perf_event.c 167.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
struct remote_function_call {
	struct task_struct *p;
	int (*func)(void *info);
	void *info;
	int ret;
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
		.p = p,
		.func = func,
		.info = info,
		.ret = -ESRCH, /* No such (running) process */
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
		.p = NULL,
		.func = func,
		.info = info,
		.ret = -ENXIO, /* No such CPU */
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127 128 129 130
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
atomic_t perf_sched_events __read_mostly;
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
149 150

/*
151
 * max perf event sample rate
152
 */
153
int sysctl_perf_event_sample_rate __read_mostly = 100000;
154

155
static atomic64_t perf_event_id;
156

157 158 159 160
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
161 162 163 164 165
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
166

167
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
168

169
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
170
{
171
	return "pmu";
T
Thomas Gleixner 已提交
172 173
}

174 175 176 177 178
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

#ifdef CONFIG_CGROUP_PERF

static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
	struct perf_cgroup *cgrp = perf_cgroup_from_task(current);
	/*
	 * do not update time when cgroup is not active
	 */
	if (!event->cgrp || cgrp != event->cgrp)
		return;

	__update_cgrp_time(event->cgrp);
}

static inline void
perf_cgroup_set_timestamp(struct task_struct *task, u64 now)
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

	if (!task)
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
	info->timestamp = now;
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {

		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		perf_pmu_disable(cpuctx->ctx.pmu);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
		}

		perf_pmu_enable(cpuctx->ctx.pmu);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
	if (IS_ERR(css))
		return PTR_ERR(css);

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	} else {
		/* must be done before we fput() the file */
		perf_get_cgroup(event);
	}
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
perf_cgroup_set_timestamp(struct task_struct *task, u64 now)
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
511
void perf_pmu_disable(struct pmu *pmu)
512
{
P
Peter Zijlstra 已提交
513 514 515
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
516 517
}

P
Peter Zijlstra 已提交
518
void perf_pmu_enable(struct pmu *pmu)
519
{
P
Peter Zijlstra 已提交
520 521 522
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
523 524
}

525 526 527 528 529 530 531
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
532
static void perf_pmu_rotate_start(struct pmu *pmu)
533
{
P
Peter Zijlstra 已提交
534
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
535
	struct list_head *head = &__get_cpu_var(rotation_list);
536

537
	WARN_ON(!irqs_disabled());
538

539 540
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
541 542
}

543
static void get_ctx(struct perf_event_context *ctx)
544
{
545
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
546 547
}

548 549
static void free_ctx(struct rcu_head *head)
{
550
	struct perf_event_context *ctx;
551

552
	ctx = container_of(head, struct perf_event_context, rcu_head);
553 554 555
	kfree(ctx);
}

556
static void put_ctx(struct perf_event_context *ctx)
557
{
558 559 560
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
561 562 563
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
564
	}
565 566
}

567
static void unclone_ctx(struct perf_event_context *ctx)
568 569 570 571 572 573 574
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

597
/*
598
 * If we inherit events we want to return the parent event id
599 600
 * to userspace.
 */
601
static u64 primary_event_id(struct perf_event *event)
602
{
603
	u64 id = event->id;
604

605 606
	if (event->parent)
		id = event->parent->id;
607 608 609 610

	return id;
}

611
/*
612
 * Get the perf_event_context for a task and lock it.
613 614 615
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
616
static struct perf_event_context *
P
Peter Zijlstra 已提交
617
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
618
{
619
	struct perf_event_context *ctx;
620 621

	rcu_read_lock();
P
Peter Zijlstra 已提交
622
retry:
P
Peter Zijlstra 已提交
623
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
624 625 626 627
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
628
		 * perf_event_task_sched_out, though the
629 630 631 632 633 634
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
635
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
636
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
637
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
638 639
			goto retry;
		}
640 641

		if (!atomic_inc_not_zero(&ctx->refcount)) {
642
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
643 644
			ctx = NULL;
		}
645 646 647 648 649 650 651 652 653 654
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
655 656
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
657
{
658
	struct perf_event_context *ctx;
659 660
	unsigned long flags;

P
Peter Zijlstra 已提交
661
	ctx = perf_lock_task_context(task, ctxn, &flags);
662 663
	if (ctx) {
		++ctx->pin_count;
664
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
665 666 667 668
	}
	return ctx;
}

669
static void perf_unpin_context(struct perf_event_context *ctx)
670 671 672
{
	unsigned long flags;

673
	raw_spin_lock_irqsave(&ctx->lock, flags);
674
	--ctx->pin_count;
675
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
676 677
}

678 679 680 681 682 683 684 685 686 687 688
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

689 690 691
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
692 693 694 695

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

696 697 698
	return ctx ? ctx->time : 0;
}

699 700 701 702 703 704 705 706 707 708 709
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
710 711 712 713 714 715 716 717 718 719 720
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
721
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
722 723
	else if (ctx->is_active)
		run_end = ctx->time;
724 725 726 727
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
728 729 730 731

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
732
		run_end = perf_event_time(event);
733 734

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
735

736 737
}

738 739 740 741 742 743 744 745 746 747 748 749
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

750 751 752 753 754 755 756 757 758
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

759
/*
760
 * Add a event from the lists for its context.
761 762
 * Must be called with ctx->mutex and ctx->lock held.
 */
763
static void
764
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
765
{
766 767
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
768 769

	/*
770 771 772
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
773
	 */
774
	if (event->group_leader == event) {
775 776
		struct list_head *list;

777 778 779
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

780 781
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
782
	}
P
Peter Zijlstra 已提交
783

S
Stephane Eranian 已提交
784 785 786 787 788 789 790 791 792 793 794
	if (is_cgroup_event(event)) {
		ctx->nr_cgroups++;
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
	}

795
	list_add_rcu(&event->event_entry, &ctx->event_list);
796
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
797
		perf_pmu_rotate_start(ctx->pmu);
798 799
	ctx->nr_events++;
	if (event->attr.inherit_stat)
800
		ctx->nr_stat++;
801 802
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

875
	event->id_header_size = size;
876 877
}

878 879
static void perf_group_attach(struct perf_event *event)
{
880
	struct perf_event *group_leader = event->group_leader, *pos;
881

P
Peter Zijlstra 已提交
882 883 884 885 886 887
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

888 889 890 891 892 893 894 895 896 897 898
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
899 900 901 902 903

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
904 905
}

906
/*
907
 * Remove a event from the lists for its context.
908
 * Must be called with ctx->mutex and ctx->lock held.
909
 */
910
static void
911
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
912
{
913 914 915 916
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
917
		return;
918 919 920

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

S
Stephane Eranian 已提交
921 922 923 924 925 926
	if (is_cgroup_event(event)) {
		ctx->nr_cgroups--;
		atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_dec(&perf_sched_events);
	}

927 928
	ctx->nr_events--;
	if (event->attr.inherit_stat)
929
		ctx->nr_stat--;
930

931
	list_del_rcu(&event->event_entry);
932

933 934
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
935

936
	update_group_times(event);
937 938 939 940 941 942 943 944 945 946

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
947 948
}

949
static void perf_group_detach(struct perf_event *event)
950 951
{
	struct perf_event *sibling, *tmp;
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
968
		goto out;
969 970 971 972
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
973

974
	/*
975 976
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
977
	 * to whatever list we are on.
978
	 */
979
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
980 981
		if (list)
			list_move_tail(&sibling->group_entry, list);
982
		sibling->group_leader = sibling;
983 984 985

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
986
	}
987 988 989 990 991 992

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
993 994
}

995 996 997
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
998 999
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1000 1001
}

1002 1003
static void
event_sched_out(struct perf_event *event,
1004
		  struct perf_cpu_context *cpuctx,
1005
		  struct perf_event_context *ctx)
1006
{
1007
	u64 tstamp = perf_event_time(event);
1008 1009 1010 1011 1012 1013 1014 1015 1016
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1017
		delta = tstamp - event->tstamp_stopped;
1018
		event->tstamp_running += delta;
1019
		event->tstamp_stopped = tstamp;
1020 1021
	}

1022
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1023
		return;
1024

1025 1026 1027 1028
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1029
	}
1030
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1031
	event->pmu->del(event, 0);
1032
	event->oncpu = -1;
1033

1034
	if (!is_software_event(event))
1035 1036
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1037
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1038 1039 1040
		cpuctx->exclusive = 0;
}

1041
static void
1042
group_sched_out(struct perf_event *group_event,
1043
		struct perf_cpu_context *cpuctx,
1044
		struct perf_event_context *ctx)
1045
{
1046
	struct perf_event *event;
1047
	int state = group_event->state;
1048

1049
	event_sched_out(group_event, cpuctx, ctx);
1050 1051 1052 1053

	/*
	 * Schedule out siblings (if any):
	 */
1054 1055
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1056

1057
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1058 1059 1060
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1061
/*
1062
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1063
 *
1064
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1065 1066
 * remove it from the context list.
 */
1067
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1068
{
1069 1070
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1071
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1072

1073
	raw_spin_lock(&ctx->lock);
1074 1075
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1076
	raw_spin_unlock(&ctx->lock);
1077 1078

	return 0;
T
Thomas Gleixner 已提交
1079 1080 1081 1082
}


/*
1083
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1084
 *
1085
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1086
 * call when the task is on a CPU.
1087
 *
1088 1089
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1090 1091
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1092
 * When called from perf_event_exit_task, it's OK because the
1093
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1094
 */
1095
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1096
{
1097
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1098 1099
	struct task_struct *task = ctx->task;

1100 1101
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1102 1103
	if (!task) {
		/*
1104
		 * Per cpu events are removed via an smp call and
1105
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1106
		 */
1107
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1108 1109 1110 1111
		return;
	}

retry:
1112 1113
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1114

1115
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1116
	/*
1117 1118
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1119
	 */
1120
	if (ctx->is_active) {
1121
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1122 1123 1124 1125
		goto retry;
	}

	/*
1126 1127
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1128
	 */
1129
	list_del_event(event, ctx);
1130
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1131 1132
}

1133
/*
1134
 * Cross CPU call to disable a performance event
1135
 */
1136
static int __perf_event_disable(void *info)
1137
{
1138 1139
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1140
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1141 1142

	/*
1143 1144
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1145 1146 1147
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1148
	 */
1149
	if (ctx->task && cpuctx->task_ctx != ctx)
1150
		return -EINVAL;
1151

1152
	raw_spin_lock(&ctx->lock);
1153 1154

	/*
1155
	 * If the event is on, turn it off.
1156 1157
	 * If it is in error state, leave it in error state.
	 */
1158
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1159
		update_context_time(ctx);
S
Stephane Eranian 已提交
1160
		update_cgrp_time_from_event(event);
1161 1162 1163
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1164
		else
1165 1166
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1167 1168
	}

1169
	raw_spin_unlock(&ctx->lock);
1170 1171

	return 0;
1172 1173 1174
}

/*
1175
 * Disable a event.
1176
 *
1177 1178
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1179
 * remains valid.  This condition is satisifed when called through
1180 1181 1182 1183
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1184
 * is the current context on this CPU and preemption is disabled,
1185
 * hence we can't get into perf_event_task_sched_out for this context.
1186
 */
1187
void perf_event_disable(struct perf_event *event)
1188
{
1189
	struct perf_event_context *ctx = event->ctx;
1190 1191 1192 1193
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1194
		 * Disable the event on the cpu that it's on
1195
		 */
1196
		cpu_function_call(event->cpu, __perf_event_disable, event);
1197 1198 1199
		return;
	}

P
Peter Zijlstra 已提交
1200
retry:
1201 1202
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1203

1204
	raw_spin_lock_irq(&ctx->lock);
1205
	/*
1206
	 * If the event is still active, we need to retry the cross-call.
1207
	 */
1208
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1209
		raw_spin_unlock_irq(&ctx->lock);
1210 1211 1212 1213 1214
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1215 1216 1217 1218 1219 1220 1221
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1222 1223 1224
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1225
	}
1226
	raw_spin_unlock_irq(&ctx->lock);
1227 1228
}

S
Stephane Eranian 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1264 1265 1266 1267
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1268
static int
1269
event_sched_in(struct perf_event *event,
1270
		 struct perf_cpu_context *cpuctx,
1271
		 struct perf_event_context *ctx)
1272
{
1273 1274
	u64 tstamp = perf_event_time(event);

1275
	if (event->state <= PERF_EVENT_STATE_OFF)
1276 1277
		return 0;

1278
	event->state = PERF_EVENT_STATE_ACTIVE;
1279
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1291 1292 1293 1294 1295
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1296
	if (event->pmu->add(event, PERF_EF_START)) {
1297 1298
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1299 1300 1301
		return -EAGAIN;
	}

1302
	event->tstamp_running += tstamp - event->tstamp_stopped;
1303

S
Stephane Eranian 已提交
1304
	perf_set_shadow_time(event, ctx, tstamp);
1305

1306
	if (!is_software_event(event))
1307
		cpuctx->active_oncpu++;
1308 1309
	ctx->nr_active++;

1310
	if (event->attr.exclusive)
1311 1312
		cpuctx->exclusive = 1;

1313 1314 1315
	return 0;
}

1316
static int
1317
group_sched_in(struct perf_event *group_event,
1318
	       struct perf_cpu_context *cpuctx,
1319
	       struct perf_event_context *ctx)
1320
{
1321
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1322
	struct pmu *pmu = group_event->pmu;
1323 1324
	u64 now = ctx->time;
	bool simulate = false;
1325

1326
	if (group_event->state == PERF_EVENT_STATE_OFF)
1327 1328
		return 0;

P
Peter Zijlstra 已提交
1329
	pmu->start_txn(pmu);
1330

1331
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1332
		pmu->cancel_txn(pmu);
1333
		return -EAGAIN;
1334
	}
1335 1336 1337 1338

