	if (!local_dec_and_test(&buffer->nest))
3273
		goto out;
3274 3275

	/*
3276
	 * Publish the known good head. Rely on the full barrier implied
3277
	 * by atomic_dec_and_test() order the buffer->head read and this
3278
	 * write.
3279
	 */
3280
	buffer->user_page->data_head = head;
3281

3282 3283
	/*
	 * Now check if we missed an update, rely on the (compiler)
3284
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3285
	 */
3286 3287
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3288 3289 3290
		goto again;
	}

3291
	if (handle->wakeup != local_read(&buffer->wakeup))
3292
		perf_output_wakeup(handle);
3293

P
Peter Zijlstra 已提交
3294
out:
3295
	preempt_enable();
3296 3297
}

3298
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3299
		      const void *buf, unsigned int len)
3300
{
3301
	do {
3302
		unsigned long size = min_t(unsigned long, handle->size, len);
3303 3304 3305 3306 3307

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3308
		buf += size;
3309 3310
		handle->size -= size;
		if (!handle->size) {
3311
			struct perf_buffer *buffer = handle->buffer;
3312

3313
			handle->page++;
3314 3315 3316
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3317 3318
		}
	} while (len);
3319 3320
}

3321
int perf_output_begin(struct perf_output_handle *handle,
3322
		      struct perf_event *event, unsigned int size,
3323
		      int nmi, int sample)
3324
{
3325
	struct perf_buffer *buffer;
3326
	unsigned long tail, offset, head;
3327 3328 3329 3330 3331 3332
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3333

3334
	rcu_read_lock();
3335
	/*
3336
	 * For inherited events we send all the output towards the parent.
3337
	 */
3338 3339
	if (event->parent)
		event = event->parent;
3340

3341 3342
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3343 3344
		goto out;

3345
	handle->buffer	= buffer;
3346
	handle->event	= event;
3347 3348
	handle->nmi	= nmi;
	handle->sample	= sample;
3349

3350
	if (!buffer->nr_pages)
3351
		goto out;
3352

3353
	have_lost = local_read(&buffer->lost);
3354 3355 3356
	if (have_lost)
		size += sizeof(lost_event);

3357
	perf_output_get_handle(handle);
3358

3359
	do {
3360 3361 3362 3363 3364
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3365
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3366
		smp_rmb();
3367
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3368
		head += size;
3369
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3370
			goto fail;
3371
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3372

3373 3374
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3375

3376 3377 3378 3379
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3380
	handle->addr += handle->size;
3381
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3382

3383
	if (have_lost) {
3384
		lost_event.header.type = PERF_RECORD_LOST;
3385 3386
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3387
		lost_event.id          = event->id;
3388
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3389 3390 3391 3392

		perf_output_put(handle, lost_event);
	}

3393
	return 0;
3394

3395
fail:
3396
	local_inc(&buffer->lost);
3397
	perf_output_put_handle(handle);
3398 3399
out:
	rcu_read_unlock();
3400

3401 3402
	return -ENOSPC;
}
3403

3404
void perf_output_end(struct perf_output_handle *handle)
3405
{
3406
	struct perf_event *event = handle->event;
3407
	struct perf_buffer *buffer = handle->buffer;
3408

3409
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3410

3411
	if (handle->sample && wakeup_events) {
3412
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3413
		if (events >= wakeup_events) {
3414 3415
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3416
		}
3417 3418
	}

3419
	perf_output_put_handle(handle);
3420
	rcu_read_unlock();
3421 3422
}

3423
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3424 3425
{
	/*
3426
	 * only top level events have the pid namespace they were created in
3427
	 */
3428 3429
	if (event->parent)
		event = event->parent;
3430

3431
	return task_tgid_nr_ns(p, event->ns);
3432 3433
}

3434
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3435 3436
{
	/*
3437
	 * only top level events have the pid namespace they were created in
3438
	 */
3439 3440
	if (event->parent)
		event = event->parent;
3441

3442
	return task_pid_nr_ns(p, event->ns);
3443 3444
}

3445
static void perf_output_read_one(struct perf_output_handle *handle,
3446
				 struct perf_event *event)
3447
{
3448
	u64 read_format = event->attr.read_format;
3449 3450 3451
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3452
	values[n++] = perf_event_count(event);
3453
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3454 3455
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3456 3457
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3458 3459
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3460 3461
	}
	if (read_format & PERF_FORMAT_ID)
3462
		values[n++] = primary_event_id(event);
3463 3464 3465 3466 3467

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3468
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3469 3470
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3471
			    struct perf_event *event)
3472
{
3473 3474
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3486
	if (leader != event)
3487 3488
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3489
	values[n++] = perf_event_count(leader);
3490
	if (read_format & PERF_FORMAT_ID)
3491
		values[n++] = primary_event_id(leader);
3492 3493 3494

	perf_output_copy(handle, values, n * sizeof(u64));

3495
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3496 3497
		n = 0;

3498
		if (sub != event)
3499 3500
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3501
		values[n++] = perf_event_count(sub);
3502
		if (read_format & PERF_FORMAT_ID)
3503
			values[n++] = primary_event_id(sub);
3504 3505 3506 3507 3508 3509

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3510
			     struct perf_event *event)
3511
{
3512 3513
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3514
	else
3515
		perf_output_read_one(handle, event);
3516 3517
}

3518 3519 3520
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3521
			struct perf_event *event)
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3552
		perf_output_read(handle, event);
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3590
			 struct perf_event *event,
3591
			 struct pt_regs *regs)
3592
{
3593
	u64 sample_type = event->attr.sample_type;
3594

3595
	data->type = sample_type;
3596

3597
	header->type = PERF_RECORD_SAMPLE;
3598 3599 3600 3601
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3602

3603
	if (sample_type & PERF_SAMPLE_IP) {
3604 3605 3606
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3607
	}
3608

3609
	if (sample_type & PERF_SAMPLE_TID) {
3610
		/* namespace issues */
3611 3612
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3613

