perf_event.c 133.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
78
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
void __weak perf_event_print_debug(void)	{ }
87

88
static DEFINE_PER_CPU(int, perf_disable_count);
89 90 91

void perf_disable(void)
{
P
Peter Zijlstra 已提交
92 93
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
94 95 96 97
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
98
	if (!--__get_cpu_var(perf_disable_count))
99 100 101
		hw_perf_enable();
}

102
static void get_ctx(struct perf_event_context *ctx)
103
{
104
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 106
}

107 108
static void free_ctx(struct rcu_head *head)
{
109
	struct perf_event_context *ctx;
110

111
	ctx = container_of(head, struct perf_event_context, rcu_head);
112 113 114
	kfree(ctx);
}

115
static void put_ctx(struct perf_event_context *ctx)
116
{
117 118 119
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
120 121 122
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
123
	}
124 125
}

126
static void unclone_ctx(struct perf_event_context *ctx)
127 128 129 130 131 132 133
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

134
/*
135
 * If we inherit events we want to return the parent event id
136 137
 * to userspace.
 */
138
static u64 primary_event_id(struct perf_event *event)
139
{
140
	u64 id = event->id;
141

142 143
	if (event->parent)
		id = event->parent->id;
144 145 146 147

	return id;
}

148
/*
149
 * Get the perf_event_context for a task and lock it.
150 151 152
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
153
static struct perf_event_context *
154
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155
{
156
	struct perf_event_context *ctx;
157 158 159

	rcu_read_lock();
 retry:
160
	ctx = rcu_dereference(task->perf_event_ctxp);
161 162 163 164
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
165
		 * perf_event_task_sched_out, though the
166 167 168 169 170 171
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
172
		raw_spin_lock_irqsave(&ctx->lock, *flags);
173
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 176
			goto retry;
		}
177 178

		if (!atomic_inc_not_zero(&ctx->refcount)) {
179
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 181
			ctx = NULL;
		}
182 183 184 185 186 187 188 189 190 191
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
192
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193
{
194
	struct perf_event_context *ctx;
195 196 197 198 199
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
200
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 202 203 204
	}
	return ctx;
}

205
static void perf_unpin_context(struct perf_event_context *ctx)
206 207 208
{
	unsigned long flags;

209
	raw_spin_lock_irqsave(&ctx->lock, flags);
210
	--ctx->pin_count;
211
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 213 214
	put_ctx(ctx);
}

215 216
static inline u64 perf_clock(void)
{
217
	return cpu_clock(raw_smp_processor_id());
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

243 244 245 246 247 248
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
249 250 251 252 253 254 255 256 257

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

270 271 272 273 274 275 276 277 278
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

279
/*
280
 * Add a event from the lists for its context.
281 282
 * Must be called with ctx->mutex and ctx->lock held.
 */
283
static void
284
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285
{
286 287
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
288 289

	/*
290 291 292
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
293
	 */
294
	if (event->group_leader == event) {
295 296
		struct list_head *list;

297 298 299
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

300 301
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
302
	}
P
Peter Zijlstra 已提交
303

304 305 306
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

328
/*
329
 * Remove a event from the lists for its context.
330
 * Must be called with ctx->mutex and ctx->lock held.
331
 */
332
static void
333
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334
{
335 336 337 338
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339
		return;
340 341 342

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

343 344
	ctx->nr_events--;
	if (event->attr.inherit_stat)
345
		ctx->nr_stat--;
346

347
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
351

352
	update_group_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363 364
}

365
static void perf_group_detach(struct perf_event *event)
366 367
{
	struct perf_event *sibling, *tmp;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
389

390
	/*
391 392
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
393
	 * to whatever list we are on.
394
	 */
395
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 397
		if (list)
			list_move_tail(&sibling->group_entry, list);
398
		sibling->group_leader = sibling;
399 400 401

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
402 403 404
	}
}

405
static void
406
event_sched_out(struct perf_event *event,
407
		  struct perf_cpu_context *cpuctx,
408
		  struct perf_event_context *ctx)
409
{
410
	if (event->state != PERF_EVENT_STATE_ACTIVE)
411 412
		return;

413 414 415 416
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
417
	}
418 419 420
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
421

422
	if (!is_software_event(event))
423 424
		cpuctx->active_oncpu--;
	ctx->nr_active--;
425
	if (event->attr.exclusive || !cpuctx->active_oncpu)
426 427 428
		cpuctx->exclusive = 0;
}

429
static void
430
group_sched_out(struct perf_event *group_event,
431
		struct perf_cpu_context *cpuctx,
432
		struct perf_event_context *ctx)
433
{
434
	struct perf_event *event;
435

436
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437 438
		return;

439
	event_sched_out(group_event, cpuctx, ctx);
440 441 442 443

	/*
	 * Schedule out siblings (if any):
	 */
444 445
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
446

447
	if (group_event->attr.exclusive)
448 449 450
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
451
/*
452
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
453
 *
454
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
455 456
 * remove it from the context list.
 */
457
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
458 459
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 461
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
462 463 464 465 466 467

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
468
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
469 470
		return;

471
	raw_spin_lock(&ctx->lock);
472 473
	/*
	 * Protect the list operation against NMI by disabling the
474
	 * events on a global level.
475 476
	 */
	perf_disable();
T
Thomas Gleixner 已提交
477

478
	event_sched_out(event, cpuctx, ctx);
479

480
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
481 482 483

	if (!ctx->task) {
		/*
484
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
485 486 487
		 * reservation:
		 */
		cpuctx->max_pertask =
488 489
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
490 491
	}

492
	perf_enable();
493
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
494 495 496 497
}


/*
498
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
499
 *
500
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
501
 *
502
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
503
 * call when the task is on a CPU.
504
 *
505 506
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
507 508
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
509
 * When called from perf_event_exit_task, it's OK because the
510
 * context has been detached from its task.
T
Thomas Gleixner 已提交
511
 */
512
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
513
{
514
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
515 516 517 518
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
519
		 * Per cpu events are removed via an smp call and
520
		 * the removal is always successful.
T
Thomas Gleixner 已提交
521
		 */
522 523 524
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
525 526 527 528
		return;
	}

retry:
529 530
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
531

532
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
533 534 535
	/*
	 * If the context is active we need to retry the smp call.
	 */
536
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
537
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
538 539 540 541 542
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
543
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
544 545
	 * succeed.
	 */
P
Peter Zijlstra 已提交
546
	if (!list_empty(&event->group_entry))
547
		list_del_event(event, ctx);
548
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
549 550
}

551
/*
552
 * Cross CPU call to disable a performance event
553
 */
554
static void __perf_event_disable(void *info)
555
{
556
	struct perf_event *event = info;
557
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558
	struct perf_event_context *ctx = event->ctx;
559 560

	/*
561 562
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
563
	 */
564
	if (ctx->task && cpuctx->task_ctx != ctx)
565 566
		return;

567
	raw_spin_lock(&ctx->lock);
568 569

	/*
570
	 * If the event is on, turn it off.
571 572
	 * If it is in error state, leave it in error state.
	 */
573
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574
		update_context_time(ctx);
575 576 577
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
578
		else
579 580
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
581 582
	}

583
	raw_spin_unlock(&ctx->lock);
584 585 586
}

/*
587
 * Disable a event.
588
 *
589 590
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
591
 * remains valid.  This condition is satisifed when called through
592 593 594 595
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
596
 * is the current context on this CPU and preemption is disabled,
597
 * hence we can't get into perf_event_task_sched_out for this context.
598
 */
599
void perf_event_disable(struct perf_event *event)
600
{
601
	struct perf_event_context *ctx = event->ctx;
602 603 604 605
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
606
		 * Disable the event on the cpu that it's on
607
		 */
608 609
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
610 611 612 613
		return;
	}

 retry:
614
	task_oncpu_function_call(task, __perf_event_disable, event);
615

616
	raw_spin_lock_irq(&ctx->lock);
617
	/*
618
	 * If the event is still active, we need to retry the cross-call.
619
	 */
620
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
621
		raw_spin_unlock_irq(&ctx->lock);
622 623 624 625 626 627 628
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
629 630 631
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
632
	}
633

634
	raw_spin_unlock_irq(&ctx->lock);
635 636
}

637
static int
638
event_sched_in(struct perf_event *event,
639
		 struct perf_cpu_context *cpuctx,
640
		 struct perf_event_context *ctx)
641
{
642
	if (event->state <= PERF_EVENT_STATE_OFF)
643 644
		return 0;

645
	event->state = PERF_EVENT_STATE_ACTIVE;
646
	event->oncpu = smp_processor_id();
647 648 649 650 651
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

652 653 654
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
655 656 657
		return -EAGAIN;
	}

658
	event->tstamp_running += ctx->time - event->tstamp_stopped;
659

660
	if (!is_software_event(event))
661
		cpuctx->active_oncpu++;
662 663
	ctx->nr_active++;

664
	if (event->attr.exclusive)
665 666
		cpuctx->exclusive = 1;

667 668 669
	return 0;
}

670
static int
671
group_sched_in(struct perf_event *group_event,
672
	       struct perf_cpu_context *cpuctx,
673
	       struct perf_event_context *ctx)
674
{
675 676 677
	struct perf_event *event, *partial_group = NULL;
	const struct pmu *pmu = group_event->pmu;
	bool txn = false;
678

679
	if (group_event->state == PERF_EVENT_STATE_OFF)
680 681
		return 0;

682 683 684 685 686 687
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
688

689 690 691
	if (event_sched_in(group_event, cpuctx, ctx)) {
		if (txn)
			pmu->cancel_txn(pmu);
692
		return -EAGAIN;
693
	}
694 695 696 697

	/*
	 * Schedule in siblings as one group (if any):
	 */
698
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699
		if (event_sched_in(event, cpuctx, ctx)) {
700
			partial_group = event;
701 702 703 704
			goto group_error;
		}
	}

705
	if (!txn || !pmu->commit_txn(pmu))
706
		return 0;
707

708 709 710 711 712
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
713 714
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
715
			break;
716
		event_sched_out(event, cpuctx, ctx);
717
	}
718
	event_sched_out(group_event, cpuctx, ctx);
719

720 721 722
	if (txn)
		pmu->cancel_txn(pmu);

723 724 725
	return -EAGAIN;
}

726
/*
727
 * Work out whether we can put this event group on the CPU now.
728
 */
729
static int group_can_go_on(struct perf_event *event,
730 731 732 733
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
734
	 * Groups consisting entirely of software events can always go on.
735
	 */
736
	if (event->group_flags & PERF_GROUP_SOFTWARE)
737 738 739
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
740
	 * events can go on.
741 742 743 744 745
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
746
	 * events on the CPU, it can't go on.
747
	 */
748
	if (event->attr.exclusive && cpuctx->active_oncpu)
749 750 751 752 753 754 755 756
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

757 758
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
759
{
760
	list_add_event(event, ctx);
761
	perf_group_attach(event);
762 763 764
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
765 766
}

T
Thomas Gleixner 已提交
767
/*
768
 * Cross CPU call to install and enable a performance event
769 770
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
771 772 773 774
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775 776 777
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
778
	int err;
T
Thomas Gleixner 已提交
779 780 781 782 783

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
784
	 * Or possibly this is the right context but it isn't
785
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
786
	 */
787
	if (ctx->task && cpuctx->task_ctx != ctx) {
788
		if (cpuctx->task_ctx || ctx->task != current)
789 790 791
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
792

793
	raw_spin_lock(&ctx->lock);
794
	ctx->is_active = 1;
795
	update_context_time(ctx);
T
Thomas Gleixner 已提交
796 797 798

	/*
	 * Protect the list operation against NMI by disabling the
799
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
800
	 */
801
	perf_disable();
T
Thomas Gleixner 已提交
802