	/*
	 * Schedule in siblings as one group (if any):
	 */
1339
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1340
		if (event_sched_in(event, cpuctx, ctx)) {
1341
			partial_group = event;
1342 1343 1344 1345
			goto group_error;
		}
	}

1346
	if (!pmu->commit_txn(pmu))
1347
		return 0;
1348

1349 1350 1351 1352
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1363
	 */
1364 1365
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1366 1367 1368 1369 1370 1371 1372 1373
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1374
	}
1375
	event_sched_out(group_event, cpuctx, ctx);
1376

P
Peter Zijlstra 已提交
1377
	pmu->cancel_txn(pmu);
1378

1379 1380 1381
	return -EAGAIN;
}

1382
/*
1383
 * Work out whether we can put this event group on the CPU now.
1384
 */
1385
static int group_can_go_on(struct perf_event *event,
1386 1387 1388 1389
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1390
	 * Groups consisting entirely of software events can always go on.
1391
	 */
1392
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1393 1394 1395
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1396
	 * events can go on.
1397 1398 1399 1400 1401
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1402
	 * events on the CPU, it can't go on.
1403
	 */
1404
	if (event->attr.exclusive && cpuctx->active_oncpu)
1405 1406 1407 1408 1409 1410 1411 1412
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1413 1414
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1415
{
1416 1417
	u64 tstamp = perf_event_time(event);

1418
	list_add_event(event, ctx);
1419
	perf_group_attach(event);
1420 1421 1422
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1423 1424
}

S
Stephane Eranian 已提交
1425 1426
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *tsk);
1427

T
Thomas Gleixner 已提交
1428
/*
1429
 * Cross CPU call to install and enable a performance event
1430 1431
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1432
 */
1433
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1434
{
1435 1436 1437
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1438
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1439
	int err;
T
Thomas Gleixner 已提交
1440 1441

	/*
1442 1443 1444
	 * In case we're installing a new context to an already running task,
	 * could also happen before perf_event_task_sched_in() on architectures
	 * which do context switches with IRQs enabled.
T
Thomas Gleixner 已提交
1445
	 */
1446
	if (ctx->task && !cpuctx->task_ctx)
S
Stephane Eranian 已提交
1447
		perf_event_context_sched_in(ctx, ctx->task);
T
Thomas Gleixner 已提交
1448

1449
	raw_spin_lock(&ctx->lock);
1450
	ctx->is_active = 1;
1451
	update_context_time(ctx);
S
Stephane Eranian 已提交
1452 1453 1454 1455 1456 1457
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1458

1459
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1460

1461
	if (!event_filter_match(event))
1462 1463
		goto unlock;

1464
	/*
1465
	 * Don't put the event on if it is disabled or if
1466 1467
	 * it is in a group and the group isn't on.
	 */
1468 1469
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1470 1471
		goto unlock;

1472
	/*
1473 1474 1475
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
1476
	 */
1477
	if (!group_can_go_on(event, cpuctx, 1))
1478 1479
		err = -EEXIST;
	else
1480
		err = event_sched_in(event, cpuctx, ctx);
1481

1482 1483
	if (err) {
		/*
1484
		 * This event couldn't go on.  If it is in a group
1485
		 * then we have to pull the whole group off.
1486
		 * If the event group is pinned then put it in error state.
1487
		 */
1488
		if (leader != event)
1489
			group_sched_out(leader, cpuctx, ctx);
1490
		if (leader->attr.pinned) {
1491
			update_group_times(leader);
1492
			leader->state = PERF_EVENT_STATE_ERROR;
1493
		}
1494
	}
T
Thomas Gleixner 已提交
1495

P
Peter Zijlstra 已提交
1496
unlock:
1497
	raw_spin_unlock(&ctx->lock);
1498 1499

	return 0;
T
Thomas Gleixner 已提交
1500 1501 1502
}

/*
1503
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1504
 *
1505 1506
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1507
 *
1508
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1509 1510 1511 1512
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1513 1514
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1515 1516 1517 1518
			int cpu)
{
	struct task_struct *task = ctx->task;

1519 1520
	lockdep_assert_held(&ctx->mutex);

1521 1522
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1523 1524
	if (!task) {
		/*
1525
		 * Per cpu events are installed via an smp call and
1526
		 * the install is always successful.
T
Thomas Gleixner 已提交
1527
		 */
1528
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1529 1530 1531 1532
		return;
	}

retry:
1533 1534
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1535

1536
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1537
	/*
1538 1539
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1540
	 */
1541
	if (ctx->is_active) {
1542
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1543 1544 1545 1546
		goto retry;
	}

	/*
1547 1548
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1549
	 */
1550
	add_event_to_ctx(event, ctx);
1551
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1552 1553
}

1554
/*
1555
 * Put a event into inactive state and update time fields.
1556 1557 1558 1559 1560 1561
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1562 1563
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1564
{
1565
	struct perf_event *sub;
1566
	u64 tstamp = perf_event_time(event);
1567

1568
	event->state = PERF_EVENT_STATE_INACTIVE;
1569
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1570
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1571 1572
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1573
	}
1574 1575
}

1576
/*
1577
 * Cross CPU call to enable a performance event
1578
 */
1579
static int __perf_event_enable(void *info)
1580
{
1581 1582 1583
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1584
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1585
	int err;
1586

1587 1588
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1589

1590
	raw_spin_lock(&ctx->lock);
1591
	update_context_time(ctx);
1592

1593
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1594
		goto unlock;
S
Stephane Eranian 已提交
1595 1596 1597 1598 1599 1600

	/*
	 * set current task's cgroup time reference point
	 */
	perf_cgroup_set_timestamp(current, perf_clock());

1601
	__perf_event_mark_enabled(event, ctx);
1602

S
Stephane Eranian 已提交
1603 1604 1605
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1606
		goto unlock;
S
Stephane Eranian 已提交
1607
	}
1608

1609
	/*
1610
	 * If the event is in a group and isn't the group leader,
1611
	 * then don't put it on unless the group is on.
1612
	 */
1613
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1614
		goto unlock;
1615

1616
	if (!group_can_go_on(event, cpuctx, 1)) {
1617
		err = -EEXIST;
1618
	} else {
1619
		if (event == leader)
1620
			err = group_sched_in(event, cpuctx, ctx);
1621
		else
1622
			err = event_sched_in(event, cpuctx, ctx);
1623
	}
1624 1625 1626

	if (err) {
		/*
1627
		 * If this event can't go on and it's part of a
1628 1629
		 * group, then the whole group has to come off.
		 */
1630
		if (leader != event)
1631
			group_sched_out(leader, cpuctx, ctx);
1632
		if (leader->attr.pinned) {
1633
			update_group_times(leader);
1634
			leader->state = PERF_EVENT_STATE_ERROR;
1635
		}
1636 1637
	}

P
Peter Zijlstra 已提交
1638
unlock:
1639
	raw_spin_unlock(&ctx->lock);
1640 1641

	return 0;
1642 1643 1644
}

/*
1645
 * Enable a event.
1646
 *
1647 1648
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1649
 * remains valid.  This condition is satisfied when called through
1650 1651
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1652
 */
1653
void perf_event_enable(struct perf_event *event)
1654
{
1655
	struct perf_event_context *ctx = event->ctx;
1656 1657 1658 1659
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1660
		 * Enable the event on the cpu that it's on
1661
		 */
1662
		cpu_function_call(event->cpu, __perf_event_enable, event);
1663 1664 1665
		return;
	}

1666
	raw_spin_lock_irq(&ctx->lock);
1667
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1668 1669 1670
		goto out;

	/*
1671 1672
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1673 1674 1675 1676
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1677 1678
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1679

P
Peter Zijlstra 已提交
1680
retry:
1681 1682 1683 1684 1685
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1686
	raw_spin_unlock_irq(&ctx->lock);
1687 1688 1689

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1690

1691
	raw_spin_lock_irq(&ctx->lock);
1692 1693

	/*
1694
	 * If the context is active and the event is still off,
1695 1696
	 * we need to retry the cross-call.
	 */
1697 1698 1699 1700 1701 1702
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1703
		goto retry;
1704
	}
1705

P
Peter Zijlstra 已提交
1706
out:
1707
	raw_spin_unlock_irq(&ctx->lock);
1708 1709
}

1710
static int perf_event_refresh(struct perf_event *event, int refresh)
1711
{
1712
	/*
1713
	 * not supported on inherited events
1714
	 */
1715
	if (event->attr.inherit || !is_sampling_event(event))
1716 1717
		return -EINVAL;

1718 1719
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1720 1721

	return 0;
1722 1723
}

1724 1725 1726
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1727
{
1728
	struct perf_event *event;
1729

1730
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1731
	perf_pmu_disable(ctx->pmu);
1732
	ctx->is_active = 0;
1733
	if (likely(!ctx->nr_events))
1734
		goto out;
1735
	update_context_time(ctx);
S
Stephane Eranian 已提交
1736
	update_cgrp_time_from_cpuctx(cpuctx);
1737

1738
	if (!ctx->nr_active)
1739
		goto out;
1740

P
Peter Zijlstra 已提交
1741
	if (event_type & EVENT_PINNED) {
1742 1743
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1744
	}
1745

P
Peter Zijlstra 已提交
1746
	if (event_type & EVENT_FLEXIBLE) {
1747
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1748
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1749 1750
	}
out:
P
Peter Zijlstra 已提交
1751
	perf_pmu_enable(ctx->pmu);
1752
	raw_spin_unlock(&ctx->lock);
1753 1754
}

1755 1756 1757
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1758 1759 1760 1761
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1762
 * in them directly with an fd; we can only enable/disable all
1763
 * events via prctl, or enable/disable all events in a family
1764 1765
 * via ioctl, which will have the same effect on both contexts.
 */
1766 1767
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1768 1769
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1770
		&& ctx1->parent_gen == ctx2->parent_gen
1771
		&& !ctx1->pin_count && !ctx2->pin_count;
1772 1773
}

1774 1775
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1776 1777 1778
{
	u64 value;

1779
	if (!event->attr.inherit_stat)
1780 1781 1782
		return;

	/*
1783
	 * Update the event value, we cannot use perf_event_read()
1784 1785
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1786
	 * we know the event must be on the current CPU, therefore we
1787 1788
	 * don't need to use it.
	 */
1789 1790
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1791 1792
		event->pmu->read(event);
		/* fall-through */
1793

1794 1795
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1796 1797 1798 1799 1800 1801 1802
		break;

	default:
		break;
	}

	/*
1803
	 * In order to keep per-task stats reliable we need to flip the event
1804 1805
	 * values when we flip the contexts.
	 */
1806 1807 1808
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1809

1810 1811
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1812

1813
	/*
1814
	 * Since we swizzled the values, update the user visible data too.
1815
	 */
1816 1817
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1818 1819 1820 1821 1822
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1823 1824
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1825
{
1826
	struct perf_event *event, *next_event;
1827 1828 1829 1830

	if (!ctx->nr_stat)
		return;

1831 1832
	update_context_time(ctx);

1833 1834
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1835

1836 1837
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1838

1839 1840
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1841

1842
		__perf_event_sync_stat(event, next_event);
1843

1844 1845
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1846 1847 1848
	}
}

1849 1850
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1851
{
P
Peter Zijlstra 已提交
1852
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1853 1854
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1855
	struct perf_cpu_context *cpuctx;
1856
	int do_switch = 1;
T
Thomas Gleixner 已提交
1857

P
Peter Zijlstra 已提交
1858 1859
	if (likely(!ctx))
		return;
1860

P
Peter Zijlstra 已提交
1861 1862
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1863 1864
		return;

1865 1866
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1867
	next_ctx = next->perf_event_ctxp[ctxn];
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1879 1880
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1881
		if (context_equiv(ctx, next_ctx)) {
1882 1883
			/*
			 * XXX do we need a memory barrier of sorts
1884
			 * wrt to rcu_dereference() of perf_event_ctxp
1885
			 */
P
Peter Zijlstra 已提交
1886 1887
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1888 1889 1890
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1891

1892
			perf_event_sync_stat(ctx, next_ctx);
1893
		}
1894 1895
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1896
	}
1897
	rcu_read_unlock();
1898

1899
	if (do_switch) {
1900
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1901 1902
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1903 1904
}

P
Peter Zijlstra 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1919 1920
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1921 1922 1923 1924 1925
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1926 1927 1928 1929 1930 1931 1932 1933

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1934 1935
}

1936 1937
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1938
{
P
Peter Zijlstra 已提交
1939
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1940

1941 1942
	if (!cpuctx->task_ctx)
		return;
1943 1944 1945 1946

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1947
	ctx_sched_out(ctx, cpuctx, event_type);
1948 1949 1950
	cpuctx->task_ctx = NULL;
}

1951 1952 1953 1954 1955 1956 1957
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1958 1959
}

1960
static void
1961
ctx_pinned_sched_in(struct perf_event_context *ctx,
1962
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1963
{
1964
	struct perf_event *event;
T
Thomas Gleixner 已提交
1965

1966 1967
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1968
			continue;
1969
		if (!event_filter_match(event))
1970 1971
			continue;

S
Stephane Eranian 已提交
1972 1973 1974 1975
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

1976
		if (group_can_go_on(event, cpuctx, 1))
1977
			group_sched_in(event, cpuctx, ctx);
1978 1979 1980 1981 1982

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1983 1984 1985
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1986
		}
1987
	}
1988 1989 1990 1991
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1992
		      struct perf_cpu_context *cpuctx)
1993 1994 1995
{
	struct perf_event *event;
	int can_add_hw = 1;
1996