3614
		header->size += sizeof(data->tid_entry);
3615 3616
	}

3617
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3618
		data->time = perf_clock();
3619

3620
		header->size += sizeof(data->time);
3621 3622
	}

3623
	if (sample_type & PERF_SAMPLE_ADDR)
3624
		header->size += sizeof(data->addr);
3625

3626
	if (sample_type & PERF_SAMPLE_ID) {
3627
		data->id = primary_event_id(event);
3628

3629 3630 3631 3632
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3633
		data->stream_id = event->id;
3634 3635 3636

		header->size += sizeof(data->stream_id);
	}
3637

3638
	if (sample_type & PERF_SAMPLE_CPU) {
3639 3640
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3641

3642
		header->size += sizeof(data->cpu_entry);
3643 3644
	}

3645
	if (sample_type & PERF_SAMPLE_PERIOD)
3646
		header->size += sizeof(data->period);
3647

3648
	if (sample_type & PERF_SAMPLE_READ)
3649
		header->size += perf_event_read_size(event);
3650

3651
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3652
		int size = 1;
3653

3654 3655 3656 3657 3658 3659
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3660 3661
	}

3662
	if (sample_type & PERF_SAMPLE_RAW) {
3663 3664 3665 3666 3667 3668 3669 3670
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3671
		header->size += size;
3672
	}
3673
}
3674

3675
static void perf_event_output(struct perf_event *event, int nmi,
3676 3677 3678 3679 3680
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3681

3682 3683 3684
	/* protect the callchain buffers */
	rcu_read_lock();

3685
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3686

3687
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3688
		goto exit;
3689

3690
	perf_output_sample(&handle, &header, data, event);
3691

3692
	perf_output_end(&handle);
3693 3694 3695

exit:
	rcu_read_unlock();
3696 3697
}

3698
/*
3699
 * read event_id
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3710
perf_event_read_event(struct perf_event *event,
3711 3712 3713
			struct task_struct *task)
{
	struct perf_output_handle handle;
3714
	struct perf_read_event read_event = {
3715
		.header = {
3716
			.type = PERF_RECORD_READ,
3717
			.misc = 0,
3718
			.size = sizeof(read_event) + perf_event_read_size(event),
3719
		},
3720 3721
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3722
	};
3723
	int ret;
3724

3725
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3726 3727 3728
	if (ret)
		return;

3729
	perf_output_put(&handle, read_event);
3730
	perf_output_read(&handle, event);
3731

3732 3733 3734
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3735
/*
P
Peter Zijlstra 已提交
3736 3737
 * task tracking -- fork/exit
 *
3738
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3739 3740
 */

P
Peter Zijlstra 已提交
3741
struct perf_task_event {
3742
	struct task_struct		*task;
3743
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3744 3745 3746 3747 3748 3749

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3750 3751
		u32				tid;
		u32				ptid;
3752
		u64				time;
3753
	} event_id;
P
Peter Zijlstra 已提交
3754 3755
};

3756
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3757
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3758 3759
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3760
	struct task_struct *task = task_event->task;
3761 3762
	int size, ret;

3763 3764
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3765

3766
	if (ret)
P
Peter Zijlstra 已提交
3767 3768
		return;

3769 3770
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3771

3772 3773
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3774

3775
	perf_output_put(&handle, task_event->event_id);
3776

P
Peter Zijlstra 已提交
3777 3778 3779
	perf_output_end(&handle);
}

3780
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3781
{
P
Peter Zijlstra 已提交
3782
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3783 3784
		return 0;

3785 3786 3787
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3788 3789
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3790 3791 3792 3793 3794
		return 1;

	return 0;
}

3795
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3796
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3797
{
3798
	struct perf_event *event;
P
Peter Zijlstra 已提交
3799

3800 3801 3802
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3803 3804 3805
	}
}

3806
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3807
{
P
Peter Zijlstra 已提交
3808
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3809
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3810
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3811
	int ctxn;
P
Peter Zijlstra 已提交
3812

P
Peter Zijlstra 已提交
3813 3814 3815 3816
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
				continue;
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3827 3828
	}
	rcu_read_unlock_sched();
P
Peter Zijlstra 已提交
3829 3830
}

3831 3832
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3833
			      int new)
P
Peter Zijlstra 已提交
3834
{
P
Peter Zijlstra 已提交
3835
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3836

3837 3838 3839
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3840 3841
		return;

P
Peter Zijlstra 已提交
3842
	task_event = (struct perf_task_event){
3843 3844
		.task	  = task,
		.task_ctx = task_ctx,
3845
		.event_id    = {
P
Peter Zijlstra 已提交
3846
			.header = {
3847
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3848
				.misc = 0,
3849
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3850
			},
3851 3852
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3853 3854
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3855
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3856 3857 3858
		},
	};

3859
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3860 3861
}

3862
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3863
{
3864
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3865 3866
}

3867 3868 3869 3870 3871
/*
 * comm tracking
 */

struct perf_comm_event {
3872 3873
	struct task_struct	*task;
	char			*comm;
3874 3875 3876 3877 3878 3879 3880
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3881
	} event_id;
3882 3883
};

3884
static void perf_event_comm_output(struct perf_event *event,
3885 3886 3887
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3888 3889
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3890 3891 3892 3893

	if (ret)
		return;

3894 3895
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3896

3897
	perf_output_put(&handle, comm_event->event_id);
3898 3899 3900 3901 3902
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3903
static int perf_event_comm_match(struct perf_event *event)
3904
{
P
Peter Zijlstra 已提交
3905
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3906 3907
		return 0;

3908 3909 3910
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3911
	if (event->attr.comm)
3912 3913 3914 3915 3916
		return 1;

	return 0;
}

3917
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3918 3919
				  struct perf_comm_event *comm_event)
{
3920
	struct perf_event *event;
3921

3922 3923 3924
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3925 3926 3927
	}
}

