perf_event.c 126.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
T
Thomas Gleixner 已提交
19
#include <linux/sysfs.h>
20
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
21
#include <linux/percpu.h>
22
#include <linux/ptrace.h>
23
#include <linux/vmstat.h>
24
#include <linux/vmalloc.h>
25 26
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
27 28 29
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
30
#include <linux/kernel_stat.h>
31
#include <linux/perf_event.h>
L
Li Zefan 已提交
32
#include <linux/ftrace_event.h>
33
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
37
/*
38
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
39
 */
40
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
41

42
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
43 44 45
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

46 47 48 49
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
50

51
/*
52
 * perf event paranoia level:
53 54
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
55
 *   1 - disallow cpu events for unpriv
56
 *   2 - disallow kernel profiling for unpriv
57
 */
58
int sysctl_perf_event_paranoid __read_mostly = 1;
59

60
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
61 62

/*
63
 * max perf event sample rate
64
 */
65
int sysctl_perf_event_sample_rate __read_mostly = 100000;
66

67
static atomic64_t perf_event_id;
68

T
Thomas Gleixner 已提交
69
/*
70
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
71
 */
72
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
73 74 75 76

/*
 * Architecture provided APIs - weak aliases:
 */
77
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
78
{
79
	return NULL;
T
Thomas Gleixner 已提交
80 81
}

82 83 84
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

85
int __weak
86
hw_perf_group_sched_in(struct perf_event *group_leader,
87
	       struct perf_cpu_context *cpuctx,
88
	       struct perf_event_context *ctx)
89 90 91
{
	return 0;
}
T
Thomas Gleixner 已提交
92

93
void __weak perf_event_print_debug(void)	{ }
94

95
static DEFINE_PER_CPU(int, perf_disable_count);
96 97 98

void perf_disable(void)
{
P
Peter Zijlstra 已提交
99 100
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
101 102 103 104
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
105
	if (!--__get_cpu_var(perf_disable_count))
106 107 108
		hw_perf_enable();
}

109
static void get_ctx(struct perf_event_context *ctx)
110
{
111
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
112 113
}

114 115
static void free_ctx(struct rcu_head *head)
{
116
	struct perf_event_context *ctx;
117

118
	ctx = container_of(head, struct perf_event_context, rcu_head);
119 120 121
	kfree(ctx);
}

122
static void put_ctx(struct perf_event_context *ctx)
123
{
124 125 126
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
127 128 129
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
130
	}
131 132
}

133
static void unclone_ctx(struct perf_event_context *ctx)
134 135 136 137 138 139 140
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

141
/*
142
 * If we inherit events we want to return the parent event id
143 144
 * to userspace.
 */
145
static u64 primary_event_id(struct perf_event *event)
146
{
147
	u64 id = event->id;
148

149 150
	if (event->parent)
		id = event->parent->id;
151 152 153 154

	return id;
}

155
/*
156
 * Get the perf_event_context for a task and lock it.
157 158 159
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
160
static struct perf_event_context *
161
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
162
{
163
	struct perf_event_context *ctx;
164 165 166

	rcu_read_lock();
 retry:
167
	ctx = rcu_dereference(task->perf_event_ctxp);
168 169 170 171
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
172
		 * perf_event_task_sched_out, though the
173 174 175 176 177 178
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
179
		raw_spin_lock_irqsave(&ctx->lock, *flags);
180
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
181
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 183
			goto retry;
		}
184 185

		if (!atomic_inc_not_zero(&ctx->refcount)) {
186
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
187 188
			ctx = NULL;
		}
189 190 191 192 193 194 195 196 197 198
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
199
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
200
{
201
	struct perf_event_context *ctx;
202 203 204 205 206
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
207
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
208 209 210 211
	}
	return ctx;
}

212
static void perf_unpin_context(struct perf_event_context *ctx)
213 214 215
{
	unsigned long flags;

216
	raw_spin_lock_irqsave(&ctx->lock, flags);
217
	--ctx->pin_count;
218
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
219 220 221
	put_ctx(ctx);
}

222 223
static inline u64 perf_clock(void)
{
224
	return cpu_clock(raw_smp_processor_id());
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

250 251 252 253 254 255
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
256 257 258 259 260 261 262 263 264

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

265 266 267 268 269 270 271 272 273
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

274
/*
275
 * Add a event from the lists for its context.
276 277
 * Must be called with ctx->mutex and ctx->lock held.
 */
278
static void
279
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
280
{
281
	struct perf_event *group_leader = event->group_leader;
282 283

	/*
284 285
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
286 287
	 * leader's sibling list:
	 */
288 289 290
	if (group_leader == event) {
		struct list_head *list;

291 292 293
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

294 295 296
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
297 298 299 300
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

301
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
302 303
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
304

305 306 307
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
308
		ctx->nr_stat++;
309 310
}

311
/*
312
 * Remove a event from the lists for its context.
313
 * Must be called with ctx->mutex and ctx->lock held.
314
 */
315
static void
316
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
317
{
318
	struct perf_event *sibling, *tmp;
319

320
	if (list_empty(&event->group_entry))
321
		return;
322 323
	ctx->nr_events--;
	if (event->attr.inherit_stat)
324
		ctx->nr_stat--;
325

326 327
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
328

329 330
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
331

332
	update_event_times(event);
333 334 335 336 337 338 339 340 341 342

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
343

344
	/*
345 346
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
347 348
	 * to the context list directly:
	 */
349
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
350
		struct list_head *list;
351

352 353
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
354
		sibling->group_leader = sibling;
355 356 357

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
358 359 360
	}
}

361
static void
362
event_sched_out(struct perf_event *event,
363
		  struct perf_cpu_context *cpuctx,
364
		  struct perf_event_context *ctx)
365
{
366
	if (event->state != PERF_EVENT_STATE_ACTIVE)
367 368
		return;