803
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
804

805 806 807
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

808
	/*
809
	 * Don't put the event on if it is disabled or if
810 811
	 * it is in a group and the group isn't on.
	 */
812 813
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
814 815
		goto unlock;

816
	/*
817 818 819
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
820
	 */
821
	if (!group_can_go_on(event, cpuctx, 1))
822 823
		err = -EEXIST;
	else
824
		err = event_sched_in(event, cpuctx, ctx);
825

826 827
	if (err) {
		/*
828
		 * This event couldn't go on.  If it is in a group
829
		 * then we have to pull the whole group off.
830
		 * If the event group is pinned then put it in error state.
831
		 */
832
		if (leader != event)
833
			group_sched_out(leader, cpuctx, ctx);
834
		if (leader->attr.pinned) {
835
			update_group_times(leader);
836
			leader->state = PERF_EVENT_STATE_ERROR;
837
		}
838
	}
T
Thomas Gleixner 已提交
839

840
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
841 842
		cpuctx->max_pertask--;

843
 unlock:
844
	perf_enable();
845

846
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
847 848 849
}

/*
850
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
851
 *
852 853
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
854
 *
855
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
856 857
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
858 859
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
860 861
 */
static void
862 863
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
864 865 866 867 868 869
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
870
		 * Per cpu events are installed via an smp call and
871
		 * the install is always successful.
T
Thomas Gleixner 已提交
872 873
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
874
					 event, 1);
T
Thomas Gleixner 已提交
875 876 877 878 879
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
880
				 event);
T
Thomas Gleixner 已提交
881

882
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
883 884 885
	/*
	 * we need to retry the smp call.
	 */
886
	if (ctx->is_active && list_empty(&event->group_entry)) {
887
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
888 889 890 891 892
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
893
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
894 895
	 * succeed.
	 */
896 897
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
898
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
899 900
}

901
/*
902
 * Put a event into inactive state and update time fields.
903 904 905 906 907 908
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
909 910
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
911
{
912
	struct perf_event *sub;
913

914 915 916 917
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
918 919 920 921
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

922
/*
923
 * Cross CPU call to enable a performance event
924
 */
925
static void __perf_event_enable(void *info)
926
{
927
	struct perf_event *event = info;
928
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
929 930
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
931
	int err;
932

933
	/*
934 935
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
936
	 */
937
	if (ctx->task && cpuctx->task_ctx != ctx) {
938
		if (cpuctx->task_ctx || ctx->task != current)
939 940 941
			return;
		cpuctx->task_ctx = ctx;
	}
942

943
	raw_spin_lock(&ctx->lock);
944
	ctx->is_active = 1;
945
	update_context_time(ctx);
946

947
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
948
		goto unlock;
949
	__perf_event_mark_enabled(event, ctx);
950

951 952 953
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

954
	/*
955
	 * If the event is in a group and isn't the group leader,
956
	 * then don't put it on unless the group is on.
957
	 */
958
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
959
		goto unlock;
960

961
	if (!group_can_go_on(event, cpuctx, 1)) {
962
		err = -EEXIST;
963
	} else {
964
		perf_disable();
965
		if (event == leader)
966
			err = group_sched_in(event, cpuctx, ctx);
967
		else
968
			err = event_sched_in(event, cpuctx, ctx);
969
		perf_enable();
970
	}
971 972 973

	if (err) {
		/*
974
		 * If this event can't go on and it's part of a
975 976
		 * group, then the whole group has to come off.
		 */
977
		if (leader != event)
978
			group_sched_out(leader, cpuctx, ctx);
979
		if (leader->attr.pinned) {
980
			update_group_times(leader);
981
			leader->state = PERF_EVENT_STATE_ERROR;
982
		}
983 984 985
	}

 unlock:
986
	raw_spin_unlock(&ctx->lock);
987 988 989
}

/*
990
 * Enable a event.
991
 *
992 993
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
994
 * remains valid.  This condition is satisfied when called through
995 996
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
997
 */
998
void perf_event_enable(struct perf_event *event)
999
{
1000
	struct perf_event_context *ctx = event->ctx;
1001 1002 1003 1004
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1005
		 * Enable the event on the cpu that it's on
1006
		 */
1007 1008
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1009 1010 1011
		return;
	}

1012
	raw_spin_lock_irq(&ctx->lock);
1013
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1014 1015 1016
		goto out;

	/*
1017 1018
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1019 1020 1021 1022
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1023 1024
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1025 1026

 retry:
1027
	raw_spin_unlock_irq(&ctx->lock);
1028
	task_oncpu_function_call(task, __perf_event_enable, event);
1029

1030
	raw_spin_lock_irq(&ctx->lock);
1031 1032

	/*
1033
	 * If the context is active and the event is still off,
1034 1035
	 * we need to retry the cross-call.
	 */
1036
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1037 1038 1039 1040 1041 1042
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1043 1044
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1045

1046
 out:
1047
	raw_spin_unlock_irq(&ctx->lock);
1048 1049
}

1050
static int perf_event_refresh(struct perf_event *event, int refresh)
1051
{
1052
	/*
1053
	 * not supported on inherited events
1054
	 */
1055
	if (event->attr.inherit)
1056 1057
		return -EINVAL;

1058 1059
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1060 1061

	return 0;
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1073
{
1074
	struct perf_event *event;
1075

1076
	raw_spin_lock(&ctx->lock);
1077
	ctx->is_active = 0;
1078
	if (likely(!ctx->nr_events))
1079
		goto out;
1080
	update_context_time(ctx);
1081

1082
	perf_disable();
1083 1084 1085 1086
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1087 1088 1089
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1090
	if (event_type & EVENT_FLEXIBLE)
1091
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1092
			group_sched_out(event, cpuctx, ctx);
1093 1094

 out_enable:
1095
	perf_enable();
1096
 out:
1097
	raw_spin_unlock(&ctx->lock);
1098 1099
}

1100 1101 1102
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1103 1104 1105 1106
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1107
 * in them directly with an fd; we can only enable/disable all
1108
 * events via prctl, or enable/disable all events in a family
1109 1110
 * via ioctl, which will have the same effect on both contexts.
 */
1111 1112
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1113 1114
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1115
		&& ctx1->parent_gen == ctx2->parent_gen
1116
		&& !ctx1->pin_count && !ctx2->pin_count;
1117 1118
}

1119 1120
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1121 1122 1123
{
	u64 value;

1124
	if (!event->attr.inherit_stat)
1125 1126 1127
		return;

	/*
1128
	 * Update the event value, we cannot use perf_event_read()
1129 1130
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1131
	 * we know the event must be on the current CPU, therefore we
1132 1133
	 * don't need to use it.
	 */
1134 1135
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1136 1137
		event->pmu->read(event);
		/* fall-through */
1138

1139 1140
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1141 1142 1143 1144 1145 1146 1147
		break;

	default:
		break;
	}

	/*
1148
	 * In order to keep per-task stats reliable we need to flip the event
1149 1150
	 * values when we flip the contexts.
	 */
1151 1152 1153
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1154

1155 1156
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1157

1158
	/*
1159
	 * Since we swizzled the values, update the user visible data too.
1160
	 */
1161 1162
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1163 1164 1165 1166 1167
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1168 1169
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1170
{
1171
	struct perf_event *event, *next_event;
1172 1173 1174 1175

	if (!ctx->nr_stat)
		return;

1176 1177
	update_context_time(ctx);

1178 1179
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1180

1181 1182
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1183

1184 1185
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1186

1187
		__perf_event_sync_stat(event, next_event);
1188

1189 1190
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1191 1192 1193
	}
}

T
Thomas Gleixner 已提交
1194
/*
1195
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1196 1197
 * with interrupts disabled.
 *
1198
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1199
 *
I
Ingo Molnar 已提交
1200
 * This does not protect us against NMI, but disable()
1201 1202 1203
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1204
 */
1205
void perf_event_task_sched_out(struct task_struct *task,
1206
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1207
{
1208
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1209 1210 1211
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1212
	int do_switch = 1;
T
Thomas Gleixner 已提交
1213

1214
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1215

1216
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1217 1218
		return;

1219 1220
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1221
	next_ctx = next->perf_event_ctxp;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1233 1234
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1235
		if (context_equiv(ctx, next_ctx)) {
1236 1237
			/*
			 * XXX do we need a memory barrier of sorts
1238
			 * wrt to rcu_dereference() of perf_event_ctxp
1239
			 */
1240 1241
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1242 1243 1244
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1245

1246
			perf_event_sync_stat(ctx, next_ctx);
1247
		}
1248 1249
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1250
	}
1251
	rcu_read_unlock();
1252

1253
	if (do_switch) {
1254
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1255 1256
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1257 1258
}

1259 1260
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1261 1262 1263
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1264 1265
	if (!cpuctx->task_ctx)
		return;
1266 1267 1268 1269

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1270
	ctx_sched_out(ctx, cpuctx, event_type);
1271 1272 1273
	cpuctx->task_ctx = NULL;
}

1274 1275 1276
/*
 * Called with IRQs disabled
 */
1277
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1278
{
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1289 1290
}

1291
static void
1292
ctx_pinned_sched_in(struct perf_event_context *ctx,
1293
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1294
{
1295
	struct perf_event *event;
T
Thomas Gleixner 已提交
1296

1297 1298
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1299
			continue;
1300
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1301 1302
			continue;

1303
		if (group_can_go_on(event, cpuctx, 1))
1304
			group_sched_in(event, cpuctx, ctx);
1305 1306 1307 1308 1309

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1310 1311 1312
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1313
		}
1314
	}
1315 1316 1317 1318
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1319
		      struct perf_cpu_context *cpuctx)
1320 1321 1322
{
	struct perf_event *event;
	int can_add_hw = 1;
1323

1324 1325 1326
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1327
			continue;
1328 1329
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1330
		 * of events:
1331
		 */
1332
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1333 1334
			continue;

1335
		if (group_can_go_on(event, cpuctx, can_add_hw))
1336
			if (group_sched_in(event, cpuctx, ctx))
1337
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1338
	}
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1360
		ctx_pinned_sched_in(ctx, cpuctx);
1361 1362 1363

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1364
		ctx_flexible_sched_in(ctx, cpuctx);
1365

1366
	perf_enable();
1367
 out:
1368
	raw_spin_unlock(&ctx->lock);
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1392
/*
1393
 * Called from scheduler to add the events of the current task
1394 1395
 * with interrupts disabled.
 *
1396
 * We restore the event value and then enable it.
1397 1398
 *
 * This does not protect us against NMI, but enable()
1399 1400 1401
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1402
 */
1403
void perf_event_task_sched_in(struct task_struct *task)
1404
{
1405 1406
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1407

1408 1409
	if (likely(!ctx))
		return;
1410

1411 1412 1413
	if (cpuctx->task_ctx == ctx)
		return;

1414 1415
	perf_disable();

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1428 1429

	perf_enable();
1430 1431
}

1432 1433
#define MAX_INTERRUPTS (~0ULL)

1434
static void perf_log_throttle(struct perf_event *event, int enable);
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1503 1504 1505
	if (!divisor)
		return dividend;

1506 1507 1508
	return div64_u64(dividend, divisor);
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1525
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1526
{
1527
	struct hw_perf_event *hwc = &event->hw;
1528
	s64 period, sample_period;
1529 1530
	s64 delta;

1531
	period = perf_calculate_period(event, nsec, count);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1542 1543 1544

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1545
		perf_event_stop(event);
1546
		atomic64_set(&hwc->period_left, 0);
1547
		perf_event_start(event);
1548 1549
		perf_enable();
	}
1550 1551
}

1552
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1553
{
1554 1555
	struct perf_event *event;
	struct hw_perf_event *hwc;
1556 1557
	u64 interrupts, now;
	s64 delta;
1558

1559
	raw_spin_lock(&ctx->lock);
1560
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1561
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1562 1563
			continue;