3928
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3929 3930
{
	struct perf_cpu_context *cpuctx;
3931
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3932
	char comm[TASK_COMM_LEN];
3933
	unsigned int size;
P
Peter Zijlstra 已提交
3934
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3935
	int ctxn;
3936

3937
	memset(comm, 0, sizeof(comm));
3938
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3939
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3940 3941 3942 3943

	comm_event->comm = comm;
	comm_event->comm_size = size;

3944
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3945

P
Peter Zijlstra 已提交
3946 3947 3948 3949
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
3950 3951 3952 3953 3954 3955 3956 3957

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			continue;

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
P
Peter Zijlstra 已提交
3958 3959
	}
	rcu_read_unlock_sched();
3960 3961
}

3962
void perf_event_comm(struct task_struct *task)
3963
{
3964
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
3965 3966
	struct perf_event_context *ctx;
	int ctxn;
3967

P
Peter Zijlstra 已提交
3968 3969 3970 3971 3972 3973 3974
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
3975

3976
	if (!atomic_read(&nr_comm_events))
3977
		return;
3978

3979
	comm_event = (struct perf_comm_event){
3980
		.task	= task,
3981 3982
		/* .comm      */
		/* .comm_size */
3983
		.event_id  = {
3984
			.header = {
3985
				.type = PERF_RECORD_COMM,
3986 3987 3988 3989 3990
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3991 3992 3993
		},
	};

3994
	perf_event_comm_event(&comm_event);
3995 3996
}

3997 3998 3999 4000 4001
/*
 * mmap tracking
 */

struct perf_mmap_event {
4002 4003 4004 4005
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4006 4007 4008 4009 4010 4011 4012 4013 4014

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4015
	} event_id;
4016 4017
};

4018
static void perf_event_mmap_output(struct perf_event *event,
4019 4020 4021
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4022 4023
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
4024 4025 4026 4027

	if (ret)
		return;

4028 4029
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4030

4031
	perf_output_put(&handle, mmap_event->event_id);
4032 4033
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4034
	perf_output_end(&handle);
4035 4036
}

4037
static int perf_event_mmap_match(struct perf_event *event,
4038 4039
				   struct perf_mmap_event *mmap_event,
				   int executable)
4040
{
P
Peter Zijlstra 已提交
4041
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4042 4043
		return 0;

4044 4045 4046
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4047 4048
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4049 4050 4051 4052 4053
		return 1;

	return 0;
}

4054
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4055 4056
				  struct perf_mmap_event *mmap_event,
				  int executable)
4057
{
4058
	struct perf_event *event;
4059

4060
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4061
		if (perf_event_mmap_match(event, mmap_event, executable))
4062
			perf_event_mmap_output(event, mmap_event);
4063 4064 4065
	}
}

4066
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4067 4068
{
	struct perf_cpu_context *cpuctx;
4069
	struct perf_event_context *ctx;
4070 4071
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4072 4073 4074
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4075
	const char *name;
P
Peter Zijlstra 已提交
4076
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4077
	int ctxn;
4078

4079 4080
	memset(tmp, 0, sizeof(tmp));

4081
	if (file) {
4082 4083 4084 4085 4086 4087
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4088 4089 4090 4091
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4092
		name = d_path(&file->f_path, buf, PATH_MAX);
4093 4094 4095 4096 4097
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4098 4099 4100
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4101
			goto got_name;
4102
		}
4103 4104 4105 4106

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4107 4108 4109 4110 4111 4112 4113 4114
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4115 4116
		}

4117 4118 4119 4120 4121
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4122
	size = ALIGN(strlen(name)+1, sizeof(u64));
4123 4124 4125 4126

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4127
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4128

P
Peter Zijlstra 已提交
4129 4130 4131 4132 4133
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			continue;

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
P
Peter Zijlstra 已提交
4144 4145
	}
	rcu_read_unlock_sched();
4146

4147 4148 4149
	kfree(buf);
}

4150
void perf_event_mmap(struct vm_area_struct *vma)
4151
{
4152 4153
	struct perf_mmap_event mmap_event;

4154
	if (!atomic_read(&nr_mmap_events))
4155 4156 4157
		return;

	mmap_event = (struct perf_mmap_event){
4158
		.vma	= vma,
4159 4160
		/* .file_name */
		/* .file_size */
4161
		.event_id  = {
4162
			.header = {
4163
				.type = PERF_RECORD_MMAP,
4164
				.misc = PERF_RECORD_MISC_USER,
4165 4166 4167 4168
				/* .size */
			},
			/* .pid */
			/* .tid */
4169 4170
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4171
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4172 4173 4174
		},
	};

4175
	perf_event_mmap_event(&mmap_event);
4176 4177
}

4178 4179 4180 4181
/*
 * IRQ throttle logging
 */

4182
static void perf_log_throttle(struct perf_event *event, int enable)
4183 4184 4185 4186 4187 4188 4189
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4190
		u64				id;
4191
		u64				stream_id;
4192 4193
	} throttle_event = {
		.header = {
4194
			.type = PERF_RECORD_THROTTLE,
4195 4196 4197
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4198
		.time		= perf_clock(),
4199 4200
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4201 4202
	};

4203
	if (enable)
4204
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4205

4206
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4207 4208 4209 4210 4211 4212 4213
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4214
/*
4215
 * Generic event overflow handling, sampling.
4216 4217
 */

4218
static int __perf_event_overflow(struct perf_event *event, int nmi,
4219 4220
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4221
{
4222 4223
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4224 4225
	int ret = 0;

4226
	if (!throttle) {
4227
		hwc->interrupts++;
4228
	} else {
4229 4230
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4231
			if (HZ * hwc->interrupts >
4232
					(u64)sysctl_perf_event_sample_rate) {
4233
				hwc->interrupts = MAX_INTERRUPTS;
4234
				perf_log_throttle(event, 0);
4235 4236 4237 4238
				ret = 1;
			}
		} else {
			/*
4239
			 * Keep re-disabling events even though on the previous
4240
			 * pass we disabled it - just in case we raced with a
4241
			 * sched-in and the event got enabled again:
4242
			 */
4243 4244 4245
			ret = 1;
		}
	}
4246