1997 1998 1999
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2000
			continue;
2001 2002
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2003
		 * of events:
2004
		 */
2005
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2006 2007
			continue;

S
Stephane Eranian 已提交
2008 2009 2010 2011
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2012
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2013
			if (group_sched_in(event, cpuctx, ctx))
2014
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2015
		}
T
Thomas Gleixner 已提交
2016
	}
2017 2018 2019 2020 2021
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2022 2023
	     enum event_type_t event_type,
	     struct task_struct *task)
2024
{
S
Stephane Eranian 已提交
2025 2026
	u64 now;

2027 2028 2029 2030 2031
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

S
Stephane Eranian 已提交
2032 2033 2034
	now = perf_clock();
	ctx->timestamp = now;
	perf_cgroup_set_timestamp(task, now);
2035 2036 2037 2038 2039
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
2040
		ctx_pinned_sched_in(ctx, cpuctx);
2041 2042 2043

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
2044
		ctx_flexible_sched_in(ctx, cpuctx);
2045

P
Peter Zijlstra 已提交
2046
out:
2047
	raw_spin_unlock(&ctx->lock);
2048 2049
}

2050
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2051 2052
			     enum event_type_t event_type,
			     struct task_struct *task)
2053 2054 2055
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2056
	ctx_sched_in(ctx, cpuctx, event_type, task);
2057 2058
}

P
Peter Zijlstra 已提交
2059
static void task_ctx_sched_in(struct perf_event_context *ctx,
2060 2061
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
2062
	struct perf_cpu_context *cpuctx;
2063

2064
	cpuctx = __get_cpu_context(ctx);
2065 2066
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
2067

S
Stephane Eranian 已提交
2068
	ctx_sched_in(ctx, cpuctx, event_type, NULL);
2069 2070
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
2071

S
Stephane Eranian 已提交
2072 2073
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2074
{
P
Peter Zijlstra 已提交
2075
	struct perf_cpu_context *cpuctx;
2076

P
Peter Zijlstra 已提交
2077
	cpuctx = __get_cpu_context(ctx);
2078 2079 2080
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
2081
	perf_pmu_disable(ctx->pmu);
2082 2083 2084 2085 2086 2087 2088
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

S
Stephane Eranian 已提交
2089 2090 2091
	ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2092 2093

	cpuctx->task_ctx = ctx;
2094

2095 2096 2097 2098
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2099
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
2100
	perf_pmu_enable(ctx->pmu);
2101 2102
}

P
Peter Zijlstra 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2114
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2124
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2125
	}
S
Stephane Eranian 已提交
2126 2127 2128 2129 2130 2131 2132
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2133 2134
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2162
#define REDUCE_FLS(a, b)		\
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2202 2203 2204
	if (!divisor)
		return dividend;

2205 2206 2207 2208
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2209
{
2210
	struct hw_perf_event *hwc = &event->hw;
2211
	s64 period, sample_period;
2212 2213
	s64 delta;

2214
	period = perf_calculate_period(event, nsec, count);
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2225

2226
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2227
		event->pmu->stop(event, PERF_EF_UPDATE);
2228
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2229
		event->pmu->start(event, PERF_EF_RELOAD);
2230
	}
2231 2232
}

2233
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2234
{
2235 2236
	struct perf_event *event;
	struct hw_perf_event *hwc;
2237 2238
	u64 interrupts, now;
	s64 delta;
2239

2240
	raw_spin_lock(&ctx->lock);
2241
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2242
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2243 2244
			continue;

2245
		if (!event_filter_match(event))
2246 2247
			continue;

2248
		hwc = &event->hw;
2249 2250 2251

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2252

2253
		/*
2254
		 * unthrottle events on the tick
2255
		 */
2256
		if (interrupts == MAX_INTERRUPTS) {
2257
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2258
			event->pmu->start(event, 0);
2259 2260
		}

2261
		if (!event->attr.freq || !event->attr.sample_freq)
2262 2263
			continue;

2264
		event->pmu->read(event);
2265
		now = local64_read(&event->count);
2266 2267
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2268

2269
		if (delta > 0)
2270
			perf_adjust_period(event, period, delta);
2271
	}
2272
	raw_spin_unlock(&ctx->lock);
2273 2274
}

2275
/*
2276
 * Round-robin a context's events:
2277
 */
2278
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2279
{
2280
	raw_spin_lock(&ctx->lock);
2281

2282 2283 2284 2285 2286 2287
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2288

2289
	raw_spin_unlock(&ctx->lock);
2290 2291
}

2292
/*
2293 2294 2295
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2296
 */
2297
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2298
{
2299
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2300
	struct perf_event_context *ctx = NULL;
2301
	int rotate = 0, remove = 1;
2302

2303
	if (cpuctx->ctx.nr_events) {
2304
		remove = 0;
2305 2306 2307
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2308

P
Peter Zijlstra 已提交
2309
	ctx = cpuctx->task_ctx;
2310
	if (ctx && ctx->nr_events) {
2311
		remove = 0;
2312 2313 2314
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2315

P
Peter Zijlstra 已提交
2316
	perf_pmu_disable(cpuctx->ctx.pmu);
2317
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2318
	if (ctx)
2319
		perf_ctx_adjust_freq(ctx, interval);
2320

2321
	if (!rotate)
2322
		goto done;
2323

2324
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2325
	if (ctx)
2326
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2327

2328
	rotate_ctx(&cpuctx->ctx);
2329 2330
	if (ctx)
		rotate_ctx(ctx);
2331

S
Stephane Eranian 已提交
2332
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2333
	if (ctx)
P
Peter Zijlstra 已提交
2334
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2335 2336

done:
2337 2338 2339
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2340
	perf_pmu_enable(cpuctx->ctx.pmu);
2341 2342 2343 2344 2345 2346
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2347

2348 2349 2350 2351 2352 2353 2354
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2355 2356
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2372
/*
2373
 * Enable all of a task's events that have been marked enable-on-exec.
2374 2375
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2376
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2377
{
2378
	struct perf_event *event;
2379 2380
	unsigned long flags;
	int enabled = 0;
2381
	int ret;
2382 2383

	local_irq_save(flags);
2384
	if (!ctx || !ctx->nr_events)
2385 2386
		goto out;

P
Peter Zijlstra 已提交
2387
	task_ctx_sched_out(ctx, EVENT_ALL);
2388

2389
	raw_spin_lock(&ctx->lock);
2390

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2401 2402 2403
	}

	/*
2404
	 * Unclone this context if we enabled any event.
2405
	 */
2406 2407
	if (enabled)
		unclone_ctx(ctx);
2408

2409
	raw_spin_unlock(&ctx->lock);
2410

S
Stephane Eranian 已提交
2411
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2412
out:
2413 2414 2415
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2416
/*
2417
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2418
 */
2419
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2420
{
2421 2422
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2423
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2424

2425 2426 2427 2428
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2429 2430
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2431 2432 2433 2434
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2435
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2436
	if (ctx->is_active) {
2437
		update_context_time(ctx);
S
Stephane Eranian 已提交
2438 2439
		update_cgrp_time_from_event(event);
	}
2440
	update_event_times(event);
2441 2442
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2443
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2444 2445
}

P
Peter Zijlstra 已提交
2446 2447
static inline u64 perf_event_count(struct perf_event *event)
{
2448
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2449 2450
}

2451
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2452 2453
{
	/*
2454 2455
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2456
	 */
2457 2458 2459 2460
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2461 2462 2463
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2464
		raw_spin_lock_irqsave(&ctx->lock, flags);
2465 2466 2467 2468 2469
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2470
		if (ctx->is_active) {
2471
			update_context_time(ctx);
S
Stephane Eranian 已提交
2472 2473
			update_cgrp_time_from_event(event);
		}
2474
		update_event_times(event);
2475
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2476 2477
	}

P
Peter Zijlstra 已提交
2478
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2479 2480
}

2481
/*
2482
 * Callchain support
2483
 */
2484 2485 2486 2487 2488 2489

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2490
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2491 2492 2493 2494 2495 2496 2497
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2498 2499 2500
{
}

2501 2502
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2503
{
2504
}
T
Thomas Gleixner 已提交
2505

2506 2507 2508 2509
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2510

2511
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2512

2513 2514
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2515

2516 2517
	kfree(entries);
}
T
Thomas Gleixner 已提交
2518

2519 2520 2521
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2522

2523 2524 2525 2526
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2527

2528 2529 2530 2531 2532
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2533

2534
	/*
2535 2536 2537
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2538
	 */
2539
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2540

2541 2542 2543
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2544

2545
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2546

2547 2548 2549 2550 2551
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2552 2553
	}

2554
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2555

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2690
/*
2691
 * Initialize the perf_event context in a task_struct:
2692
 */
2693
static void __perf_event_init_context(struct perf_event_context *ctx)
2694
{
2695
	raw_spin_lock_init(&ctx->lock);
2696
	mutex_init(&ctx->mutex);
2697 2698
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2699 2700
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2716
	}
2717 2718 2719
	ctx->pmu = pmu;

	return ctx;
2720 2721
}

2722 2723 2724 2725 2726
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2727 2728

	rcu_read_lock();
2729
	if (!vpid)
T
Thomas Gleixner 已提交
2730 2731
		task = current;
	else
2732
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2733 2734 2735 2736 2737 2738 2739 2740
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2741 2742 2743 2744
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2745 2746 2747 2748 2749 2750 2751
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2752 2753 2754
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2755
static struct perf_event_context *
M
Matt Helsley 已提交
2756
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2757
{
2758
	struct perf_event_context *ctx;
2759
	struct perf_cpu_context *cpuctx;
2760
	unsigned long flags;
P
Peter Zijlstra 已提交
2761
	int ctxn, err;
T
Thomas Gleixner 已提交
2762

2763
	if (!task) {
2764
		/* Must be root to operate on a CPU event: */
2765
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2766 2767 2768
			return ERR_PTR(-EACCES);

		/*
2769
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2770 2771 2772
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2773
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2774 2775
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2776
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2777
		ctx = &cpuctx->ctx;
2778
		get_ctx(ctx);
2779
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2780 2781 2782 2783

		return ctx;
	}

P
Peter Zijlstra 已提交
2784 2785 2786 2787 2788
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2789
retry:
P
Peter Zijlstra 已提交
2790
	ctx = perf_lock_task_context(task, ctxn, &flags);
2791
	if (ctx) {
2792
		unclone_ctx(ctx);
2793
		++ctx->pin_count;
2794
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2795 2796
	}

2797
	if (!ctx) {
2798
		ctx = alloc_perf_context(pmu, task);
2799 2800 2801
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2802

2803
		get_ctx(ctx);
2804

2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2815 2816
		else {
			++ctx->pin_count;
2817
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2818
		}
2819 2820 2821
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2822
			put_task_struct(task);
2823
			kfree(ctx);
2824 2825 2826 2827

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2828 2829 2830
		}
	}

T
Thomas Gleixner 已提交
2831
	return ctx;
2832

P
Peter Zijlstra 已提交
2833
errout:
2834
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2835 2836
}

L
Li Zefan 已提交
2837 2838
static void perf_event_free_filter(struct perf_event *event);

2839
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2840
{
2841
	struct perf_event *event;
P
Peter Zijlstra 已提交
2842

2843 2844 2845
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2846
	perf_event_free_filter(event);
2847
	kfree(event);
P
Peter Zijlstra 已提交
2848 2849
}

2850
static void perf_buffer_put(struct perf_buffer *buffer);
2851

2852
static void free_event(struct perf_event *event)
2853
{
2854
	irq_work_sync(&event->pending);
2855

2856
	if (!event->parent) {
2857
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2858
			jump_label_dec(&perf_sched_events);
2859
		if (event->attr.mmap || event->attr.mmap_data)
2860 2861 2862 2863 2864
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2865 2866
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2867
	}
2868

2869 2870 2871
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2872 2873
	}

S
Stephane Eranian 已提交
2874 2875 2876
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2877 2878
	if (event->destroy)
		event->destroy(event);
2879

P
Peter Zijlstra 已提交
2880 2881 2882
	if (event->ctx)
		put_ctx(event->ctx);

2883
	call_rcu(&event->rcu_head, free_event_rcu);
2884 2885
}

2886
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2887
{
2888
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2889

2890 2891 2892 2893 2894 2895
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2896
	WARN_ON_ONCE(ctx->parent_ctx);
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2910
	raw_spin_lock_irq(&ctx->lock);
2911
	perf_group_detach(event);
2912 2913
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2914
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2915

2916
	free_event(event);
T
Thomas Gleixner 已提交
2917 2918 2919

	return 0;
}
2920
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2921

2922 2923 2924 2925
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2926
{
2927
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2928
	struct task_struct *owner;
2929

2930
	file->private_data = NULL;
2931

P
Peter Zijlstra 已提交
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2965
	return perf_event_release_kernel(event);
2966 2967
}

2968
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2969
{
2970
	struct perf_event *child;
2971 2972
	u64 total = 0;

2973 2974 2975
	*enabled = 0;
	*running = 0;

2976
	mutex_lock(&event->child_mutex);
2977
	total += perf_event_read(event);
2978 2979 2980 2981 2982 2983
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2984
		total += perf_event_read(child);
2985 2986 2987
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2988
	mutex_unlock(&event->child_mutex);
2989 2990 2991

	return total;
}
2992
EXPORT_SYMBOL_GPL(perf_event_read_value);
2993

2994
static int perf_event_read_group(struct perf_event *event,
2995 2996
				   u64 read_format, char __user *buf)
{
2997
	struct perf_event *leader = event->group_leader, *sub;
2998 2999
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3000
	u64 values[5];
3001
	u64 count, enabled, running;
3002

