perf_event.c 128.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
78
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
int __weak
87
hw_perf_group_sched_in(struct perf_event *group_leader,
88
	       struct perf_cpu_context *cpuctx,
89
	       struct perf_event_context *ctx)
90 91 92
{
	return 0;
}
T
Thomas Gleixner 已提交
93

94
void __weak perf_event_print_debug(void)	{ }
95

96
static DEFINE_PER_CPU(int, perf_disable_count);
97 98 99

void perf_disable(void)
{
P
Peter Zijlstra 已提交
100 101
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
102 103 104 105
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
106
	if (!--__get_cpu_var(perf_disable_count))
107 108 109
		hw_perf_enable();
}

110
static void get_ctx(struct perf_event_context *ctx)
111
{
112
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113 114
}

115 116
static void free_ctx(struct rcu_head *head)
{
117
	struct perf_event_context *ctx;
118

119
	ctx = container_of(head, struct perf_event_context, rcu_head);
120 121 122
	kfree(ctx);
}

123
static void put_ctx(struct perf_event_context *ctx)
124
{
125 126 127
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
128 129 130
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
131
	}
132 133
}

134
static void unclone_ctx(struct perf_event_context *ctx)
135 136 137 138 139 140 141
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

142
/*
143
 * If we inherit events we want to return the parent event id
144 145
 * to userspace.
 */
146
static u64 primary_event_id(struct perf_event *event)
147
{
148
	u64 id = event->id;
149

150 151
	if (event->parent)
		id = event->parent->id;
152 153 154 155

	return id;
}

156
/*
157
 * Get the perf_event_context for a task and lock it.
158 159 160
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
161
static struct perf_event_context *
162
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163
{
164
	struct perf_event_context *ctx;
165 166 167

	rcu_read_lock();
 retry:
168
	ctx = rcu_dereference(task->perf_event_ctxp);
169 170 171 172
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
173
		 * perf_event_task_sched_out, though the
174 175 176 177 178 179
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
180
		raw_spin_lock_irqsave(&ctx->lock, *flags);
181
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
182
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
183 184
			goto retry;
		}
185 186

		if (!atomic_inc_not_zero(&ctx->refcount)) {
187
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
188 189
			ctx = NULL;
		}
190 191 192 193 194 195 196 197 198 199
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
200
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201
{
202
	struct perf_event_context *ctx;
203 204 205 206 207
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
208
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 210 211 212
	}
	return ctx;
}

213
static void perf_unpin_context(struct perf_event_context *ctx)
214 215 216
{
	unsigned long flags;

217
	raw_spin_lock_irqsave(&ctx->lock, flags);
218
	--ctx->pin_count;
219
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
220 221 222
	put_ctx(ctx);
}

223 224
static inline u64 perf_clock(void)
{
225
	return cpu_clock(raw_smp_processor_id());
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

251 252 253 254 255 256
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
257 258 259 260 261 262 263 264 265

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

266 267 268 269 270 271 272 273 274
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

275
/*
276
 * Add a event from the lists for its context.
277 278
 * Must be called with ctx->mutex and ctx->lock held.
 */
279
static void
280
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
281
{
282
	struct perf_event *group_leader = event->group_leader;
283 284

	/*
285 286
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
287 288
	 * leader's sibling list:
	 */
289 290 291
	if (group_leader == event) {
		struct list_head *list;

292 293 294
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

295 296 297
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
298 299 300 301
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

302
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
303 304
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
305

306 307 308
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
309
		ctx->nr_stat++;
310 311
}

312
/*
313
 * Remove a event from the lists for its context.
314
 * Must be called with ctx->mutex and ctx->lock held.
315
 */
316
static void
317
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
318
{
319
	struct perf_event *sibling, *tmp;
320

321
	if (list_empty(&event->group_entry))
322
		return;
323 324
	ctx->nr_events--;
	if (event->attr.inherit_stat)
325
		ctx->nr_stat--;
326

327 328
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
329

330 331
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
332

333
	update_event_times(event);
334 335 336 337 338 339 340 341 342 343

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
344

345 346 347
	if (event->state > PERF_EVENT_STATE_FREE)
		return;

348
	/*
349 350
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
351 352
	 * to the context list directly:
	 */
353
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
354
		struct list_head *list;
355

356 357
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
358
		sibling->group_leader = sibling;
359 360 361

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
362 363 364
	}
}

365
static void
366
event_sched_out(struct perf_event *event,
367
		  struct perf_cpu_context *cpuctx,
368
		  struct perf_event_context *ctx)
369
{
370
	if (event->state != PERF_EVENT_STATE_ACTIVE)
371 372
		return;

373 374 375 376
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
377
	}
378 379 380
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
381

382
	if (!is_software_event(event))
383 384
		cpuctx->active_oncpu--;
	ctx->nr_active--;
385
	if (event->attr.exclusive || !cpuctx->active_oncpu)
386 387 388
		cpuctx->exclusive = 0;
}

389
static void
390
group_sched_out(struct perf_event *group_event,
391
		struct perf_cpu_context *cpuctx,
392
		struct perf_event_context *ctx)
393
{
394
	struct perf_event *event;
395

396
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
397 398
		return;

399
	event_sched_out(group_event, cpuctx, ctx);
400 401 402 403

	/*
	 * Schedule out siblings (if any):
	 */
404 405
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
406

407
	if (group_event->attr.exclusive)
408 409 410
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
411
/*
412
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
413
 *
414
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
415 416
 * remove it from the context list.
 */
417
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
418 419
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
420 421
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
422 423 424 425 426 427

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
428
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
429 430
		return;

431
	raw_spin_lock(&ctx->lock);
432 433
	/*
	 * Protect the list operation against NMI by disabling the
434
	 * events on a global level.
435 436
	 */
	perf_disable();
T
Thomas Gleixner 已提交
437

438
	event_sched_out(event, cpuctx, ctx);
439

440
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
441 442 443

	if (!ctx->task) {
		/*
444
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
445 446 447
		 * reservation:
		 */
		cpuctx->max_pertask =
448 449
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
450 451
	}

452
	perf_enable();
453
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
454 455 456 457
}


/*
458
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
459
 *
460
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
461
 *
462
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
463
 * call when the task is on a CPU.
464
 *
465 466
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
467 468
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
469
 * When called from perf_event_exit_task, it's OK because the
470
 * context has been detached from its task.
T
Thomas Gleixner 已提交
471
 */
472
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
473
{
474
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
475 476 477 478
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
479
		 * Per cpu events are removed via an smp call and
480
		 * the removal is always successful.
T
Thomas Gleixner 已提交
481
		 */
482 483 484
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
485 486 487 488
		return;
	}

retry:
489 490
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
491

492
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
493 494 495
	/*
	 * If the context is active we need to retry the smp call.
	 */
496
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
497
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
498 499 500 501 502
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
503
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
504 505
	 * succeed.
	 */
P
Peter Zijlstra 已提交
506
	if (!list_empty(&event->group_entry))
507
		list_del_event(event, ctx);
508
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
509 510
}

511
/*
512
 * Update total_time_enabled and total_time_running for all events in a group.
513
 */
514
static void update_group_times(struct perf_event *leader)
515
{
516
	struct perf_event *event;
517

518 519 520
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
521 522
}

523
/*
524
 * Cross CPU call to disable a performance event
525
 */
526
static void __perf_event_disable(void *info)
527
{
528
	struct perf_event *event = info;
529
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
530
	struct perf_event_context *ctx = event->ctx;
531 532

	/*
533 534
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
535
	 */
536
	if (ctx->task && cpuctx->task_ctx != ctx)
537 538
		return;

539
	raw_spin_lock(&ctx->lock);
540 541

	/*
542
	 * If the event is on, turn it off.
543 544
	 * If it is in error state, leave it in error state.
	 */
545
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
546
		update_context_time(ctx);
547 548 549
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
550
		else
551 552
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
553 554
	}

555
	raw_spin_unlock(&ctx->lock);
556 557 558
}

/*
559
 * Disable a event.
560
 *
561 562
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
563
 * remains valid.  This condition is satisifed when called through
564 565 566 567
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
568
 * is the current context on this CPU and preemption is disabled,
569
 * hence we can't get into perf_event_task_sched_out for this context.
570
 */
571
void perf_event_disable(struct perf_event *event)
572
{
573
	struct perf_event_context *ctx = event->ctx;
574 575 576 577
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
578
		 * Disable the event on the cpu that it's on
579
		 */
580 581
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
582 583 584 585
		return;
	}

 retry:
586
	task_oncpu_function_call(task, __perf_event_disable, event);
587

588
	raw_spin_lock_irq(&ctx->lock);
589
	/*
590
	 * If the event is still active, we need to retry the cross-call.
591
	 */
592
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
593
		raw_spin_unlock_irq(&ctx->lock);
594 595 596 597 598 599 600
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
601 602 603
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
604
	}
605

606
	raw_spin_unlock_irq(&ctx->lock);
607 608
}

609
static int
610
event_sched_in(struct perf_event *event,
611
		 struct perf_cpu_context *cpuctx,
612
		 struct perf_event_context *ctx)
613
{
614
	if (event->state <= PERF_EVENT_STATE_OFF)
615 616
		return 0;

617
	event->state = PERF_EVENT_STATE_ACTIVE;
618
	event->oncpu = smp_processor_id();
619 620 621 622 623
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

624 625 626
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
627 628 629
		return -EAGAIN;
	}

630
	event->tstamp_running += ctx->time - event->tstamp_stopped;
631

632
	if (!is_software_event(event))
633
		cpuctx->active_oncpu++;
634 635
	ctx->nr_active++;

636
	if (event->attr.exclusive)
637 638
		cpuctx->exclusive = 1;

639 640 641
	return 0;
}

642
static int
643
group_sched_in(struct perf_event *group_event,
644
	       struct perf_cpu_context *cpuctx,
645
	       struct perf_event_context *ctx)
646
{
647
	struct perf_event *event, *partial_group;
648 649
	int ret;

650
	if (group_event->state == PERF_EVENT_STATE_OFF)
651 652
		return 0;

653
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
654 655 656
	if (ret)
		return ret < 0 ? ret : 0;

657
	if (event_sched_in(group_event, cpuctx, ctx))
658 659 660 661 662
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
663
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
664
		if (event_sched_in(event, cpuctx, ctx)) {
665
			partial_group = event;
666 667 668 669 670 671 672 673 674 675 676
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
677 678
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
679
			break;
680
		event_sched_out(event, cpuctx, ctx);
681
	}
682
	event_sched_out(group_event, cpuctx, ctx);
683 684 685 686

	return -EAGAIN;
}

687
/*
688
 * Work out whether we can put this event group on the CPU now.
689
 */
690
static int group_can_go_on(struct perf_event *event,
691 692 693 694
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
695
	 * Groups consisting entirely of software events can always go on.
696
	 */
697
	if (event->group_flags & PERF_GROUP_SOFTWARE)
698 699 700
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
701
	 * events can go on.
702 703 704 705 706
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
707
	 * events on the CPU, it can't go on.
708
	 */
709
	if (event->attr.exclusive && cpuctx->active_oncpu)
710 711 712 713 714 715 716 717
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