1564 1565 1566
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1567
		hwc = &event->hw;
1568 1569 1570

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1571

1572
		/*
1573
		 * unthrottle events on the tick
1574
		 */
1575
		if (interrupts == MAX_INTERRUPTS) {
1576
			perf_log_throttle(event, 1);
1577
			perf_disable();
1578
			event->pmu->unthrottle(event);
1579
			perf_enable();
1580 1581
		}

1582
		if (!event->attr.freq || !event->attr.sample_freq)
1583 1584
			continue;

1585
		perf_disable();
1586 1587 1588 1589
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1590

1591 1592
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1593
		perf_enable();
1594
	}
1595
	raw_spin_unlock(&ctx->lock);
1596 1597
}

1598
/*
1599
 * Round-robin a context's events:
1600
 */
1601
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1602
{
1603
	raw_spin_lock(&ctx->lock);
1604 1605 1606 1607

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1608
	raw_spin_unlock(&ctx->lock);
1609 1610
}

1611
void perf_event_task_tick(struct task_struct *curr)
1612
{
1613
	struct perf_cpu_context *cpuctx;
1614
	struct perf_event_context *ctx;
1615
	int rotate = 0;
1616

1617
	if (!atomic_read(&nr_events))
1618 1619
		return;

1620
	cpuctx = &__get_cpu_var(perf_cpu_context);
1621 1622 1623
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1624

1625 1626 1627
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1628

1629
	perf_ctx_adjust_freq(&cpuctx->ctx);
1630
	if (ctx)
1631
		perf_ctx_adjust_freq(ctx);
1632

1633 1634 1635 1636
	if (!rotate)
		return;

	perf_disable();
1637
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1638
	if (ctx)
1639
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1640

1641
	rotate_ctx(&cpuctx->ctx);
1642 1643
	if (ctx)
		rotate_ctx(ctx);
1644

1645
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1646
	if (ctx)
1647
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1648
	perf_enable();
T
Thomas Gleixner 已提交
1649 1650
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1666
/*
1667
 * Enable all of a task's events that have been marked enable-on-exec.
1668 1669
 * This expects task == current.
 */
1670
static void perf_event_enable_on_exec(struct task_struct *task)
1671
{
1672 1673
	struct perf_event_context *ctx;
	struct perf_event *event;
1674 1675
	unsigned long flags;
	int enabled = 0;
1676
	int ret;
1677 1678

	local_irq_save(flags);
1679 1680
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1681 1682
		goto out;

1683
	__perf_event_task_sched_out(ctx);
1684

1685
	raw_spin_lock(&ctx->lock);
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1697 1698 1699
	}

	/*
1700
	 * Unclone this context if we enabled any event.
1701
	 */
1702 1703
	if (enabled)
		unclone_ctx(ctx);
1704

1705
	raw_spin_unlock(&ctx->lock);
1706

1707
	perf_event_task_sched_in(task);
1708 1709 1710 1711
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1712
/*
1713
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1714
 */
1715
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1716
{
1717
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1718 1719
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1720

1721 1722 1723 1724
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1725 1726
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1727 1728 1729 1730
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1731
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1732
	update_context_time(ctx);
1733
	update_event_times(event);
1734
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1735

P
Peter Zijlstra 已提交
1736
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1737 1738
}

1739
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1740 1741
{
	/*
1742 1743
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1744
	 */
1745 1746 1747 1748
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1749 1750 1751
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1752
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1753
		update_context_time(ctx);
1754
		update_event_times(event);
1755
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1756 1757
	}

1758
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1759 1760
}

1761
/*
1762
 * Initialize the perf_event context in a task_struct:
1763 1764
 */
static void
1765
__perf_event_init_context(struct perf_event_context *ctx,
1766 1767
			    struct task_struct *task)
{
1768
	raw_spin_lock_init(&ctx->lock);
1769
	mutex_init(&ctx->mutex);
1770 1771
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1772 1773 1774 1775 1776
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1777
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1778
{
1779
	struct perf_event_context *ctx;
1780
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1781
	struct task_struct *task;
1782
	unsigned long flags;
1783
	int err;
T
Thomas Gleixner 已提交
1784

1785
	if (pid == -1 && cpu != -1) {
1786
		/* Must be root to operate on a CPU event: */
1787
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1788 1789
			return ERR_PTR(-EACCES);

1790
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1791 1792 1793
			return ERR_PTR(-EINVAL);

		/*
1794
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1795 1796 1797
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1798
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1799 1800 1801 1802
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1803
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1820
	/*
1821
	 * Can't attach events to a dying task.
1822 1823 1824 1825 1826
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1827
	/* Reuse ptrace permission checks for now. */
1828 1829 1830 1831 1832
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1833
	ctx = perf_lock_task_context(task, &flags);
1834
	if (ctx) {
1835
		unclone_ctx(ctx);
1836
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1837 1838
	}

1839
	if (!ctx) {
1840
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1841 1842 1843
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1844
		__perf_event_init_context(ctx, task);
1845
		get_ctx(ctx);
1846
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1847 1848 1849 1850 1851
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1852
			goto retry;
1853
		}
1854
		get_task_struct(task);
1855 1856
	}

1857
	put_task_struct(task);
T
Thomas Gleixner 已提交
1858
	return ctx;
1859 1860 1861 1862

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1863 1864
}

L
Li Zefan 已提交
1865 1866
static void perf_event_free_filter(struct perf_event *event);

1867
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1868
{
1869
	struct perf_event *event;
P
Peter Zijlstra 已提交
1870

1871 1872 1873
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1874
	perf_event_free_filter(event);
1875
	kfree(event);
P
Peter Zijlstra 已提交
1876 1877
}

1878
static void perf_pending_sync(struct perf_event *event);
1879
static void perf_buffer_put(struct perf_buffer *buffer);
1880

1881
static void free_event(struct perf_event *event)
1882
{
1883
	perf_pending_sync(event);
1884

1885 1886
	if (!event->parent) {
		atomic_dec(&nr_events);
1887
		if (event->attr.mmap || event->attr.mmap_data)
1888 1889 1890 1891 1892
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1893
	}
1894

1895 1896 1897
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
1898 1899
	}

1900 1901
	if (event->destroy)
		event->destroy(event);
1902

1903 1904
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1905 1906
}

1907
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1908
{
1909
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1910

1911 1912 1913 1914 1915 1916
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

1917
	WARN_ON_ONCE(ctx->parent_ctx);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1931
	raw_spin_lock_irq(&ctx->lock);
1932
	perf_group_detach(event);
1933 1934
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
1935
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1936

1937 1938 1939 1940
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1941

1942
	free_event(event);
T
Thomas Gleixner 已提交
1943 1944 1945

	return 0;
}
1946
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1947

1948 1949 1950 1951
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1952
{
1953
	struct perf_event *event = file->private_data;
1954

1955
	file->private_data = NULL;
1956

1957
	return perf_event_release_kernel(event);
1958 1959
}

1960
static int perf_event_read_size(struct perf_event *event)
1961 1962 1963 1964 1965
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1966
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1967 1968
		size += sizeof(u64);

1969
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1970 1971
		size += sizeof(u64);

1972
	if (event->attr.read_format & PERF_FORMAT_ID)
1973 1974
		entry += sizeof(u64);

1975 1976
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1977 1978 1979 1980 1981 1982 1983 1984
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1985
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1986
{
1987
	struct perf_event *child;
1988 1989
	u64 total = 0;

1990 1991 1992
	*enabled = 0;
	*running = 0;

1993
	mutex_lock(&event->child_mutex);
1994
	total += perf_event_read(event);
1995 1996 1997 1998 1999 2000
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2001
		total += perf_event_read(child);
2002 2003 2004
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2005
	mutex_unlock(&event->child_mutex);
2006 2007 2008

	return total;
}
2009
EXPORT_SYMBOL_GPL(perf_event_read_value);
2010

2011
static int perf_event_read_group(struct perf_event *event,
2012 2013
				   u64 read_format, char __user *buf)
{
2014
	struct perf_event *leader = event->group_leader, *sub;
2015 2016
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2017
	u64 values[5];
2018
	u64 count, enabled, running;
2019

2020
	mutex_lock(&ctx->mutex);
2021
	count = perf_event_read_value(leader, &enabled, &running);
2022 2023

	values[n++] = 1 + leader->nr_siblings;
2024 2025 2026 2027
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2028 2029 2030
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2031 2032 2033 2034

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2035
		goto unlock;
2036

2037
	ret = size;
2038

2039
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2040
		n = 0;
2041

2042
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2043 2044 2045 2046 2047
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2048
		if (copy_to_user(buf + ret, values, size)) {
2049 2050 2051
			ret = -EFAULT;
			goto unlock;
		}
2052 2053

		ret += size;
2054
	}
2055 2056
unlock:
	mutex_unlock(&ctx->mutex);
2057

2058
	return ret;
2059 2060
}

2061
static int perf_event_read_one(struct perf_event *event,
2062 2063
				 u64 read_format, char __user *buf)
{
2064
	u64 enabled, running;
2065 2066 2067
	u64 values[4];
	int n = 0;

2068 2069 2070 2071 2072
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2073
	if (read_format & PERF_FORMAT_ID)
2074
		values[n++] = primary_event_id(event);
2075 2076 2077 2078 2079 2080 2081

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2082
/*
2083
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2084 2085
 */
static ssize_t
2086
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2087
{
2088
	u64 read_format = event->attr.read_format;
2089
	int ret;
T
Thomas Gleixner 已提交
2090

2091
	/*
2092
	 * Return end-of-file for a read on a event that is in
2093 2094 2095
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2096
	if (event->state == PERF_EVENT_STATE_ERROR)
2097 2098
		return 0;

2099
	if (count < perf_event_read_size(event))
2100 2101
		return -ENOSPC;

2102
	WARN_ON_ONCE(event->ctx->parent_ctx);
2103
	if (read_format & PERF_FORMAT_GROUP)
2104
		ret = perf_event_read_group(event, read_format, buf);
2105
	else
2106
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2107

2108
	return ret;
T
Thomas Gleixner 已提交
2109 2110 2111 2112 2113
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2114
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2115

2116
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2117 2118 2119 2120
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2121
	struct perf_event *event = file->private_data;
2122
	struct perf_buffer *buffer;
2123
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2124 2125

	rcu_read_lock();
2126 2127 2128
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2129
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2130

2131
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2132 2133 2134 2135

	return events;
}

2136
static void perf_event_reset(struct perf_event *event)
2137
{
2138 2139 2140
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2141 2142
}

2143
/*
2144 2145 2146 2147
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2148
 */
2149 2150
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2151
{
2152
	struct perf_event *child;
P
Peter Zijlstra 已提交
2153

2154 2155 2156 2157
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2158
		func(child);
2159
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2160 2161
}

2162 2163
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2164
{
2165 2166
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2167

2168 2169
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2170
	event = event->group_leader;
2171

2172 2173 2174 2175
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2176
	mutex_unlock(&ctx->mutex);
2177 2178
}

2179
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2180
{
2181
	struct perf_event_context *ctx = event->ctx;
2182 2183 2184 2185
	unsigned long size;
	int ret = 0;
	u64 value;

2186
	if (!event->attr.sample_period)
2187 2188 2189 2190 2191 2192 2193 2194 2195
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2196
	raw_spin_lock_irq(&ctx->lock);
2197 2198
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2199 2200 2201 2202
			ret = -EINVAL;
			goto unlock;
		}

2203
		event->attr.sample_freq = value;
2204
	} else {
2205 2206
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2207 2208
	}
unlock:
2209
	raw_spin_unlock_irq(&ctx->lock);
2210 2211 2212 2213

	return ret;
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2235
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2236