3003
	mutex_lock(&ctx->mutex);
3004
	count = perf_event_read_value(leader, &enabled, &running);
3005 3006

	values[n++] = 1 + leader->nr_siblings;
3007 3008 3009 3010
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3011 3012 3013
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3014 3015 3016 3017

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3018
		goto unlock;
3019

3020
	ret = size;
3021

3022
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3023
		n = 0;
3024

3025
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3026 3027 3028 3029 3030
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3031
		if (copy_to_user(buf + ret, values, size)) {
3032 3033 3034
			ret = -EFAULT;
			goto unlock;
		}
3035 3036

		ret += size;
3037
	}
3038 3039
unlock:
	mutex_unlock(&ctx->mutex);
3040

3041
	return ret;
3042 3043
}

3044
static int perf_event_read_one(struct perf_event *event,
3045 3046
				 u64 read_format, char __user *buf)
{
3047
	u64 enabled, running;
3048 3049 3050
	u64 values[4];
	int n = 0;

3051 3052 3053 3054 3055
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3056
	if (read_format & PERF_FORMAT_ID)
3057
		values[n++] = primary_event_id(event);
3058 3059 3060 3061 3062 3063 3064

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3065
/*
3066
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3067 3068
 */
static ssize_t
3069
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3070
{
3071
	u64 read_format = event->attr.read_format;
3072
	int ret;
T
Thomas Gleixner 已提交
3073

3074
	/*
3075
	 * Return end-of-file for a read on a event that is in
3076 3077 3078
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3079
	if (event->state == PERF_EVENT_STATE_ERROR)
3080 3081
		return 0;

3082
	if (count < event->read_size)
3083 3084
		return -ENOSPC;

3085
	WARN_ON_ONCE(event->ctx->parent_ctx);
3086
	if (read_format & PERF_FORMAT_GROUP)
3087
		ret = perf_event_read_group(event, read_format, buf);
3088
	else
3089
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3090

3091
	return ret;
T
Thomas Gleixner 已提交
3092 3093 3094 3095 3096
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3097
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3098

3099
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3100 3101 3102 3103
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3104
	struct perf_event *event = file->private_data;
3105
	struct perf_buffer *buffer;
3106
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3107 3108

	rcu_read_lock();
3109 3110 3111
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3112
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3113

3114
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3115 3116 3117 3118

	return events;
}

3119
static void perf_event_reset(struct perf_event *event)
3120
{
3121
	(void)perf_event_read(event);
3122
	local64_set(&event->count, 0);
3123
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3124 3125
}

3126
/*
3127 3128 3129 3130
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3131
 */
3132 3133
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3134
{
3135
	struct perf_event *child;
P
Peter Zijlstra 已提交
3136

3137 3138 3139 3140
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3141
		func(child);
3142
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3143 3144
}

3145 3146
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3147
{
3148 3149
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3150

3151 3152
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3153
	event = event->group_leader;
3154

3155 3156 3157 3158
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3159
	mutex_unlock(&ctx->mutex);
3160 3161
}

3162
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3163
{
3164
	struct perf_event_context *ctx = event->ctx;
3165 3166 3167
	int ret = 0;
	u64 value;

3168
	if (!is_sampling_event(event))
3169 3170
		return -EINVAL;

3171
	if (copy_from_user(&value, arg, sizeof(value)))
3172 3173 3174 3175 3176
		return -EFAULT;

	if (!value)
		return -EINVAL;

3177
	raw_spin_lock_irq(&ctx->lock);
3178 3179
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3180 3181 3182 3183
			ret = -EINVAL;
			goto unlock;
		}

3184
		event->attr.sample_freq = value;
3185
	} else {
3186 3187
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3188 3189
	}
unlock:
3190
	raw_spin_unlock_irq(&ctx->lock);
3191 3192 3193 3194

	return ret;
}

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3216
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3217

3218 3219
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3220 3221
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3222
	u32 flags = arg;
3223 3224

	switch (cmd) {
3225 3226
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3227
		break;
3228 3229
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3230
		break;
3231 3232
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3233
		break;
P
Peter Zijlstra 已提交
3234

3235 3236
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3237

3238 3239
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3240

3241
	case PERF_EVENT_IOC_SET_OUTPUT:
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3259

L
Li Zefan 已提交
3260 3261 3262
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3263
	default:
P
Peter Zijlstra 已提交
3264
		return -ENOTTY;
3265
	}
P
Peter Zijlstra 已提交
3266 3267

	if (flags & PERF_IOC_FLAG_GROUP)
3268
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3269
	else
3270
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3271 3272

	return 0;
3273 3274
}

3275
int perf_event_task_enable(void)
3276
{
3277
	struct perf_event *event;
3278

3279 3280 3281 3282
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3283 3284 3285 3286

	return 0;
}

3287
int perf_event_task_disable(void)
3288
{
3289
	struct perf_event *event;
3290

3291 3292 3293 3294
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3295 3296 3297 3298

	return 0;
}

3299 3300
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3301 3302
#endif

3303
static int perf_event_index(struct perf_event *event)
3304
{
P
Peter Zijlstra 已提交
3305 3306 3307
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3308
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3309 3310
		return 0;

3311
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3312 3313
}

3314 3315 3316 3317 3318
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3319
void perf_event_update_userpage(struct perf_event *event)
3320
{
3321
	struct perf_event_mmap_page *userpg;
3322
	struct perf_buffer *buffer;
3323 3324

	rcu_read_lock();
3325 3326
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3327 3328
		goto unlock;

3329
	userpg = buffer->user_page;
3330

3331 3332 3333 3334 3335
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3336
	++userpg->lock;
3337
	barrier();
3338
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3339
	userpg->offset = perf_event_count(event);
3340
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3341
		userpg->offset -= local64_read(&event->hw.prev_count);
3342

3343 3344
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3345

3346 3347
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3348

3349
	barrier();
3350
	++userpg->lock;
3351
	preempt_enable();
3352
unlock:
3353
	rcu_read_unlock();
3354 3355
}

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3375
#ifndef CONFIG_PERF_USE_VMALLOC
3376

3377 3378 3379
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3380

3381
static struct page *
3382
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3383
{
3384
	if (pgoff > buffer->nr_pages)
3385
		return NULL;
3386

3387
	if (pgoff == 0)
3388
		return virt_to_page(buffer->user_page);
3389

3390
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3391 3392
}

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3406
static struct perf_buffer *
3407
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3408
{
3409
	struct perf_buffer *buffer;
3410 3411 3412
	unsigned long size;
	int i;

3413
	size = sizeof(struct perf_buffer);
3414 3415
	size += nr_pages * sizeof(void *);

3416 3417
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3418 3419
		goto fail;

3420
	buffer->user_page = perf_mmap_alloc_page(cpu);
3421
	if (!buffer->user_page)
3422 3423 3424
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3425
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3426
		if (!buffer->data_pages[i])
3427 3428 3429
			goto fail_data_pages;
	}

3430
	buffer->nr_pages = nr_pages;
3431

3432 3433
	perf_buffer_init(buffer, watermark, flags);

3434
	return buffer;
3435 3436 3437

fail_data_pages:
	for (i--; i >= 0; i--)
3438
		free_page((unsigned long)buffer->data_pages[i]);
3439

3440
	free_page((unsigned long)buffer->user_page);
3441 3442

fail_user_page:
3443
	kfree(buffer);
3444 3445

fail:
3446
	return NULL;
3447 3448
}

3449 3450
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3451
	struct page *page = virt_to_page((void *)addr);
3452 3453 3454 3455 3456

	page->mapping = NULL;
	__free_page(page);
}

3457
static void perf_buffer_free(struct perf_buffer *buffer)
3458 3459 3460
{
	int i;

3461 3462 3463 3464
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3465 3466
}

3467
static inline int page_order(struct perf_buffer *buffer)
3468 3469 3470 3471
{
	return 0;
}

3472 3473 3474 3475 3476 3477 3478 3479
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3480
static inline int page_order(struct perf_buffer *buffer)
3481
{
3482
	return buffer->page_order;
3483 3484
}

3485
static struct page *
3486
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3487
{
3488
	if (pgoff > (1UL << page_order(buffer)))
3489 3490
		return NULL;

3491
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3492 3493 3494 3495 3496 3497 3498 3499 3500
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3501
static void perf_buffer_free_work(struct work_struct *work)
3502
{
3503
	struct perf_buffer *buffer;
3504 3505 3506
	void *base;
	int i, nr;

3507 3508
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3509

3510
	base = buffer->user_page;
3511 3512 3513 3514
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3515
	kfree(buffer);
3516 3517
}

3518
static void perf_buffer_free(struct perf_buffer *buffer)
3519
{
3520
	schedule_work(&buffer->work);
3521 3522
}

3523
static struct perf_buffer *
3524
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3525
{
3526
	struct perf_buffer *buffer;
3527 3528 3529
	unsigned long size;
	void *all_buf;

3530
	size = sizeof(struct perf_buffer);
3531 3532
	size += sizeof(void *);

3533 3534
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3535 3536
		goto fail;

3537
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3538 3539 3540 3541 3542

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3543 3544 3545 3546
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3547

3548 3549
	perf_buffer_init(buffer, watermark, flags);

3550
	return buffer;
3551 3552

fail_all_buf:
3553
	kfree(buffer);
3554 3555 3556 3557 3558 3559 3560

fail:
	return NULL;
}

#endif

3561
static unsigned long perf_data_size(struct perf_buffer *buffer)
3562
{
3563
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3564 3565
}

3566 3567 3568
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3569
	struct perf_buffer *buffer;
3570 3571 3572 3573 3574 3575 3576 3577 3578
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3579 3580
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3581 3582 3583 3584 3585
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3586
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3601
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3602
{
3603
	struct perf_buffer *buffer;
3604

3605 3606
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3607 3608
}

3609
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3610
{
3611
	struct perf_buffer *buffer;
3612

3613
	rcu_read_lock();
3614 3615 3616 3617
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3618 3619 3620
	}
	rcu_read_unlock();

3621
	return buffer;
3622 3623
}

3624
static void perf_buffer_put(struct perf_buffer *buffer)
3625
{
3626
	if (!atomic_dec_and_test(&buffer->refcount))
3627
		return;
3628

3629
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3630 3631 3632 3633
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3634
	struct perf_event *event = vma->vm_file->private_data;
3635

3636
	atomic_inc(&event->mmap_count);
3637 3638 3639 3640
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3641
	struct perf_event *event = vma->vm_file->private_data;
3642

3643
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3644
		unsigned long size = perf_data_size(event->buffer);
3645
		struct user_struct *user = event->mmap_user;
3646
		struct perf_buffer *buffer = event->buffer;
3647

3648
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3649
		vma->vm_mm->locked_vm -= event->mmap_locked;
3650
		rcu_assign_pointer(event->buffer, NULL);
3651
		mutex_unlock(&event->mmap_mutex);
3652

3653
		perf_buffer_put(buffer);
3654
		free_uid(user);
3655
	}
3656 3657
}

3658
static const struct vm_operations_struct perf_mmap_vmops = {
3659 3660 3661 3662
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3663 3664 3665 3666
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3667
	struct perf_event *event = file->private_data;
3668
	unsigned long user_locked, user_lock_limit;
3669
	struct user_struct *user = current_user();
3670
	unsigned long locked, lock_limit;
3671
	struct perf_buffer *buffer;
3672 3673
	unsigned long vma_size;
	unsigned long nr_pages;
3674
	long user_extra, extra;
3675
	int ret = 0, flags = 0;
3676

3677 3678 3679 3680 3681 3682 3683 3684
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3685
	if (!(vma->vm_flags & VM_SHARED))
3686
		return -EINVAL;
3687 3688 3689 3690

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3691
	/*
3692
	 * If we have buffer pages ensure they're a power-of-two number, so we
3693 3694 3695
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3696 3697
		return -EINVAL;

3698
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3699 3700
		return -EINVAL;

3701 3702
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3703

3704 3705
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3706 3707 3708
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3709
		else
3710 3711 3712 3713
			ret = -EINVAL;
		goto unlock;
	}

3714
	user_extra = nr_pages + 1;
3715
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3716 3717 3718 3719 3720 3721

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3722
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3723

3724 3725 3726
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3727

3728
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3729
	lock_limit >>= PAGE_SHIFT;
3730
	locked = vma->vm_mm->locked_vm + extra;
3731

3732 3733
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3734 3735 3736
		ret = -EPERM;
		goto unlock;
	}
3737

3738
	WARN_ON(event->buffer);
3739

3740 3741 3742 3743 3744
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3745
	if (!buffer) {
3746
		ret = -ENOMEM;
3747
		goto unlock;
3748
	}
3749
	rcu_assign_pointer(event->buffer, buffer);
3750

3751 3752 3753 3754 3755
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3756
unlock:
3757 3758
	if (!ret)
		atomic_inc(&event->mmap_count);
3759
	mutex_unlock(&event->mmap_mutex);
3760 3761 3762

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3763 3764

	return ret;
3765 3766
}

P
Peter Zijlstra 已提交
3767 3768 3769
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3770
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3771 3772 3773
	int retval;

	mutex_lock(&inode->i_mutex);
3774
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3775 3776 3777 3778 3779 3780 3781 3782
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3783
static const struct file_operations perf_fops = {
3784
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3785 3786 3787
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3788 3789
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3790
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3791
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3792 3793
};

3794
/*
3795
 * Perf event wakeup
3796 3797 3798 3799 3800
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3801
void perf_event_wakeup(struct perf_event *event)
3802
{
3803
	wake_up_all(&event->waitq);
3804

3805 3806 3807
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3808
	}
3809 3810
}

3811
static void perf_pending_event(struct irq_work *entry)
3812
{
3813 3814
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3815