369 370 371 372
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
373
	}
374 375 376
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
377

378
	if (!is_software_event(event))
379 380
		cpuctx->active_oncpu--;
	ctx->nr_active--;
381
	if (event->attr.exclusive || !cpuctx->active_oncpu)
382 383 384
		cpuctx->exclusive = 0;
}

385
static void
386
group_sched_out(struct perf_event *group_event,
387
		struct perf_cpu_context *cpuctx,
388
		struct perf_event_context *ctx)
389
{
390
	struct perf_event *event;
391

392
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
393 394
		return;

395
	event_sched_out(group_event, cpuctx, ctx);
396 397 398 399

	/*
	 * Schedule out siblings (if any):
	 */
400 401
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
402

403
	if (group_event->attr.exclusive)
404 405 406
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
407
/*
408
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
409
 *
410
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
411 412
 * remove it from the context list.
 */
413
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
414 415
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
416 417
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
418 419 420 421 422 423

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
424
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
425 426
		return;

427
	raw_spin_lock(&ctx->lock);
428 429
	/*
	 * Protect the list operation against NMI by disabling the
430
	 * events on a global level.
431 432
	 */
	perf_disable();
T
Thomas Gleixner 已提交
433

434
	event_sched_out(event, cpuctx, ctx);
435

436
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
437 438 439

	if (!ctx->task) {
		/*
440
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
441 442 443
		 * reservation:
		 */
		cpuctx->max_pertask =
444 445
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
446 447
	}

448
	perf_enable();
449
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
450 451 452 453
}


/*
454
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
455
 *
456
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
457
 *
458
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
459
 * call when the task is on a CPU.
460
 *
461 462
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
463 464
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
465
 * When called from perf_event_exit_task, it's OK because the
466
 * context has been detached from its task.
T
Thomas Gleixner 已提交
467
 */
468
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
469
{
470
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
471 472 473 474
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
475
		 * Per cpu events are removed via an smp call and
476
		 * the removal is always successful.
T
Thomas Gleixner 已提交
477
		 */
478 479 480
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
481 482 483 484
		return;
	}

retry:
485 486
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
487

488
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
489 490 491
	/*
	 * If the context is active we need to retry the smp call.
	 */
492
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
493
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
494 495 496 497 498
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
499
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
500 501
	 * succeed.
	 */
P
Peter Zijlstra 已提交
502
	if (!list_empty(&event->group_entry))
503
		list_del_event(event, ctx);
504
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
505 506
}

507
/*
508
 * Update total_time_enabled and total_time_running for all events in a group.
509
 */
510
static void update_group_times(struct perf_event *leader)
511
{
512
	struct perf_event *event;
513

514 515 516
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
517 518
}

519
/*
520
 * Cross CPU call to disable a performance event
521
 */
522
static void __perf_event_disable(void *info)
523
{
524
	struct perf_event *event = info;
525
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
526
	struct perf_event_context *ctx = event->ctx;
527 528

	/*
529 530
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
531
	 */
532
	if (ctx->task && cpuctx->task_ctx != ctx)
533 534
		return;

535
	raw_spin_lock(&ctx->lock);
536 537

	/*
538
	 * If the event is on, turn it off.
539 540
	 * If it is in error state, leave it in error state.
	 */
541
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
542
		update_context_time(ctx);
543 544 545
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
546
		else
547 548
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
549 550
	}

551
	raw_spin_unlock(&ctx->lock);
552 553 554
}

/*
555
 * Disable a event.
556
 *
557 558
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
559
 * remains valid.  This condition is satisifed when called through
560 561 562 563
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
564
 * is the current context on this CPU and preemption is disabled,
565
 * hence we can't get into perf_event_task_sched_out for this context.
566
 */
567
void perf_event_disable(struct perf_event *event)
568
{
569
	struct perf_event_context *ctx = event->ctx;
570 571 572 573
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
574
		 * Disable the event on the cpu that it's on
575
		 */
576 577
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
578 579 580 581
		return;
	}

 retry:
582
	task_oncpu_function_call(task, __perf_event_disable, event);
583

584
	raw_spin_lock_irq(&ctx->lock);
585
	/*
586
	 * If the event is still active, we need to retry the cross-call.
587
	 */
588
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
589
		raw_spin_unlock_irq(&ctx->lock);
590 591 592 593 594 595 596
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
597 598 599
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
600
	}
601

602
	raw_spin_unlock_irq(&ctx->lock);
603 604
}

605
static int
606
event_sched_in(struct perf_event *event,
607
		 struct perf_cpu_context *cpuctx,
608
		 struct perf_event_context *ctx)
609
{
610
	if (event->state <= PERF_EVENT_STATE_OFF)
611 612
		return 0;

613
	event->state = PERF_EVENT_STATE_ACTIVE;
614
	event->oncpu = smp_processor_id();
615 616 617 618 619
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

620 621 622
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
623 624 625
		return -EAGAIN;
	}

626
	event->tstamp_running += ctx->time - event->tstamp_stopped;
627

628
	if (!is_software_event(event))
629
		cpuctx->active_oncpu++;
630 631
	ctx->nr_active++;

632
	if (event->attr.exclusive)
633 634
		cpuctx->exclusive = 1;

635 636 637
	return 0;
}

638
static int
639
group_sched_in(struct perf_event *group_event,
640
	       struct perf_cpu_context *cpuctx,
641
	       struct perf_event_context *ctx)
642
{
643
	struct perf_event *event, *partial_group;
644 645
	int ret;

646
	if (group_event->state == PERF_EVENT_STATE_OFF)
647 648
		return 0;