718 719
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
720
{
721 722 723 724
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
725 726
}

T
Thomas Gleixner 已提交
727
/*
728
 * Cross CPU call to install and enable a performance event
729 730
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
731 732 733 734
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735 736 737
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
738
	int err;
T
Thomas Gleixner 已提交
739 740 741 742 743

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
744
	 * Or possibly this is the right context but it isn't
745
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
746
	 */
747
	if (ctx->task && cpuctx->task_ctx != ctx) {
748
		if (cpuctx->task_ctx || ctx->task != current)
749 750 751
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
752

753
	raw_spin_lock(&ctx->lock);
754
	ctx->is_active = 1;
755
	update_context_time(ctx);
T
Thomas Gleixner 已提交
756 757 758

	/*
	 * Protect the list operation against NMI by disabling the
759
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
760
	 */
761
	perf_disable();
T
Thomas Gleixner 已提交
762

763
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
764

765 766 767
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

768
	/*
769
	 * Don't put the event on if it is disabled or if
770 771
	 * it is in a group and the group isn't on.
	 */
772 773
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
774 775
		goto unlock;

776
	/*
777 778 779
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
780
	 */
781
	if (!group_can_go_on(event, cpuctx, 1))
782 783
		err = -EEXIST;
	else
784
		err = event_sched_in(event, cpuctx, ctx);
785

786 787
	if (err) {
		/*
788
		 * This event couldn't go on.  If it is in a group
789
		 * then we have to pull the whole group off.
790
		 * If the event group is pinned then put it in error state.
791
		 */
792
		if (leader != event)
793
			group_sched_out(leader, cpuctx, ctx);
794
		if (leader->attr.pinned) {
795
			update_group_times(leader);
796
			leader->state = PERF_EVENT_STATE_ERROR;
797
		}
798
	}
T
Thomas Gleixner 已提交
799

800
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
801 802
		cpuctx->max_pertask--;

803
 unlock:
804
	perf_enable();
805

806
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
807 808 809
}

/*
810
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
811
 *
812 813
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
814
 *
815
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
816 817
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
818 819
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
820 821
 */
static void
822 823
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
824 825 826 827 828 829
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
830
		 * Per cpu events are installed via an smp call and
831
		 * the install is always successful.
T
Thomas Gleixner 已提交
832 833
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
834
					 event, 1);
T
Thomas Gleixner 已提交
835 836 837 838 839
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
840
				 event);
T
Thomas Gleixner 已提交
841

842
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
843 844 845
	/*
	 * we need to retry the smp call.
	 */
846
	if (ctx->is_active && list_empty(&event->group_entry)) {
847
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
848 849 850 851 852
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
853
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
854 855
	 * succeed.
	 */
856 857
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
858
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
859 860
}

861
/*
862
 * Put a event into inactive state and update time fields.
863 864 865 866 867 868
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
869 870
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
871
{
872
	struct perf_event *sub;
873

874 875 876 877
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
878 879 880 881
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

882
/*
883
 * Cross CPU call to enable a performance event
884
 */
885
static void __perf_event_enable(void *info)
886
{
887
	struct perf_event *event = info;
888
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
889 890
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
891
	int err;
892

893
	/*
894 895
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
896
	 */
897
	if (ctx->task && cpuctx->task_ctx != ctx) {
898
		if (cpuctx->task_ctx || ctx->task != current)
899 900 901
			return;
		cpuctx->task_ctx = ctx;
	}
902

903
	raw_spin_lock(&ctx->lock);
904
	ctx->is_active = 1;
905
	update_context_time(ctx);
906

907
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
908
		goto unlock;
909
	__perf_event_mark_enabled(event, ctx);
910

911 912 913
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

914
	/*
915
	 * If the event is in a group and isn't the group leader,
916
	 * then don't put it on unless the group is on.
917
	 */
918
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
919
		goto unlock;
920

921
	if (!group_can_go_on(event, cpuctx, 1)) {
922
		err = -EEXIST;
923
	} else {
924
		perf_disable();
925
		if (event == leader)
926
			err = group_sched_in(event, cpuctx, ctx);
927
		else
928
			err = event_sched_in(event, cpuctx, ctx);
929
		perf_enable();
930
	}
931 932 933

	if (err) {
		/*
934
		 * If this event can't go on and it's part of a
935 936
		 * group, then the whole group has to come off.
		 */
937
		if (leader != event)
938
			group_sched_out(leader, cpuctx, ctx);
939
		if (leader->attr.pinned) {
940
			update_group_times(leader);
941
			leader->state = PERF_EVENT_STATE_ERROR;
942
		}
943 944 945
	}

 unlock:
946
	raw_spin_unlock(&ctx->lock);
947 948 949
}

/*
950
 * Enable a event.
951
 *
952 953
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
954
 * remains valid.  This condition is satisfied when called through
955 956
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
957
 */
958
void perf_event_enable(struct perf_event *event)
959
{
960
	struct perf_event_context *ctx = event->ctx;
961 962 963 964
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
965
		 * Enable the event on the cpu that it's on
966
		 */
967 968
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
969 970 971
		return;
	}

972
	raw_spin_lock_irq(&ctx->lock);
973
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 975 976
		goto out;

	/*
977 978
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
979 980 981 982
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
983 984
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
985 986

 retry:
987
	raw_spin_unlock_irq(&ctx->lock);
988
	task_oncpu_function_call(task, __perf_event_enable, event);
989

990
	raw_spin_lock_irq(&ctx->lock);
991 992

	/*
993
	 * If the context is active and the event is still off,
994 995
	 * we need to retry the cross-call.
	 */
996
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 998 999 1000 1001 1002
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1003 1004
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1005

1006
 out:
1007
	raw_spin_unlock_irq(&ctx->lock);
1008 1009
}

1010
static int perf_event_refresh(struct perf_event *event, int refresh)
1011
{
1012
	/*
1013
	 * not supported on inherited events
1014
	 */
1015
	if (event->attr.inherit)
1016 1017
		return -EINVAL;

1018 1019
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1020 1021

	return 0;
1022 1023
}

1024 1025 1026 1027 1028 1029 1030 1031 1032
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1033
{
1034
	struct perf_event *event;
1035

1036
	raw_spin_lock(&ctx->lock);
1037
	ctx->is_active = 0;
1038
	if (likely(!ctx->nr_events))
1039
		goto out;
1040
	update_context_time(ctx);
1041

1042
	perf_disable();
1043 1044 1045 1046
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1047 1048 1049
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1050
	if (event_type & EVENT_FLEXIBLE)
1051
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1052
			group_sched_out(event, cpuctx, ctx);
1053 1054

 out_enable:
1055
	perf_enable();
1056
 out:
1057
	raw_spin_unlock(&ctx->lock);
1058 1059
}

1060 1061 1062
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1063 1064 1065 1066
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1067
 * in them directly with an fd; we can only enable/disable all
1068
 * events via prctl, or enable/disable all events in a family
1069 1070
 * via ioctl, which will have the same effect on both contexts.
 */
1071 1072
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1073 1074
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1075
		&& ctx1->parent_gen == ctx2->parent_gen
1076
		&& !ctx1->pin_count && !ctx2->pin_count;
1077 1078
}

1079 1080
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1081 1082 1083
{
	u64 value;

1084
	if (!event->attr.inherit_stat)
1085 1086 1087
		return;

	/*
1088
	 * Update the event value, we cannot use perf_event_read()
1089 1090
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1091
	 * we know the event must be on the current CPU, therefore we
1092 1093
	 * don't need to use it.
	 */
1094 1095
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1096 1097
		event->pmu->read(event);
		/* fall-through */
1098

1099 1100
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1101 1102 1103 1104 1105 1106 1107
		break;

	default:
		break;
	}

	/*
1108
	 * In order to keep per-task stats reliable we need to flip the event
1109 1110
	 * values when we flip the contexts.
	 */
1111 1112 1113
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1114

1115 1116
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1117

1118
	/*
1119
	 * Since we swizzled the values, update the user visible data too.
1120
	 */
1121 1122
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1123 1124 1125 1126 1127
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1128 1129
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1130
{
1131
	struct perf_event *event, *next_event;
1132 1133 1134 1135

	if (!ctx->nr_stat)
		return;

1136 1137
	update_context_time(ctx);

1138 1139
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1140

1141 1142
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1143

1144 1145
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1146

1147
		__perf_event_sync_stat(event, next_event);
1148

1149 1150
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1151 1152 1153
	}
}

T
Thomas Gleixner 已提交
1154
/*
1155
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1156 1157
 * with interrupts disabled.
 *
1158
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1159
 *
I
Ingo Molnar 已提交
1160
 * This does not protect us against NMI, but disable()
1161 1162 1163
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1164
 */
1165
void perf_event_task_sched_out(struct task_struct *task,
1166
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1167
{
1168
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1169 1170 1171
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1172
	int do_switch = 1;
T
Thomas Gleixner 已提交
1173

1174
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1175

1176
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1177 1178
		return;

1179 1180
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1181
	next_ctx = next->perf_event_ctxp;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1193 1194
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1195
		if (context_equiv(ctx, next_ctx)) {
1196 1197
			/*
			 * XXX do we need a memory barrier of sorts
1198
			 * wrt to rcu_dereference() of perf_event_ctxp
1199
			 */
1200 1201
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1202 1203 1204
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1205

1206
			perf_event_sync_stat(ctx, next_ctx);
1207
		}
1208 1209
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1210
	}
1211
	rcu_read_unlock();
1212

1213
	if (do_switch) {
1214
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1215 1216
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1217 1218
}

1219 1220
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1221 1222 1223
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1224 1225
	if (!cpuctx->task_ctx)
		return;
1226 1227 1228 1229

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1230
	ctx_sched_out(ctx, cpuctx, event_type);
1231 1232 1233
	cpuctx->task_ctx = NULL;
}

1234 1235 1236
/*
 * Called with IRQs disabled
 */
1237
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1238
{
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1249 1250
}

1251
static void
1252
ctx_pinned_sched_in(struct perf_event_context *ctx,
1253
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1254
{
1255
	struct perf_event *event;
T
Thomas Gleixner 已提交
1256

1257 1258
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1259
			continue;
1260
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1261 1262
			continue;

1263
		if (group_can_go_on(event, cpuctx, 1))
1264
			group_sched_in(event, cpuctx, ctx);
1265 1266 1267 1268 1269

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1270 1271 1272
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1273
		}
1274
	}
1275 1276 1277 1278
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1279
		      struct perf_cpu_context *cpuctx)
1280 1281 1282
{
	struct perf_event *event;
	int can_add_hw = 1;
1283

1284 1285 1286
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1287
			continue;
1288 1289
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1290
		 * of events:
1291
		 */
1292
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1293 1294
			continue;

1295
		if (group_can_go_on(event, cpuctx, can_add_hw))
1296
			if (group_sched_in(event, cpuctx, ctx))
1297
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1298
	}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1320
		ctx_pinned_sched_in(ctx, cpuctx);
1321 1322 1323

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1324
		ctx_flexible_sched_in(ctx, cpuctx);
1325