4247
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4248
		u64 now = perf_clock();
4249
		s64 delta = now - hwc->freq_time_stamp;
4250

4251
		hwc->freq_time_stamp = now;
4252

4253 4254
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4255 4256
	}

4257 4258
	/*
	 * XXX event_limit might not quite work as expected on inherited
4259
	 * events
4260 4261
	 */

4262 4263
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4264
		ret = 1;
4265
		event->pending_kill = POLL_HUP;
4266
		if (nmi) {
4267 4268 4269
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4270
		} else
4271
			perf_event_disable(event);
4272 4273
	}

4274 4275 4276 4277 4278
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4279
	return ret;
4280 4281
}

4282
int perf_event_overflow(struct perf_event *event, int nmi,
4283 4284
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4285
{
4286
	return __perf_event_overflow(event, nmi, 1, data, regs);
4287 4288
}

4289
/*
4290
 * Generic software event infrastructure
4291 4292
 */

4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4304
/*
4305 4306
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4307 4308 4309 4310
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4311
static u64 perf_swevent_set_period(struct perf_event *event)
4312
{
4313
	struct hw_perf_event *hwc = &event->hw;
4314 4315 4316 4317 4318
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4319 4320

again:
4321
	old = val = local64_read(&hwc->period_left);
4322 4323
	if (val < 0)
		return 0;
4324

4325 4326 4327
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4328
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4329
		goto again;
4330

4331
	return nr;
4332 4333
}

4334
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4335 4336
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4337
{
4338
	struct hw_perf_event *hwc = &event->hw;
4339
	int throttle = 0;
4340

4341
	data->period = event->hw.last_period;
4342 4343
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4344

4345 4346
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4347

4348
	for (; overflow; overflow--) {
4349
		if (__perf_event_overflow(event, nmi, throttle,
4350
					    data, regs)) {
4351 4352 4353 4354 4355 4356
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4357
		throttle = 1;
4358
	}
4359 4360
}

P
Peter Zijlstra 已提交
4361
static void perf_swevent_event(struct perf_event *event, u64 nr,
4362 4363
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4364
{
4365
	struct hw_perf_event *hwc = &event->hw;
4366

4367
	local64_add(nr, &event->count);
4368

4369 4370 4371
	if (!regs)
		return;

4372 4373
	if (!hwc->sample_period)
		return;
4374

4375 4376 4377
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4378
	if (local64_add_negative(nr, &hwc->period_left))
4379
		return;
4380

4381
	perf_swevent_overflow(event, 0, nmi, data, regs);
4382 4383
}

4384 4385 4386
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4387 4388 4389
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4401
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4402
				enum perf_type_id type,
L
Li Zefan 已提交
4403 4404 4405
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4406
{
4407
	if (event->attr.type != type)
4408
		return 0;
4409

4410
	if (event->attr.config != event_id)
4411 4412
		return 0;

4413 4414
	if (perf_exclude_event(event, regs))
		return 0;
4415 4416 4417 4418

	return 1;
}

4419 4420 4421 4422 4423 4424 4425
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4426 4427
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4428
{
4429 4430 4431 4432
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4433

4434 4435
/* For the read side: events when they trigger */
static inline struct hlist_head *
4436
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4437 4438
{
	struct swevent_hlist *hlist;
4439

4440
	hlist = rcu_dereference(swhash->swevent_hlist);
4441 4442 4443
	if (!hlist)
		return NULL;

4444 4445 4446 4447 4448
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4449
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4460
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4461 4462 4463 4464 4465
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4466 4467 4468 4469 4470 4471
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4472
{
4473
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4474
	struct perf_event *event;
4475 4476
	struct hlist_node *node;
	struct hlist_head *head;
4477

4478
	rcu_read_lock();
4479
	head = find_swevent_head_rcu(swhash, type, event_id);
4480 4481 4482 4483
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4484
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4485
			perf_swevent_event(event, nr, nmi, data, regs);
4486
	}
4487 4488
end:
	rcu_read_unlock();
4489 4490
}

4491
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4492
{
4493
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4494

4495
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4496
}
I
Ingo Molnar 已提交
4497
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4498

4499
void inline perf_swevent_put_recursion_context(int rctx)
4500
{
4501
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4502

4503
	put_recursion_context(swhash->recursion, rctx);
4504
}
4505

4506
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4507
			    struct pt_regs *regs, u64 addr)
4508
{
4509
	struct perf_sample_data data;
4510 4511
	int rctx;

4512
	preempt_disable_notrace();
4513 4514 4515
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4516

4517
	perf_sample_data_init(&data, addr);
4518

4519
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4520 4521

	perf_swevent_put_recursion_context(rctx);
4522
	preempt_enable_notrace();
4523 4524
}

4525
static void perf_swevent_read(struct perf_event *event)
4526 4527 4528
{
}

P
Peter Zijlstra 已提交
4529
static int perf_swevent_add(struct perf_event *event, int flags)
4530
{
4531
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4532
	struct hw_perf_event *hwc = &event->hw;
4533 4534
	struct hlist_head *head;

4535 4536
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4537
		perf_swevent_set_period(event);
4538
	}
4539

P
Peter Zijlstra 已提交
4540 4541
	hwc->state = !(flags & PERF_EF_START);

4542
	head = find_swevent_head(swhash, event);
4543 4544 4545 4546 4547
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4548 4549 4550
	return 0;
}

P
Peter Zijlstra 已提交
4551
static void perf_swevent_del(struct perf_event *event, int flags)
4552
{
4553
	hlist_del_rcu(&event->hlist_entry);
4554 4555
}

P
Peter Zijlstra 已提交
4556
static void perf_swevent_start(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4557
{
P
Peter Zijlstra 已提交
4558
	event->hw.state = 0;
P
Peter Zijlstra 已提交
4559 4560
}