649
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
650 651 652
	if (ret)
		return ret < 0 ? ret : 0;

653
	if (event_sched_in(group_event, cpuctx, ctx))
654 655 656 657 658
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
659
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
660
		if (event_sched_in(event, cpuctx, ctx)) {
661
			partial_group = event;
662 663 664 665 666 667 668 669 670 671 672
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
673 674
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
675
			break;
676
		event_sched_out(event, cpuctx, ctx);
677
	}
678
	event_sched_out(group_event, cpuctx, ctx);
679 680 681 682

	return -EAGAIN;
}

683
/*
684
 * Work out whether we can put this event group on the CPU now.
685
 */
686
static int group_can_go_on(struct perf_event *event,
687 688 689 690
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
691
	 * Groups consisting entirely of software events can always go on.
692
	 */
693
	if (event->group_flags & PERF_GROUP_SOFTWARE)
694 695 696
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
697
	 * events can go on.
698 699 700 701 702
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
703
	 * events on the CPU, it can't go on.
704
	 */
705
	if (event->attr.exclusive && cpuctx->active_oncpu)
706 707 708 709 710 711 712 713
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

714 715
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
716
{
717 718 719 720
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
721 722
}

T
Thomas Gleixner 已提交
723
/*
724
 * Cross CPU call to install and enable a performance event
725 726
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
727 728 729 730
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
731 732 733
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
734
	int err;
T
Thomas Gleixner 已提交
735 736 737 738 739

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
740
	 * Or possibly this is the right context but it isn't
741
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
742
	 */
743
	if (ctx->task && cpuctx->task_ctx != ctx) {
744
		if (cpuctx->task_ctx || ctx->task != current)
745 746 747
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
748

749
	raw_spin_lock(&ctx->lock);
750
	ctx->is_active = 1;
751
	update_context_time(ctx);
T
Thomas Gleixner 已提交
752 753 754

	/*
	 * Protect the list operation against NMI by disabling the
755
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
756
	 */
757
	perf_disable();
T
Thomas Gleixner 已提交
758

759
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
760

761 762 763
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

764
	/*
765
	 * Don't put the event on if it is disabled or if
766 767
	 * it is in a group and the group isn't on.
	 */
768 769
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
770 771
		goto unlock;

772
	/*
773 774 775
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
776
	 */
777
	if (!group_can_go_on(event, cpuctx, 1))
778 779
		err = -EEXIST;
	else
780
		err = event_sched_in(event, cpuctx, ctx);
781

782 783
	if (err) {
		/*
784
		 * This event couldn't go on.  If it is in a group
785
		 * then we have to pull the whole group off.
786
		 * If the event group is pinned then put it in error state.
787
		 */
788
		if (leader != event)
789
			group_sched_out(leader, cpuctx, ctx);
790
		if (leader->attr.pinned) {
791
			update_group_times(leader);
792
			leader->state = PERF_EVENT_STATE_ERROR;
793
		}
794
	}
T
Thomas Gleixner 已提交
795

796
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
797 798
		cpuctx->max_pertask--;

799
 unlock:
800
	perf_enable();
801

802
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
803 804 805
}

/*
806
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
807
 *
808 809
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
810
 *
811
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
812 813
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
814 815
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
816 817
 */
static void
818 819
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
820 821 822 823 824 825
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
826
		 * Per cpu events are installed via an smp call and
827
		 * the install is always successful.
T
Thomas Gleixner 已提交
828 829
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
830
					 event, 1);
T
Thomas Gleixner 已提交
831 832 833 834 835
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
836
				 event);
T
Thomas Gleixner 已提交
837

838
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
839 840 841
	/*
	 * we need to retry the smp call.
	 */
842
	if (ctx->is_active && list_empty(&event->group_entry)) {
843
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
844 845 846 847 848
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
849
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
850 851
	 * succeed.
	 */
852 853
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
854
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
855 856
}

857
/*
858
 * Put a event into inactive state and update time fields.
859 860 861 862 863 864
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
865 866
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
867
{
868
	struct perf_event *sub;
869

870 871 872 873
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
874 875 876 877
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

878
/*
879
 * Cross CPU call to enable a performance event
880
 */
881
static void __perf_event_enable(void *info)
882
{
883
	struct perf_event *event = info;
884
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
885 886
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
887
	int err;
888

889
	/*
890 891
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
892
	 */
893
	if (ctx->task && cpuctx->task_ctx != ctx) {
894
		if (cpuctx->task_ctx || ctx->task != current)
895 896 897
			return;
		cpuctx->task_ctx = ctx;
	}
898

899
	raw_spin_lock(&ctx->lock);
900
	ctx->is_active = 1;
901
	update_context_time(ctx);
902

903
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
904
		goto unlock;
905
	__perf_event_mark_enabled(event, ctx);
906

907 908 909
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

910
	/*
911
	 * If the event is in a group and isn't the group leader,
912
	 * then don't put it on unless the group is on.
913
	 */
914
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915
		goto unlock;
916

917
	if (!group_can_go_on(event, cpuctx, 1)) {
918
		err = -EEXIST;
919
	} else {
920
		perf_disable();
921
		if (event == leader)
922
			err = group_sched_in(event, cpuctx, ctx);
923
		else
924
			err = event_sched_in(event, cpuctx, ctx);
925
		perf_enable();
926
	}
927 928 929

	if (err) {
		/*
930
		 * If this event can't go on and it's part of a
931 932
		 * group, then the whole group has to come off.
		 */
933
		if (leader != event)
934
			group_sched_out(leader, cpuctx, ctx);
935
		if (leader->attr.pinned) {
936
			update_group_times(leader);
937
			leader->state = PERF_EVENT_STATE_ERROR;
938
		}
939 940 941
	}

 unlock:
942
	raw_spin_unlock(&ctx->lock);
943 944 945
}

/*
946
 * Enable a event.
947
 *
948 949
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
950
 * remains valid.  This condition is satisfied when called through
951 952
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
953
 */
954
void perf_event_enable(struct perf_event *event)
955
{
956
	struct perf_event_context *ctx = event->ctx;
957 958 959 960
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
961
		 * Enable the event on the cpu that it's on
962
		 */
963 964
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
965 966 967
		return;
	}