3816 3817 3818
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3819 3820
	}

3821 3822 3823
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3824 3825 3826
	}
}

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3848 3849 3850
/*
 * Output
 */
3851
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3852
			      unsigned long offset, unsigned long head)
3853 3854 3855
{
	unsigned long mask;

3856
	if (!buffer->writable)
3857 3858
		return true;

3859
	mask = perf_data_size(buffer) - 1;
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3870
static void perf_output_wakeup(struct perf_output_handle *handle)
3871
{
3872
	atomic_set(&handle->buffer->poll, POLL_IN);
3873

3874
	if (handle->nmi) {
3875
		handle->event->pending_wakeup = 1;
3876
		irq_work_queue(&handle->event->pending);
3877
	} else
3878
		perf_event_wakeup(handle->event);
3879 3880
}

3881
/*
3882
 * We need to ensure a later event_id doesn't publish a head when a former
3883
 * event isn't done writing. However since we need to deal with NMIs we
3884 3885 3886
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3887
 * event completes.
3888
 */
3889
static void perf_output_get_handle(struct perf_output_handle *handle)
3890
{
3891
	struct perf_buffer *buffer = handle->buffer;
3892

3893
	preempt_disable();
3894 3895
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3896 3897
}

3898
static void perf_output_put_handle(struct perf_output_handle *handle)
3899
{
3900
	struct perf_buffer *buffer = handle->buffer;
3901
	unsigned long head;
3902 3903

again:
3904
	head = local_read(&buffer->head);
3905 3906

	/*
3907
	 * IRQ/NMI can happen here, which means we can miss a head update.
3908 3909
	 */

3910
	if (!local_dec_and_test(&buffer->nest))
3911
		goto out;
3912 3913

	/*
3914
	 * Publish the known good head. Rely on the full barrier implied
3915
	 * by atomic_dec_and_test() order the buffer->head read and this
3916
	 * write.
3917
	 */
3918
	buffer->user_page->data_head = head;
3919

3920 3921
	/*
	 * Now check if we missed an update, rely on the (compiler)
3922
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3923
	 */
3924 3925
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3926 3927 3928
		goto again;
	}

3929
	if (handle->wakeup != local_read(&buffer->wakeup))
3930
		perf_output_wakeup(handle);
3931

P
Peter Zijlstra 已提交
3932
out:
3933
	preempt_enable();
3934 3935
}

3936
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3937
		      const void *buf, unsigned int len)
3938
{
3939
	do {
3940
		unsigned long size = min_t(unsigned long, handle->size, len);
3941 3942 3943 3944 3945

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3946
		buf += size;
3947 3948
		handle->size -= size;
		if (!handle->size) {
3949
			struct perf_buffer *buffer = handle->buffer;
3950

3951
			handle->page++;
3952 3953 3954
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3955 3956
		}
	} while (len);
3957 3958
}

3959 3960 3961
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4026
int perf_output_begin(struct perf_output_handle *handle,
4027
		      struct perf_event *event, unsigned int size,
4028
		      int nmi, int sample)
4029
{
4030
	struct perf_buffer *buffer;
4031
	unsigned long tail, offset, head;
4032
	int have_lost;
4033
	struct perf_sample_data sample_data;
4034 4035 4036 4037 4038
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4039

4040
	rcu_read_lock();
4041
	/*
4042
	 * For inherited events we send all the output towards the parent.
4043
	 */
4044 4045
	if (event->parent)
		event = event->parent;
4046

4047 4048
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4049 4050
		goto out;

4051
	handle->buffer	= buffer;
4052
	handle->event	= event;
4053 4054
	handle->nmi	= nmi;
	handle->sample	= sample;
4055

4056
	if (!buffer->nr_pages)
4057
		goto out;
4058

4059
	have_lost = local_read(&buffer->lost);
4060 4061 4062 4063 4064 4065
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4066

4067
	perf_output_get_handle(handle);
4068

4069
	do {
4070 4071 4072 4073 4074
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4075
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4076
		smp_rmb();
4077
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4078
		head += size;
4079
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4080
			goto fail;
4081
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4082

4083 4084
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4085

4086 4087 4088 4089
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4090
	handle->addr += handle->size;
4091
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4092

4093
	if (have_lost) {
4094
		lost_event.header.type = PERF_RECORD_LOST;
4095
		lost_event.header.misc = 0;
4096
		lost_event.id          = event->id;
4097
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4098 4099

		perf_output_put(handle, lost_event);
4100
		perf_event__output_id_sample(event, handle, &sample_data);
4101 4102
	}

4103
	return 0;
4104

4105
fail:
4106
	local_inc(&buffer->lost);
4107
	perf_output_put_handle(handle);
4108 4109
out:
	rcu_read_unlock();
4110

4111 4112
	return -ENOSPC;
}
4113

4114
void perf_output_end(struct perf_output_handle *handle)
4115
{
4116
	struct perf_event *event = handle->event;
4117
	struct perf_buffer *buffer = handle->buffer;
4118

4119
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4120

4121
	if (handle->sample && wakeup_events) {
4122
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4123
		if (events >= wakeup_events) {
4124 4125
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4126
		}
4127 4128
	}

4129
	perf_output_put_handle(handle);
4130
	rcu_read_unlock();
4131 4132
}

4133
static void perf_output_read_one(struct perf_output_handle *handle,
4134 4135
				 struct perf_event *event,
				 u64 enabled, u64 running)
4136
{
4137
	u64 read_format = event->attr.read_format;
4138 4139 4140
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4141
	values[n++] = perf_event_count(event);
4142
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4143
		values[n++] = enabled +
4144
			atomic64_read(&event->child_total_time_enabled);
4145 4146
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4147
		values[n++] = running +
4148
			atomic64_read(&event->child_total_time_running);
4149 4150
	}
	if (read_format & PERF_FORMAT_ID)
4151
		values[n++] = primary_event_id(event);
4152 4153 4154 4155 4156

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4157
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4158 4159
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4160 4161
			    struct perf_event *event,
			    u64 enabled, u64 running)
4162
{
4163 4164
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4165 4166 4167 4168 4169 4170
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4171
		values[n++] = enabled;
4172 4173

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4174
		values[n++] = running;
4175

4176
	if (leader != event)
4177 4178
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4179
	values[n++] = perf_event_count(leader);
4180
	if (read_format & PERF_FORMAT_ID)
4181
		values[n++] = primary_event_id(leader);
4182 4183 4184

	perf_output_copy(handle, values, n * sizeof(u64));

4185
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4186 4187
		n = 0;

4188
		if (sub != event)
4189 4190
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4191
		values[n++] = perf_event_count(sub);
4192
		if (read_format & PERF_FORMAT_ID)
4193
			values[n++] = primary_event_id(sub);
4194 4195 4196 4197 4198

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4199 4200 4201
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4202
static void perf_output_read(struct perf_output_handle *handle,
4203
			     struct perf_event *event)
4204
{
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4224
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4225
		perf_output_read_group(handle, event, enabled, running);
4226
	else
4227
		perf_output_read_one(handle, event, enabled, running);
4228 4229
}

4230 4231 4232
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4233
			struct perf_event *event)
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4264
		perf_output_read(handle, event);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4302
			 struct perf_event *event,
4303
			 struct pt_regs *regs)
4304
{
4305
	u64 sample_type = event->attr.sample_type;
4306

4307
	header->type = PERF_RECORD_SAMPLE;
4308
	header->size = sizeof(*header) + event->header_size;
4309 4310 4311

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4312

4313
	__perf_event_header__init_id(header, data, event);
4314

4315
	if (sample_type & PERF_SAMPLE_IP)
4316 4317
		data->ip = perf_instruction_pointer(regs);

4318
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4319
		int size = 1;
4320

4321 4322 4323 4324 4325 4326
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4327 4328
	}

4329
	if (sample_type & PERF_SAMPLE_RAW) {
4330 4331 4332 4333 4334 4335 4336 4337
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4338
		header->size += size;
4339
	}
4340
}
4341

4342
static void perf_event_output(struct perf_event *event, int nmi,
4343 4344 4345 4346 4347
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4348

4349 4350 4351
	/* protect the callchain buffers */
	rcu_read_lock();

4352
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4353

4354
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4355
		goto exit;
4356

4357
	perf_output_sample(&handle, &header, data, event);
4358

4359
	perf_output_end(&handle);
4360 4361 4362

exit:
	rcu_read_unlock();
4363 4364
}

4365
/*
4366
 * read event_id
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4377
perf_event_read_event(struct perf_event *event,
4378 4379 4380
			struct task_struct *task)
{
	struct perf_output_handle handle;
4381
	struct perf_sample_data sample;
4382
	struct perf_read_event read_event = {
4383
		.header = {
4384
			.type = PERF_RECORD_READ,
4385
			.misc = 0,
4386
			.size = sizeof(read_event) + event->read_size,
4387
		},
4388 4389
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4390
	};
4391
	int ret;
4392

4393
	perf_event_header__init_id(&read_event.header, &sample, event);
4394
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4395 4396 4397
	if (ret)
		return;

4398
	perf_output_put(&handle, read_event);
4399
	perf_output_read(&handle, event);
4400
	perf_event__output_id_sample(event, &handle, &sample);
4401

4402 4403 4404
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4405
/*
P
Peter Zijlstra 已提交
4406 4407
 * task tracking -- fork/exit
 *
4408
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4409 4410
 */

P
Peter Zijlstra 已提交
4411
struct perf_task_event {
4412
	struct task_struct		*task;
4413
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4414 4415 4416 4417 4418 4419

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4420 4421
		u32				tid;
		u32				ptid;
4422
		u64				time;
4423
	} event_id;
P
Peter Zijlstra 已提交
4424 4425
};

4426
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4427
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4428 4429
{
	struct perf_output_handle handle;
4430
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4431
	struct task_struct *task = task_event->task;
4432
	int ret, size = task_event->event_id.header.size;
4433

4434
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4435

4436 4437
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4438
	if (ret)
4439
		goto out;
P
Peter Zijlstra 已提交
4440

4441 4442
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4443

4444 4445
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4446

4447
	perf_output_put(&handle, task_event->event_id);
4448

4449 4450
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4451
	perf_output_end(&handle);
4452 4453
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4454 4455
}

4456
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4457
{
P
Peter Zijlstra 已提交
4458
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4459 4460
		return 0;

4461
	if (!event_filter_match(event))
4462 4463
		return 0;

4464 4465
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4466 4467 4468 4469 4470
		return 1;

	return 0;
}

4471
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4472
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4473
{
4474
	struct perf_event *event;
P
Peter Zijlstra 已提交
4475

4476 4477 4478
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4479 4480 4481
	}
}

4482
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4483 4484
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4485
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4486
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4487
	int ctxn;
P
Peter Zijlstra 已提交
4488

4489
	rcu_read_lock();
P
Peter Zijlstra 已提交
4490
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4491
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4492 4493
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4494
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4495 4496 4497 4498 4499

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4500
				goto next;
P
Peter Zijlstra 已提交
4501 4502 4503 4504
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4505 4506
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4507
	}
P
Peter Zijlstra 已提交
4508 4509 4510
	rcu_read_unlock();
}

4511 4512
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4513
			      int new)
P
Peter Zijlstra 已提交
4514
{
P
Peter Zijlstra 已提交
4515
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4516

4517 4518 4519
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4520 4521
		return;

P
Peter Zijlstra 已提交
4522
	task_event = (struct perf_task_event){
4523 4524
		.task	  = task,
		.task_ctx = task_ctx,
4525
		.event_id    = {
P
Peter Zijlstra 已提交
4526
			.header = {
4527
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4528
				.misc = 0,
4529
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4530
			},
4531 4532
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4533 4534
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4535
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4536 4537 4538
		},
	};

4539
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4540 4541
}

4542
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4543
{
4544
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4545 4546
}

4547 4548 4549 4550 4551
/*
 * comm tracking
 */

struct perf_comm_event {
4552 4553
	struct task_struct	*task;
	char			*comm;
4554 4555 4556 4557 4558 4559 4560
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4561
	} event_id;
4562 4563
};

4564
static void perf_event_comm_output(struct perf_event *event,
4565 4566 4567
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4568
	struct perf_sample_data sample;
4569
	int size = comm_event->event_id.header.size;
4570 4571 4572 4573 4574
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4575 4576

	if (ret)
4577
		goto out;
4578

4579 4580
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4581

4582
	perf_output_put(&handle, comm_event->event_id);
4583 4584
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4585 4586 4587

	perf_event__output_id_sample(event, &handle, &sample);

4588
	perf_output_end(&handle);
4589 4590
out:
	comm_event->event_id.header.size = size;
4591 4592
}

4593
static int perf_event_comm_match(struct perf_event *event)
4594
{
P
Peter Zijlstra 已提交
4595
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4596 4597
		return 0;

4598
	if (!event_filter_match(event))
4599 4600
		return 0;

4601
	if (event->attr.comm)
4602 4603 4604 4605 4606
		return 1;

	return 0;
}

4607
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4608 4609
				  struct perf_comm_event *comm_event)
{
4610
	struct perf_event *event;
4611

4612 4613 4614
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4615 4616 4617
	}
}

4618
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4619 4620
{
	struct perf_cpu_context *cpuctx;
4621
	struct perf_event_context *ctx;
4622
	char comm[TASK_COMM_LEN];
4623
	unsigned int size;
P
Peter Zijlstra 已提交
4624
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4625
	int ctxn;
4626

4627
	memset(comm, 0, sizeof(comm));
4628
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4629
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4630 4631 4632 4633

	comm_event->comm = comm;
	comm_event->comm_size = size;

4634
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4635
	rcu_read_lock();
P
Peter Zijlstra 已提交
4636
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4637
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4638 4639
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4640
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4641 4642 4643