P
Peter Zijlstra 已提交
4561
static void perf_swevent_stop(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4562
{
P
Peter Zijlstra 已提交
4563
	event->hw.state = PERF_HES_STOPPED;
P
Peter Zijlstra 已提交
4564 4565
}

4566 4567
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4568
swevent_hlist_deref(struct swevent_htable *swhash)
4569
{
4570 4571
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4572 4573
}

4574 4575 4576 4577 4578 4579 4580 4581
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4582
static void swevent_hlist_release(struct swevent_htable *swhash)
4583
{
4584
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4585

4586
	if (!hlist)
4587 4588
		return;

4589
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4590 4591 4592 4593 4594
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4595
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4596

4597
	mutex_lock(&swhash->hlist_mutex);
4598

4599 4600
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4601

4602
	mutex_unlock(&swhash->hlist_mutex);
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4620
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4621 4622
	int err = 0;

4623
	mutex_lock(&swhash->hlist_mutex);
4624

4625
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4626 4627 4628 4629 4630 4631 4632
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4633
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4634
	}
4635
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4636
exit:
4637
	mutex_unlock(&swhash->hlist_mutex);
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4661
fail:
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4672
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4673

4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4718 4719
	.task_ctx_nr	= perf_sw_context,

4720
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4721 4722 4723 4724
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4725 4726 4727
	.read		= perf_swevent_read,
};

4728 4729
#ifdef CONFIG_EVENT_TRACING

4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4744 4745 4746 4747
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4748 4749 4750 4751 4752 4753 4754 4755 4756
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4757
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4758 4759
{
	struct perf_sample_data data;
4760 4761 4762
	struct perf_event *event;
	struct hlist_node *node;

4763 4764 4765 4766 4767 4768 4769 4770
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4771 4772
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4773
			perf_swevent_event(event, count, 1, &data, regs);
4774
	}
4775 4776

	perf_swevent_put_recursion_context(rctx);
4777 4778 4779
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4780
static void tp_perf_event_destroy(struct perf_event *event)
4781
{
4782
	perf_trace_destroy(event);
4783 4784
}

4785
static int perf_tp_event_init(struct perf_event *event)
4786
{
4787 4788
	int err;

4789 4790 4791
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4792 4793 4794 4795
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4796
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4797
			perf_paranoid_tracepoint_raw() &&
4798
			!capable(CAP_SYS_ADMIN))
4799
		return -EPERM;
4800

4801 4802
	err = perf_trace_init(event);
	if (err)
4803
		return err;
4804

4805
	event->destroy = tp_perf_event_destroy;
4806

4807 4808 4809 4810
	return 0;
}

static struct pmu perf_tracepoint = {
4811 4812
	.task_ctx_nr	= perf_sw_context,

4813
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4814 4815 4816 4817
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4818 4819 4820 4821 4822 4823
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4824
}
L
Li Zefan 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4849
#else
L
Li Zefan 已提交
4850

4851
static inline void perf_tp_register(void)
4852 4853
{
}
L
Li Zefan 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4864
#endif /* CONFIG_EVENT_TRACING */
4865

4866
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4867
void perf_bp_event(struct perf_event *bp, void *data)
4868
{
4869 4870 4871 4872 4873
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4874 4875
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4876
}
4877 4878 4879 4880 4881
#endif

/*
 * hrtimer based swevent callback
 */
4882

4883
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4884
{
4885 4886 4887 4888 4889
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4890

4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4903

4904 4905
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4906

4907
	return ret;
4908 4909
}

4910
static void perf_swevent_start_hrtimer(struct perf_event *event)
4911
{
4912
	struct hw_perf_event *hwc = &event->hw;
4913

4914 4915 4916
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4917
		s64 period = local64_read(&hwc->period_left);
4918

P
Peter Zijlstra 已提交
4919 4920
		if (period) {
			if (period < 0)
4921
				period = 10000;
P
Peter Zijlstra 已提交
4922 4923

			local64_set(&hwc->period_left, 0);
4924 4925 4926 4927 4928
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4929
				HRTIMER_MODE_REL_PINNED, 0);
4930
	}
4931
}
4932 4933

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4934
{
4935 4936 4937 4938
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4939
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4940 4941 4942

		hrtimer_cancel(&hwc->hrtimer);
	}
4943 4944
}

4945 4946 4947 4948 4949
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4950
{
4951 4952 4953
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4954
	now = local_clock();
4955 4956
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4957 4958
}

P
Peter Zijlstra 已提交
4959
static void cpu_clock_event_start(struct perf_event *event, int flags)
4960
{
P
Peter Zijlstra 已提交
4961
	local64_set(&event->hw.prev_count, local_clock());
4962 4963 4964
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4965
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4966
{
4967 4968 4969
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4970

P
Peter Zijlstra 已提交
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4984 4985 4986 4987
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4988

4989 4990 4991 4992 4993 4994 4995 4996 4997
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4998 4999
}

5000
static struct pmu perf_cpu_clock = {
5001 5002
	.task_ctx_nr	= perf_sw_context,

5003
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5004 5005 5006 5007
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5008 5009 5010 5011 5012 5013 5014 5015
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5016
{
5017 5018
	u64 prev;
	s64 delta;
5019

5020 5021 5022 5023
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5024

P
Peter Zijlstra 已提交
5025
static void task_clock_event_start(struct perf_event *event, int flags)
5026
{
P
Peter Zijlstra 已提交
5027
	local64_set(&event->hw.prev_count, event->ctx->time);
5028 5029 5030
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5031
static void task_clock_event_stop(struct perf_event *event, int flags)
5032 5033 5034
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5035 5036 5037 5038 5039 5040
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5041

P
Peter Zijlstra 已提交
5042 5043 5044 5045 5046 5047
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
5078 5079
	.task_ctx_nr	= perf_sw_context,

5080
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5081 5082 5083 5084
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5085 5086 5087
	.read		= task_clock_event_read,
};