2237 2238
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2239 2240
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2241
	u32 flags = arg;
2242 2243

	switch (cmd) {
2244 2245
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2246
		break;
2247 2248
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2249
		break;
2250 2251
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2252
		break;
P
Peter Zijlstra 已提交
2253

2254 2255
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2256

2257 2258
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2259

2260
	case PERF_EVENT_IOC_SET_OUTPUT:
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2278

L
Li Zefan 已提交
2279 2280 2281
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2282
	default:
P
Peter Zijlstra 已提交
2283
		return -ENOTTY;
2284
	}
P
Peter Zijlstra 已提交
2285 2286

	if (flags & PERF_IOC_FLAG_GROUP)
2287
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2288
	else
2289
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2290 2291

	return 0;
2292 2293
}

2294
int perf_event_task_enable(void)
2295
{
2296
	struct perf_event *event;
2297

2298 2299 2300 2301
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2302 2303 2304 2305

	return 0;
}

2306
int perf_event_task_disable(void)
2307
{
2308
	struct perf_event *event;
2309

2310 2311 2312 2313
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2314 2315 2316 2317

	return 0;
}

2318 2319
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2320 2321
#endif

2322
static int perf_event_index(struct perf_event *event)
2323
{
2324
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2325 2326
		return 0;

2327
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2328 2329
}

2330 2331 2332 2333 2334
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2335
void perf_event_update_userpage(struct perf_event *event)
2336
{
2337
	struct perf_event_mmap_page *userpg;
2338
	struct perf_buffer *buffer;
2339 2340

	rcu_read_lock();
2341 2342
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2343 2344
		goto unlock;

2345
	userpg = buffer->user_page;
2346

2347 2348 2349 2350 2351
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2352
	++userpg->lock;
2353
	barrier();
2354 2355 2356 2357
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2358

2359 2360
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2361

2362 2363
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2364

2365
	barrier();
2366
	++userpg->lock;
2367
	preempt_enable();
2368
unlock:
2369
	rcu_read_unlock();
2370 2371
}

2372
#ifndef CONFIG_PERF_USE_VMALLOC
2373

2374 2375 2376
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2377

2378
static struct page *
2379
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2380
{
2381
	if (pgoff > buffer->nr_pages)
2382
		return NULL;
2383

2384
	if (pgoff == 0)
2385
		return virt_to_page(buffer->user_page);
2386

2387
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2403 2404
static struct perf_buffer *
perf_buffer_alloc(struct perf_event *event, int nr_pages)
2405
{
2406
	struct perf_buffer *buffer;
2407 2408 2409
	unsigned long size;
	int i;

2410
	size = sizeof(struct perf_buffer);
2411 2412
	size += nr_pages * sizeof(void *);

2413 2414
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2415 2416
		goto fail;

2417 2418
	buffer->user_page = perf_mmap_alloc_page(event->cpu);
	if (!buffer->user_page)
2419 2420 2421
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2422 2423
		buffer->data_pages[i] = perf_mmap_alloc_page(event->cpu);
		if (!buffer->data_pages[i])
2424 2425 2426
			goto fail_data_pages;
	}

2427
	buffer->nr_pages = nr_pages;
2428

2429
	return buffer;
2430 2431 2432

fail_data_pages:
	for (i--; i >= 0; i--)
2433
		free_page((unsigned long)buffer->data_pages[i]);
2434

2435
	free_page((unsigned long)buffer->user_page);
2436 2437

fail_user_page:
2438
	kfree(buffer);
2439 2440

fail:
2441
	return NULL;
2442 2443
}

2444 2445
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2446
	struct page *page = virt_to_page((void *)addr);
2447 2448 2449 2450 2451

	page->mapping = NULL;
	__free_page(page);
}

2452
static void perf_buffer_free(struct perf_buffer *buffer)
2453 2454 2455
{
	int i;

2456 2457 2458 2459
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2460 2461
}

2462
static inline int page_order(struct perf_buffer *buffer)
2463 2464 2465 2466
{
	return 0;
}

2467 2468 2469 2470 2471 2472 2473 2474
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2475
static inline int page_order(struct perf_buffer *buffer)
2476
{
2477
	return buffer->page_order;
2478 2479
}

2480
static struct page *
2481
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2482
{
2483
	if (pgoff > (1UL << page_order(buffer)))
2484 2485
		return NULL;

2486
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2487 2488 2489 2490 2491 2492 2493 2494 2495
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2496
static void perf_buffer_free_work(struct work_struct *work)
2497
{
2498
	struct perf_buffer *buffer;
2499 2500 2501
	void *base;
	int i, nr;

2502 2503
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2504

2505
	base = buffer->user_page;
2506 2507 2508 2509
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2510
	kfree(buffer);
2511 2512
}

2513
static void perf_buffer_free(struct perf_buffer *buffer)
2514
{
2515
	schedule_work(&buffer->work);
2516 2517
}

2518 2519
static struct perf_buffer *
perf_buffer_alloc(struct perf_event *event, int nr_pages)
2520
{
2521
	struct perf_buffer *buffer;
2522 2523 2524
	unsigned long size;
	void *all_buf;

2525
	size = sizeof(struct perf_buffer);
2526 2527
	size += sizeof(void *);

2528 2529
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2530 2531
		goto fail;

2532
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2533 2534 2535 2536 2537

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2538 2539 2540 2541
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2542

2543
	return buffer;
2544 2545

fail_all_buf:
2546
	kfree(buffer);
2547 2548 2549 2550 2551 2552 2553

fail:
	return NULL;
}

#endif

2554
static unsigned long perf_data_size(struct perf_buffer *buffer)
2555
{
2556
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2557 2558
}

2559 2560 2561
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2562
	struct perf_buffer *buffer;
2563 2564 2565 2566 2567 2568 2569 2570 2571
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2572 2573
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2574 2575 2576 2577 2578
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2579
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
2595
perf_buffer_init(struct perf_event *event, struct perf_buffer *buffer)
2596
{
2597
	long max_size = perf_data_size(buffer);
2598 2599

	if (event->attr.watermark) {
2600
		buffer->watermark = min_t(long, max_size,
2601 2602 2603
					event->attr.wakeup_watermark);
	}

2604 2605
	if (!buffer->watermark)
		buffer->watermark = max_size / 2;
2606

2607 2608
	atomic_set(&buffer->refcount, 1);
	rcu_assign_pointer(event->buffer, buffer);
2609 2610
}

2611
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2612
{
2613
	struct perf_buffer *buffer;
2614

2615 2616
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2617 2618
}

2619
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2620
{
2621
	struct perf_buffer *buffer;
2622

2623
	rcu_read_lock();
2624 2625 2626 2627
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2628 2629 2630
	}
	rcu_read_unlock();

2631
	return buffer;
2632 2633
}

2634
static void perf_buffer_put(struct perf_buffer *buffer)
2635
{
2636
	if (!atomic_dec_and_test(&buffer->refcount))
2637
		return;
2638

2639
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2640 2641 2642 2643
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2644
	struct perf_event *event = vma->vm_file->private_data;
2645

2646
	atomic_inc(&event->mmap_count);
2647 2648 2649 2650
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2651
	struct perf_event *event = vma->vm_file->private_data;
2652

2653
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2654
		unsigned long size = perf_data_size(event->buffer);
2655
		struct user_struct *user = event->mmap_user;
2656
		struct perf_buffer *buffer = event->buffer;
2657

2658
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2659
		vma->vm_mm->locked_vm -= event->mmap_locked;
2660
		rcu_assign_pointer(event->buffer, NULL);
2661
		mutex_unlock(&event->mmap_mutex);
2662

2663
		perf_buffer_put(buffer);
2664
		free_uid(user);
2665
	}
2666 2667
}

2668
static const struct vm_operations_struct perf_mmap_vmops = {
2669 2670 2671 2672
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2673 2674 2675 2676
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2677
	struct perf_event *event = file->private_data;
2678
	unsigned long user_locked, user_lock_limit;
2679
	struct user_struct *user = current_user();
2680
	unsigned long locked, lock_limit;
2681
	struct perf_buffer *buffer;
2682 2683
	unsigned long vma_size;
	unsigned long nr_pages;
2684
	long user_extra, extra;
2685
	int ret = 0;
2686

2687 2688 2689 2690 2691 2692 2693 2694
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2695
	if (!(vma->vm_flags & VM_SHARED))
2696
		return -EINVAL;
2697 2698 2699 2700

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2701
	/*
2702
	 * If we have buffer pages ensure they're a power-of-two number, so we
2703 2704 2705
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2706 2707
		return -EINVAL;

2708
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2709 2710
		return -EINVAL;

2711 2712
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2713

2714 2715
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2716 2717 2718
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2719
		else
2720 2721 2722 2723
			ret = -EINVAL;
		goto unlock;
	}

2724
	user_extra = nr_pages + 1;
2725
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2726 2727 2728 2729 2730 2731

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2732
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2733

2734 2735 2736
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2737

2738
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2739
	lock_limit >>= PAGE_SHIFT;
2740
	locked = vma->vm_mm->locked_vm + extra;
2741

2742 2743
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2744 2745 2746
		ret = -EPERM;
		goto unlock;
	}
2747

2748
	WARN_ON(event->buffer);
2749

2750 2751
	buffer = perf_buffer_alloc(event, nr_pages);
	if (!buffer) {
2752
		ret = -ENOMEM;
2753
		goto unlock;
2754
	}
2755

2756
	perf_buffer_init(event, buffer);
2757
	if (vma->vm_flags & VM_WRITE)
2758
		event->buffer->writable = 1;
2759

2760 2761 2762 2763 2764
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2765
unlock:
2766 2767
	if (!ret)
		atomic_inc(&event->mmap_count);
2768
	mutex_unlock(&event->mmap_mutex);
2769 2770 2771

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2772 2773

	return ret;
2774 2775
}

P
Peter Zijlstra 已提交
2776 2777 2778
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2779
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2780 2781 2782
	int retval;

	mutex_lock(&inode->i_mutex);
2783
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2784 2785 2786 2787 2788 2789 2790 2791
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2792
static const struct file_operations perf_fops = {
2793
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2794 2795 2796
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2797 2798
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2799
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2800
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2801 2802
};

2803
/*
2804
 * Perf event wakeup
2805 2806 2807 2808 2809
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2810
void perf_event_wakeup(struct perf_event *event)
2811
{
2812
	wake_up_all(&event->waitq);
2813

2814 2815 2816
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2817
	}
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2829
static void perf_pending_event(struct perf_pending_entry *entry)
2830
{
2831 2832
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2833

2834 2835 2836
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2837 2838
	}

2839 2840 2841
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2842 2843 2844
	}
}

2845
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2846

2847
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2848 2849 2850
	PENDING_TAIL,
};

2851 2852
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2853
{
2854
	struct perf_pending_entry **head;
2855

2856
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2857 2858
		return;

2859 2860 2861
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2862 2863

	do {
2864 2865
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2866

2867
	set_perf_event_pending();
2868

2869
	put_cpu_var(perf_pending_head);
2870 2871 2872 2873
}

static int __perf_pending_run(void)
{
2874
	struct perf_pending_entry *list;
2875 2876
	int nr = 0;

2877
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2878
	while (list != PENDING_TAIL) {
2879 2880
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2881 2882 2883

		list = list->next;

2884 2885
		func = entry->func;
		entry->next = NULL;
2886 2887 2888 2889 2890 2891 2892
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2893
		func(entry);
2894 2895 2896 2897 2898 2899
		nr++;
	}

	return nr;
}

2900
static inline int perf_not_pending(struct perf_event *event)
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2915
	return event->pending.next == NULL;
2916 2917
}

2918
static void perf_pending_sync(struct perf_event *event)
2919
{
2920
	wait_event(event->waitq, perf_not_pending(event));
2921 2922
}

2923
void perf_event_do_pending(void)
2924 2925 2926 2927
{
	__perf_pending_run();
}