1326
	perf_enable();
1327
 out:
1328
	raw_spin_unlock(&ctx->lock);
1329 1330
}

1331 1332 1333 1334 1335 1336 1337 1338
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1352
/*
1353
 * Called from scheduler to add the events of the current task
1354 1355
 * with interrupts disabled.
 *
1356
 * We restore the event value and then enable it.
1357 1358
 *
 * This does not protect us against NMI, but enable()
1359 1360 1361
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1362
 */
1363
void perf_event_task_sched_in(struct task_struct *task)
1364
{
1365 1366
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1367

1368 1369
	if (likely(!ctx))
		return;
1370

1371 1372 1373
	if (cpuctx->task_ctx == ctx)
		return;

1374 1375
	perf_disable();

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1388 1389

	perf_enable();
1390 1391
}

1392 1393
#define MAX_INTERRUPTS (~0ULL)

1394
static void perf_log_throttle(struct perf_event *event, int enable);
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1482
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1483
{
1484
	struct hw_perf_event *hwc = &event->hw;
1485 1486 1487
	u64 period, sample_period;
	s64 delta;

1488
	period = perf_calculate_period(event, nsec, count);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1499 1500 1501

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1502
		perf_event_stop(event);
1503
		atomic64_set(&hwc->period_left, 0);
1504
		perf_event_start(event);
1505 1506
		perf_enable();
	}
1507 1508
}

1509
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1510
{
1511 1512
	struct perf_event *event;
	struct hw_perf_event *hwc;
1513 1514
	u64 interrupts, now;
	s64 delta;
1515

1516
	raw_spin_lock(&ctx->lock);
1517
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1518
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1519 1520
			continue;

1521 1522 1523
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1524
		hwc = &event->hw;
1525 1526 1527

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1528

1529
		/*
1530
		 * unthrottle events on the tick
1531
		 */
1532
		if (interrupts == MAX_INTERRUPTS) {
1533
			perf_log_throttle(event, 1);
1534
			perf_disable();
1535
			event->pmu->unthrottle(event);
1536
			perf_enable();
1537 1538
		}

1539
		if (!event->attr.freq || !event->attr.sample_freq)
1540 1541
			continue;

1542
		perf_disable();
1543 1544 1545 1546
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1547

1548 1549
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1550
		perf_enable();
1551
	}
1552
	raw_spin_unlock(&ctx->lock);
1553 1554
}

1555
/*
1556
 * Round-robin a context's events:
1557
 */
1558
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1559
{
1560
	raw_spin_lock(&ctx->lock);
1561 1562 1563 1564

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1565
	raw_spin_unlock(&ctx->lock);
1566 1567
}

1568
void perf_event_task_tick(struct task_struct *curr)
1569
{
1570
	struct perf_cpu_context *cpuctx;
1571
	struct perf_event_context *ctx;
1572
	int rotate = 0;
1573

1574
	if (!atomic_read(&nr_events))
1575 1576
		return;

1577
	cpuctx = &__get_cpu_var(perf_cpu_context);
1578 1579 1580
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1581

1582 1583 1584
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1585

1586
	perf_ctx_adjust_freq(&cpuctx->ctx);
1587
	if (ctx)
1588
		perf_ctx_adjust_freq(ctx);
1589

1590 1591 1592 1593
	if (!rotate)
		return;

	perf_disable();
1594
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1595
	if (ctx)
1596
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1597

1598
	rotate_ctx(&cpuctx->ctx);
1599 1600
	if (ctx)
		rotate_ctx(ctx);
1601

1602
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1603
	if (ctx)
1604
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1605
	perf_enable();
T
Thomas Gleixner 已提交
1606 1607
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1623
/*
1624
 * Enable all of a task's events that have been marked enable-on-exec.
1625 1626
 * This expects task == current.
 */
1627
static void perf_event_enable_on_exec(struct task_struct *task)
1628
{
1629 1630
	struct perf_event_context *ctx;
	struct perf_event *event;
1631 1632
	unsigned long flags;
	int enabled = 0;
1633
	int ret;
1634 1635

	local_irq_save(flags);
1636 1637
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1638 1639
		goto out;

1640
	__perf_event_task_sched_out(ctx);
1641

1642
	raw_spin_lock(&ctx->lock);
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1654 1655 1656
	}

	/*
1657
	 * Unclone this context if we enabled any event.
1658
	 */
1659 1660
	if (enabled)
		unclone_ctx(ctx);
1661

1662
	raw_spin_unlock(&ctx->lock);
1663

1664
	perf_event_task_sched_in(task);
1665 1666 1667 1668
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1669
/*
1670
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1671
 */
1672
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1673
{
1674
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1675 1676
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1677

1678 1679 1680 1681
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1682 1683
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1684 1685 1686 1687
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1688
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1689
	update_context_time(ctx);
1690
	update_event_times(event);
1691
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1692

P
Peter Zijlstra 已提交
1693
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1694 1695
}

1696
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1697 1698
{
	/*
1699 1700
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1701
	 */
1702 1703 1704 1705
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1706 1707 1708
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1709
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1710
		update_context_time(ctx);
1711
		update_event_times(event);
1712
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1713 1714
	}

1715
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1716 1717
}

1718
/*
1719
 * Initialize the perf_event context in a task_struct:
1720 1721
 */
static void
1722
__perf_event_init_context(struct perf_event_context *ctx,
1723 1724
			    struct task_struct *task)
{
1725
	raw_spin_lock_init(&ctx->lock);
1726
	mutex_init(&ctx->mutex);
1727 1728
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1729 1730 1731 1732 1733
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1734
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1735
{
1736
	struct perf_event_context *ctx;
1737
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1738
	struct task_struct *task;
1739
	unsigned long flags;
1740
	int err;
T
Thomas Gleixner 已提交
1741

1742
	if (pid == -1 && cpu != -1) {
1743
		/* Must be root to operate on a CPU event: */
1744
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1745 1746
			return ERR_PTR(-EACCES);

1747
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1748 1749 1750
			return ERR_PTR(-EINVAL);

		/*
1751
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1752 1753 1754
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1755
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1756 1757 1758 1759
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1760
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1777
	/*
1778
	 * Can't attach events to a dying task.
1779 1780 1781 1782 1783
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1784
	/* Reuse ptrace permission checks for now. */
1785 1786 1787 1788 1789
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1790
	ctx = perf_lock_task_context(task, &flags);
1791
	if (ctx) {
1792
		unclone_ctx(ctx);
1793
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1794 1795
	}

1796
	if (!ctx) {
1797
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1798 1799 1800
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1801
		__perf_event_init_context(ctx, task);
1802
		get_ctx(ctx);
1803
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1804 1805 1806 1807 1808
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1809
			goto retry;
1810
		}
1811
		get_task_struct(task);
1812 1813
	}

1814
	put_task_struct(task);
T
Thomas Gleixner 已提交
1815
	return ctx;
1816 1817 1818 1819

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1820 1821
}

L
Li Zefan 已提交
1822 1823
static void perf_event_free_filter(struct perf_event *event);

1824
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1825
{
1826
	struct perf_event *event;
P
Peter Zijlstra 已提交
1827

1828 1829 1830
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1831
	perf_event_free_filter(event);
1832
	kfree(event);
P
Peter Zijlstra 已提交
1833 1834
}

1835
static void perf_pending_sync(struct perf_event *event);
1836

1837
static void free_event(struct perf_event *event)
1838
{
1839
	perf_pending_sync(event);
1840

1841 1842 1843 1844 1845 1846 1847 1848
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1849
	}
1850

1851 1852 1853
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1854 1855
	}

1856 1857
	if (event->destroy)
		event->destroy(event);
1858

1859 1860
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1861 1862
}

1863
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1864
{
1865
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1866

1867 1868
	event->state = PERF_EVENT_STATE_FREE;

1869
	WARN_ON_ONCE(ctx->parent_ctx);
1870
	mutex_lock(&ctx->mutex);
1871
	perf_event_remove_from_context(event);
1872
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1873

1874 1875 1876 1877
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1878

1879
	free_event(event);
T
Thomas Gleixner 已提交
1880 1881 1882

	return 0;
}
1883
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1884

1885 1886 1887 1888
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1889
{
1890
	struct perf_event *event = file->private_data;
1891

1892
	file->private_data = NULL;
1893

1894
	return perf_event_release_kernel(event);
1895 1896
}

1897
static int perf_event_read_size(struct perf_event *event)
1898 1899 1900 1901 1902
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1903
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1904 1905
		size += sizeof(u64);

1906
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1907 1908
		size += sizeof(u64);

1909
	if (event->attr.read_format & PERF_FORMAT_ID)
1910 1911
		entry += sizeof(u64);

1912 1913
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1914 1915 1916 1917 1918 1919 1920 1921
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1922
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1923
{
1924
	struct perf_event *child;
1925 1926
	u64 total = 0;

1927 1928 1929
	*enabled = 0;
	*running = 0;

1930
	mutex_lock(&event->child_mutex);
1931
	total += perf_event_read(event);
1932 1933 1934 1935 1936 1937
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1938
		total += perf_event_read(child);
1939 1940 1941
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1942
	mutex_unlock(&event->child_mutex);
1943 1944 1945

	return total;
}
1946
EXPORT_SYMBOL_GPL(perf_event_read_value);
1947

1948
static int perf_event_read_group(struct perf_event *event,
1949 1950
				   u64 read_format, char __user *buf)
{
1951
	struct perf_event *leader = event->group_leader, *sub;
1952 1953
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1954
	u64 values[5];
1955
	u64 count, enabled, running;
1956

1957
	mutex_lock(&ctx->mutex);
1958
	count = perf_event_read_value(leader, &enabled, &running);
1959 1960

	values[n++] = 1 + leader->nr_siblings;
1961 1962 1963 1964
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1965 1966 1967
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1968 1969 1970 1971

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1972
		goto unlock;
1973

1974
	ret = size;
1975

1976
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1977
		n = 0;
1978

1979
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1980 1981 1982 1983 1984
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1985
		if (copy_to_user(buf + ret, values, size)) {
1986 1987 1988
			ret = -EFAULT;
			goto unlock;
		}
1989 1990

		ret += size;
1991
	}
1992 1993
unlock:
	mutex_unlock(&ctx->mutex);
1994

1995
	return ret;
1996 1997
}

1998
static int perf_event_read_one(struct perf_event *event,
1999 2000
				 u64 read_format, char __user *buf)
{
2001
	u64 enabled, running;
2002 2003 2004
	u64 values[4];
	int n = 0;

2005 2006 2007 2008 2009
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2010
	if (read_format & PERF_FORMAT_ID)
2011
		values[n++] = primary_event_id(event);
2012 2013 2014 2015 2016 2017 2018

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2019
/*
2020
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2021 2022
 */
static ssize_t
2023
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2024
{
2025
	u64 read_format = event->attr.read_format;
2026
	int ret;
T
Thomas Gleixner 已提交
2027

2028
	/*
2029
	 * Return end-of-file for a read on a event that is in
2030 2031 2032
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2033
	if (event->state == PERF_EVENT_STATE_ERROR)
2034 2035
		return 0;

2036
	if (count < perf_event_read_size(event))
2037 2038
		return -ENOSPC;