P
Peter Zijlstra 已提交
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
static void perf_pmu_nop_void(struct pmu *pmu)
{
}

static int perf_pmu_nop_int(struct pmu *pmu)
{
	return 0;
}

static void perf_pmu_start_txn(struct pmu *pmu)
{
	perf_pmu_disable(pmu);
}

static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}

static void perf_pmu_cancel_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
}

P
Peter Zijlstra 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
{
	struct pmu *pmu;

	if (ctxn < 0)
		return NULL;

	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}

	return NULL;
}

static void free_pmu_context(void * __percpu cpu_context)
{
	struct pmu *pmu;

	mutex_lock(&pmus_lock);
	/*
	 * Like a real lame refcount.
	 */
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->pmu_cpu_context == cpu_context)
			goto out;
	}

	free_percpu(cpu_context);
out:
	mutex_unlock(&pmus_lock);
}

5150 5151
int perf_pmu_register(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
5152
	int cpu, ret;
P
Peter Zijlstra 已提交
5153

5154
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5155 5156 5157 5158
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
P
Peter Zijlstra 已提交
5159

P
Peter Zijlstra 已提交
5160 5161 5162 5163
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;

P
Peter Zijlstra 已提交
5164 5165 5166 5167 5168 5169 5170 5171
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5172
		__perf_event_init_context(&cpuctx->ctx);
P
Peter Zijlstra 已提交
5173 5174 5175 5176 5177 5178
		cpuctx->ctx.pmu = pmu;
		cpuctx->timer_interval = TICK_NSEC;
		hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		cpuctx->timer.function = perf_event_context_tick;
	}

P
Peter Zijlstra 已提交
5179
got_cpu_context:
P
Peter Zijlstra 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5202
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5203 5204
	ret = 0;
unlock:
5205 5206
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5207
	return ret;
P
Peter Zijlstra 已提交
5208 5209 5210 5211

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5212 5213 5214 5215 5216 5217 5218 5219
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5220 5221 5222 5223
	/*
	 * We use the pmu list either under SRCU or preempt_disable,
	 * synchronize_srcu() implies synchronize_sched() so we're good.
	 */
5224
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5225 5226

	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5227
	free_pmu_context(pmu->pmu_cpu_context);
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
			break;
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
			break;
5243
		}
5244
	}
5245
	srcu_read_unlock(&pmus_srcu, idx);
5246

5247
	return pmu;
5248 5249
}

T
Thomas Gleixner 已提交
5250
/*
5251
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5252
 */
5253
static struct perf_event *
5254
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5255 5256
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5257
		   perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5258
{
P
Peter Zijlstra 已提交
5259
	struct pmu *pmu;
5260 5261
	struct perf_event *event;
	struct hw_perf_event *hwc;
5262
	long err;
T
Thomas Gleixner 已提交
5263

5264
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5265
	if (!event)
5266
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5267

5268
	/*
5269
	 * Single events are their own group leaders, with an
5270 5271 5272
	 * empty sibling list:
	 */
	if (!group_leader)
5273
		group_leader = event;
5274

5275 5276
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5277

5278 5279 5280 5281
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5282

5283
	mutex_init(&event->mmap_mutex);
5284

5285 5286 5287 5288 5289
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5290

5291
	event->parent		= parent_event;
5292

5293 5294
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5295

5296
	event->state		= PERF_EVENT_STATE_INACTIVE;
5297

5298 5299
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5300
	
5301
	event->overflow_handler	= overflow_handler;
5302

5303
	if (attr->disabled)
5304
		event->state = PERF_EVENT_STATE_OFF;
5305

5306
	pmu = NULL;
5307

5308
	hwc = &event->hw;
5309
	hwc->sample_period = attr->sample_period;
5310
	if (attr->freq && attr->sample_freq)
5311
		hwc->sample_period = 1;
5312
	hwc->last_period = hwc->sample_period;
5313

5314
	local64_set(&hwc->period_left, hwc->sample_period);
5315

5316
	/*
5317
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5318
	 */
5319
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5320 5321
		goto done;

5322
	pmu = perf_init_event(event);
5323

5324 5325
done:
	err = 0;
5326
	if (!pmu)
5327
		err = -EINVAL;
5328 5329
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5330

5331
	if (err) {
5332 5333 5334
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5335
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5336
	}
5337

5338
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5339

5340 5341
	if (!event->parent) {
		atomic_inc(&nr_events);
5342
		if (event->attr.mmap || event->attr.mmap_data)
5343 5344 5345 5346 5347
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5348 5349 5350 5351 5352 5353 5354
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5355
	}
5356

5357
	return event;
T
Thomas Gleixner 已提交
5358 5359
}

5360 5361
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5362 5363
{
	u32 size;
5364
	int ret;
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5389 5390 5391
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5392 5393
	 */
	if (size > sizeof(*attr)) {
5394 5395 5396
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5397

5398 5399
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5400

5401
		for (; addr < end; addr++) {
5402 5403 5404 5405 5406 5407
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5408
		size = sizeof(*attr);
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5422
	if (attr->__reserved_1)
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5440 5441
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5442
{
5443
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5444 5445
	int ret = -EINVAL;

5446
	if (!output_event)
5447 5448
		goto set;

5449 5450
	/* don't allow circular references */
	if (event == output_event)
5451 5452
		goto out;

5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5465
set:
5466
	mutex_lock(&event->mmap_mutex);
5467 5468 5469
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5470

5471 5472
	if (output_event) {
		/* get the buffer we want to redirect to */
5473 5474
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5475
			goto unlock;
5476 5477
	}

5478 5479
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5480
	ret = 0;
5481 5482 5483
unlock:
	mutex_unlock(&event->mmap_mutex);

5484 5485
	if (old_buffer)
		perf_buffer_put(old_buffer);
5486 5487 5488 5489
out:
	return ret;
}