2928 2929 2930 2931
/*
 * Callchain support -- arch specific
 */

2932
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2933 2934 2935 2936
{
	return NULL;
}

2937 2938 2939 2940
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2941

2942

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

2964 2965 2966
/*
 * Output
 */
2967
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2968
			      unsigned long offset, unsigned long head)
2969 2970 2971
{
	unsigned long mask;

2972
	if (!buffer->writable)
2973 2974
		return true;

2975
	mask = perf_data_size(buffer) - 1;
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2986
static void perf_output_wakeup(struct perf_output_handle *handle)
2987
{
2988
	atomic_set(&handle->buffer->poll, POLL_IN);
2989

2990
	if (handle->nmi) {
2991 2992 2993
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2994
	} else
2995
		perf_event_wakeup(handle->event);
2996 2997
}

2998
/*
2999
 * We need to ensure a later event_id doesn't publish a head when a former
3000
 * event isn't done writing. However since we need to deal with NMIs we
3001 3002 3003
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3004
 * event completes.
3005
 */
3006
static void perf_output_get_handle(struct perf_output_handle *handle)
3007
{
3008
	struct perf_buffer *buffer = handle->buffer;
3009

3010
	preempt_disable();
3011 3012
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3013 3014
}

3015
static void perf_output_put_handle(struct perf_output_handle *handle)
3016
{
3017
	struct perf_buffer *buffer = handle->buffer;
3018
	unsigned long head;
3019 3020

again:
3021
	head = local_read(&buffer->head);
3022 3023

	/*
3024
	 * IRQ/NMI can happen here, which means we can miss a head update.
3025 3026
	 */

3027
	if (!local_dec_and_test(&buffer->nest))
3028
		goto out;
3029 3030

	/*
3031
	 * Publish the known good head. Rely on the full barrier implied
3032
	 * by atomic_dec_and_test() order the buffer->head read and this
3033
	 * write.
3034
	 */
3035
	buffer->user_page->data_head = head;
3036

3037 3038
	/*
	 * Now check if we missed an update, rely on the (compiler)
3039
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3040
	 */
3041 3042
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3043 3044 3045
		goto again;
	}

3046
	if (handle->wakeup != local_read(&buffer->wakeup))
3047
		perf_output_wakeup(handle);
3048

3049
 out:
3050
	preempt_enable();
3051 3052
}

3053
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3054
		      const void *buf, unsigned int len)
3055
{
3056
	do {
3057
		unsigned long size = min_t(unsigned long, handle->size, len);
3058 3059 3060 3061 3062

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3063
		buf += size;
3064 3065
		handle->size -= size;
		if (!handle->size) {
3066
			struct perf_buffer *buffer = handle->buffer;
3067

3068
			handle->page++;
3069 3070 3071
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3072 3073
		}
	} while (len);
3074 3075
}

3076
int perf_output_begin(struct perf_output_handle *handle,
3077
		      struct perf_event *event, unsigned int size,
3078
		      int nmi, int sample)
3079
{
3080
	struct perf_buffer *buffer;
3081
	unsigned long tail, offset, head;
3082 3083 3084 3085 3086 3087
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3088

3089
	rcu_read_lock();
3090
	/*
3091
	 * For inherited events we send all the output towards the parent.
3092
	 */
3093 3094
	if (event->parent)
		event = event->parent;
3095

3096 3097
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3098 3099
		goto out;

3100
	handle->buffer	= buffer;
3101
	handle->event	= event;
3102 3103
	handle->nmi	= nmi;
	handle->sample	= sample;
3104

3105
	if (!buffer->nr_pages)
3106
		goto out;
3107

3108
	have_lost = local_read(&buffer->lost);
3109 3110 3111
	if (have_lost)
		size += sizeof(lost_event);

3112
	perf_output_get_handle(handle);
3113

3114
	do {
3115 3116 3117 3118 3119
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3120
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3121
		smp_rmb();
3122
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3123
		head += size;
3124
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3125
			goto fail;
3126
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3127

3128 3129
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3130

3131 3132 3133 3134
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3135
	handle->addr += handle->size;
3136
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3137

3138
	if (have_lost) {
3139
		lost_event.header.type = PERF_RECORD_LOST;
3140 3141
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3142
		lost_event.id          = event->id;
3143
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3144 3145 3146 3147

		perf_output_put(handle, lost_event);
	}

3148
	return 0;
3149

3150
fail:
3151
	local_inc(&buffer->lost);
3152
	perf_output_put_handle(handle);
3153 3154
out:
	rcu_read_unlock();
3155

3156 3157
	return -ENOSPC;
}
3158

3159
void perf_output_end(struct perf_output_handle *handle)
3160
{
3161
	struct perf_event *event = handle->event;
3162
	struct perf_buffer *buffer = handle->buffer;
3163

3164
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3165

3166
	if (handle->sample && wakeup_events) {
3167
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3168
		if (events >= wakeup_events) {
3169 3170
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3171
		}
3172 3173
	}

3174
	perf_output_put_handle(handle);
3175
	rcu_read_unlock();
3176 3177
}

3178
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3179 3180
{
	/*
3181
	 * only top level events have the pid namespace they were created in
3182
	 */
3183 3184
	if (event->parent)
		event = event->parent;
3185

3186
	return task_tgid_nr_ns(p, event->ns);
3187 3188
}

3189
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3190 3191
{
	/*
3192
	 * only top level events have the pid namespace they were created in
3193
	 */
3194 3195
	if (event->parent)
		event = event->parent;
3196

3197
	return task_pid_nr_ns(p, event->ns);
3198 3199
}

3200
static void perf_output_read_one(struct perf_output_handle *handle,
3201
				 struct perf_event *event)
3202
{
3203
	u64 read_format = event->attr.read_format;
3204 3205 3206
	u64 values[4];
	int n = 0;

3207
	values[n++] = atomic64_read(&event->count);
3208
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3209 3210
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3211 3212
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3213 3214
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3215 3216
	}
	if (read_format & PERF_FORMAT_ID)
3217
		values[n++] = primary_event_id(event);
3218 3219 3220 3221 3222

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3223
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3224 3225
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3226
			    struct perf_event *event)
3227
{
3228 3229
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3241
	if (leader != event)
3242 3243 3244 3245
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3246
		values[n++] = primary_event_id(leader);
3247 3248 3249

	perf_output_copy(handle, values, n * sizeof(u64));

3250
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3251 3252
		n = 0;

3253
		if (sub != event)
3254 3255 3256 3257
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3258
			values[n++] = primary_event_id(sub);
3259 3260 3261 3262 3263 3264

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3265
			     struct perf_event *event)
3266
{
3267 3268
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3269
	else
3270
		perf_output_read_one(handle, event);
3271 3272
}

3273 3274 3275
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3276
			struct perf_event *event)
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3307
		perf_output_read(handle, event);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3345
			 struct perf_event *event,
3346
			 struct pt_regs *regs)
3347
{
3348
	u64 sample_type = event->attr.sample_type;
3349

3350
	data->type = sample_type;
3351

3352
	header->type = PERF_RECORD_SAMPLE;
3353 3354 3355 3356
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3357

3358
	if (sample_type & PERF_SAMPLE_IP) {
3359 3360 3361
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3362
	}
3363

3364
	if (sample_type & PERF_SAMPLE_TID) {
3365
		/* namespace issues */
3366 3367
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3368

3369
		header->size += sizeof(data->tid_entry);
3370 3371
	}

3372
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3373
		data->time = perf_clock();
3374

3375
		header->size += sizeof(data->time);
3376 3377
	}

3378
	if (sample_type & PERF_SAMPLE_ADDR)
3379
		header->size += sizeof(data->addr);
3380

3381
	if (sample_type & PERF_SAMPLE_ID) {
3382
		data->id = primary_event_id(event);
3383

3384 3385 3386 3387
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3388
		data->stream_id = event->id;
3389 3390 3391

		header->size += sizeof(data->stream_id);
	}
3392

3393
	if (sample_type & PERF_SAMPLE_CPU) {
3394 3395
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3396

3397
		header->size += sizeof(data->cpu_entry);
3398 3399
	}

3400
	if (sample_type & PERF_SAMPLE_PERIOD)
3401
		header->size += sizeof(data->period);
3402

3403
	if (sample_type & PERF_SAMPLE_READ)
3404
		header->size += perf_event_read_size(event);
3405

3406
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3407
		int size = 1;
3408

3409 3410 3411 3412 3413 3414
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3415 3416
	}

3417
	if (sample_type & PERF_SAMPLE_RAW) {
3418 3419 3420 3421 3422 3423 3424 3425
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3426
		header->size += size;
3427
	}
3428
}
3429

3430
static void perf_event_output(struct perf_event *event, int nmi,
3431 3432 3433 3434 3435
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3436

3437
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3438

3439
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3440
		return;
3441

3442
	perf_output_sample(&handle, &header, data, event);
3443

3444
	perf_output_end(&handle);
3445 3446
}

3447
/*
3448
 * read event_id
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3459
perf_event_read_event(struct perf_event *event,
3460 3461 3462
			struct task_struct *task)
{
	struct perf_output_handle handle;
3463
	struct perf_read_event read_event = {
3464
		.header = {
3465
			.type = PERF_RECORD_READ,
3466
			.misc = 0,
3467
			.size = sizeof(read_event) + perf_event_read_size(event),
3468
		},
3469 3470
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3471
	};
3472
	int ret;
3473

3474
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3475 3476 3477
	if (ret)
		return;

3478
	perf_output_put(&handle, read_event);
3479
	perf_output_read(&handle, event);
3480

3481 3482 3483
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3484
/*
P
Peter Zijlstra 已提交
3485 3486
 * task tracking -- fork/exit
 *
3487
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3488 3489
 */

P
Peter Zijlstra 已提交
3490
struct perf_task_event {
3491
	struct task_struct		*task;
3492
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3493 3494 3495 3496 3497 3498

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3499 3500
		u32				tid;
		u32				ptid;
3501
		u64				time;
3502
	} event_id;
P
Peter Zijlstra 已提交
3503 3504
};

3505
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3506
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3507 3508
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3509
	struct task_struct *task = task_event->task;
3510 3511
	int size, ret;

3512 3513
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3514

3515
	if (ret)
P
Peter Zijlstra 已提交
3516 3517
		return;

3518 3519
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3520

3521 3522
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3523

3524
	perf_output_put(&handle, task_event->event_id);
3525

P
Peter Zijlstra 已提交
3526 3527 3528
	perf_output_end(&handle);
}

3529
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3530
{
P
Peter Zijlstra 已提交
3531
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3532 3533
		return 0;

3534 3535 3536
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3537 3538
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3539 3540 3541 3542 3543
		return 1;

	return 0;
}

3544
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3545
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3546
{
3547
	struct perf_event *event;
P
Peter Zijlstra 已提交
3548

3549 3550 3551
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3552 3553 3554
	}
}

3555
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3556 3557
{
	struct perf_cpu_context *cpuctx;
3558
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3559

3560
	rcu_read_lock();
P
Peter Zijlstra 已提交
3561
	cpuctx = &get_cpu_var(perf_cpu_context);
3562
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3563
	if (!ctx)
P
Peter Zijlstra 已提交
3564
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3565
	if (ctx)
3566
		perf_event_task_ctx(ctx, task_event);
3567
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3568 3569 3570
	rcu_read_unlock();
}

3571 3572
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3573
			      int new)
P
Peter Zijlstra 已提交
3574
{
P
Peter Zijlstra 已提交
3575
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3576

3577 3578 3579
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3580 3581
		return;

P
Peter Zijlstra 已提交
3582
	task_event = (struct perf_task_event){
3583 3584
		.task	  = task,
		.task_ctx = task_ctx,
3585
		.event_id    = {
P
Peter Zijlstra 已提交
3586
			.header = {
3587
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3588
				.misc = 0,
3589
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3590
			},
3591 3592
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3593 3594
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3595
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3596 3597 3598
		},
	};