2039
	WARN_ON_ONCE(event->ctx->parent_ctx);
2040
	if (read_format & PERF_FORMAT_GROUP)
2041
		ret = perf_event_read_group(event, read_format, buf);
2042
	else
2043
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2044

2045
	return ret;
T
Thomas Gleixner 已提交
2046 2047 2048 2049 2050
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2051
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2052

2053
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2054 2055 2056 2057
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2058
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2059
	struct perf_mmap_data *data;
2060
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2061 2062

	rcu_read_lock();
2063
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2064
	if (data)
2065
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2066
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2067

2068
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2069 2070 2071 2072

	return events;
}

2073
static void perf_event_reset(struct perf_event *event)
2074
{
2075 2076 2077
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2078 2079
}

2080
/*
2081 2082 2083 2084
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2085
 */
2086 2087
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2088
{
2089
	struct perf_event *child;
P
Peter Zijlstra 已提交
2090

2091 2092 2093 2094
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2095
		func(child);
2096
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2097 2098
}

2099 2100
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2101
{
2102 2103
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2104

2105 2106
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2107
	event = event->group_leader;
2108

2109 2110 2111 2112
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2113
	mutex_unlock(&ctx->mutex);
2114 2115
}

2116
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2117
{
2118
	struct perf_event_context *ctx = event->ctx;
2119 2120 2121 2122
	unsigned long size;
	int ret = 0;
	u64 value;

2123
	if (!event->attr.sample_period)
2124 2125 2126 2127 2128 2129 2130 2131 2132
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2133
	raw_spin_lock_irq(&ctx->lock);
2134 2135
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2136 2137 2138 2139
			ret = -EINVAL;
			goto unlock;
		}

2140
		event->attr.sample_freq = value;
2141
	} else {
2142 2143
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2144 2145
	}
unlock:
2146
	raw_spin_unlock_irq(&ctx->lock);
2147 2148 2149 2150

	return ret;
}

L
Li Zefan 已提交
2151 2152
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2153

2154 2155
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2156 2157
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2158
	u32 flags = arg;
2159 2160

	switch (cmd) {
2161 2162
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2163
		break;
2164 2165
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2166
		break;
2167 2168
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2169
		break;
P
Peter Zijlstra 已提交
2170

2171 2172
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2173

2174 2175
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2176

2177 2178
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2179

L
Li Zefan 已提交
2180 2181 2182
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2183
	default:
P
Peter Zijlstra 已提交
2184
		return -ENOTTY;
2185
	}
P
Peter Zijlstra 已提交
2186 2187

	if (flags & PERF_IOC_FLAG_GROUP)
2188
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2189
	else
2190
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2191 2192

	return 0;
2193 2194
}

2195
int perf_event_task_enable(void)
2196
{
2197
	struct perf_event *event;
2198

2199 2200 2201 2202
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2203 2204 2205 2206

	return 0;
}

2207
int perf_event_task_disable(void)
2208
{
2209
	struct perf_event *event;
2210

2211 2212 2213 2214
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2215 2216 2217 2218

	return 0;
}

2219 2220
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2221 2222
#endif

2223
static int perf_event_index(struct perf_event *event)
2224
{
2225
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2226 2227
		return 0;

2228
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2229 2230
}

2231 2232 2233 2234 2235
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2236
void perf_event_update_userpage(struct perf_event *event)
2237
{
2238
	struct perf_event_mmap_page *userpg;
2239
	struct perf_mmap_data *data;
2240 2241

	rcu_read_lock();
2242
	data = rcu_dereference(event->data);
2243 2244 2245 2246
	if (!data)
		goto unlock;

	userpg = data->user_page;
2247

2248 2249 2250 2251 2252
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2253
	++userpg->lock;
2254
	barrier();
2255 2256 2257 2258
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2259

2260 2261
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2262

2263 2264
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2265

2266
	barrier();
2267
	++userpg->lock;
2268
	preempt_enable();
2269
unlock:
2270
	rcu_read_unlock();
2271 2272
}

2273
static unsigned long perf_data_size(struct perf_mmap_data *data)
2274
{
2275 2276
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2277

2278
#ifndef CONFIG_PERF_USE_VMALLOC
2279

2280 2281 2282
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2283

2284 2285 2286 2287 2288
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2289

2290 2291
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2292

2293
	return virt_to_page(data->data_pages[pgoff - 1]);
2294 2295
}

2296 2297
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2298 2299 2300 2301 2302
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2303
	WARN_ON(atomic_read(&event->mmap_count));
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2322
	data->data_order = 0;
2323 2324
	data->nr_pages = nr_pages;

2325
	return data;
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2337
	return NULL;
2338 2339
}

2340 2341
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2342
	struct page *page = virt_to_page((void *)addr);
2343 2344 2345 2346 2347

	page->mapping = NULL;
	__free_page(page);
}

2348
static void perf_mmap_data_free(struct perf_mmap_data *data)
2349 2350 2351
{
	int i;

2352
	perf_mmap_free_page((unsigned long)data->user_page);
2353
	for (i = 0; i < data->nr_pages; i++)
2354
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2355
	kfree(data);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2396
	kfree(data);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2412

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2490
		data->watermark = max_size / 2;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2502 2503
}

2504
static void perf_mmap_data_release(struct perf_event *event)
2505
{
2506
	struct perf_mmap_data *data = event->data;
2507

2508
	WARN_ON(atomic_read(&event->mmap_count));
2509

2510
	rcu_assign_pointer(event->data, NULL);
2511
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2512 2513 2514 2515
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2516
	struct perf_event *event = vma->vm_file->private_data;
2517

2518
	atomic_inc(&event->mmap_count);
2519 2520 2521 2522
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2523
	struct perf_event *event = vma->vm_file->private_data;
2524

2525 2526
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2527
		unsigned long size = perf_data_size(event->data);
2528 2529
		struct user_struct *user = current_user();

2530
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2531
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2532
		perf_mmap_data_release(event);
2533
		mutex_unlock(&event->mmap_mutex);
2534
	}
2535 2536
}

2537
static const struct vm_operations_struct perf_mmap_vmops = {
2538 2539 2540 2541
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2542 2543 2544 2545
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2546
	struct perf_event *event = file->private_data;
2547
	unsigned long user_locked, user_lock_limit;
2548
	struct user_struct *user = current_user();
2549
	unsigned long locked, lock_limit;
2550
	struct perf_mmap_data *data;
2551 2552
	unsigned long vma_size;
	unsigned long nr_pages;
2553
	long user_extra, extra;
2554
	int ret = 0;
2555

2556
	if (!(vma->vm_flags & VM_SHARED))
2557
		return -EINVAL;
2558 2559 2560 2561

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2562 2563 2564 2565 2566
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2567 2568
		return -EINVAL;

2569
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2570 2571
		return -EINVAL;

2572 2573
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2574

2575 2576 2577
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2578 2579 2580 2581
		ret = -EINVAL;
		goto unlock;
	}

2582 2583
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2584 2585 2586 2587
			ret = -EINVAL;
		goto unlock;
	}

2588
	user_extra = nr_pages + 1;
2589
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2590 2591 2592 2593 2594 2595

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2596
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2597

2598 2599 2600
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2601

2602
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2603
	lock_limit >>= PAGE_SHIFT;
2604
	locked = vma->vm_mm->locked_vm + extra;
2605

2606 2607
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2608 2609 2610
		ret = -EPERM;
		goto unlock;
	}
2611

2612
	WARN_ON(event->data);
2613 2614 2615 2616

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2617 2618
		goto unlock;

2619 2620 2621
	ret = 0;
	perf_mmap_data_init(event, data);

2622
	atomic_set(&event->mmap_count, 1);
2623
	atomic_long_add(user_extra, &user->locked_vm);
2624
	vma->vm_mm->locked_vm += extra;
2625
	event->data->nr_locked = extra;
2626
	if (vma->vm_flags & VM_WRITE)
2627
		event->data->writable = 1;
2628

2629
unlock:
2630
	mutex_unlock(&event->mmap_mutex);
2631 2632 2633

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2634 2635

	return ret;
2636 2637
}

P
Peter Zijlstra 已提交
2638 2639 2640
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2641
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2642 2643 2644
	int retval;

	mutex_lock(&inode->i_mutex);
2645
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2646 2647 2648 2649 2650 2651 2652 2653
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2654
static const struct file_operations perf_fops = {
2655
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2656 2657 2658
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2659 2660
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2661
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2662
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2663 2664
};

2665
/*
2666
 * Perf event wakeup
2667 2668 2669 2670 2671
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2672
void perf_event_wakeup(struct perf_event *event)
2673
{
2674
	wake_up_all(&event->waitq);
2675

2676 2677 2678
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2679
	}
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2691
static void perf_pending_event(struct perf_pending_entry *entry)
2692
{
2693 2694
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2695

2696 2697 2698
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2699 2700
	}

2701 2702 2703
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2704 2705 2706
	}
}

2707
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2708

2709
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2710 2711 2712
	PENDING_TAIL,
};

2713 2714
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2715
{
2716
	struct perf_pending_entry **head;
2717

2718
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2719 2720
		return;

2721 2722 2723
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2724 2725

	do {
2726 2727
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2728

2729
	set_perf_event_pending();
2730

2731
	put_cpu_var(perf_pending_head);
2732 2733 2734 2735
}

static int __perf_pending_run(void)
{
2736
	struct perf_pending_entry *list;
2737 2738
	int nr = 0;

2739
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2740
	while (list != PENDING_TAIL) {
2741 2742
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2743 2744 2745

		list = list->next;

2746 2747
		func = entry->func;
		entry->next = NULL;
2748 2749 2750 2751 2752 2753 2754
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2755
		func(entry);
2756 2757 2758 2759 2760 2761
		nr++;
	}

	return nr;
}

2762
static inline int perf_not_pending(struct perf_event *event)
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2777
	return event->pending.next == NULL;
2778 2779
}

2780
static void perf_pending_sync(struct perf_event *event)
2781
{
2782
	wait_event(event->waitq, perf_not_pending(event));
2783 2784
}

2785
void perf_event_do_pending(void)
2786 2787 2788 2789
{
	__perf_pending_run();
}

2790 2791 2792 2793
/*
 * Callchain support -- arch specific
 */

2794
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2795 2796 2797 2798
{
	return NULL;
}

2799 2800 2801 2802
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2803

2804

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

2826 2827 2828
/*
 * Output
 */
2829 2830
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2831 2832 2833 2834 2835 2836
{
	unsigned long mask;

	if (!data->writable)
		return true;

2837
	mask = perf_data_size(data) - 1;
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2848
static void perf_output_wakeup(struct perf_output_handle *handle)
2849
{
2850 2851
	atomic_set(&handle->data->poll, POLL_IN);

2852
	if (handle->nmi) {
2853 2854 2855
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2856
	} else
2857
		perf_event_wakeup(handle->event);
2858 2859
}

2860 2861 2862
/*
 * Curious locking construct.
 *
2863 2864
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2865 2866 2867 2868 2869 2870
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2871
 * event_id completes.
2872 2873 2874 2875
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2876
	int cur, cpu = get_cpu();
2877 2878 2879

	handle->locked = 0;