T
Thomas Gleixner 已提交
5490
/**
5491
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5492
 *
5493
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5494
 * @pid:		target pid
I
Ingo Molnar 已提交
5495
 * @cpu:		target cpu
5496
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5497
 */
5498 5499
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5500
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5501
{
5502
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5503 5504 5505
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5506
	struct file *group_file = NULL;
5507
	struct pmu *pmu;
5508
	int event_fd;
5509
	int fput_needed = 0;
5510
	int err;
T
Thomas Gleixner 已提交
5511

5512
	/* for future expandability... */
5513
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5514 5515
		return -EINVAL;

5516 5517 5518
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5519

5520 5521 5522 5523 5524
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5525
	if (attr.freq) {
5526
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5527 5528 5529
			return -EINVAL;
	}

5530 5531 5532 5533
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5534 5535 5536 5537 5538 5539
	event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err_fd;
	}

5540 5541 5542 5543
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5544
			goto err_alloc;
5545 5546 5547 5548 5549 5550 5551 5552
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
	if ((pmu->task_ctx_nr == perf_sw_context) && group_leader)
		pmu = group_leader->pmu;

	/*
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pmu, pid, cpu);
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_group_fd;
	}

I
Ingo Molnar 已提交
5570
	/*
5571
	 * Look up the group leader (we will attach this event to it):
5572
	 */
5573
	if (group_leader) {
5574
		err = -EINVAL;
5575 5576

		/*
I
Ingo Molnar 已提交
5577 5578 5579 5580
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5581
			goto err_context;
I
Ingo Molnar 已提交
5582 5583 5584
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5585
		 */
I
Ingo Molnar 已提交
5586
		if (group_leader->ctx != ctx)
5587
			goto err_context;
5588 5589 5590
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5591
		if (attr.exclusive || attr.pinned)
5592
			goto err_context;
5593 5594 5595 5596 5597
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5598
			goto err_context;
5599
	}
T
Thomas Gleixner 已提交
5600

5601 5602 5603
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5604
		goto err_context;
5605
	}
5606

5607
	event->filp = event_file;
5608
	WARN_ON_ONCE(ctx->parent_ctx);
5609
	mutex_lock(&ctx->mutex);
5610
	perf_install_in_context(ctx, event, cpu);
5611
	++ctx->generation;
5612
	mutex_unlock(&ctx->mutex);
5613

5614
	event->owner = current;
5615
	get_task_struct(current);
5616 5617 5618
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5619

5620 5621 5622 5623 5624 5625
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5626 5627 5628
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5629

5630
err_context:
5631
	put_ctx(ctx);
5632 5633
err_group_fd:
	fput_light(group_file, fput_needed);
5634 5635
err_alloc:
	free_event(event);
5636 5637
err_fd:
	put_unused_fd(event_fd);
5638
	return err;
T
Thomas Gleixner 已提交
5639 5640
}

5641 5642 5643 5644 5645 5646 5647 5648 5649
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5650 5651
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5652 5653
{
	struct perf_event_context *ctx;
5654
	struct perf_event *event;
5655 5656 5657 5658 5659 5660
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

5661 5662 5663 5664 5665 5666
	event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}

P
Peter Zijlstra 已提交
5667
	ctx = find_get_context(event->pmu, pid, cpu);
5668 5669
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5670
		goto err_free;
5671
	}
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5688 5689 5690
err_free:
	free_event(event);
err:
5691
	return ERR_PTR(err);
5692 5693 5694
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5695
static void sync_child_event(struct perf_event *child_event,
5696
			       struct task_struct *child)
5697
{
5698
	struct perf_event *parent_event = child_event->parent;
5699
	u64 child_val;
5700

5701 5702
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5703

P
Peter Zijlstra 已提交
5704
	child_val = perf_event_count(child_event);
5705 5706 5707 5708

	/*
	 * Add back the child's count to the parent's count:
	 */
5709
	atomic64_add(child_val, &parent_event->child_count);
5710 5711 5712 5713
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5714 5715

	/*
5716
	 * Remove this event from the parent's list
5717
	 */
5718 5719 5720 5721
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5722 5723

	/*
5724
	 * Release the parent event, if this was the last
5725 5726
	 * reference to it.
	 */
5727
	fput(parent_event->filp);
5728 5729
}

5730
static void
5731 5732
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5733
			 struct task_struct *child)
5734
{
5735
	struct perf_event *parent_event;
5736

5737
	perf_event_remove_from_context(child_event);
5738

5739
	parent_event = child_event->parent;
5740
	/*
5741
	 * It can happen that parent exits first, and has events
5742
	 * that are still around due to the child reference. These
5743
	 * events need to be zapped - but otherwise linger.
5744
	 */
5745 5746 5747
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5748
	}
5749 5750
}

P
Peter Zijlstra 已提交
5751
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5752
{
5753 5754
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5755
	unsigned long flags;
5756

P
Peter Zijlstra 已提交
5757
	if (likely(!child->perf_event_ctxp[ctxn])) {
5758
		perf_event_task(child, NULL, 0);
5759
		return;
P
Peter Zijlstra 已提交
5760
	}
5761

5762
	local_irq_save(flags);
5763 5764 5765 5766 5767 5768
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
P
Peter Zijlstra 已提交
5769
	child_ctx = child->perf_event_ctxp[ctxn];
5770
	__perf_event_task_sched_out(child_ctx);
5771 5772 5773

	/*
	 * Take the context lock here so that if find_get_context is
5774
	 * reading child->perf_event_ctxp, we wait until it has
5775 5776
	 * incremented the context's refcount before we do put_ctx below.
	 */
5777
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
5778
	child->perf_event_ctxp[ctxn] = NULL;
5779 5780 5781
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5782
	 * the events from it.
5783 5784
	 */
	unclone_ctx(child_ctx);
5785
	update_context_time(child_ctx);
5786
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5787 5788

	/*
5789 5790 5791
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5792
	 */
5793
	perf_event_task(child, child_ctx, 0);
5794

5795 5796 5797
	/*
	 * We can recurse on the same lock type through:
	 *
5798 5799 5800
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5801 5802 5803 5804 5805
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5806
	mutex_lock(&child_ctx->mutex);
5807