3599
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3600 3601
}

3602
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3603
{
3604
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3605 3606
}

3607 3608 3609 3610 3611
/*
 * comm tracking
 */

struct perf_comm_event {
3612 3613
	struct task_struct	*task;
	char			*comm;
3614 3615 3616 3617 3618 3619 3620
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3621
	} event_id;
3622 3623
};

3624
static void perf_event_comm_output(struct perf_event *event,
3625 3626 3627
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3628 3629
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3630 3631 3632 3633

	if (ret)
		return;

3634 3635
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3636

3637
	perf_output_put(&handle, comm_event->event_id);
3638 3639 3640 3641 3642
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3643
static int perf_event_comm_match(struct perf_event *event)
3644
{
P
Peter Zijlstra 已提交
3645
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3646 3647
		return 0;

3648 3649 3650
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3651
	if (event->attr.comm)
3652 3653 3654 3655 3656
		return 1;

	return 0;
}

3657
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3658 3659
				  struct perf_comm_event *comm_event)
{
3660
	struct perf_event *event;
3661

3662 3663 3664
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3665 3666 3667
	}
}

3668
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3669 3670
{
	struct perf_cpu_context *cpuctx;
3671
	struct perf_event_context *ctx;
3672
	unsigned int size;
3673
	char comm[TASK_COMM_LEN];
3674

3675
	memset(comm, 0, sizeof(comm));
3676
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3677
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3678 3679 3680 3681

	comm_event->comm = comm;
	comm_event->comm_size = size;

3682
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3683

3684
	rcu_read_lock();
3685
	cpuctx = &get_cpu_var(perf_cpu_context);
3686 3687
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3688
	if (ctx)
3689
		perf_event_comm_ctx(ctx, comm_event);
3690
	put_cpu_var(perf_cpu_context);
3691
	rcu_read_unlock();
3692 3693
}

3694
void perf_event_comm(struct task_struct *task)
3695
{
3696 3697
	struct perf_comm_event comm_event;

3698 3699
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3700

3701
	if (!atomic_read(&nr_comm_events))
3702
		return;
3703

3704
	comm_event = (struct perf_comm_event){
3705
		.task	= task,
3706 3707
		/* .comm      */
		/* .comm_size */
3708
		.event_id  = {
3709
			.header = {
3710
				.type = PERF_RECORD_COMM,
3711 3712 3713 3714 3715
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3716 3717 3718
		},
	};

3719
	perf_event_comm_event(&comm_event);
3720 3721
}

3722 3723 3724 3725 3726
/*
 * mmap tracking
 */

struct perf_mmap_event {
3727 3728 3729 3730
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3731 3732 3733 3734 3735 3736 3737 3738 3739

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3740
	} event_id;
3741 3742
};

3743
static void perf_event_mmap_output(struct perf_event *event,
3744 3745 3746
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3747 3748
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3749 3750 3751 3752

	if (ret)
		return;

3753 3754
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3755

3756
	perf_output_put(&handle, mmap_event->event_id);
3757 3758
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3759
	perf_output_end(&handle);
3760 3761
}

3762
static int perf_event_mmap_match(struct perf_event *event,
3763 3764
				   struct perf_mmap_event *mmap_event,
				   int executable)
3765
{
P
Peter Zijlstra 已提交
3766
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3767 3768
		return 0;

3769 3770 3771
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3772 3773
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
3774 3775 3776 3777 3778
		return 1;

	return 0;
}

3779
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3780 3781
				  struct perf_mmap_event *mmap_event,
				  int executable)
3782
{
3783
	struct perf_event *event;
3784

3785
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3786
		if (perf_event_mmap_match(event, mmap_event, executable))
3787
			perf_event_mmap_output(event, mmap_event);
3788 3789 3790
	}
}

3791
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3792 3793
{
	struct perf_cpu_context *cpuctx;
3794
	struct perf_event_context *ctx;
3795 3796
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3797 3798 3799
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3800
	const char *name;
3801

3802 3803
	memset(tmp, 0, sizeof(tmp));

3804
	if (file) {
3805 3806 3807 3808 3809 3810
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3811 3812 3813 3814
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3815
		name = d_path(&file->f_path, buf, PATH_MAX);
3816 3817 3818 3819 3820
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3821 3822 3823
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3824
			goto got_name;
3825
		}
3826 3827 3828 3829

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
3830 3831 3832 3833 3834 3835 3836 3837
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
3838 3839
		}

3840 3841 3842 3843 3844
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3845
	size = ALIGN(strlen(name)+1, sizeof(u64));
3846 3847 3848 3849

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3850
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3851

3852
	rcu_read_lock();
3853
	cpuctx = &get_cpu_var(perf_cpu_context);
3854
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3855
	ctx = rcu_dereference(current->perf_event_ctxp);
3856
	if (ctx)
3857
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3858
	put_cpu_var(perf_cpu_context);
3859 3860
	rcu_read_unlock();

3861 3862 3863
	kfree(buf);
}

3864
void perf_event_mmap(struct vm_area_struct *vma)
3865
{
3866 3867
	struct perf_mmap_event mmap_event;

3868
	if (!atomic_read(&nr_mmap_events))
3869 3870 3871
		return;

	mmap_event = (struct perf_mmap_event){
3872
		.vma	= vma,
3873 3874
		/* .file_name */
		/* .file_size */
3875
		.event_id  = {
3876
			.header = {
3877
				.type = PERF_RECORD_MMAP,
3878
				.misc = PERF_RECORD_MISC_USER,
3879 3880 3881 3882
				/* .size */
			},
			/* .pid */
			/* .tid */
3883 3884
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3885
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3886 3887 3888
		},
	};

3889
	perf_event_mmap_event(&mmap_event);
3890 3891
}

3892 3893 3894 3895
/*
 * IRQ throttle logging
 */

3896
static void perf_log_throttle(struct perf_event *event, int enable)
3897 3898 3899 3900 3901 3902 3903
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3904
		u64				id;
3905
		u64				stream_id;
3906 3907
	} throttle_event = {
		.header = {
3908
			.type = PERF_RECORD_THROTTLE,
3909 3910 3911
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3912
		.time		= perf_clock(),
3913 3914
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3915 3916
	};

3917
	if (enable)
3918
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3919

3920
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3921 3922 3923 3924 3925 3926 3927
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3928
/*
3929
 * Generic event overflow handling, sampling.
3930 3931
 */

3932
static int __perf_event_overflow(struct perf_event *event, int nmi,
3933 3934
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3935
{
3936 3937
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3938 3939
	int ret = 0;

3940
	throttle = (throttle && event->pmu->unthrottle != NULL);
3941

3942
	if (!throttle) {
3943
		hwc->interrupts++;
3944
	} else {
3945 3946
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3947
			if (HZ * hwc->interrupts >
3948
					(u64)sysctl_perf_event_sample_rate) {
3949
				hwc->interrupts = MAX_INTERRUPTS;
3950
				perf_log_throttle(event, 0);
3951 3952 3953 3954
				ret = 1;
			}
		} else {
			/*
3955
			 * Keep re-disabling events even though on the previous
3956
			 * pass we disabled it - just in case we raced with a
3957
			 * sched-in and the event got enabled again:
3958
			 */
3959 3960 3961
			ret = 1;
		}
	}
3962

3963
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3964
		u64 now = perf_clock();
3965
		s64 delta = now - hwc->freq_time_stamp;
3966

3967
		hwc->freq_time_stamp = now;
3968

3969 3970
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3971 3972
	}

3973 3974
	/*
	 * XXX event_limit might not quite work as expected on inherited
3975
	 * events
3976 3977
	 */

3978 3979
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3980
		ret = 1;
3981
		event->pending_kill = POLL_HUP;
3982
		if (nmi) {
3983 3984 3985
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3986
		} else
3987
			perf_event_disable(event);
3988 3989
	}

3990 3991 3992 3993 3994
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3995
	return ret;
3996 3997
}

3998
int perf_event_overflow(struct perf_event *event, int nmi,
3999 4000
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4001
{
4002
	return __perf_event_overflow(event, nmi, 1, data, regs);
4003 4004
}

4005
/*
4006
 * Generic software event infrastructure
4007 4008
 */

4009
/*
4010 4011
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4012 4013 4014 4015
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4016
static u64 perf_swevent_set_period(struct perf_event *event)
4017
{
4018
	struct hw_perf_event *hwc = &event->hw;
4019 4020 4021 4022 4023
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4024 4025

again:
4026 4027 4028
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
4029

4030 4031 4032 4033 4034
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
4035

4036
	return nr;
4037 4038
}

4039
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4040 4041
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4042
{
4043
	struct hw_perf_event *hwc = &event->hw;
4044
	int throttle = 0;
4045

4046
	data->period = event->hw.last_period;
4047 4048
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4049

4050 4051
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4052

4053
	for (; overflow; overflow--) {
4054
		if (__perf_event_overflow(event, nmi, throttle,
4055
					    data, regs)) {
4056 4057 4058 4059 4060 4061
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4062
		throttle = 1;
4063
	}
4064 4065
}

4066
static void perf_swevent_add(struct perf_event *event, u64 nr,
4067 4068
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4069
{
4070
	struct hw_perf_event *hwc = &event->hw;
4071

4072
	atomic64_add(nr, &event->count);
4073

4074 4075 4076
	if (!regs)
		return;

4077 4078
	if (!hwc->sample_period)
		return;
4079

4080 4081 4082 4083
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
4084
		return;
4085

4086
	perf_swevent_overflow(event, 0, nmi, data, regs);
4087 4088
}

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4103
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4104
				enum perf_type_id type,
L
Li Zefan 已提交
4105 4106 4107
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4108
{
4109
	if (event->attr.type != type)
4110
		return 0;
4111

4112
	if (event->attr.config != event_id)
4113 4114
		return 0;

4115 4116
	if (perf_exclude_event(event, regs))
		return 0;
4117 4118 4119 4120

	return 1;
}

4121 4122 4123 4124 4125 4126 4127
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4128 4129
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4130
{
4131 4132 4133 4134
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4135

4136 4137 4138 4139 4140
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4141 4142 4143 4144 4145

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4168 4169 4170 4171 4172 4173
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4174
{
4175
	struct perf_cpu_context *cpuctx;
4176
	struct perf_event *event;
4177 4178
	struct hlist_node *node;
	struct hlist_head *head;
4179

4180 4181 4182 4183
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4184
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4185 4186 4187 4188 4189

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4190
		if (perf_swevent_match(event, type, event_id, data, regs))
4191
			perf_swevent_add(event, nr, nmi, data, regs);
4192
	}
4193 4194
end:
	rcu_read_unlock();
4195 4196
}

4197
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4198
{
4199
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4200
	int rctx;
4201

P
Peter Zijlstra 已提交
4202
	if (in_nmi())
4203
		rctx = 3;
4204
	else if (in_irq())
4205
		rctx = 2;
4206
	else if (in_softirq())
4207
		rctx = 1;
4208
	else
4209
		rctx = 0;
P
Peter Zijlstra 已提交
4210

4211
	if (cpuctx->recursion[rctx])
4212
		return -1;
P
Peter Zijlstra 已提交
4213

4214 4215
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4216

4217
	return rctx;
P
Peter Zijlstra 已提交
4218
}
I
Ingo Molnar 已提交
4219
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4220

4221
void inline perf_swevent_put_recursion_context(int rctx)
4222
{
4223 4224
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4225
	cpuctx->recursion[rctx]--;
4226
}
4227

4228
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4229
			    struct pt_regs *regs, u64 addr)
4230
{
4231
	struct perf_sample_data data;
4232 4233
	int rctx;