2880 2881 2882 2883 2884 2885 2886 2887
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2888 2889

		cpu_relax();
2890
	}
2891 2892 2893 2894 2895
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2896 2897
	unsigned long head;
	int cpu;
2898

2899
	data->done_head = data->head;
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2910
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2911 2912 2913
		data->user_page->data_head = head;

	/*
2914
	 * NMI can happen here, which means we can miss a done_head update.
2915 2916
	 */

2917
	cpu = atomic_xchg(&data->lock, -1);
2918 2919 2920 2921 2922
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2923
	if (unlikely(atomic_long_read(&data->done_head))) {
2924 2925 2926
		/*
		 * Since we had it locked, we can lock it again.
		 */
2927
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2928 2929 2930 2931 2932
			cpu_relax();

		goto again;
	}

2933
	if (atomic_xchg(&data->wakeup, 0))
2934 2935
		perf_output_wakeup(handle);
out:
2936
	put_cpu();
2937 2938
}

2939 2940
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2941 2942
{
	unsigned int pages_mask;
2943
	unsigned long offset;
2944 2945 2946 2947 2948 2949 2950 2951
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2952 2953
		unsigned long page_offset;
		unsigned long page_size;
2954 2955 2956
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2957 2958 2959
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2977
int perf_output_begin(struct perf_output_handle *handle,
2978
		      struct perf_event *event, unsigned int size,
2979
		      int nmi, int sample)
2980
{
2981
	struct perf_event *output_event;
2982
	struct perf_mmap_data *data;
2983
	unsigned long tail, offset, head;
2984 2985 2986 2987 2988 2989
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2990

2991
	rcu_read_lock();
2992
	/*
2993
	 * For inherited events we send all the output towards the parent.
2994
	 */
2995 2996
	if (event->parent)
		event = event->parent;
2997

2998 2999 3000
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
3001

3002
	data = rcu_dereference(event->data);
3003 3004 3005
	if (!data)
		goto out;

3006
	handle->data	= data;
3007
	handle->event	= event;
3008 3009
	handle->nmi	= nmi;
	handle->sample	= sample;
3010

3011
	if (!data->nr_pages)
3012
		goto fail;
3013

3014 3015 3016 3017
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

3018 3019
	perf_output_lock(handle);

3020
	do {
3021 3022 3023 3024 3025 3026 3027
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3028
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
3029
		head += size;
3030
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3031
			goto fail;
3032
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3033

3034
	handle->offset	= offset;
3035
	handle->head	= head;
3036

3037
	if (head - tail > data->watermark)
3038
		atomic_set(&data->wakeup, 1);
3039

3040
	if (have_lost) {
3041
		lost_event.header.type = PERF_RECORD_LOST;
3042 3043
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3044
		lost_event.id          = event->id;
3045 3046 3047 3048 3049
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3050
	return 0;
3051

3052
fail:
3053 3054
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3055 3056
out:
	rcu_read_unlock();
3057

3058 3059
	return -ENOSPC;
}
3060

3061
void perf_output_end(struct perf_output_handle *handle)
3062
{
3063
	struct perf_event *event = handle->event;
3064 3065
	struct perf_mmap_data *data = handle->data;

3066
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3067

3068
	if (handle->sample && wakeup_events) {
3069
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3070
		if (events >= wakeup_events) {
3071
			atomic_sub(wakeup_events, &data->events);
3072
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3073
		}
3074 3075 3076
	}

	perf_output_unlock(handle);
3077
	rcu_read_unlock();
3078 3079
}

3080
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3081 3082
{
	/*
3083
	 * only top level events have the pid namespace they were created in
3084
	 */
3085 3086
	if (event->parent)
		event = event->parent;
3087

3088
	return task_tgid_nr_ns(p, event->ns);
3089 3090
}

3091
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3092 3093
{
	/*
3094
	 * only top level events have the pid namespace they were created in
3095
	 */
3096 3097
	if (event->parent)
		event = event->parent;
3098

3099
	return task_pid_nr_ns(p, event->ns);
3100 3101
}

3102
static void perf_output_read_one(struct perf_output_handle *handle,
3103
				 struct perf_event *event)
3104
{
3105
	u64 read_format = event->attr.read_format;
3106 3107 3108
	u64 values[4];
	int n = 0;

3109
	values[n++] = atomic64_read(&event->count);
3110
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3111 3112
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3113 3114
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3115 3116
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3117 3118
	}
	if (read_format & PERF_FORMAT_ID)
3119
		values[n++] = primary_event_id(event);
3120 3121 3122 3123 3124

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3125
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3126 3127
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3128
			    struct perf_event *event)
3129
{
3130 3131
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3143
	if (leader != event)
3144 3145 3146 3147
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3148
		values[n++] = primary_event_id(leader);
3149 3150 3151

	perf_output_copy(handle, values, n * sizeof(u64));

3152
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3153 3154
		n = 0;

3155
		if (sub != event)
3156 3157 3158 3159
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3160
			values[n++] = primary_event_id(sub);
3161 3162 3163 3164 3165 3166

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3167
			     struct perf_event *event)
3168
{
3169 3170
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3171
	else
3172
		perf_output_read_one(handle, event);
3173 3174
}

3175 3176 3177
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3178
			struct perf_event *event)
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3209
		perf_output_read(handle, event);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3247
			 struct perf_event *event,
3248
			 struct pt_regs *regs)
3249
{
3250
	u64 sample_type = event->attr.sample_type;
3251

3252
	data->type = sample_type;
3253

3254
	header->type = PERF_RECORD_SAMPLE;
3255 3256 3257 3258
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3259

3260
	if (sample_type & PERF_SAMPLE_IP) {
3261 3262 3263
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3264
	}
3265

3266
	if (sample_type & PERF_SAMPLE_TID) {
3267
		/* namespace issues */
3268 3269
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3270

3271
		header->size += sizeof(data->tid_entry);
3272 3273
	}

3274
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3275
		data->time = perf_clock();
3276

3277
		header->size += sizeof(data->time);
3278 3279
	}

3280
	if (sample_type & PERF_SAMPLE_ADDR)
3281
		header->size += sizeof(data->addr);
3282

3283
	if (sample_type & PERF_SAMPLE_ID) {
3284
		data->id = primary_event_id(event);
3285

3286 3287 3288 3289
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3290
		data->stream_id = event->id;
3291 3292 3293

		header->size += sizeof(data->stream_id);
	}
3294

3295
	if (sample_type & PERF_SAMPLE_CPU) {
3296 3297
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3298

3299
		header->size += sizeof(data->cpu_entry);
3300 3301
	}

3302
	if (sample_type & PERF_SAMPLE_PERIOD)
3303
		header->size += sizeof(data->period);
3304

3305
	if (sample_type & PERF_SAMPLE_READ)
3306
		header->size += perf_event_read_size(event);
3307

3308
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3309
		int size = 1;
3310

3311 3312 3313 3314 3315 3316
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3317 3318
	}

3319
	if (sample_type & PERF_SAMPLE_RAW) {
3320 3321 3322 3323 3324 3325 3326 3327
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3328
		header->size += size;
3329
	}
3330
}
3331

3332
static void perf_event_output(struct perf_event *event, int nmi,
3333 3334 3335 3336 3337
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3338

3339
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3340

3341
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3342
		return;
3343

3344
	perf_output_sample(&handle, &header, data, event);
3345

3346
	perf_output_end(&handle);
3347 3348
}

3349
/*
3350
 * read event_id
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3361
perf_event_read_event(struct perf_event *event,
3362 3363 3364
			struct task_struct *task)
{
	struct perf_output_handle handle;
3365
	struct perf_read_event read_event = {
3366
		.header = {
3367
			.type = PERF_RECORD_READ,
3368
			.misc = 0,
3369
			.size = sizeof(read_event) + perf_event_read_size(event),
3370
		},
3371 3372
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3373
	};
3374
	int ret;
3375

3376
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3377 3378 3379
	if (ret)
		return;

3380
	perf_output_put(&handle, read_event);
3381
	perf_output_read(&handle, event);
3382

3383 3384 3385
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3386
/*
P
Peter Zijlstra 已提交
3387 3388 3389
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3390 3391
 */

P
Peter Zijlstra 已提交
3392
struct perf_task_event {
3393
	struct task_struct		*task;
3394
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3395 3396 3397 3398 3399 3400

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3401 3402
		u32				tid;
		u32				ptid;
3403
		u64				time;
3404
	} event_id;
P
Peter Zijlstra 已提交
3405 3406
};

3407
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3408
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3409 3410
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3411
	struct task_struct *task = task_event->task;
3412 3413 3414 3415 3416 3417 3418 3419
	unsigned long flags;
	int size, ret;

	/*
	 * If this CPU attempts to acquire an rq lock held by a CPU spinning
	 * in perf_output_lock() from interrupt context, it's game over.
	 */
	local_irq_save(flags);
3420

3421 3422
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3423

3424 3425
	if (ret) {
		local_irq_restore(flags);
P
Peter Zijlstra 已提交
3426
		return;
3427
	}
P
Peter Zijlstra 已提交
3428

3429 3430
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3431

3432 3433
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3434

3435
	perf_output_put(&handle, task_event->event_id);
3436

P
Peter Zijlstra 已提交
3437
	perf_output_end(&handle);
3438
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
3439 3440
}

3441
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3442
{
P
Peter Zijlstra 已提交
3443
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3444 3445
		return 0;

3446 3447 3448
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3449
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3450 3451 3452 3453 3454
		return 1;

	return 0;
}

3455
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3456
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3457
{
3458
	struct perf_event *event;
P
Peter Zijlstra 已提交
3459

3460 3461 3462
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3463 3464 3465
	}
}

3466
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3467 3468
{
	struct perf_cpu_context *cpuctx;
3469
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3470

3471
	rcu_read_lock();
P
Peter Zijlstra 已提交
3472
	cpuctx = &get_cpu_var(perf_cpu_context);
3473
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3474
	if (!ctx)
P
Peter Zijlstra 已提交
3475
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3476
	if (ctx)
3477
		perf_event_task_ctx(ctx, task_event);
3478
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3479 3480 3481
	rcu_read_unlock();
}

3482 3483
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3484
			      int new)
P
Peter Zijlstra 已提交
3485
{
P
Peter Zijlstra 已提交
3486
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3487

3488 3489 3490
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3491 3492
		return;

P
Peter Zijlstra 已提交
3493
	task_event = (struct perf_task_event){
3494 3495
		.task	  = task,
		.task_ctx = task_ctx,
3496
		.event_id    = {
P
Peter Zijlstra 已提交
3497
			.header = {
3498
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3499
				.misc = 0,
3500
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3501
			},
3502 3503
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3504 3505
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3506
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3507 3508 3509
		},
	};

3510
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3511 3512
}

3513
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3514
{
3515
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3516 3517
}

3518 3519 3520 3521 3522
/*
 * comm tracking
 */

struct perf_comm_event {
3523 3524
	struct task_struct	*task;
	char			*comm;
3525 3526 3527 3528 3529 3530 3531
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3532
	} event_id;
3533 3534
};

3535
static void perf_event_comm_output(struct perf_event *event,
3536 3537 3538
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3539 3540
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3541 3542 3543 3544

	if (ret)
		return;