5808
again:
5809 5810 5811 5812 5813
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5814
				 group_entry)
5815
		__perf_event_exit_task(child_event, child_ctx, child);
5816 5817

	/*
5818
	 * If the last event was a group event, it will have appended all
5819 5820 5821
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5822 5823
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5824
		goto again;
5825 5826 5827 5828

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5829 5830
}

P
Peter Zijlstra 已提交
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5856
	perf_group_detach(event);
5857 5858 5859 5860
	list_del_event(event, ctx);
	free_event(event);
}

5861 5862
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
5863
 * perf_event_init_task below, used by fork() in case of fail.
5864
 */
5865
void perf_event_free_task(struct task_struct *task)
5866
{
P
Peter Zijlstra 已提交
5867
	struct perf_event_context *ctx;
5868
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5869
	int ctxn;
5870

P
Peter Zijlstra 已提交
5871 5872 5873 5874
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5875

P
Peter Zijlstra 已提交
5876
		mutex_lock(&ctx->mutex);
5877
again:
P
Peter Zijlstra 已提交
5878 5879 5880
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
5881

P
Peter Zijlstra 已提交
5882 5883 5884
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
5885

P
Peter Zijlstra 已提交
5886 5887 5888
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
5889

P
Peter Zijlstra 已提交
5890
		mutex_unlock(&ctx->mutex);
5891

P
Peter Zijlstra 已提交
5892 5893
		put_ctx(ctx);
	}
5894 5895
}

5896 5897 5898 5899 5900 5901 5902 5903
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
5916
	unsigned long flags;
P
Peter Zijlstra 已提交
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

	/*
	 * Link it up in the child's context:
	 */
5961
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5962
	add_event_to_ctx(child_event, child_ctx);
5963
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
}

6007 6008 6009
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6010
		   struct task_struct *child, int ctxn,
6011 6012 6013
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6014
	struct perf_event_context *child_ctx;
6015 6016 6017 6018

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6019 6020
	}

P
Peter Zijlstra 已提交
6021
       	child_ctx = child->perf_event_ctxp[ctxn];
6022 6023 6024 6025 6026 6027 6028
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6029

6030
		child_ctx = alloc_perf_context(event->pmu, child);
6031 6032
		if (!child_ctx)
			return -ENOMEM;
6033

P
Peter Zijlstra 已提交
6034
		child->perf_event_ctxp[ctxn] = child_ctx;
6035 6036 6037 6038 6039 6040 6041 6042 6043
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6044 6045
}

6046
/*
6047
 * Initialize the perf_event context in task_struct
6048
 */
P
Peter Zijlstra 已提交
6049
int perf_event_init_context(struct task_struct *child, int ctxn)
6050
{
6051
	struct perf_event_context *child_ctx, *parent_ctx;
6052 6053
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6054
	struct task_struct *parent = current;
6055
	int inherited_all = 1;
6056
	int ret = 0;
6057

P
Peter Zijlstra 已提交
6058
	child->perf_event_ctxp[ctxn] = NULL;
6059

6060 6061
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
6062

P
Peter Zijlstra 已提交
6063
	if (likely(!parent->perf_event_ctxp[ctxn]))
6064 6065
		return 0;

6066
	/*
6067 6068
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6069
	 */
P
Peter Zijlstra 已提交
6070
	parent_ctx = perf_pin_task_context(parent, ctxn);
6071

6072 6073 6074 6075 6076 6077 6078
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6079 6080 6081 6082
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6083
	mutex_lock(&parent_ctx->mutex);
6084 6085 6086 6087 6088

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6089
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6090 6091
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6092 6093 6094
		if (ret)
			break;
	}
6095

6096
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6097 6098
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6099
		if (ret)
6100
			break;
6101 6102
	}

P
Peter Zijlstra 已提交
6103
	child_ctx = child->perf_event_ctxp[ctxn];
6104

6105
	if (child_ctx && inherited_all) {
6106 6107 6108
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
6109 6110
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
6111
		 * because the list of events and the generation
6112
		 * count can't have changed since we took the mutex.
6113
		 */
6114 6115 6116
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6117
			child_ctx->parent_gen = parent_ctx->parent_gen;
6118 6119 6120 6121 6122
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6123 6124
	}

6125
	mutex_unlock(&parent_ctx->mutex);
6126

6127
	perf_unpin_context(parent_ctx);
6128

6129
	return ret;
6130 6131
}

P
Peter Zijlstra 已提交
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6148 6149
static void __init perf_event_init_all_cpus(void)
{
6150 6151
	struct swevent_htable *swhash;
	int cpu;
6152 6153

	for_each_possible_cpu(cpu) {
6154 6155
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6156 6157 6158
	}
}

6159
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6160
{
P
Peter Zijlstra 已提交
6161
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6162 6163 6164

	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6165 6166
		struct swevent_hlist *hlist;

6167 6168 6169
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6170
	}
6171
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6172 6173 6174
}

#ifdef CONFIG_HOTPLUG_CPU
P
Peter Zijlstra 已提交
6175
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6176
{
P
Peter Zijlstra 已提交
6177
	struct perf_event_context *ctx = __info;
6178
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6179

P
Peter Zijlstra 已提交
6180
	perf_pmu_rotate_stop(ctx->pmu);
6181

6182 6183 6184
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6185
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6186
}
P
Peter Zijlstra 已提交
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);

}

6206
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6207
{
6208
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6209

6210 6211 6212
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6213

P
Peter Zijlstra 已提交
6214
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6215 6216
}
#else
6217
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6218 6219 6220 6221 6222 6223 6224
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6225
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6226 6227

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6228
	case CPU_DOWN_FAILED:
6229
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6230 6231
		break;

P
Peter Zijlstra 已提交
6232
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6233
	case CPU_DOWN_PREPARE:
6234
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6235 6236 6237 6238 6239 6240 6241 6242 6243
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6244
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6245
{
6246
	perf_event_init_all_cpus();
6247 6248 6249 6250 6251 6252
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6253
}