4234
	preempt_disable_notrace();
4235 4236 4237
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4238

4239
	perf_sample_data_init(&data, addr);
4240

4241
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4242 4243

	perf_swevent_put_recursion_context(rctx);
4244
	preempt_enable_notrace();
4245 4246
}

4247
static void perf_swevent_read(struct perf_event *event)
4248 4249 4250
{
}

4251
static int perf_swevent_enable(struct perf_event *event)
4252
{
4253
	struct hw_perf_event *hwc = &event->hw;
4254 4255 4256 4257
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4258 4259 4260

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4261
		perf_swevent_set_period(event);
4262
	}
4263

4264
	head = find_swevent_head(cpuctx, event);
4265 4266 4267 4268 4269
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4270 4271 4272
	return 0;
}

4273
static void perf_swevent_disable(struct perf_event *event)
4274
{
4275
	hlist_del_rcu(&event->hlist_entry);
4276 4277
}

P
Peter Zijlstra 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286
static void perf_swevent_void(struct perf_event *event)
{
}

static int perf_swevent_int(struct perf_event *event)
{
	return 0;
}

4287
static const struct pmu perf_ops_generic = {
4288 4289
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
P
Peter Zijlstra 已提交
4290 4291
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4292
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4293
	.unthrottle	= perf_swevent_void, /* hwc->interrupts already reset */
4294 4295
};

4296
/*
4297
 * hrtimer based swevent callback
4298 4299
 */

4300
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4301 4302 4303
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4304
	struct pt_regs *regs;
4305
	struct perf_event *event;
4306 4307
	u64 period;

4308
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4309
	event->pmu->read(event);
4310

4311
	perf_sample_data_init(&data, 0);
4312
	data.period = event->hw.last_period;
4313
	regs = get_irq_regs();
4314

4315
	if (regs && !perf_exclude_event(event, regs)) {
4316 4317 4318
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4319 4320
	}

4321
	period = max_t(u64, 10000, event->hw.sample_period);
4322 4323 4324 4325 4326
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4363
/*
4364
 * Software event: cpu wall time clock
4365 4366
 */

4367
static void cpu_clock_perf_event_update(struct perf_event *event)
4368 4369 4370 4371 4372 4373
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4374
	prev = atomic64_xchg(&event->hw.prev_count, now);
4375
	atomic64_add(now - prev, &event->count);
4376 4377
}

4378
static int cpu_clock_perf_event_enable(struct perf_event *event)
4379
{
4380
	struct hw_perf_event *hwc = &event->hw;
4381 4382 4383
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4384
	perf_swevent_start_hrtimer(event);
4385 4386 4387 4388

	return 0;
}

4389
static void cpu_clock_perf_event_disable(struct perf_event *event)
4390
{
4391
	perf_swevent_cancel_hrtimer(event);
4392
	cpu_clock_perf_event_update(event);
4393 4394
}

4395
static void cpu_clock_perf_event_read(struct perf_event *event)
4396
{
4397
	cpu_clock_perf_event_update(event);
4398 4399
}

4400
static const struct pmu perf_ops_cpu_clock = {
4401 4402 4403
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4404 4405
};

4406
/*
4407
 * Software event: task time clock
4408 4409
 */

4410
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4411
{
4412
	u64 prev;
I
Ingo Molnar 已提交
4413 4414
	s64 delta;

4415
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4416
	delta = now - prev;
4417
	atomic64_add(delta, &event->count);
4418 4419
}

4420
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4421
{
4422
	struct hw_perf_event *hwc = &event->hw;
4423 4424
	u64 now;

4425
	now = event->ctx->time;
4426

4427
	atomic64_set(&hwc->prev_count, now);
4428 4429

	perf_swevent_start_hrtimer(event);
4430 4431

	return 0;
I
Ingo Molnar 已提交
4432 4433
}

4434
static void task_clock_perf_event_disable(struct perf_event *event)
4435
{
4436
	perf_swevent_cancel_hrtimer(event);
4437
	task_clock_perf_event_update(event, event->ctx->time);
4438

4439
}
I
Ingo Molnar 已提交
4440

4441
static void task_clock_perf_event_read(struct perf_event *event)
4442
{
4443 4444 4445
	u64 time;

	if (!in_nmi()) {
4446 4447
		update_context_time(event->ctx);
		time = event->ctx->time;
4448 4449
	} else {
		u64 now = perf_clock();
4450 4451
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4452 4453
	}

4454
	task_clock_perf_event_update(event, time);
4455 4456
}

4457
static const struct pmu perf_ops_task_clock = {
4458 4459 4460
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4461 4462
};

4463 4464 4465 4466 4467 4468 4469 4470
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4481
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4482

4483
	if (!hlist)
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4522
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4569 4570
#ifdef CONFIG_EVENT_TRACING

4571 4572 4573
static const struct pmu perf_ops_tracepoint = {
	.enable		= perf_trace_enable,
	.disable	= perf_trace_disable,
P
Peter Zijlstra 已提交
4574 4575
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4576
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4577
	.unthrottle	= perf_swevent_void,
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
};

static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4594 4595 4596 4597
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4598 4599 4600 4601 4602 4603 4604 4605 4606
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4607
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4608 4609
{
	struct perf_sample_data data;
4610 4611 4612
	struct perf_event *event;
	struct hlist_node *node;

4613 4614 4615 4616 4617 4618 4619 4620
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4621 4622 4623
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
			perf_swevent_add(event, count, 1, &data, regs);
4624
	}
4625 4626

	perf_swevent_put_recursion_context(rctx);
4627 4628 4629
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4630
static void tp_perf_event_destroy(struct perf_event *event)
4631
{
4632
	perf_trace_destroy(event);
4633 4634
}

4635
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4636
{
4637 4638
	int err;

4639 4640 4641 4642
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4643
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4644
			perf_paranoid_tracepoint_raw() &&
4645 4646 4647
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4648 4649
	err = perf_trace_init(event);
	if (err)
4650 4651
		return NULL;

4652
	event->destroy = tp_perf_event_destroy;
4653

4654
	return &perf_ops_tracepoint;
4655
}
L
Li Zefan 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4680
#else
L
Li Zefan 已提交
4681

4682
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4683 4684 4685
{
	return NULL;
}
L
Li Zefan 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4696
#endif /* CONFIG_EVENT_TRACING */
4697

4698 4699 4700 4701 4702 4703 4704 4705 4706
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4707 4708

	err = register_perf_hw_breakpoint(bp);
4709 4710 4711 4712 4713 4714 4715 4716
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4717
void perf_bp_event(struct perf_event *bp, void *data)
4718
{
4719 4720 4721
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4722
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4723 4724 4725

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4738
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4739

4740
static void sw_perf_event_destroy(struct perf_event *event)
4741
{
4742
	u64 event_id = event->attr.config;
4743

4744
	WARN_ON(event->parent);
4745

4746
	atomic_dec(&perf_swevent_enabled[event_id]);
4747
	swevent_hlist_put(event);
4748 4749
}

4750
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4751
{
4752
	const struct pmu *pmu = NULL;
4753
	u64 event_id = event->attr.config;
4754

4755
	/*
4756
	 * Software events (currently) can't in general distinguish
4757 4758 4759 4760 4761
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4762
	switch (event_id) {
4763
	case PERF_COUNT_SW_CPU_CLOCK:
4764
		pmu = &perf_ops_cpu_clock;
4765

4766
		break;
4767
	case PERF_COUNT_SW_TASK_CLOCK:
4768
		/*
4769 4770
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4771
		 */
4772
		if (event->ctx->task)
4773
			pmu = &perf_ops_task_clock;
4774
		else
4775
			pmu = &perf_ops_cpu_clock;
4776

4777
		break;
4778 4779 4780 4781 4782
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4783 4784
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4785
		if (!event->parent) {
4786 4787 4788 4789 4790 4791
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

4792 4793
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4794
		}
4795
		pmu = &perf_ops_generic;
4796
		break;
4797
	}
4798

4799
	return pmu;
4800 4801
}

T
Thomas Gleixner 已提交
4802
/*
4803
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4804
 */
4805 4806
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4807
		   int cpu,
4808 4809 4810
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4811
		   perf_overflow_handler_t overflow_handler,
4812
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4813
{
4814
	const struct pmu *pmu;
4815 4816
	struct perf_event *event;
	struct hw_perf_event *hwc;
4817
	long err;
T
Thomas Gleixner 已提交
4818

4819 4820
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4821
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4822

4823
	/*
4824
	 * Single events are their own group leaders, with an
4825 4826 4827
	 * empty sibling list:
	 */
	if (!group_leader)
4828
		group_leader = event;
4829

4830 4831
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4832

4833 4834 4835 4836
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4837

4838
	mutex_init(&event->mmap_mutex);
4839

4840 4841 4842 4843 4844 4845
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4846

4847
	event->parent		= parent_event;
4848

4849 4850
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4851

4852
	event->state		= PERF_EVENT_STATE_INACTIVE;
4853

4854 4855
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4856
	
4857
	event->overflow_handler	= overflow_handler;
4858

4859
	if (attr->disabled)
4860
		event->state = PERF_EVENT_STATE_OFF;
4861

4862
	pmu = NULL;
4863

4864
	hwc = &event->hw;
4865
	hwc->sample_period = attr->sample_period;
4866
	if (attr->freq && attr->sample_freq)
4867
		hwc->sample_period = 1;
4868
	hwc->last_period = hwc->sample_period;
4869 4870

	atomic64_set(&hwc->period_left, hwc->sample_period);
4871

4872
	/*
4873
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4874
	 */
4875
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4876 4877
		goto done;

4878
	switch (attr->type) {
4879
	case PERF_TYPE_RAW:
4880
	case PERF_TYPE_HARDWARE:
4881
	case PERF_TYPE_HW_CACHE:
4882
		pmu = hw_perf_event_init(event);
4883 4884 4885
		break;

	case PERF_TYPE_SOFTWARE:
4886
		pmu = sw_perf_event_init(event);
4887 4888 4889
		break;

	case PERF_TYPE_TRACEPOINT:
4890
		pmu = tp_perf_event_init(event);
4891
		break;
4892

4893 4894 4895 4896 4897
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4898 4899
	default:
		break;
4900
	}
4901 4902
done:
	err = 0;
4903
	if (!pmu)
4904
		err = -EINVAL;
4905 4906
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4907

4908
	if (err) {
4909 4910 4911
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4912
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4913
	}
4914

4915
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4916

4917 4918
	if (!event->parent) {
		atomic_inc(&nr_events);
4919
		if (event->attr.mmap || event->attr.mmap_data)
4920 4921 4922 4923 4924
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4925
	}
4926

4927
	return event;
T
Thomas Gleixner 已提交
4928 4929
}

4930 4931
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4932 4933
{
	u32 size;
4934
	int ret;
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4959 4960 4961
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4962 4963
	 */
	if (size > sizeof(*attr)) {
4964 4965 4966
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4967

4968 4969
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4970

4971
		for (; addr < end; addr++) {
4972 4973 4974 4975 4976 4977
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4978
		size = sizeof(*attr);
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4992
	if (attr->__reserved_1)
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5010 5011
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5012
{
5013
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5014 5015
	int ret = -EINVAL;

5016
	if (!output_event)
5017 5018
		goto set;

5019 5020
	/* don't allow circular references */
	if (event == output_event)
5021 5022
		goto out;

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5035
set:
5036
	mutex_lock(&event->mmap_mutex);
5037 5038 5039
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5040

5041 5042
	if (output_event) {
		/* get the buffer we want to redirect to */
5043 5044
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5045
			goto unlock;
5046 5047
	}

5048 5049
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5050
	ret = 0;
5051 5052 5053
unlock:
	mutex_unlock(&event->mmap_mutex);

5054 5055
	if (old_buffer)
		perf_buffer_put(old_buffer);
5056 5057 5058 5059
out:
	return ret;
}