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4644
			goto next;
P
Peter Zijlstra 已提交
4645 4646 4647 4648

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4649 4650
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4651
	}
4652
	rcu_read_unlock();
4653 4654
}

4655
void perf_event_comm(struct task_struct *task)
4656
{
4657
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4658 4659
	struct perf_event_context *ctx;
	int ctxn;
4660

P
Peter Zijlstra 已提交
4661 4662 4663 4664
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4665

P
Peter Zijlstra 已提交
4666 4667
		perf_event_enable_on_exec(ctx);
	}
4668

4669
	if (!atomic_read(&nr_comm_events))
4670
		return;
4671

4672
	comm_event = (struct perf_comm_event){
4673
		.task	= task,
4674 4675
		/* .comm      */
		/* .comm_size */
4676
		.event_id  = {
4677
			.header = {
4678
				.type = PERF_RECORD_COMM,
4679 4680 4681 4682 4683
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4684 4685 4686
		},
	};

4687
	perf_event_comm_event(&comm_event);
4688 4689
}

4690 4691 4692 4693 4694
/*
 * mmap tracking
 */

struct perf_mmap_event {
4695 4696 4697 4698
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4699 4700 4701 4702 4703 4704 4705 4706 4707

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4708
	} event_id;
4709 4710
};

4711
static void perf_event_mmap_output(struct perf_event *event,
4712 4713 4714
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4715
	struct perf_sample_data sample;
4716
	int size = mmap_event->event_id.header.size;
4717
	int ret;
4718

4719 4720 4721
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4722
	if (ret)
4723
		goto out;
4724

4725 4726
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4727

4728
	perf_output_put(&handle, mmap_event->event_id);
4729 4730
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4731 4732 4733

	perf_event__output_id_sample(event, &handle, &sample);

4734
	perf_output_end(&handle);
4735 4736
out:
	mmap_event->event_id.header.size = size;
4737 4738
}

4739
static int perf_event_mmap_match(struct perf_event *event,
4740 4741
				   struct perf_mmap_event *mmap_event,
				   int executable)
4742
{
P
Peter Zijlstra 已提交
4743
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4744 4745
		return 0;

4746
	if (!event_filter_match(event))
4747 4748
		return 0;

4749 4750
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4751 4752 4753 4754 4755
		return 1;

	return 0;
}

4756
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4757 4758
				  struct perf_mmap_event *mmap_event,
				  int executable)
4759
{
4760
	struct perf_event *event;
4761

4762
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4763
		if (perf_event_mmap_match(event, mmap_event, executable))
4764
			perf_event_mmap_output(event, mmap_event);
4765 4766 4767
	}
}

4768
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4769 4770
{
	struct perf_cpu_context *cpuctx;
4771
	struct perf_event_context *ctx;
4772 4773
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4774 4775 4776
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4777
	const char *name;
P
Peter Zijlstra 已提交
4778
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4779
	int ctxn;
4780

4781 4782
	memset(tmp, 0, sizeof(tmp));

4783
	if (file) {
4784 4785 4786 4787 4788 4789
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4790 4791 4792 4793
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4794
		name = d_path(&file->f_path, buf, PATH_MAX);
4795 4796 4797 4798 4799
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4800 4801 4802
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4803
			goto got_name;
4804
		}
4805 4806 4807 4808

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4809 4810 4811 4812 4813 4814 4815 4816
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4817 4818
		}

4819 4820 4821 4822 4823
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4824
	size = ALIGN(strlen(name)+1, sizeof(u64));
4825 4826 4827 4828

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4829
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4830

4831
	rcu_read_lock();
P
Peter Zijlstra 已提交
4832
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4833
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4834 4835
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4836 4837
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4838 4839 4840

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4841
			goto next;
P
Peter Zijlstra 已提交
4842 4843 4844 4845 4846 4847

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4848 4849
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4850
	}
4851 4852
	rcu_read_unlock();

4853 4854 4855
	kfree(buf);
}

4856
void perf_event_mmap(struct vm_area_struct *vma)
4857
{
4858 4859
	struct perf_mmap_event mmap_event;

4860
	if (!atomic_read(&nr_mmap_events))
4861 4862 4863
		return;

	mmap_event = (struct perf_mmap_event){
4864
		.vma	= vma,
4865 4866
		/* .file_name */
		/* .file_size */
4867
		.event_id  = {
4868
			.header = {
4869
				.type = PERF_RECORD_MMAP,
4870
				.misc = PERF_RECORD_MISC_USER,
4871 4872 4873 4874
				/* .size */
			},
			/* .pid */
			/* .tid */
4875 4876
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4877
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4878 4879 4880
		},
	};

4881
	perf_event_mmap_event(&mmap_event);
4882 4883
}

4884 4885 4886 4887
/*
 * IRQ throttle logging
 */

4888
static void perf_log_throttle(struct perf_event *event, int enable)
4889 4890
{
	struct perf_output_handle handle;
4891
	struct perf_sample_data sample;
4892 4893 4894 4895 4896
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4897
		u64				id;
4898
		u64				stream_id;
4899 4900
	} throttle_event = {
		.header = {
4901
			.type = PERF_RECORD_THROTTLE,
4902 4903 4904
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4905
		.time		= perf_clock(),
4906 4907
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4908 4909
	};

4910
	if (enable)
4911
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4912

4913 4914 4915 4916
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4917 4918 4919 4920
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4921
	perf_event__output_id_sample(event, &handle, &sample);
4922 4923 4924
	perf_output_end(&handle);
}

4925
/*
4926
 * Generic event overflow handling, sampling.
4927 4928
 */

4929
static int __perf_event_overflow(struct perf_event *event, int nmi,
4930 4931
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4932
{
4933 4934
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4935 4936
	int ret = 0;

4937 4938 4939 4940 4941 4942 4943
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4944
	if (!throttle) {
4945
		hwc->interrupts++;
4946
	} else {
4947 4948
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4949
			if (HZ * hwc->interrupts >
4950
					(u64)sysctl_perf_event_sample_rate) {
4951
				hwc->interrupts = MAX_INTERRUPTS;
4952
				perf_log_throttle(event, 0);
4953 4954 4955 4956
				ret = 1;
			}
		} else {
			/*
4957
			 * Keep re-disabling events even though on the previous
4958
			 * pass we disabled it - just in case we raced with a
4959
			 * sched-in and the event got enabled again:
4960
			 */
4961 4962 4963
			ret = 1;
		}
	}
4964

4965
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4966
		u64 now = perf_clock();
4967
		s64 delta = now - hwc->freq_time_stamp;
4968

4969
		hwc->freq_time_stamp = now;
4970

4971 4972
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4973 4974
	}

4975 4976
	/*
	 * XXX event_limit might not quite work as expected on inherited
4977
	 * events
4978 4979
	 */

4980 4981
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4982
		ret = 1;
4983
		event->pending_kill = POLL_HUP;
4984
		if (nmi) {
4985
			event->pending_disable = 1;
4986
			irq_work_queue(&event->pending);
4987
		} else
4988
			perf_event_disable(event);
4989 4990
	}

4991 4992 4993 4994 4995
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4996
	return ret;
4997 4998
}

4999
int perf_event_overflow(struct perf_event *event, int nmi,
5000 5001
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5002
{
5003
	return __perf_event_overflow(event, nmi, 1, data, regs);
5004 5005
}

5006
/*
5007
 * Generic software event infrastructure
5008 5009
 */

5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5021
/*
5022 5023
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5024 5025 5026 5027
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5028
static u64 perf_swevent_set_period(struct perf_event *event)
5029
{
5030
	struct hw_perf_event *hwc = &event->hw;
5031 5032 5033 5034 5035
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5036 5037

again:
5038
	old = val = local64_read(&hwc->period_left);
5039 5040
	if (val < 0)
		return 0;
5041

5042 5043 5044
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5045
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5046
		goto again;
5047

5048
	return nr;
5049 5050
}

5051
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5052 5053
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5054
{
5055
	struct hw_perf_event *hwc = &event->hw;
5056
	int throttle = 0;
5057

5058
	data->period = event->hw.last_period;
5059 5060
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5061

5062 5063
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5064

5065
	for (; overflow; overflow--) {
5066
		if (__perf_event_overflow(event, nmi, throttle,
5067
					    data, regs)) {
5068 5069 5070 5071 5072 5073
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5074
		throttle = 1;
5075
	}
5076 5077
}

P
Peter Zijlstra 已提交
5078
static void perf_swevent_event(struct perf_event *event, u64 nr,
5079 5080
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5081
{
5082
	struct hw_perf_event *hwc = &event->hw;
5083

5084
	local64_add(nr, &event->count);
5085

5086 5087 5088
	if (!regs)
		return;

5089
	if (!is_sampling_event(event))
5090
		return;
5091

5092 5093 5094
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5095
	if (local64_add_negative(nr, &hwc->period_left))
5096
		return;
5097

5098
	perf_swevent_overflow(event, 0, nmi, data, regs);
5099 5100
}

5101 5102 5103
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5104 5105 5106
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5118
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5119
				enum perf_type_id type,
L
Li Zefan 已提交
5120 5121 5122
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5123
{
5124
	if (event->attr.type != type)
5125
		return 0;
5126

5127
	if (event->attr.config != event_id)
5128 5129
		return 0;

5130 5131
	if (perf_exclude_event(event, regs))
		return 0;
5132 5133 5134 5135

	return 1;
}

5136 5137 5138 5139 5140 5141 5142
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5143 5144
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5145
{
5146 5147 5148 5149
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5150

5151 5152
/* For the read side: events when they trigger */
static inline struct hlist_head *
5153
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5154 5155
{
	struct swevent_hlist *hlist;
5156

5157
	hlist = rcu_dereference(swhash->swevent_hlist);
5158 5159 5160
	if (!hlist)
		return NULL;

5161 5162 5163 5164 5165
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5166
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5177
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5178 5179 5180 5181 5182
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5183 5184 5185 5186 5187 5188
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5189
{
5190
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5191
	struct perf_event *event;
5192 5193
	struct hlist_node *node;
	struct hlist_head *head;
5194

5195
	rcu_read_lock();
5196
	head = find_swevent_head_rcu(swhash, type, event_id);
5197 5198 5199 5200
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5201
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5202
			perf_swevent_event(event, nr, nmi, data, regs);
5203
	}
5204 5205
end:
	rcu_read_unlock();
5206 5207
}

5208
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5209
{
5210
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5211

5212
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5213
}
I
Ingo Molnar 已提交
5214
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5215

5216
inline void perf_swevent_put_recursion_context(int rctx)
5217
{
5218
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5219

5220
	put_recursion_context(swhash->recursion, rctx);
5221
}
5222

5223
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5224
			    struct pt_regs *regs, u64 addr)
5225
{
5226
	struct perf_sample_data data;
5227 5228
	int rctx;

5229
	preempt_disable_notrace();
5230 5231 5232
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5233

5234
	perf_sample_data_init(&data, addr);
5235

5236
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5237 5238

	perf_swevent_put_recursion_context(rctx);
5239
	preempt_enable_notrace();
5240 5241
}

5242
static void perf_swevent_read(struct perf_event *event)
5243 5244 5245
{
}

P
Peter Zijlstra 已提交
5246
static int perf_swevent_add(struct perf_event *event, int flags)
5247
{
5248
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5249
	struct hw_perf_event *hwc = &event->hw;
5250 5251
	struct hlist_head *head;

5252
	if (is_sampling_event(event)) {
5253
		hwc->last_period = hwc->sample_period;
5254
		perf_swevent_set_period(event);
5255
	}
5256

P
Peter Zijlstra 已提交
5257 5258
	hwc->state = !(flags & PERF_EF_START);

5259
	head = find_swevent_head(swhash, event);
5260 5261 5262 5263 5264
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5265 5266 5267
	return 0;
}

P
Peter Zijlstra 已提交
5268
static void perf_swevent_del(struct perf_event *event, int flags)
5269
{
5270
	hlist_del_rcu(&event->hlist_entry);
5271 5272
}

P
Peter Zijlstra 已提交
5273
static void perf_swevent_start(struct perf_event *event, int flags)
5274
{
P
Peter Zijlstra 已提交
5275
	event->hw.state = 0;
5276
}
I
Ingo Molnar 已提交
5277

P
Peter Zijlstra 已提交
5278
static void perf_swevent_stop(struct perf_event *event, int flags)
5279
{
P
Peter Zijlstra 已提交
5280
	event->hw.state = PERF_HES_STOPPED;
5281 5282
}

5283 5284
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5285
swevent_hlist_deref(struct swevent_htable *swhash)
5286
{
5287 5288
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5289 5290
}

5291 5292 5293 5294 5295 5296 5297 5298
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

5299
static void swevent_hlist_release(struct swevent_htable *swhash)
5300
{
5301
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5302

5303
	if (!hlist)
5304 5305
		return;

5306
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5307 5308 5309 5310 5311
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5312
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5313

5314
	mutex_lock(&swhash->hlist_mutex);
5315

5316 5317
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5318

5319
	mutex_unlock(&swhash->hlist_mutex);
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5337
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5338 5339
	int err = 0;

5340
	mutex_lock(&swhash->hlist_mutex);
5341

5342
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5343 5344 5345 5346 5347 5348 5349
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5350
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5351
	}
5352
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5353
exit:
5354
	mutex_unlock(&swhash->hlist_mutex);
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5378
fail:
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5389
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
5390