968
	raw_spin_lock_irq(&ctx->lock);
969
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
970 971 972
		goto out;

	/*
973 974
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
975 976 977 978
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
979 980
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
981 982

 retry:
983
	raw_spin_unlock_irq(&ctx->lock);
984
	task_oncpu_function_call(task, __perf_event_enable, event);
985

986
	raw_spin_lock_irq(&ctx->lock);
987 988

	/*
989
	 * If the context is active and the event is still off,
990 991
	 * we need to retry the cross-call.
	 */
992
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
993 994 995 996 997 998
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
999 1000
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1001

1002
 out:
1003
	raw_spin_unlock_irq(&ctx->lock);
1004 1005
}

1006
static int perf_event_refresh(struct perf_event *event, int refresh)
1007
{
1008
	/*
1009
	 * not supported on inherited events
1010
	 */
1011
	if (event->attr.inherit)
1012 1013
		return -EINVAL;

1014 1015
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1016 1017

	return 0;
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027 1028
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1029
{
1030
	struct perf_event *event;
1031

1032
	raw_spin_lock(&ctx->lock);
1033
	ctx->is_active = 0;
1034
	if (likely(!ctx->nr_events))
1035
		goto out;
1036
	update_context_time(ctx);
1037

1038
	perf_disable();
1039 1040 1041 1042
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1043 1044 1045
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1046
	if (event_type & EVENT_FLEXIBLE)
1047
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1048
			group_sched_out(event, cpuctx, ctx);
1049 1050

 out_enable:
1051
	perf_enable();
1052
 out:
1053
	raw_spin_unlock(&ctx->lock);
1054 1055
}

1056 1057 1058
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1059 1060 1061 1062
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1063
 * in them directly with an fd; we can only enable/disable all
1064
 * events via prctl, or enable/disable all events in a family
1065 1066
 * via ioctl, which will have the same effect on both contexts.
 */
1067 1068
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1069 1070
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1071
		&& ctx1->parent_gen == ctx2->parent_gen
1072
		&& !ctx1->pin_count && !ctx2->pin_count;
1073 1074
}

1075 1076
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1077 1078 1079
{
	u64 value;

1080
	if (!event->attr.inherit_stat)
1081 1082 1083
		return;

	/*
1084
	 * Update the event value, we cannot use perf_event_read()
1085 1086
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1087
	 * we know the event must be on the current CPU, therefore we
1088 1089
	 * don't need to use it.
	 */
1090 1091
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1092 1093
		event->pmu->read(event);
		/* fall-through */
1094

1095 1096
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1097 1098 1099 1100 1101 1102 1103
		break;

	default:
		break;
	}

	/*
1104
	 * In order to keep per-task stats reliable we need to flip the event
1105 1106
	 * values when we flip the contexts.
	 */
1107 1108 1109
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1110

1111 1112
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1113

1114
	/*
1115
	 * Since we swizzled the values, update the user visible data too.
1116
	 */
1117 1118
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1119 1120 1121 1122 1123
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1124 1125
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1126
{
1127
	struct perf_event *event, *next_event;
1128 1129 1130 1131

	if (!ctx->nr_stat)
		return;

1132 1133
	update_context_time(ctx);

1134 1135
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1136

1137 1138
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1139

1140 1141
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1142

1143
		__perf_event_sync_stat(event, next_event);
1144

1145 1146
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1147 1148 1149
	}
}

T
Thomas Gleixner 已提交
1150
/*
1151
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1152 1153
 * with interrupts disabled.
 *
1154
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1155
 *
I
Ingo Molnar 已提交
1156
 * This does not protect us against NMI, but disable()
1157 1158 1159
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1160
 */
1161
void perf_event_task_sched_out(struct task_struct *task,
1162
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1163
{
1164
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1165 1166 1167
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1168
	int do_switch = 1;
T
Thomas Gleixner 已提交
1169

1170
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1171

1172
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1173 1174
		return;

1175 1176
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1177
	next_ctx = next->perf_event_ctxp;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1189 1190
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1191
		if (context_equiv(ctx, next_ctx)) {
1192 1193
			/*
			 * XXX do we need a memory barrier of sorts
1194
			 * wrt to rcu_dereference() of perf_event_ctxp
1195
			 */
1196 1197
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1198 1199 1200
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1201

1202
			perf_event_sync_stat(ctx, next_ctx);
1203
		}
1204 1205
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1206
	}
1207
	rcu_read_unlock();
1208

1209
	if (do_switch) {
1210
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1211 1212
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1213 1214
}

1215 1216
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1217 1218 1219
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1220 1221
	if (!cpuctx->task_ctx)
		return;
1222 1223 1224 1225

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1226
	ctx_sched_out(ctx, cpuctx, event_type);
1227 1228 1229
	cpuctx->task_ctx = NULL;
}

1230 1231 1232
/*
 * Called with IRQs disabled
 */
1233
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1234
{
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1245 1246
}

1247
static void
1248
ctx_pinned_sched_in(struct perf_event_context *ctx,
1249
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1250
{
1251
	struct perf_event *event;
T
Thomas Gleixner 已提交
1252

1253 1254
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1255
			continue;
1256
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1257 1258
			continue;