T
Thomas Gleixner 已提交
5060
/**
5061
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5062
 *
5063
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5064
 * @pid:		target pid
I
Ingo Molnar 已提交
5065
 * @cpu:		target cpu
5066
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5067
 */
5068 5069
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5070
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5071
{
5072
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5073 5074 5075
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5076
	struct file *group_file = NULL;
5077
	int event_fd;
5078
	int fput_needed = 0;
5079
	int err;
T
Thomas Gleixner 已提交
5080

5081
	/* for future expandability... */
5082
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5083 5084
		return -EINVAL;

5085 5086 5087
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5088

5089 5090 5091 5092 5093
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5094
	if (attr.freq) {
5095
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5096 5097 5098
			return -EINVAL;
	}

5099 5100 5101 5102
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5103
	/*
I
Ingo Molnar 已提交
5104 5105 5106
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5107 5108 5109 5110
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5111

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5125
	/*
5126
	 * Look up the group leader (we will attach this event to it):
5127
	 */
5128
	if (group_leader) {
5129
		err = -EINVAL;
5130 5131

		/*
I
Ingo Molnar 已提交
5132 5133 5134 5135 5136 5137 5138 5139
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5140
		 */
I
Ingo Molnar 已提交
5141 5142
		if (group_leader->ctx != ctx)
			goto err_put_context;
5143 5144 5145
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5146
		if (attr.exclusive || attr.pinned)
5147
			goto err_put_context;
5148 5149
	}

5150
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5151
				     NULL, NULL, GFP_KERNEL);
5152 5153
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5154
		goto err_put_context;
5155 5156 5157 5158 5159 5160 5161
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5162

5163 5164 5165
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5166
		goto err_free_put_context;
5167
	}
5168

5169
	event->filp = event_file;
5170
	WARN_ON_ONCE(ctx->parent_ctx);
5171
	mutex_lock(&ctx->mutex);
5172
	perf_install_in_context(ctx, event, cpu);
5173
	++ctx->generation;
5174
	mutex_unlock(&ctx->mutex);
5175

5176
	event->owner = current;
5177
	get_task_struct(current);
5178 5179 5180
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5181

5182 5183 5184 5185 5186 5187
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5188 5189 5190
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5191

5192
err_free_put_context:
5193
	free_event(event);
T
Thomas Gleixner 已提交
5194
err_put_context:
5195
	fput_light(group_file, fput_needed);
5196 5197 5198
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5199
	return err;
T
Thomas Gleixner 已提交
5200 5201
}

5202 5203 5204 5205 5206 5207 5208 5209 5210
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5211 5212
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5223 5224 5225 5226
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5227 5228

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5229
				 NULL, overflow_handler, GFP_KERNEL);
5230 5231
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5232
		goto err_put_context;
5233
	}
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5250 5251 5252 5253
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5254 5255 5256
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5257
/*
5258
 * inherit a event from parent task to child task:
5259
 */
5260 5261
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5262
	      struct task_struct *parent,
5263
	      struct perf_event_context *parent_ctx,
5264
	      struct task_struct *child,
5265 5266
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5267
{
5268
	struct perf_event *child_event;
5269

5270
	/*
5271 5272
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5273 5274 5275
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5276 5277
	if (parent_event->parent)
		parent_event = parent_event->parent;
5278

5279 5280 5281
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5282
					   NULL, GFP_KERNEL);
5283 5284
	if (IS_ERR(child_event))
		return child_event;
5285
	get_ctx(child_ctx);
5286

5287
	/*
5288
	 * Make the child state follow the state of the parent event,
5289
	 * not its attr.disabled bit.  We hold the parent's mutex,
5290
	 * so we won't race with perf_event_{en, dis}able_family.
5291
	 */
5292 5293
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5294
	else
5295
		child_event->state = PERF_EVENT_STATE_OFF;
5296

5297 5298 5299 5300 5301 5302 5303 5304 5305
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5306

5307 5308
	child_event->overflow_handler = parent_event->overflow_handler;

5309 5310 5311
	/*
	 * Link it up in the child's context:
	 */
5312
	add_event_to_ctx(child_event, child_ctx);
5313 5314 5315

	/*
	 * Get a reference to the parent filp - we will fput it
5316
	 * when the child event exits. This is safe to do because
5317 5318 5319
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5320
	atomic_long_inc(&parent_event->filp->f_count);
5321

5322
	/*
5323
	 * Link this into the parent event's child list
5324
	 */
5325 5326 5327 5328
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5329

5330
	return child_event;
5331 5332
}

5333
static int inherit_group(struct perf_event *parent_event,
5334
	      struct task_struct *parent,
5335
	      struct perf_event_context *parent_ctx,
5336
	      struct task_struct *child,
5337
	      struct perf_event_context *child_ctx)
5338
{
5339 5340 5341
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5342

5343
	leader = inherit_event(parent_event, parent, parent_ctx,
5344
				 child, NULL, child_ctx);
5345 5346
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5347 5348
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5349 5350 5351
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5352
	}
5353 5354 5355
	return 0;
}

5356
static void sync_child_event(struct perf_event *child_event,
5357
			       struct task_struct *child)
5358
{
5359
	struct perf_event *parent_event = child_event->parent;
5360
	u64 child_val;
5361

5362 5363
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5364

5365
	child_val = atomic64_read(&child_event->count);
5366 5367 5368 5369

	/*
	 * Add back the child's count to the parent's count:
	 */
5370 5371 5372 5373 5374
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5375 5376

	/*
5377
	 * Remove this event from the parent's list
5378
	 */
5379 5380 5381 5382
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5383 5384

	/*
5385
	 * Release the parent event, if this was the last
5386 5387
	 * reference to it.
	 */
5388
	fput(parent_event->filp);
5389 5390
}

5391
static void
5392 5393
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5394
			 struct task_struct *child)
5395
{
5396
	struct perf_event *parent_event;
5397

5398
	perf_event_remove_from_context(child_event);
5399

5400
	parent_event = child_event->parent;
5401
	/*
5402
	 * It can happen that parent exits first, and has events
5403
	 * that are still around due to the child reference. These
5404
	 * events need to be zapped - but otherwise linger.
5405
	 */
5406 5407 5408
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5409
	}
5410 5411 5412
}

/*
5413
 * When a child task exits, feed back event values to parent events.
5414
 */
5415
void perf_event_exit_task(struct task_struct *child)
5416
{
5417 5418
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5419
	unsigned long flags;
5420

5421 5422
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5423
		return;
P
Peter Zijlstra 已提交
5424
	}
5425

5426
	local_irq_save(flags);
5427 5428 5429 5430 5431 5432
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5433 5434
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5435 5436 5437

	/*
	 * Take the context lock here so that if find_get_context is
5438
	 * reading child->perf_event_ctxp, we wait until it has
5439 5440
	 * incremented the context's refcount before we do put_ctx below.
	 */
5441
	raw_spin_lock(&child_ctx->lock);
5442
	child->perf_event_ctxp = NULL;
5443 5444 5445
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5446
	 * the events from it.
5447 5448
	 */
	unclone_ctx(child_ctx);
5449
	update_context_time(child_ctx);
5450
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5451 5452

	/*
5453 5454 5455
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5456
	 */
5457
	perf_event_task(child, child_ctx, 0);
5458

5459 5460 5461
	/*
	 * We can recurse on the same lock type through:
	 *
5462 5463 5464
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5465 5466 5467 5468 5469
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5470
	mutex_lock(&child_ctx->mutex);
5471

5472
again:
5473 5474 5475 5476 5477
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5478
				 group_entry)
5479
		__perf_event_exit_task(child_event, child_ctx, child);
5480 5481

	/*
5482
	 * If the last event was a group event, it will have appended all
5483 5484 5485
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5486 5487
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5488
		goto again;
5489 5490 5491 5492

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5493 5494
}

5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5509
	perf_group_detach(event);
5510 5511 5512 5513
	list_del_event(event, ctx);
	free_event(event);
}

5514 5515 5516 5517
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5518
void perf_event_free_task(struct task_struct *task)
5519
{
5520 5521
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5522 5523 5524 5525 5526 5527

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5528 5529
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5530

5531 5532 5533
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5534

5535 5536 5537
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5538

5539
	mutex_unlock(&ctx->mutex);
5540

5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5556 5557
	}

5558 5559 5560 5561 5562 5563 5564
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5565

5566 5567 5568 5569
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5570

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5583 5584
}

5585

5586
/*
5587
 * Initialize the perf_event context in task_struct
5588
 */
5589
int perf_event_init_task(struct task_struct *child)
5590
{
5591
	struct perf_event_context *child_ctx, *parent_ctx;
5592 5593
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5594
	struct task_struct *parent = current;
5595
	int inherited_all = 1;
5596
	int ret = 0;
5597

5598
	child->perf_event_ctxp = NULL;
5599

5600 5601
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5602

5603
	if (likely(!parent->perf_event_ctxp))
5604 5605
		return 0;

5606
	/*
5607 5608
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5609
	 */
5610 5611
	parent_ctx = perf_pin_task_context(parent);

5612 5613 5614 5615 5616 5617 5618
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5619 5620 5621 5622
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5623
	mutex_lock(&parent_ctx->mutex);
5624 5625 5626 5627 5628

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5629 5630 5631 5632 5633 5634
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5635

5636 5637 5638 5639
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5640
			break;
5641 5642
	}

5643 5644
	child_ctx = child->perf_event_ctxp;

5645
	if (child_ctx && inherited_all) {
5646 5647 5648
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5649 5650
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5651
		 * because the list of events and the generation
5652
		 * count can't have changed since we took the mutex.
5653
		 */
5654 5655 5656
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5657
			child_ctx->parent_gen = parent_ctx->parent_gen;
5658 5659 5660 5661 5662
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5663 5664
	}

5665
	mutex_unlock(&parent_ctx->mutex);
5666

5667
	perf_unpin_context(parent_ctx);
5668

5669
	return ret;
5670 5671
}

5672 5673 5674 5675 5676 5677 5678
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5679
		mutex_init(&cpuctx->hlist_mutex);
5680 5681 5682 5683
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5684
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5685
{
5686
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5687

5688
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5689

5690
	spin_lock(&perf_resource_lock);
5691
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5692
	spin_unlock(&perf_resource_lock);
5693 5694 5695 5696 5697 5698 5699 5700 5701 5702

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5703 5704 5705
}

#ifdef CONFIG_HOTPLUG_CPU
5706
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5707 5708
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5709 5710
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5711

5712 5713 5714
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5715
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5716
}
5717
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5718
{
5719
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5720
	struct perf_event_context *ctx = &cpuctx->ctx;
5721

5722 5723 5724 5725
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5726
	mutex_lock(&ctx->mutex);
5727
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5728
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5729 5730
}
#else
5731
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5743
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5744 5745 5746 5747
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5748
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5749 5750 5751 5752 5753 5754 5755 5756 5757
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5758 5759 5760
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5761 5762
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5763
	.priority		= 20,
T
Thomas Gleixner 已提交
5764 5765
};

5766
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5767
{
5768
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5769 5770
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5771 5772
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5773 5774 5775
	register_cpu_notifier(&perf_cpu_nb);
}

5776 5777 5778
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5779 5780 5781 5782 5783 5784
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5785
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5796
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5797 5798
		return -EINVAL;

5799
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5800 5801 5802
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5803
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5804 5805
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5806
		cpuctx->max_pertask = mpt;
5807
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5808
	}
5809
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5810 5811 5812 5813

	return count;
}

5814 5815 5816
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5817 5818 5819 5820 5821
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5822 5823 5824
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5835
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5836
	perf_overcommit = val;
5837
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5864
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5865 5866
};

5867
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5868 5869 5870 5871
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5872
device_initcall(perf_event_sysfs_init);