3545 3546
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3547

3548
	perf_output_put(&handle, comm_event->event_id);
3549 3550 3551 3552 3553
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3554
static int perf_event_comm_match(struct perf_event *event)
3555
{
P
Peter Zijlstra 已提交
3556
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3557 3558
		return 0;

3559 3560 3561
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3562
	if (event->attr.comm)
3563 3564 3565 3566 3567
		return 1;

	return 0;
}

3568
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3569 3570
				  struct perf_comm_event *comm_event)
{
3571
	struct perf_event *event;
3572

3573 3574 3575
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3576 3577 3578
	}
}

3579
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3580 3581
{
	struct perf_cpu_context *cpuctx;
3582
	struct perf_event_context *ctx;
3583
	unsigned int size;
3584
	char comm[TASK_COMM_LEN];
3585

3586
	memset(comm, 0, sizeof(comm));
3587
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3588
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3589 3590 3591 3592

	comm_event->comm = comm;
	comm_event->comm_size = size;

3593
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3594

3595
	rcu_read_lock();
3596
	cpuctx = &get_cpu_var(perf_cpu_context);
3597 3598
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3599
	if (ctx)
3600
		perf_event_comm_ctx(ctx, comm_event);
3601
	put_cpu_var(perf_cpu_context);
3602
	rcu_read_unlock();
3603 3604
}

3605
void perf_event_comm(struct task_struct *task)
3606
{
3607 3608
	struct perf_comm_event comm_event;

3609 3610
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3611

3612
	if (!atomic_read(&nr_comm_events))
3613
		return;
3614

3615
	comm_event = (struct perf_comm_event){
3616
		.task	= task,
3617 3618
		/* .comm      */
		/* .comm_size */
3619
		.event_id  = {
3620
			.header = {
3621
				.type = PERF_RECORD_COMM,
3622 3623 3624 3625 3626
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3627 3628 3629
		},
	};

3630
	perf_event_comm_event(&comm_event);
3631 3632
}

3633 3634 3635 3636 3637
/*
 * mmap tracking
 */

struct perf_mmap_event {
3638 3639 3640 3641
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3642 3643 3644 3645 3646 3647 3648 3649 3650

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3651
	} event_id;
3652 3653
};

3654
static void perf_event_mmap_output(struct perf_event *event,
3655 3656 3657
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3658 3659
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3660 3661 3662 3663

	if (ret)
		return;

3664 3665
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3666

3667
	perf_output_put(&handle, mmap_event->event_id);
3668 3669
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3670
	perf_output_end(&handle);
3671 3672
}

3673
static int perf_event_mmap_match(struct perf_event *event,
3674 3675
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3676
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3677 3678
		return 0;

3679 3680 3681
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3682
	if (event->attr.mmap)
3683 3684 3685 3686 3687
		return 1;

	return 0;
}

3688
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3689 3690
				  struct perf_mmap_event *mmap_event)
{
3691
	struct perf_event *event;
3692

3693 3694 3695
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3696 3697 3698
	}
}

3699
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3700 3701
{
	struct perf_cpu_context *cpuctx;
3702
	struct perf_event_context *ctx;
3703 3704
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3705 3706 3707
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3708
	const char *name;
3709

3710 3711
	memset(tmp, 0, sizeof(tmp));

3712
	if (file) {
3713 3714 3715 3716 3717 3718
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3719 3720 3721 3722
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3723
		name = d_path(&file->f_path, buf, PATH_MAX);
3724 3725 3726 3727 3728
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3729 3730 3731
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3732
			goto got_name;
3733
		}
3734 3735 3736 3737 3738 3739

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3740 3741 3742 3743 3744
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3745
	size = ALIGN(strlen(name)+1, sizeof(u64));
3746 3747 3748 3749

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3750
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3751

3752
	rcu_read_lock();
3753
	cpuctx = &get_cpu_var(perf_cpu_context);
3754 3755
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3756
	if (ctx)
3757
		perf_event_mmap_ctx(ctx, mmap_event);
3758
	put_cpu_var(perf_cpu_context);
3759 3760
	rcu_read_unlock();

3761 3762 3763
	kfree(buf);
}

3764
void __perf_event_mmap(struct vm_area_struct *vma)
3765
{
3766 3767
	struct perf_mmap_event mmap_event;

3768
	if (!atomic_read(&nr_mmap_events))
3769 3770 3771
		return;

	mmap_event = (struct perf_mmap_event){
3772
		.vma	= vma,
3773 3774
		/* .file_name */
		/* .file_size */
3775
		.event_id  = {
3776
			.header = {
3777
				.type = PERF_RECORD_MMAP,
3778
				.misc = PERF_RECORD_MISC_USER,
3779 3780 3781 3782
				/* .size */
			},
			/* .pid */
			/* .tid */
3783 3784
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3785
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3786 3787 3788
		},
	};

3789
	perf_event_mmap_event(&mmap_event);
3790 3791
}

3792 3793 3794 3795
/*
 * IRQ throttle logging
 */

3796
static void perf_log_throttle(struct perf_event *event, int enable)
3797 3798 3799 3800 3801 3802 3803
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3804
		u64				id;
3805
		u64				stream_id;
3806 3807
	} throttle_event = {
		.header = {
3808
			.type = PERF_RECORD_THROTTLE,
3809 3810 3811
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3812
		.time		= perf_clock(),
3813 3814
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3815 3816
	};

3817
	if (enable)
3818
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3819

3820
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3821 3822 3823 3824 3825 3826 3827
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3828
/*
3829
 * Generic event overflow handling, sampling.
3830 3831
 */

3832
static int __perf_event_overflow(struct perf_event *event, int nmi,
3833 3834
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3835
{
3836 3837
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3838 3839
	int ret = 0;

3840
	throttle = (throttle && event->pmu->unthrottle != NULL);
3841

3842
	if (!throttle) {
3843
		hwc->interrupts++;
3844
	} else {
3845 3846
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3847
			if (HZ * hwc->interrupts >
3848
					(u64)sysctl_perf_event_sample_rate) {
3849
				hwc->interrupts = MAX_INTERRUPTS;
3850
				perf_log_throttle(event, 0);
3851 3852 3853 3854
				ret = 1;
			}
		} else {
			/*
3855
			 * Keep re-disabling events even though on the previous
3856
			 * pass we disabled it - just in case we raced with a
3857
			 * sched-in and the event got enabled again:
3858
			 */
3859 3860 3861
			ret = 1;
		}
	}
3862

3863
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3864
		u64 now = perf_clock();
3865
		s64 delta = now - hwc->freq_time_stamp;
3866

3867
		hwc->freq_time_stamp = now;
3868

3869 3870
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3871 3872
	}

3873 3874
	/*
	 * XXX event_limit might not quite work as expected on inherited
3875
	 * events
3876 3877
	 */

3878 3879
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3880
		ret = 1;
3881
		event->pending_kill = POLL_HUP;
3882
		if (nmi) {
3883 3884 3885
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3886
		} else
3887
			perf_event_disable(event);
3888 3889
	}

3890 3891 3892 3893 3894
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3895
	return ret;
3896 3897
}

3898
int perf_event_overflow(struct perf_event *event, int nmi,
3899 3900
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3901
{
3902
	return __perf_event_overflow(event, nmi, 1, data, regs);
3903 3904
}

3905
/*
3906
 * Generic software event infrastructure
3907 3908
 */

3909
/*
3910 3911
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3912 3913 3914 3915
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3916
static u64 perf_swevent_set_period(struct perf_event *event)
3917
{
3918
	struct hw_perf_event *hwc = &event->hw;
3919 3920 3921 3922 3923
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3924 3925

again:
3926 3927 3928
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3929

3930 3931 3932 3933 3934
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3935

3936
	return nr;
3937 3938
}

3939
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3940 3941
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3942
{
3943
	struct hw_perf_event *hwc = &event->hw;
3944
	int throttle = 0;
3945

3946
	data->period = event->hw.last_period;
3947 3948
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3949

3950 3951
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3952

3953
	for (; overflow; overflow--) {
3954
		if (__perf_event_overflow(event, nmi, throttle,
3955
					    data, regs)) {
3956 3957 3958 3959 3960 3961
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3962
		throttle = 1;
3963
	}
3964 3965
}

3966
static void perf_swevent_unthrottle(struct perf_event *event)
3967 3968
{
	/*
3969
	 * Nothing to do, we already reset hwc->interrupts.
3970
	 */
3971
}
3972

3973
static void perf_swevent_add(struct perf_event *event, u64 nr,
3974 3975
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3976
{
3977
	struct hw_perf_event *hwc = &event->hw;
3978

3979
	atomic64_add(nr, &event->count);
3980

3981 3982 3983
	if (!regs)
		return;

3984 3985
	if (!hwc->sample_period)
		return;
3986

3987 3988 3989 3990
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3991
		return;
3992

3993
	perf_swevent_overflow(event, 0, nmi, data, regs);
3994 3995
}

L
Li Zefan 已提交
3996 3997 3998
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4013
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4014
				enum perf_type_id type,
L
Li Zefan 已提交
4015 4016 4017
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4018
{
4019
	if (event->attr.type != type)
4020
		return 0;
4021

4022
	if (event->attr.config != event_id)
4023 4024
		return 0;

4025 4026
	if (perf_exclude_event(event, regs))
		return 0;
4027

L
Li Zefan 已提交
4028 4029 4030 4031
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4032 4033 4034
	return 1;
}

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

static struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	u64 hash;
	struct swevent_hlist *hlist;

	hash = swevent_hash(type, event_id);

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

	return &hlist->heads[hash];
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4061
{
4062
	struct perf_cpu_context *cpuctx;
4063
	struct perf_event *event;
4064 4065
	struct hlist_node *node;
	struct hlist_head *head;
4066

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

	head = find_swevent_head(cpuctx, type, event_id);

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4077
		if (perf_swevent_match(event, type, event_id, data, regs))
4078
			perf_swevent_add(event, nr, nmi, data, regs);
4079
	}
4080 4081
end:
	rcu_read_unlock();
4082 4083
}

4084
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4085
{
4086 4087
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4088

P
Peter Zijlstra 已提交
4089
	if (in_nmi())
4090
		rctx = 3;
4091
	else if (in_irq())
4092
		rctx = 2;
4093
	else if (in_softirq())
4094
		rctx = 1;
4095
	else
4096
		rctx = 0;
P
Peter Zijlstra 已提交
4097

4098 4099
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4100
		return -1;
4101
	}
P
Peter Zijlstra 已提交
4102

4103 4104
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4105

4106
	return rctx;
P
Peter Zijlstra 已提交
4107
}
I
Ingo Molnar 已提交
4108
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4109

4110
void perf_swevent_put_recursion_context(int rctx)
4111
{
4112 4113
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4114
	cpuctx->recursion[rctx]--;
4115
	put_cpu_var(perf_cpu_context);
4116
}
I
Ingo Molnar 已提交
4117
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4118

4119

4120
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4121
			    struct pt_regs *regs, u64 addr)
4122
{
4123
	struct perf_sample_data data;
4124 4125 4126 4127 4128
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4129