1259
		if (group_can_go_on(event, cpuctx, 1))
1260
			group_sched_in(event, cpuctx, ctx);
1261 1262 1263 1264 1265

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1266 1267 1268
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1269
		}
1270
	}
1271 1272 1273 1274
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1275
		      struct perf_cpu_context *cpuctx)
1276 1277 1278
{
	struct perf_event *event;
	int can_add_hw = 1;
1279

1280 1281 1282
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1283
			continue;
1284 1285
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1286
		 * of events:
1287
		 */
1288
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1289 1290
			continue;

1291
		if (group_can_go_on(event, cpuctx, can_add_hw))
1292
			if (group_sched_in(event, cpuctx, ctx))
1293
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1294
	}
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1316
		ctx_pinned_sched_in(ctx, cpuctx);
1317 1318 1319

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1320
		ctx_flexible_sched_in(ctx, cpuctx);
1321

1322
	perf_enable();
1323
 out:
1324
	raw_spin_unlock(&ctx->lock);
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1348
/*
1349
 * Called from scheduler to add the events of the current task
1350 1351
 * with interrupts disabled.
 *
1352
 * We restore the event value and then enable it.
1353 1354
 *
 * This does not protect us against NMI, but enable()
1355 1356 1357
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1358
 */
1359
void perf_event_task_sched_in(struct task_struct *task)
1360
{
1361 1362
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1363

1364 1365
	if (likely(!ctx))
		return;
1366

1367 1368 1369
	if (cpuctx->task_ctx == ctx)
		return;

1370 1371
	perf_disable();

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1384 1385

	perf_enable();
1386 1387
}

1388 1389
#define MAX_INTERRUPTS (~0ULL)

1390
static void perf_log_throttle(struct perf_event *event, int enable);
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1478
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1479
{
1480
	struct hw_perf_event *hwc = &event->hw;
1481 1482 1483
	u64 period, sample_period;
	s64 delta;

1484
	period = perf_calculate_period(event, nsec, count);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1495 1496 1497

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1498
		perf_event_stop(event);
1499
		atomic64_set(&hwc->period_left, 0);
1500
		perf_event_start(event);
1501 1502
		perf_enable();
	}
1503 1504
}

1505
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1506
{
1507 1508
	struct perf_event *event;
	struct hw_perf_event *hwc;
1509 1510
	u64 interrupts, now;
	s64 delta;
1511

1512
	raw_spin_lock(&ctx->lock);
1513
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1514
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1515 1516
			continue;

1517 1518 1519
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1520
		hwc = &event->hw;
1521 1522 1523

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1524

1525
		/*
1526
		 * unthrottle events on the tick
1527
		 */
1528
		if (interrupts == MAX_INTERRUPTS) {
1529
			perf_log_throttle(event, 1);
1530
			perf_disable();
1531
			event->pmu->unthrottle(event);
1532
			perf_enable();
1533 1534
		}

1535
		if (!event->attr.freq || !event->attr.sample_freq)
1536 1537
			continue;

1538
		perf_disable();
1539 1540 1541 1542
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1543

1544 1545
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1546
		perf_enable();
1547
	}
1548
	raw_spin_unlock(&ctx->lock);
1549 1550
}

1551
/*
1552
 * Round-robin a context's events:
1553
 */
1554
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1555
{
1556
	raw_spin_lock(&ctx->lock);
1557 1558 1559 1560

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1561
	raw_spin_unlock(&ctx->lock);
1562 1563
}

1564
void perf_event_task_tick(struct task_struct *curr)
1565
{
1566
	struct perf_cpu_context *cpuctx;
1567
	struct perf_event_context *ctx;
1568
	int rotate = 0;
1569

1570
	if (!atomic_read(&nr_events))
1571 1572
		return;

1573
	cpuctx = &__get_cpu_var(perf_cpu_context);
1574 1575 1576
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1577

1578 1579 1580
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1581

1582
	perf_ctx_adjust_freq(&cpuctx->ctx);
1583
	if (ctx)
1584
		perf_ctx_adjust_freq(ctx);
1585

1586 1587 1588 1589
	if (!rotate)
		return;

	perf_disable();
1590
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1591
	if (ctx)
1592
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1593

1594
	rotate_ctx(&cpuctx->ctx);
1595 1596
	if (ctx)
		rotate_ctx(ctx);
1597

1598
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1599
	if (ctx)
1600
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1601
	perf_enable();
T
Thomas Gleixner 已提交
1602 1603
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1619
/*
1620
 * Enable all of a task's events that have been marked enable-on-exec.
1621 1622
 * This expects task == current.
 */
1623
static void perf_event_enable_on_exec(struct task_struct *task)
1624
{
1625 1626
	struct perf_event_context *ctx;
	struct perf_event *event;
1627 1628
	unsigned long flags;
	int enabled = 0;
1629
	int ret;
1630 1631

	local_irq_save(flags);
1632 1633
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1634 1635
		goto out;

1636
	__perf_event_task_sched_out(ctx);
1637

1638
	raw_spin_lock(&ctx->lock);
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1650 1651 1652
	}

	/*
1653
	 * Unclone this context if we enabled any event.
1654
	 */
1655 1656
	if (enabled)
		unclone_ctx(ctx);
1657

1658
	raw_spin_unlock(&ctx->lock);
1659

1660
	perf_event_task_sched_in(task);
1661 1662 1663 1664
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1665
/*
1666
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1667
 */
1668
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1669
{
1670
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1671 1672
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1673

1674 1675 1676 1677
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1678 1679
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1680 1681 1682 1683
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1684
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1685
	update_context_time(ctx);
1686
	update_event_times(event);
1687
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1688

P
Peter Zijlstra 已提交
1689
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1690 1691
}