5391 5392 5393
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5394

5395 5396
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5397
	jump_label_dec(&perf_swevent_enabled[event_id]);
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5417
	if (event_id >= PERF_COUNT_SW_MAX)
5418 5419 5420 5421 5422 5423 5424 5425 5426
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5427
		jump_label_inc(&perf_swevent_enabled[event_id]);
5428 5429 5430 5431 5432 5433 5434
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5435
	.task_ctx_nr	= perf_sw_context,
5436

5437
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5438 5439 5440 5441
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5442 5443 5444
	.read		= perf_swevent_read,
};

5445 5446
#ifdef CONFIG_EVENT_TRACING

5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5461 5462 5463 5464
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5465 5466 5467 5468 5469 5470 5471 5472 5473
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5474
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5475 5476
{
	struct perf_sample_data data;
5477 5478 5479
	struct perf_event *event;
	struct hlist_node *node;

5480 5481 5482 5483 5484 5485 5486 5487
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5488 5489
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5490
			perf_swevent_event(event, count, 1, &data, regs);
5491
	}
5492 5493

	perf_swevent_put_recursion_context(rctx);
5494 5495 5496
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5497
static void tp_perf_event_destroy(struct perf_event *event)
5498
{
5499
	perf_trace_destroy(event);
5500 5501
}

5502
static int perf_tp_event_init(struct perf_event *event)
5503
{
5504 5505
	int err;

5506 5507 5508
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5509 5510
	err = perf_trace_init(event);
	if (err)
5511
		return err;
5512

5513
	event->destroy = tp_perf_event_destroy;
5514

5515 5516 5517 5518
	return 0;
}

static struct pmu perf_tracepoint = {
5519 5520
	.task_ctx_nr	= perf_sw_context,

5521
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5522 5523 5524 5525
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5526 5527 5528 5529 5530
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5531
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5532
}
L
Li Zefan 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5557
#else
L
Li Zefan 已提交
5558

5559
static inline void perf_tp_register(void)
5560 5561
{
}
L
Li Zefan 已提交
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5572
#endif /* CONFIG_EVENT_TRACING */
5573

5574
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5575
void perf_bp_event(struct perf_event *bp, void *data)
5576
{
5577 5578 5579
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5580
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5581

P
Peter Zijlstra 已提交
5582 5583
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5584 5585 5586
}
#endif

5587 5588 5589
/*
 * hrtimer based swevent callback
 */
5590

5591
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5592
{
5593 5594 5595 5596 5597
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5598

5599 5600
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
5601

5602 5603 5604 5605 5606 5607 5608 5609 5610
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5611

5612 5613
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5614

5615
	return ret;
5616 5617
}

5618
static void perf_swevent_start_hrtimer(struct perf_event *event)
5619
{
5620
	struct hw_perf_event *hwc = &event->hw;
5621 5622 5623 5624
	s64 period;

	if (!is_sampling_event(event))
		return;
5625

5626 5627
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
5628

5629 5630 5631 5632
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5633

5634 5635 5636 5637 5638
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5639
				ns_to_ktime(period), 0,
5640
				HRTIMER_MODE_REL_PINNED, 0);
5641
}
5642 5643

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5644
{
5645 5646
	struct hw_perf_event *hwc = &event->hw;

5647
	if (is_sampling_event(event)) {
5648
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5649
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5650 5651 5652

		hrtimer_cancel(&hwc->hrtimer);
	}
5653 5654
}

5655 5656 5657 5658 5659
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5660
{
5661 5662 5663
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5664
	now = local_clock();
5665 5666
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5667 5668
}

P
Peter Zijlstra 已提交
5669
static void cpu_clock_event_start(struct perf_event *event, int flags)
5670
{
P
Peter Zijlstra 已提交
5671
	local64_set(&event->hw.prev_count, local_clock());
5672 5673 5674
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5675
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5676
{
5677 5678 5679
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5680

P
Peter Zijlstra 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5694 5695 5696 5697
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5698

5699 5700 5701 5702 5703 5704 5705 5706 5707
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
5708 5709
}

5710
static struct pmu perf_cpu_clock = {
5711 5712
	.task_ctx_nr	= perf_sw_context,

5713
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5714 5715 5716 5717
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5718 5719 5720 5721 5722 5723 5724 5725
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5726
{
5727 5728
	u64 prev;
	s64 delta;
5729

5730 5731 5732 5733
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5734

P
Peter Zijlstra 已提交
5735
static void task_clock_event_start(struct perf_event *event, int flags)
5736
{
P
Peter Zijlstra 已提交
5737
	local64_set(&event->hw.prev_count, event->ctx->time);
5738 5739 5740
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5741
static void task_clock_event_stop(struct perf_event *event, int flags)
5742 5743 5744
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5745 5746 5747 5748 5749 5750
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5751

P
Peter Zijlstra 已提交
5752 5753 5754 5755 5756 5757
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5758 5759 5760 5761 5762 5763 5764 5765
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
S
Stephane Eranian 已提交
5766
		update_cgrp_time_from_event(event);
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5778
{
5779 5780 5781 5782 5783 5784 5785
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
L
Li Zefan 已提交
5786 5787
}

5788
static struct pmu perf_task_clock = {
5789 5790
	.task_ctx_nr	= perf_sw_context,

5791
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5792 5793 5794 5795
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5796 5797
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5798

P
Peter Zijlstra 已提交
5799
static void perf_pmu_nop_void(struct pmu *pmu)
5800 5801
{
}
L
Li Zefan 已提交
5802

P
Peter Zijlstra 已提交
5803
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5804
{
P
Peter Zijlstra 已提交
5805
	return 0;
L
Li Zefan 已提交
5806 5807
}

P
Peter Zijlstra 已提交
5808
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5809
{
P
Peter Zijlstra 已提交
5810
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5811 5812
}

P
Peter Zijlstra 已提交
5813 5814 5815 5816 5817
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5818

P
Peter Zijlstra 已提交
5819
static void perf_pmu_cancel_txn(struct pmu *pmu)
5820
{
P
Peter Zijlstra 已提交
5821
	perf_pmu_enable(pmu);
5822 5823
}

P
Peter Zijlstra 已提交
5824 5825 5826 5827 5828
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5829
{
P
Peter Zijlstra 已提交
5830
	struct pmu *pmu;
5831

P
Peter Zijlstra 已提交
5832 5833
	if (ctxn < 0)
		return NULL;
5834

P
Peter Zijlstra 已提交
5835 5836 5837 5838
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5839

P
Peter Zijlstra 已提交
5840
	return NULL;
5841 5842
}

5843
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5844
{
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5860

P
Peter Zijlstra 已提交
5861
	mutex_lock(&pmus_lock);
5862
	/*
P
Peter Zijlstra 已提交
5863
	 * Like a real lame refcount.
5864
	 */
5865 5866 5867
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5868
			goto out;
5869
		}
P
Peter Zijlstra 已提交
5870
	}
5871

5872
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5873 5874
out:
	mutex_unlock(&pmus_lock);
5875
}
P
Peter Zijlstra 已提交
5876
static struct idr pmu_idr;
5877

P
Peter Zijlstra 已提交
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5930 5931
static struct lock_class_key cpuctx_mutex;

P
Peter Zijlstra 已提交
5932
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5933
{
P
Peter Zijlstra 已提交
5934
	int cpu, ret;
5935

5936
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5937 5938 5939 5940
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5941

P
Peter Zijlstra 已提交
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5960 5961 5962 5963 5964 5965
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5966
skip_type:
P
Peter Zijlstra 已提交
5967 5968 5969
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5970

P
Peter Zijlstra 已提交
5971 5972
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5973
		goto free_dev;
5974

P
Peter Zijlstra 已提交
5975 5976 5977 5978
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5979
		__perf_event_init_context(&cpuctx->ctx);
5980
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5981
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5982
		cpuctx->ctx.pmu = pmu;
5983 5984
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
5985
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
5986
	}
5987

P
Peter Zijlstra 已提交
5988
got_cpu_context:
P
Peter Zijlstra 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6003
		}
6004
	}
6005

P
Peter Zijlstra 已提交
6006 6007 6008 6009 6010
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6011
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6012 6013
	ret = 0;
unlock:
6014 6015
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6016
	return ret;
P
Peter Zijlstra 已提交
6017

P
Peter Zijlstra 已提交
6018 6019 6020 6021
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6022 6023 6024 6025
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6026 6027 6028
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6029 6030
}

6031
void perf_pmu_unregister(struct pmu *pmu)
6032
{
6033 6034 6035
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6036

6037
	/*
P
Peter Zijlstra 已提交
6038 6039
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6040
	 */
6041
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6042
	synchronize_rcu();
6043

P
Peter Zijlstra 已提交
6044
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6045 6046
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6047 6048
	device_del(pmu->dev);
	put_device(pmu->dev);
6049
	free_pmu_context(pmu);
6050
}
6051

6052 6053 6054 6055 6056 6057
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6058 6059 6060 6061 6062 6063 6064

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
	if (pmu)
		goto unlock;

6065 6066 6067
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
P
Peter Zijlstra 已提交
6068
			goto unlock;
6069

6070 6071
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6072
			goto unlock;
6073
		}
6074
	}
P
Peter Zijlstra 已提交
6075 6076
	pmu = ERR_PTR(-ENOENT);
unlock:
6077
	srcu_read_unlock(&pmus_srcu, idx);
6078

6079
	return pmu;
6080 6081
}

T
Thomas Gleixner 已提交
6082
/*
6083
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6084
 */
6085
static struct perf_event *
6086
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6087 6088 6089 6090
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6091
{
P
Peter Zijlstra 已提交
6092
	struct pmu *pmu;
6093 6094
	struct perf_event *event;
	struct hw_perf_event *hwc;
6095
	long err;
T
Thomas Gleixner 已提交
6096

6097 6098 6099 6100 6101
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6102
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6103
	if (!event)
6104
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6105

6106
	/*
6107
	 * Single events are their own group leaders, with an
6108 6109 6110
	 * empty sibling list:
	 */
	if (!group_leader)
6111
		group_leader = event;
6112

6113 6114
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6115

6116 6117 6118 6119
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6120
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6121

6122
	mutex_init(&event->mmap_mutex);
6123

6124 6125 6126 6127 6128
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6129

6130
	event->parent		= parent_event;
6131

6132 6133
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6134

6135
	event->state		= PERF_EVENT_STATE_INACTIVE;
6136

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6148 6149
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6150

6151
	event->overflow_handler	= overflow_handler;
6152

6153
	if (attr->disabled)
6154
		event->state = PERF_EVENT_STATE_OFF;
6155

6156
	pmu = NULL;
6157

6158
	hwc = &event->hw;
6159
	hwc->sample_period = attr->sample_period;
6160
	if (attr->freq && attr->sample_freq)
6161
		hwc->sample_period = 1;
6162
	hwc->last_period = hwc->sample_period;
6163

6164
	local64_set(&hwc->period_left, hwc->sample_period);
6165

6166
	/*
6167
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6168
	 */
6169
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6170 6171
		goto done;

6172
	pmu = perf_init_event(event);
6173

6174 6175
done:
	err = 0;
6176
	if (!pmu)
6177
		err = -EINVAL;
6178 6179
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6180

6181
	if (err) {
6182 6183 6184
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6185
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6186
	}
6187

6188
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6189

6190
	if (!event->parent) {
6191
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6192
			jump_label_inc(&perf_sched_events);
6193
		if (event->attr.mmap || event->attr.mmap_data)
6194 6195 6196 6197 6198
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6199 6200 6201 6202 6203 6204 6205
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6206
	}
6207

6208
	return event;
T
Thomas Gleixner 已提交
6209 6210
}

6211 6212
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6213 6214
{
	u32 size;
6215
	int ret;
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6240 6241 6242
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6243 6244
	 */
	if (size > sizeof(*attr)) {
6245 6246 6247
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6248

6249 6250
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6251

6252
		for (; addr < end; addr++) {
6253 6254 6255 6256 6257 6258
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6259
		size = sizeof(*attr);
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6273
	if (attr->__reserved_1)
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6291 6292
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6293
{
6294
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6295 6296
	int ret = -EINVAL;

6297
	if (!output_event)
6298 6299
		goto set;

6300 6301
	/* don't allow circular references */
	if (event == output_event)
6302 6303
		goto out;

6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6316
set:
6317
	mutex_lock(&event->mmap_mutex);
6318 6319 6320
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6321

6322 6323
	if (output_event) {
		/* get the buffer we want to redirect to */
6324 6325
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6326
			goto unlock;
6327 6328
	}

6329 6330
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6331
	ret = 0;
6332 6333 6334
unlock:
	mutex_unlock(&event->mmap_mutex);

6335 6336
	if (old_buffer)
		perf_buffer_put(old_buffer);
6337 6338 6339 6340
out:
	return ret;
}

T
Thomas Gleixner 已提交
6341
/**
6342
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6343
 *
6344
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6345
 * @pid:		target pid
I
Ingo Molnar 已提交
6346
 * @cpu:		target cpu
6347
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6348
 */
6349 6350
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6351
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6352
{
6353 6354
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6355 6356 6357
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6358
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6359
	struct task_struct *task = NULL;
6360
	struct pmu *pmu;
6361
	int event_fd;
6362
	int move_group = 0;
6363
	int fput_needed = 0;
6364
	int err;
T
Thomas Gleixner 已提交
6365

6366
	/* for future expandability... */
S
Stephane Eranian 已提交
6367
	if (flags & ~PERF_FLAG_ALL)
6368 6369
		return -EINVAL;

6370 6371 6372
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6373

6374 6375 6376 6377 6378
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6379
	if (attr.freq) {
6380
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6381 6382 6383
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6384 6385 6386 6387 6388 6389 6390 6391 6392
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6393 6394 6395 6396
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6397 6398 6399 6400
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6401
			goto err_fd;
6402 6403 6404 6405 6406 6407 6408 6409
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6410
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6411 6412 6413 6414 6415 6416 6417
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6418
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6419 6420
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6421
		goto err_task;
6422 6423
	}