4130
	perf_sample_data_init(&data, addr);
4131

4132
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4133 4134

	perf_swevent_put_recursion_context(rctx);
4135 4136
}

4137
static void perf_swevent_read(struct perf_event *event)
4138 4139 4140
{
}

4141
static int perf_swevent_enable(struct perf_event *event)
4142
{
4143
	struct hw_perf_event *hwc = &event->hw;
4144 4145 4146 4147
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4148 4149 4150

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4151
		perf_swevent_set_period(event);
4152
	}
4153 4154 4155 4156 4157 4158 4159

	head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4160 4161 4162
	return 0;
}

4163
static void perf_swevent_disable(struct perf_event *event)
4164
{
4165
	hlist_del_rcu(&event->hlist_entry);
4166 4167
}

4168
static const struct pmu perf_ops_generic = {
4169 4170 4171 4172
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4173 4174
};

4175
/*
4176
 * hrtimer based swevent callback
4177 4178
 */

4179
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4180 4181 4182
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4183
	struct pt_regs *regs;
4184
	struct perf_event *event;
4185 4186
	u64 period;

4187
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4188
	event->pmu->read(event);
4189

4190
	perf_sample_data_init(&data, 0);
4191
	data.period = event->hw.last_period;
4192
	regs = get_irq_regs();
4193

4194
	if (regs && !perf_exclude_event(event, regs)) {
4195 4196 4197
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4198 4199
	}

4200
	period = max_t(u64, 10000, event->hw.sample_period);
4201 4202 4203 4204 4205
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4242
/*
4243
 * Software event: cpu wall time clock
4244 4245
 */

4246
static void cpu_clock_perf_event_update(struct perf_event *event)
4247 4248 4249 4250 4251 4252
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4253
	prev = atomic64_xchg(&event->hw.prev_count, now);
4254
	atomic64_add(now - prev, &event->count);
4255 4256
}

4257
static int cpu_clock_perf_event_enable(struct perf_event *event)
4258
{
4259
	struct hw_perf_event *hwc = &event->hw;
4260 4261 4262
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4263
	perf_swevent_start_hrtimer(event);
4264 4265 4266 4267

	return 0;
}

4268
static void cpu_clock_perf_event_disable(struct perf_event *event)
4269
{
4270
	perf_swevent_cancel_hrtimer(event);
4271
	cpu_clock_perf_event_update(event);
4272 4273
}

4274
static void cpu_clock_perf_event_read(struct perf_event *event)
4275
{
4276
	cpu_clock_perf_event_update(event);
4277 4278
}

4279
static const struct pmu perf_ops_cpu_clock = {
4280 4281 4282
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4283 4284
};

4285
/*
4286
 * Software event: task time clock
4287 4288
 */

4289
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4290
{
4291
	u64 prev;
I
Ingo Molnar 已提交
4292 4293
	s64 delta;

4294
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4295
	delta = now - prev;
4296
	atomic64_add(delta, &event->count);
4297 4298
}

4299
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4300
{
4301
	struct hw_perf_event *hwc = &event->hw;
4302 4303
	u64 now;

4304
	now = event->ctx->time;
4305

4306
	atomic64_set(&hwc->prev_count, now);
4307 4308

	perf_swevent_start_hrtimer(event);
4309 4310

	return 0;
I
Ingo Molnar 已提交
4311 4312
}

4313
static void task_clock_perf_event_disable(struct perf_event *event)
4314
{
4315
	perf_swevent_cancel_hrtimer(event);
4316
	task_clock_perf_event_update(event, event->ctx->time);
4317

4318
}
I
Ingo Molnar 已提交
4319

4320
static void task_clock_perf_event_read(struct perf_event *event)
4321
{
4322 4323 4324
	u64 time;

	if (!in_nmi()) {
4325 4326
		update_context_time(event->ctx);
		time = event->ctx->time;
4327 4328
	} else {
		u64 now = perf_clock();
4329 4330
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4331 4332
	}

4333
	task_clock_perf_event_update(event, time);
4334 4335
}

4336
static const struct pmu perf_ops_task_clock = {
4337 4338 4339
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4340 4341
};

4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
	struct swevent_hlist *hlist;

	if (!cpuctx->swevent_hlist)
		return;

	hlist = cpuctx->swevent_hlist;
	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

	if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
#ifdef CONFIG_EVENT_TRACING

void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
		   int entry_size, struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

	/* Trace events already protected against recursion */
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
			 &data, regs);
}
EXPORT_SYMBOL_GPL(perf_tp_event);

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

4471
static void tp_perf_event_destroy(struct perf_event *event)
4472
{
4473
	perf_trace_disable(event->attr.config);
4474
	swevent_hlist_put(event);
4475 4476
}

4477
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4478
{
4479 4480
	int err;

4481 4482 4483 4484
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4485
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4486
			perf_paranoid_tracepoint_raw() &&
4487 4488 4489
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4490
	if (perf_trace_enable(event->attr.config))
4491 4492
		return NULL;

4493
	event->destroy = tp_perf_event_destroy;
4494 4495 4496 4497 4498
	err = swevent_hlist_get(event);
	if (err) {
		perf_trace_disable(event->attr.config);
		return ERR_PTR(err);
	}
4499 4500 4501

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4526
#else
L
Li Zefan 已提交
4527 4528 4529 4530 4531 4532 4533

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4534
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4535 4536 4537
{
	return NULL;
}
L
Li Zefan 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4548
#endif /* CONFIG_EVENT_TRACING */
4549

4550 4551 4552 4553 4554 4555 4556 4557 4558
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4559 4560

	err = register_perf_hw_breakpoint(bp);
4561 4562 4563 4564 4565 4566 4567 4568
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4569
void perf_bp_event(struct perf_event *bp, void *data)
4570
{
4571 4572 4573
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4574
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4575 4576 4577

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4590
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4591

4592
static void sw_perf_event_destroy(struct perf_event *event)
4593
{
4594
	u64 event_id = event->attr.config;
4595

4596
	WARN_ON(event->parent);
4597

4598
	atomic_dec(&perf_swevent_enabled[event_id]);
4599
	swevent_hlist_put(event);
4600 4601
}

4602
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4603
{
4604
	const struct pmu *pmu = NULL;
4605
	u64 event_id = event->attr.config;
4606

4607
	/*
4608
	 * Software events (currently) can't in general distinguish
4609 4610 4611 4612 4613
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4614
	switch (event_id) {
4615
	case PERF_COUNT_SW_CPU_CLOCK:
4616
		pmu = &perf_ops_cpu_clock;
4617

4618
		break;
4619
	case PERF_COUNT_SW_TASK_CLOCK:
4620
		/*
4621 4622
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4623
		 */
4624
		if (event->ctx->task)
4625
			pmu = &perf_ops_task_clock;
4626
		else
4627
			pmu = &perf_ops_cpu_clock;
4628

4629
		break;
4630 4631 4632 4633 4634
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4635 4636
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4637
		if (!event->parent) {
4638 4639 4640 4641 4642 4643
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

4644 4645
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4646
		}
4647
		pmu = &perf_ops_generic;
4648
		break;
4649
	}
4650

4651
	return pmu;
4652 4653
}

T
Thomas Gleixner 已提交
4654
/*
4655
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4656
 */
4657 4658
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4659
		   int cpu,
4660 4661 4662
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4663
		   perf_overflow_handler_t overflow_handler,
4664
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4665
{
4666
	const struct pmu *pmu;
4667 4668
	struct perf_event *event;
	struct hw_perf_event *hwc;
4669
	long err;
T
Thomas Gleixner 已提交
4670

4671 4672
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4673
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4674

4675
	/*
4676
	 * Single events are their own group leaders, with an
4677 4678 4679
	 * empty sibling list:
	 */
	if (!group_leader)
4680
		group_leader = event;
4681

4682 4683
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4684

4685 4686 4687 4688
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4689

4690
	mutex_init(&event->mmap_mutex);
4691

4692 4693 4694 4695 4696 4697
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4698

4699
	event->parent		= parent_event;
4700

4701 4702
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4703

4704
	event->state		= PERF_EVENT_STATE_INACTIVE;
4705

4706 4707
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4708
	
4709
	event->overflow_handler	= overflow_handler;
4710

4711
	if (attr->disabled)
4712
		event->state = PERF_EVENT_STATE_OFF;
4713

4714
	pmu = NULL;
4715

4716
	hwc = &event->hw;
4717
	hwc->sample_period = attr->sample_period;
4718
	if (attr->freq && attr->sample_freq)
4719
		hwc->sample_period = 1;
4720
	hwc->last_period = hwc->sample_period;
4721 4722

	atomic64_set(&hwc->period_left, hwc->sample_period);
4723

4724
	/*
4725
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4726
	 */
4727
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4728 4729
		goto done;

4730
	switch (attr->type) {
4731
	case PERF_TYPE_RAW:
4732
	case PERF_TYPE_HARDWARE:
4733
	case PERF_TYPE_HW_CACHE:
4734
		pmu = hw_perf_event_init(event);
4735 4736 4737
		break;

	case PERF_TYPE_SOFTWARE:
4738
		pmu = sw_perf_event_init(event);
4739 4740 4741
		break;

	case PERF_TYPE_TRACEPOINT:
4742
		pmu = tp_perf_event_init(event);
4743
		break;
4744

4745 4746 4747 4748 4749
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4750 4751
	default:
		break;
4752
	}
4753 4754
done:
	err = 0;
4755
	if (!pmu)
4756
		err = -EINVAL;
4757 4758
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4759

4760
	if (err) {
4761 4762 4763
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4764
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4765
	}
4766

4767
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4768

4769 4770 4771 4772 4773 4774 4775 4776
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4777
	}
4778

4779
	return event;
T
Thomas Gleixner 已提交
4780 4781
}

4782 4783
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4784 4785
{
	u32 size;
4786
	int ret;
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4811 4812 4813
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4814 4815
	 */
	if (size > sizeof(*attr)) {
4816 4817 4818
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4819

4820 4821
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4822

4823
		for (; addr < end; addr++) {
4824 4825 4826 4827 4828 4829
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4830
		size = sizeof(*attr);
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4844
	if (attr->__reserved_1)
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4862
static int perf_event_set_output(struct perf_event *event, int output_fd)
4863
{
4864
	struct perf_event *output_event = NULL;
4865
	struct file *output_file = NULL;
4866
	struct perf_event *old_output;
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4880
	output_event = output_file->private_data;
4881 4882

	/* Don't chain output fds */
4883
	if (output_event->output)
4884 4885 4886
		goto out;

	/* Don't set an output fd when we already have an output channel */
4887
	if (event->data)
4888 4889 4890 4891 4892
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4893 4894 4895 4896
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4897 4898 4899 4900

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4901
		 * is still referencing this event.
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4913
/**
4914
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4915
 *
4916
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4917
 * @pid:		target pid
I
Ingo Molnar 已提交
4918
 * @cpu:		target cpu
4919
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4920
 */
4921 4922
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4923
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4924
{
4925 4926 4927 4928
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4929 4930
	struct file *group_file = NULL;
	int fput_needed = 0;
4931
	int fput_needed2 = 0;
4932
	int err;
T
Thomas Gleixner 已提交
4933