1692
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1693 1694
{
	/*
1695 1696
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1697
	 */
1698 1699 1700 1701
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1702 1703 1704
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1705
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1706
		update_context_time(ctx);
1707
		update_event_times(event);
1708
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1709 1710
	}

1711
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1712 1713
}

1714
/*
1715
 * Initialize the perf_event context in a task_struct:
1716 1717
 */
static void
1718
__perf_event_init_context(struct perf_event_context *ctx,
1719 1720
			    struct task_struct *task)
{
1721
	raw_spin_lock_init(&ctx->lock);
1722
	mutex_init(&ctx->mutex);
1723 1724
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1725 1726 1727 1728 1729
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1730
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1731
{
1732
	struct perf_event_context *ctx;
1733
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1734
	struct task_struct *task;
1735
	unsigned long flags;
1736
	int err;
T
Thomas Gleixner 已提交
1737

1738
	if (pid == -1 && cpu != -1) {
1739
		/* Must be root to operate on a CPU event: */
1740
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1741 1742
			return ERR_PTR(-EACCES);

1743
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1744 1745 1746
			return ERR_PTR(-EINVAL);

		/*
1747
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1748 1749 1750
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1751
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1752 1753 1754 1755
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1756
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1773
	/*
1774
	 * Can't attach events to a dying task.
1775 1776 1777 1778 1779
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1780
	/* Reuse ptrace permission checks for now. */
1781 1782 1783 1784 1785
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1786
	ctx = perf_lock_task_context(task, &flags);
1787
	if (ctx) {
1788
		unclone_ctx(ctx);
1789
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1790 1791
	}

1792
	if (!ctx) {
1793
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1794 1795 1796
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1797
		__perf_event_init_context(ctx, task);
1798
		get_ctx(ctx);
1799
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1800 1801 1802 1803 1804
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1805
			goto retry;
1806
		}
1807
		get_task_struct(task);
1808 1809
	}

1810
	put_task_struct(task);
T
Thomas Gleixner 已提交
1811
	return ctx;
1812 1813 1814 1815

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1816 1817
}

L
Li Zefan 已提交
1818 1819
static void perf_event_free_filter(struct perf_event *event);

1820
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1821
{
1822
	struct perf_event *event;
P
Peter Zijlstra 已提交
1823

1824 1825 1826
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1827
	perf_event_free_filter(event);
1828
	kfree(event);
P
Peter Zijlstra 已提交
1829 1830
}

1831
static void perf_pending_sync(struct perf_event *event);
1832

1833
static void free_event(struct perf_event *event)
1834
{
1835
	perf_pending_sync(event);
1836

1837 1838 1839 1840 1841 1842 1843 1844
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1845
	}
1846

1847 1848 1849
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1850 1851
	}

1852 1853
	if (event->destroy)
		event->destroy(event);
1854

1855 1856
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1857 1858
}

1859
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1860
{
1861
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1862

1863
	WARN_ON_ONCE(ctx->parent_ctx);
1864
	mutex_lock(&ctx->mutex);
1865
	perf_event_remove_from_context(event);
1866
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1867

1868 1869 1870 1871
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1872

1873
	free_event(event);
T
Thomas Gleixner 已提交
1874 1875 1876

	return 0;
}
1877
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1878

1879 1880 1881 1882
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1883
{
1884
	struct perf_event *event = file->private_data;
1885

1886
	file->private_data = NULL;
1887

1888
	return perf_event_release_kernel(event);
1889 1890
}

1891
static int perf_event_read_size(struct perf_event *event)
1892 1893 1894 1895 1896
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1897
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1898 1899
		size += sizeof(u64);

1900
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1901 1902
		size += sizeof(u64);

1903
	if (event->attr.read_format & PERF_FORMAT_ID)
1904 1905
		entry += sizeof(u64);

1906 1907
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1908 1909 1910 1911 1912 1913 1914 1915
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1916
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1917
{
1918
	struct perf_event *child;
1919 1920
	u64 total = 0;

1921 1922 1923
	*enabled = 0;
	*running = 0;

1924
	mutex_lock(&event->child_mutex);
1925
	total += perf_event_read(event);
1926 1927 1928 1929 1930 1931
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1932
		total += perf_event_read(child);
1933 1934 1935
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1936
	mutex_unlock(&event->child_mutex);
1937 1938 1939

	return total;
}
1940
EXPORT_SYMBOL_GPL(perf_event_read_value);
1941

1942
static int perf_event_read_group(struct perf_event *event,
1943 1944
				   u64 read_format, char __user *buf)
{
1945
	struct perf_event *leader = event->group_leader, *sub;
1946 1947
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1948
	u64 values[5];
1949
	u64 count, enabled, running;
1950

1951
	mutex_lock(&ctx->mutex);
1952
	count = perf_event_read_value(leader, &enabled, &running);
1953 1954

	values[n++] = 1 + leader->nr_siblings;
1955 1956 1957 1958
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1959 1960 1961
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1962 1963 1964 1965

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1966
		goto unlock;
1967

1968
	ret = size;
1969

1970
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1971
		n = 0;
1972

1973
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1974 1975 1976 1977 1978
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1979
		if (copy_to_user(buf + ret, values, size)) {
1980 1981 1982
			ret = -EFAULT;
			goto unlock;
		}
1983 1984

		ret += size;
1985
	}
1986 1987
unlock:
	mutex_unlock(&ctx->mutex);
1988

1989
	return ret;
1990 1991
}

1992
static int perf_event_read_one(struct perf_event *event,
1993 1994
				 u64 read_format, char __user *buf)
{
1995
	u64 enabled, running;
1996 1997 1998
	u64 values[4];
	int n = 0;