S
Stephane Eranian 已提交
6424 6425 6426 6427 6428 6429
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
	}

6430 6431 6432 6433 6434
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6458 6459 6460 6461

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6462
	ctx = find_get_context(pmu, task, cpu);
6463 6464
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6465
		goto err_alloc;
6466 6467
	}

I
Ingo Molnar 已提交
6468
	/*
6469
	 * Look up the group leader (we will attach this event to it):
6470
	 */
6471
	if (group_leader) {
6472
		err = -EINVAL;
6473 6474

		/*
I
Ingo Molnar 已提交
6475 6476 6477 6478
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6479
			goto err_context;
I
Ingo Molnar 已提交
6480 6481 6482
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6483
		 */
6484 6485 6486 6487 6488 6489 6490 6491
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6492 6493 6494
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6495
		if (attr.exclusive || attr.pinned)
6496
			goto err_context;
6497 6498 6499 6500 6501
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6502
			goto err_context;
6503
	}
T
Thomas Gleixner 已提交
6504

6505 6506 6507
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6508
		goto err_context;
6509
	}
6510

6511 6512 6513 6514
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6515
		perf_remove_from_context(group_leader);
6516 6517
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6518
			perf_remove_from_context(sibling);
6519 6520 6521 6522
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6523
	}
6524

6525
	event->filp = event_file;
6526
	WARN_ON_ONCE(ctx->parent_ctx);
6527
	mutex_lock(&ctx->mutex);
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6539
	perf_install_in_context(ctx, event, cpu);
6540
	++ctx->generation;
6541
	perf_unpin_context(ctx);
6542
	mutex_unlock(&ctx->mutex);
6543

6544
	event->owner = current;
P
Peter Zijlstra 已提交
6545

6546 6547 6548
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6549

6550 6551 6552 6553
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6554
	perf_event__id_header_size(event);
6555

6556 6557 6558 6559 6560 6561
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6562 6563 6564
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6565

6566
err_context:
6567
	perf_unpin_context(ctx);
6568
	put_ctx(ctx);
6569
err_alloc:
6570
	free_event(event);
P
Peter Zijlstra 已提交
6571 6572 6573
err_task:
	if (task)
		put_task_struct(task);
6574
err_group_fd:
6575
	fput_light(group_file, fput_needed);
6576 6577
err_fd:
	put_unused_fd(event_fd);
6578
	return err;
T
Thomas Gleixner 已提交
6579 6580
}

6581 6582 6583 6584 6585
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6586
 * @task: task to profile (NULL for percpu)
6587 6588 6589
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6590
				 struct task_struct *task,
6591
				 perf_overflow_handler_t overflow_handler)
6592 6593
{
	struct perf_event_context *ctx;
6594
	struct perf_event *event;
6595
	int err;
6596

6597 6598 6599
	/*
	 * Get the target context (task or percpu):
	 */
6600

6601
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6602 6603 6604 6605
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6606

M
Matt Helsley 已提交
6607
	ctx = find_get_context(event->pmu, task, cpu);
6608 6609
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6610
		goto err_free;
6611
	}
6612 6613 6614 6615 6616 6617

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6618
	perf_unpin_context(ctx);
6619 6620 6621 6622
	mutex_unlock(&ctx->mutex);

	return event;

6623 6624 6625
err_free:
	free_event(event);
err:
6626
	return ERR_PTR(err);
6627
}
6628
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6629

6630
static void sync_child_event(struct perf_event *child_event,
6631
			       struct task_struct *child)
6632
{
6633
	struct perf_event *parent_event = child_event->parent;
6634
	u64 child_val;
6635

6636 6637
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6638

P
Peter Zijlstra 已提交
6639
	child_val = perf_event_count(child_event);
6640 6641 6642 6643

	/*
	 * Add back the child's count to the parent's count:
	 */
6644
	atomic64_add(child_val, &parent_event->child_count);
6645 6646 6647 6648
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6649 6650

	/*
6651
	 * Remove this event from the parent's list
6652
	 */
6653 6654 6655 6656
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6657 6658

	/*
6659
	 * Release the parent event, if this was the last
6660 6661
	 * reference to it.
	 */
6662
	fput(parent_event->filp);
6663 6664
}

6665
static void
6666 6667
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6668
			 struct task_struct *child)
6669
{
6670
	struct perf_event *parent_event;
6671

6672
	perf_remove_from_context(child_event);
6673

6674
	parent_event = child_event->parent;
6675
	/*
6676
	 * It can happen that parent exits first, and has events
6677
	 * that are still around due to the child reference. These
6678
	 * events need to be zapped - but otherwise linger.
6679
	 */
6680 6681 6682
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
6683
	}
6684 6685
}

P
Peter Zijlstra 已提交
6686
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6687
{
6688 6689
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6690
	unsigned long flags;
6691

P
Peter Zijlstra 已提交
6692
	if (likely(!child->perf_event_ctxp[ctxn])) {
6693
		perf_event_task(child, NULL, 0);
6694
		return;
P
Peter Zijlstra 已提交
6695
	}
6696

6697
	local_irq_save(flags);
6698 6699 6700 6701 6702 6703
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6704
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6705
	task_ctx_sched_out(child_ctx, EVENT_ALL);
6706 6707 6708

	/*
	 * Take the context lock here so that if find_get_context is
6709
	 * reading child->perf_event_ctxp, we wait until it has
6710 6711
	 * incremented the context's refcount before we do put_ctx below.
	 */
6712
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
6713
	child->perf_event_ctxp[ctxn] = NULL;
6714 6715 6716
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6717
	 * the events from it.
6718 6719
	 */
	unclone_ctx(child_ctx);
6720
	update_context_time(child_ctx);
6721
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6722 6723

	/*
6724 6725 6726
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6727
	 */
6728
	perf_event_task(child, child_ctx, 0);
6729

6730 6731 6732
	/*
	 * We can recurse on the same lock type through:
	 *
6733 6734 6735
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6736 6737 6738 6739 6740
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6741
	mutex_lock(&child_ctx->mutex);
6742

6743
again:
6744 6745 6746 6747 6748
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6749
				 group_entry)
6750
		__perf_event_exit_task(child_event, child_ctx, child);
6751 6752

	/*
6753
	 * If the last event was a group event, it will have appended all
6754 6755 6756
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6757 6758
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6759
		goto again;
6760 6761 6762 6763

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6764 6765
}

P
Peter Zijlstra 已提交
6766 6767 6768 6769 6770
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6771
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6772 6773
	int ctxn;

P
Peter Zijlstra 已提交
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6789 6790 6791 6792
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6807
	perf_group_detach(event);
6808 6809 6810 6811
	list_del_event(event, ctx);
	free_event(event);
}

6812 6813
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6814
 * perf_event_init_task below, used by fork() in case of fail.
6815
 */
6816
void perf_event_free_task(struct task_struct *task)
6817
{
P
Peter Zijlstra 已提交
6818
	struct perf_event_context *ctx;
6819
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6820
	int ctxn;
6821

P
Peter Zijlstra 已提交
6822 6823 6824 6825
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6826

P
Peter Zijlstra 已提交
6827
		mutex_lock(&ctx->mutex);
6828
again:
P
Peter Zijlstra 已提交
6829 6830 6831
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6832

P
Peter Zijlstra 已提交
6833 6834 6835
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6836

P
Peter Zijlstra 已提交
6837 6838 6839
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6840

P
Peter Zijlstra 已提交
6841
		mutex_unlock(&ctx->mutex);
6842

P
Peter Zijlstra 已提交
6843 6844
		put_ctx(ctx);
	}
6845 6846
}

6847 6848 6849 6850 6851 6852 6853 6854
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6867
	unsigned long flags;
P
Peter Zijlstra 已提交
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6880
					   child,
P
Peter Zijlstra 已提交
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6910 6911 6912 6913
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6914
	perf_event__id_header_size(child_event);
6915

P
Peter Zijlstra 已提交
6916 6917 6918
	/*
	 * Link it up in the child's context:
	 */
6919
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6920
	add_event_to_ctx(child_event, child_ctx);
6921
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6963 6964 6965 6966 6967
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6968
		   struct task_struct *child, int ctxn,
6969 6970 6971
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6972
	struct perf_event_context *child_ctx;
6973 6974 6975 6976

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6977 6978
	}

6979
	child_ctx = child->perf_event_ctxp[ctxn];
6980 6981 6982 6983 6984 6985 6986
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6987

6988
		child_ctx = alloc_perf_context(event->pmu, child);
6989 6990
		if (!child_ctx)
			return -ENOMEM;
6991

P
Peter Zijlstra 已提交
6992
		child->perf_event_ctxp[ctxn] = child_ctx;
6993 6994 6995 6996 6997 6998 6999 7000 7001
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7002 7003
}

7004
/*
7005
 * Initialize the perf_event context in task_struct
7006
 */
P
Peter Zijlstra 已提交
7007
int perf_event_init_context(struct task_struct *child, int ctxn)
7008
{
7009
	struct perf_event_context *child_ctx, *parent_ctx;
7010 7011
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7012
	struct task_struct *parent = current;
7013
	int inherited_all = 1;
7014
	unsigned long flags;
7015
	int ret = 0;
7016

P
Peter Zijlstra 已提交
7017
	if (likely(!parent->perf_event_ctxp[ctxn]))
7018 7019
		return 0;

7020
	/*
7021 7022
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7023
	 */
P
Peter Zijlstra 已提交
7024
	parent_ctx = perf_pin_task_context(parent, ctxn);
7025

7026 7027 7028 7029 7030 7031 7032
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7033 7034 7035 7036
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7037
	mutex_lock(&parent_ctx->mutex);
7038 7039 7040 7041 7042

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7043
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7044 7045
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7046 7047 7048
		if (ret)
			break;
	}
7049

7050 7051 7052 7053 7054 7055 7056 7057 7058
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7059
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7060 7061
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7062
		if (ret)
7063
			break;
7064 7065
	}

7066 7067 7068
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7069
	child_ctx = child->perf_event_ctxp[ctxn];
7070

7071
	if (child_ctx && inherited_all) {
7072 7073 7074
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7075 7076 7077
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7078
		 */
P
Peter Zijlstra 已提交
7079
		cloned_ctx = parent_ctx->parent_ctx;
7080 7081
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7082
			child_ctx->parent_gen = parent_ctx->parent_gen;
7083 7084 7085 7086 7087
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7088 7089
	}

P
Peter Zijlstra 已提交
7090
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7091
	mutex_unlock(&parent_ctx->mutex);
7092

7093
	perf_unpin_context(parent_ctx);
7094
	put_ctx(parent_ctx);
7095

7096
	return ret;
7097 7098
}

P
Peter Zijlstra 已提交
7099 7100 7101 7102 7103 7104 7105
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7106 7107 7108 7109
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7110 7111 7112 7113 7114 7115 7116 7117 7118
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7119 7120
static void __init perf_event_init_all_cpus(void)
{
7121
	struct swevent_htable *swhash;
7122 7123 7124
	int cpu;

	for_each_possible_cpu(cpu) {
7125 7126
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7127
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7128 7129 7130
	}
}

7131
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7132
{
P
Peter Zijlstra 已提交
7133
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7134

7135 7136
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7137 7138
		struct swevent_hlist *hlist;

7139 7140 7141
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7142
	}
7143
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7144 7145
}

P
Peter Zijlstra 已提交
7146
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7147
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7148
{
7149 7150 7151 7152 7153 7154 7155
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7156
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7157
{
P
Peter Zijlstra 已提交
7158
	struct perf_event_context *ctx = __info;
7159
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7160

P
Peter Zijlstra 已提交
7161
	perf_pmu_rotate_stop(ctx->pmu);
7162

7163
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7164
		__perf_remove_from_context(event);
7165
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7166
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7167
}
P
Peter Zijlstra 已提交
7168 7169 7170 7171 7172 7173 7174 7175 7176

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7177
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7178 7179 7180 7181 7182 7183 7184 7185

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7186
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7187
{
7188
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7189

7190 7191 7192
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7193

P
Peter Zijlstra 已提交
7194
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7195 7196
}
#else
7197
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7198 7199
#endif

P
Peter Zijlstra 已提交
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7220 7221 7222 7223 7224
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7225
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7226 7227

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7228
	case CPU_DOWN_FAILED:
7229
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7230 7231
		break;

P
Peter Zijlstra 已提交
7232
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7233
	case CPU_DOWN_PREPARE:
7234
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7235 7236 7237 7238 7239 7240 7241 7242 7243
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7244
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7245
{
7246 7247
	int ret;

P
Peter Zijlstra 已提交
7248 7249
	idr_init(&pmu_idr);

7250
	perf_event_init_all_cpus();
7251
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7252 7253 7254
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7255 7256
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7257
	register_reboot_notifier(&perf_reboot_notifier);
7258 7259 7260

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7261
}
P
Peter Zijlstra 已提交
7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;
	struct perf_cgroup_info *t;
	int c;

	jc = kmalloc(sizeof(*jc), GFP_KERNEL);
	if (!jc)
		return ERR_PTR(-ENOMEM);

	memset(jc, 0, sizeof(*jc));

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	for_each_possible_cpu(c) {
		t = per_cpu_ptr(jc->info, c);
		t->time = 0;
		t->timestamp = 0;
	}
	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
	.name = "perf_event",
	.subsys_id = perf_subsys_id,
	.create = perf_cgroup_create,
	.destroy = perf_cgroup_destroy,
	.exit = perf_cgroup_exit,
	.attach = perf_cgroup_attach,
};
#endif /* CONFIG_CGROUP_PERF */