4934
	/* for future expandability... */
4935
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4936 4937
		return -EINVAL;

4938 4939 4940
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4941

4942 4943 4944 4945 4946
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4947
	if (attr.freq) {
4948
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4949 4950 4951
			return -EINVAL;
	}

4952
	/*
I
Ingo Molnar 已提交
4953 4954 4955 4956 4957 4958 4959
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4960
	 * Look up the group leader (we will attach this event to it):
4961 4962
	 */
	group_leader = NULL;
4963
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4964
		err = -EINVAL;
4965 4966
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4967
			goto err_put_context;
4968
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4969
			goto err_put_context;
4970 4971 4972

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4973 4974 4975 4976 4977 4978 4979 4980
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4981
		 */
I
Ingo Molnar 已提交
4982 4983
		if (group_leader->ctx != ctx)
			goto err_put_context;
4984 4985 4986
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4987
		if (attr.exclusive || attr.pinned)
4988
			goto err_put_context;
4989 4990
	}

4991
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4992
				     NULL, NULL, GFP_KERNEL);
4993 4994
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4995 4996
		goto err_put_context;

4997
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4998
	if (err < 0)
4999 5000
		goto err_free_put_context;

5001 5002
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
5003 5004
		goto err_free_put_context;

5005
	if (flags & PERF_FLAG_FD_OUTPUT) {
5006
		err = perf_event_set_output(event, group_fd);
5007 5008
		if (err)
			goto err_fput_free_put_context;
5009 5010
	}

5011
	event->filp = event_file;
5012
	WARN_ON_ONCE(ctx->parent_ctx);
5013
	mutex_lock(&ctx->mutex);
5014
	perf_install_in_context(ctx, event, cpu);
5015
	++ctx->generation;
5016
	mutex_unlock(&ctx->mutex);
5017

5018
	event->owner = current;
5019
	get_task_struct(current);
5020 5021 5022
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5023

5024
err_fput_free_put_context:
5025
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
5026

5027
err_free_put_context:
5028
	if (err < 0)
5029
		free_event(event);
T
Thomas Gleixner 已提交
5030 5031

err_put_context:
5032 5033 5034 5035
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
5036

5037
	return err;
T
Thomas Gleixner 已提交
5038 5039
}

5040 5041 5042 5043 5044 5045 5046 5047 5048
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5049 5050
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5061 5062 5063 5064
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5065 5066

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5067
				 NULL, overflow_handler, GFP_KERNEL);
5068 5069
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5070
		goto err_put_context;
5071
	}
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5088 5089 5090 5091
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5092 5093 5094
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5095
/*
5096
 * inherit a event from parent task to child task:
5097
 */
5098 5099
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5100
	      struct task_struct *parent,
5101
	      struct perf_event_context *parent_ctx,
5102
	      struct task_struct *child,
5103 5104
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5105
{
5106
	struct perf_event *child_event;
5107

5108
	/*
5109 5110
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5111 5112 5113
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5114 5115
	if (parent_event->parent)
		parent_event = parent_event->parent;
5116

5117 5118 5119
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5120
					   NULL, GFP_KERNEL);
5121 5122
	if (IS_ERR(child_event))
		return child_event;
5123
	get_ctx(child_ctx);
5124

5125
	/*
5126
	 * Make the child state follow the state of the parent event,
5127
	 * not its attr.disabled bit.  We hold the parent's mutex,
5128
	 * so we won't race with perf_event_{en, dis}able_family.
5129
	 */
5130 5131
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5132
	else
5133
		child_event->state = PERF_EVENT_STATE_OFF;
5134

5135 5136 5137 5138 5139 5140 5141 5142 5143
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5144

5145 5146
	child_event->overflow_handler = parent_event->overflow_handler;

5147 5148 5149
	/*
	 * Link it up in the child's context:
	 */
5150
	add_event_to_ctx(child_event, child_ctx);
5151 5152 5153

	/*
	 * Get a reference to the parent filp - we will fput it
5154
	 * when the child event exits. This is safe to do because
5155 5156 5157
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5158
	atomic_long_inc(&parent_event->filp->f_count);
5159

5160
	/*
5161
	 * Link this into the parent event's child list
5162
	 */
5163 5164 5165 5166
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5167

5168
	return child_event;
5169 5170
}

5171
static int inherit_group(struct perf_event *parent_event,
5172
	      struct task_struct *parent,
5173
	      struct perf_event_context *parent_ctx,
5174
	      struct task_struct *child,
5175
	      struct perf_event_context *child_ctx)
5176
{
5177 5178 5179
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5180

5181
	leader = inherit_event(parent_event, parent, parent_ctx,
5182
				 child, NULL, child_ctx);
5183 5184
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5185 5186
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5187 5188 5189
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5190
	}
5191 5192 5193
	return 0;
}

5194
static void sync_child_event(struct perf_event *child_event,
5195
			       struct task_struct *child)
5196
{
5197
	struct perf_event *parent_event = child_event->parent;
5198
	u64 child_val;
5199

5200 5201
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5202

5203
	child_val = atomic64_read(&child_event->count);
5204 5205 5206 5207

	/*
	 * Add back the child's count to the parent's count:
	 */
5208 5209 5210 5211 5212
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5213 5214

	/*
5215
	 * Remove this event from the parent's list
5216
	 */
5217 5218 5219 5220
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5221 5222

	/*
5223
	 * Release the parent event, if this was the last
5224 5225
	 * reference to it.
	 */
5226
	fput(parent_event->filp);
5227 5228
}

5229
static void
5230 5231
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5232
			 struct task_struct *child)
5233
{
5234
	struct perf_event *parent_event;
5235

5236
	perf_event_remove_from_context(child_event);
5237

5238
	parent_event = child_event->parent;
5239
	/*
5240
	 * It can happen that parent exits first, and has events
5241
	 * that are still around due to the child reference. These
5242
	 * events need to be zapped - but otherwise linger.
5243
	 */
5244 5245 5246
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5247
	}
5248 5249 5250
}

/*
5251
 * When a child task exits, feed back event values to parent events.
5252
 */
5253
void perf_event_exit_task(struct task_struct *child)
5254
{
5255 5256
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5257
	unsigned long flags;
5258

5259 5260
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5261
		return;
P
Peter Zijlstra 已提交
5262
	}
5263

5264
	local_irq_save(flags);
5265 5266 5267 5268 5269 5270
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5271 5272
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5273 5274 5275

	/*
	 * Take the context lock here so that if find_get_context is
5276
	 * reading child->perf_event_ctxp, we wait until it has
5277 5278
	 * incremented the context's refcount before we do put_ctx below.
	 */
5279
	raw_spin_lock(&child_ctx->lock);
5280
	child->perf_event_ctxp = NULL;
5281 5282 5283
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5284
	 * the events from it.
5285 5286
	 */
	unclone_ctx(child_ctx);
5287
	update_context_time(child_ctx);
5288
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5289 5290

	/*
5291 5292 5293
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5294
	 */
5295
	perf_event_task(child, child_ctx, 0);
5296

5297 5298 5299
	/*
	 * We can recurse on the same lock type through:
	 *
5300 5301 5302
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5303 5304 5305 5306 5307 5308
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5309

5310
again:
5311 5312 5313 5314 5315
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5316
				 group_entry)
5317
		__perf_event_exit_task(child_event, child_ctx, child);
5318 5319

	/*
5320
	 * If the last event was a group event, it will have appended all
5321 5322 5323
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5324 5325
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5326
		goto again;
5327 5328 5329 5330

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5331 5332
}

5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5351 5352 5353 5354
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5355
void perf_event_free_task(struct task_struct *task)
5356
{
5357 5358
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5359 5360 5361 5362 5363 5364

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5365 5366
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5367

5368 5369 5370
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5371

5372 5373 5374
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5375

5376
	mutex_unlock(&ctx->mutex);
5377

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5393 5394
	}

5395 5396 5397 5398 5399 5400 5401
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5402

5403 5404 5405 5406
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5407

5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5420 5421
}

5422

5423
/*
5424
 * Initialize the perf_event context in task_struct
5425
 */
5426
int perf_event_init_task(struct task_struct *child)
5427
{
5428
	struct perf_event_context *child_ctx, *parent_ctx;
5429 5430
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5431
	struct task_struct *parent = current;
5432
	int inherited_all = 1;
5433
	int ret = 0;
5434

5435
	child->perf_event_ctxp = NULL;
5436

5437 5438
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5439

5440
	if (likely(!parent->perf_event_ctxp))
5441 5442
		return 0;

5443
	/*
5444 5445
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5446
	 */
5447 5448
	parent_ctx = perf_pin_task_context(parent);

5449 5450 5451 5452 5453 5454 5455
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5456 5457 5458 5459
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5460
	mutex_lock(&parent_ctx->mutex);
5461 5462 5463 5464 5465

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5466 5467 5468 5469 5470 5471
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5472

5473 5474 5475 5476
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5477
			break;
5478 5479
	}

5480 5481
	child_ctx = child->perf_event_ctxp;

5482
	if (child_ctx && inherited_all) {
5483 5484 5485
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5486 5487
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5488
		 * because the list of events and the generation
5489
		 * count can't have changed since we took the mutex.
5490
		 */
5491 5492 5493
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5494
			child_ctx->parent_gen = parent_ctx->parent_gen;
5495 5496 5497 5498 5499
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5500 5501
	}

5502
	mutex_unlock(&parent_ctx->mutex);
5503

5504
	perf_unpin_context(parent_ctx);
5505

5506
	return ret;
5507 5508
}

5509 5510 5511 5512 5513 5514 5515
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5516
		mutex_init(&cpuctx->hlist_mutex);
5517 5518 5519 5520
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5521
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5522
{
5523
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5524

5525
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5526

5527
	spin_lock(&perf_resource_lock);
5528
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5529
	spin_unlock(&perf_resource_lock);
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5540 5541 5542
}

#ifdef CONFIG_HOTPLUG_CPU
5543
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5544 5545
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5546 5547
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5548

5549 5550 5551
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5552
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5553
}
5554
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5555
{
5556
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5557
	struct perf_event_context *ctx = &cpuctx->ctx;
5558

5559 5560 5561 5562
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5563
	mutex_lock(&ctx->mutex);
5564
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5565
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5566 5567
}
#else
5568
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5580
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5581 5582 5583 5584
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5585
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5595 5596 5597
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5598 5599
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5600
	.priority		= 20,
T
Thomas Gleixner 已提交
5601 5602
};

5603
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5604
{
5605
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5606 5607
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5608 5609
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5610 5611 5612
	register_cpu_notifier(&perf_cpu_nb);
}

5613 5614 5615
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5616 5617 5618 5619 5620 5621
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5622
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5633
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5634 5635
		return -EINVAL;

5636
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5637 5638 5639
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5640
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5641 5642
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5643
		cpuctx->max_pertask = mpt;
5644
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5645
	}
5646
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5647 5648 5649 5650

	return count;
}

5651 5652 5653
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5654 5655 5656 5657 5658
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5659 5660 5661
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5672
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5673
	perf_overcommit = val;
5674
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5701
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5702 5703
};

5704
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5705 5706 5707 5708
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5709
device_initcall(perf_event_sysfs_init);