1999 2000 2001 2002 2003
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2004
	if (read_format & PERF_FORMAT_ID)
2005
		values[n++] = primary_event_id(event);
2006 2007 2008 2009 2010 2011 2012

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2013
/*
2014
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2015 2016
 */
static ssize_t
2017
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2018
{
2019
	u64 read_format = event->attr.read_format;
2020
	int ret;
T
Thomas Gleixner 已提交
2021

2022
	/*
2023
	 * Return end-of-file for a read on a event that is in
2024 2025 2026
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2027
	if (event->state == PERF_EVENT_STATE_ERROR)
2028 2029
		return 0;

2030
	if (count < perf_event_read_size(event))
2031 2032
		return -ENOSPC;

2033
	WARN_ON_ONCE(event->ctx->parent_ctx);
2034
	if (read_format & PERF_FORMAT_GROUP)
2035
		ret = perf_event_read_group(event, read_format, buf);
2036
	else
2037
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2038

2039
	return ret;
T
Thomas Gleixner 已提交
2040 2041 2042 2043 2044
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2045
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2046

2047
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2048 2049 2050 2051
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2052
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2053
	struct perf_mmap_data *data;
2054
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2055 2056

	rcu_read_lock();
2057
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2058
	if (data)
2059
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2060
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2061

2062
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2063 2064 2065 2066

	return events;
}

2067
static void perf_event_reset(struct perf_event *event)
2068
{
2069 2070 2071
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2072 2073
}

2074
/*
2075 2076 2077 2078
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2079
 */
2080 2081
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2082
{
2083
	struct perf_event *child;
P
Peter Zijlstra 已提交
2084

2085 2086 2087 2088
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2089
		func(child);
2090
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2091 2092
}

2093 2094
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2095
{
2096 2097
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2098

2099 2100
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2101
	event = event->group_leader;
2102

2103 2104 2105 2106
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2107
	mutex_unlock(&ctx->mutex);
2108 2109
}

2110
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2111
{
2112
	struct perf_event_context *ctx = event->ctx;
2113 2114 2115 2116
	unsigned long size;
	int ret = 0;
	u64 value;

2117
	if (!event->attr.sample_period)
2118 2119 2120 2121 2122 2123 2124 2125 2126
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2127
	raw_spin_lock_irq(&ctx->lock);
2128 2129
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2130 2131 2132 2133
			ret = -EINVAL;
			goto unlock;
		}

2134
		event->attr.sample_freq = value;
2135
	} else {
2136 2137
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2138 2139
	}
unlock:
2140
	raw_spin_unlock_irq(&ctx->lock);
2141 2142 2143 2144

	return ret;
}

L
Li Zefan 已提交
2145 2146
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2147

2148 2149
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2150 2151
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2152
	u32 flags = arg;
2153 2154

	switch (cmd) {
2155 2156
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2157
		break;
2158 2159
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2160
		break;
2161 2162
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2163
		break;
P
Peter Zijlstra 已提交
2164

2165 2166
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2167

2168 2169
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2170

2171 2172
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2173

L
Li Zefan 已提交
2174 2175 2176
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2177
	default:
P
Peter Zijlstra 已提交
2178
		return -ENOTTY;
2179
	}
P
Peter Zijlstra 已提交
2180 2181

	if (flags & PERF_IOC_FLAG_GROUP)
2182
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2183
	else
2184
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2185 2186

	return 0;
2187 2188
}

2189
int perf_event_task_enable(void)
2190
{
2191
	struct perf_event *event;
2192

2193 2194 2195 2196
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2197 2198 2199 2200

	return 0;
}

2201
int perf_event_task_disable(void)
2202
{
2203
	struct perf_event *event;
2204

2205 2206 2207 2208
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2209 2210 2211 2212

	return 0;
}

2213 2214
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2215 2216
#endif

2217
static int perf_event_index(struct perf_event *event)
2218
{
2219
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2220 2221
		return 0;

2222
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2223 2224
}

2225 2226 2227 2228 2229
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2230
void perf_event_update_userpage(struct perf_event *event)
2231
{
2232
	struct perf_event_mmap_page *userpg;
2233
	struct perf_mmap_data *data;
2234 2235

	rcu_read_lock();
2236
	data = rcu_dereference(event->data);
2237 2238 2239 2240
	if (!data)
		goto unlock;

	userpg = data->user_page;
2241

2242 2243 2244 2245 2246
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2247
	++userpg->lock;
2248
	barrier();
2249 2250 2251 2252
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2253

2254 2255
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2256

2257 2258
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2259

2260
	barrier();
2261
	++userpg->lock;
2262
	preempt_enable();
2263
unlock:
2264
	rcu_read_unlock();
2265 2266
}

2267
static unsigned long perf_data_size(struct perf_mmap_data *data)
2268
{
2269 2270
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2271

2272
#ifndef CONFIG_PERF_USE_VMALLOC
2273

2274 2275 2276
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2277

2278 2279 2280 2281 2282
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2283

2284 2285
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2286

2287
	return virt_to_page(data->data_pages[pgoff - 1]);
2288 2289
}

2290 2291
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2292 2293 2294 2295 2296
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2297
	WARN_ON(atomic_read(&event->mmap_count));
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2316
	data->data_order = 0;
2317 2318
	data->nr_pages = nr_pages;

2319
	return data;
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2331
	return NULL;
2332 2333
}

2334 2335
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2336
	struct page *page = virt_to_page((void *)addr);
2337 2338 2339 2340 2341

	page->mapping = NULL;
	__free_page(page);
}

2342
static void perf_mmap_data_free(struct perf_mmap_data *data)
2343 2344 2345
{
	int i;

2346
	perf_mmap_free_page((unsigned long)data->user_page);
2347
	for (i = 0; i < data->nr_pages; i++)
2348
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2349
	kfree(data);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2390
	kfree(data);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2406

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2484
		data->watermark = max_size / 2;
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2496 2497
}

2498
static void perf_mmap_data_release(struct perf_event *event)
2499
{
2500
	struct perf_mmap_data *data = event->data;
2501

2502
	WARN_ON(atomic_read(&event->mmap_count));
2503

2504
	rcu_assign_pointer(event->data, NULL);
2505
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2506 2507 2508 2509
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2510
	struct perf_event *event = vma->vm_file->private_data;
2511

2512
	atomic_inc(&event->mmap_count);
2513 2514 2515 2516
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2517
	struct perf_event *event = vma->vm_file->private_data;
2518

2519 2520
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2521
		unsigned long size = perf_data_size(event->data);
2522 2523
		struct user_struct *user = current_user();

2524
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2525
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2526
		perf_mmap_data_release(event);
2527
		mutex_unlock(&event->mmap_mutex);
2528
	}
2529 2530
}

2531
static const struct vm_operations_struct perf_mmap_vmops = {
2532 2533 2534 2535
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2536 2537 2538 2539
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2540
	struct perf_event *event = file->private_data;
2541
	unsigned long user_locked, user_lock_limit;
2542
	struct user_struct *user = current_user();
2543
	unsigned long locked, lock_limit;
2544
	struct perf_mmap_data *data;
2545 2546
	unsigned long vma_size;
	unsigned long nr_pages;
2547
	long user_extra, extra;
2548
	int ret = 0;
2549

2550
	if (!(vma->vm_flags & VM_SHARED))
2551
		return -EINVAL;
2552 2553 2554 2555

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2556 2557 2558 2559 2560
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2561 2562
		return -EINVAL;

2563
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2564 2565
		return -EINVAL;

2566 2567
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2568

2569 2570 2571
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2572 2573 2574 2575
		ret = -EINVAL;
		goto unlock;
	}

2576 2577
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2578 2579 2580 2581
			ret = -EINVAL;
		goto unlock;
	}

2582
	user_extra = nr_pages + 1;
2583
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2584 2585 2586 2587 2588 2589

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2590
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2591

2592 2593 2594
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2595

2596
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2597
	lock_limit >>= PAGE_SHIFT;
2598
	locked = vma->vm_mm->locked_vm + extra;
2599

2600 2601
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2602 2603 2604
		ret = -EPERM;
		goto unlock;
	}
2605

2606
	WARN_ON(event->data);
2607 2608 2609 2610

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2611 2612
		goto unlock;

2613 2614 2615
	ret = 0;
	perf_mmap_data_init(event, data);

2616
	atomic_set(&event->mmap_count, 1);
2617
	atomic_long_add(user_extra, &user->locked_vm);
2618
	vma->vm_mm->locked_vm += extra;
2619
	event->data->nr_locked = extra;
2620
	if (vma->vm_flags & VM_WRITE)
2621
		event->data->writable = 1;
2622

2623
unlock:
2624
	mutex_unlock(&event->mmap_mutex);
2625 2626 2627

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2628 2629

	return ret;
2630 2631
}

P
Peter Zijlstra 已提交
2632 2633 2634
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2635
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2636 2637 2638
	int retval;

	mutex_lock(&inode->i_mutex);
2639
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2640 2641 2642 2643 2644 2645 2646 2647
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2648
static const struct file_operations perf_fops = {
2649
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2650 2651 2652
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2653 2654
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2655
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2656
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2657 2658
};

2659
/*
2660
 * Perf event wakeup
2661 2662 2663 2664 2665
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2666
void perf_event_wakeup(struct perf_event *event)
2667
{
2668
	wake_up_all(&event->waitq);
2669

2670 2671 2672
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2673
	}
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2685
static void perf_pending_event(struct perf_pending_entry *entry)
2686
{
2687 2688
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2689

2690 2691 2692
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2693 2694
	}

2695 2696 2697
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2698 2699 2700
	}
}

2701
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2702

2703
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2704 2705 2706
	PENDING_TAIL,
};

2707 2708
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2709
{
2710
	struct perf_pending_entry **head;
2711

2712
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2713 2714
		return;

2715 2716 2717
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2718 2719

	do {
2720 2721
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2722

2723
	set_perf_event_pending();
2724

2725
	put_cpu_var(perf_pending_head);
2726 2727 2728 2729
}

static int __perf_pending_run(void)
{
2730
	struct perf_pending_entry *list;
2731 2732
	int nr = 0;

2733
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2734
	while (list != PENDING_TAIL) {
2735 2736
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2737 2738 2739

		list = list->next;

2740 2741
		func = entry->func;
		entry->next = NULL;
2742 2743 2744 2745 2746 2747 2748
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2749
		func(entry);
2750 2751 2752 2753 2754 2755
		nr++;
	}

	return nr;
}

2756
static inline int perf_not_pending(struct perf_event *event)
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2771
	return event->pending.next == NULL;
2772 2773
}

2774
static void perf_pending_sync(struct perf_event *event)
2775
{
2776
	wait_event(event->waitq, perf_not_pending(event));
2777 2778
}

2779
void perf_event_do_pending(void)
2780 2781 2782 2783
{
	__perf_pending_run();
}

2784 2785 2786 2787
/*
 * Callchain support -- arch specific
 */

2788
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2789 2790 2791 2792
{
	return NULL;
}

2793 2794 2795 2796
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2797

2798

2799 2800 2801
/*
 * Output
 */
2802 2803
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2804 2805 2806 2807 2808 2809
{
	unsigned long mask;

	if (!data->writable)
		return true;

2810
	mask = perf_data_size(data) - 1;
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2821
static void perf_output_wakeup(struct perf_output_handle *handle)
2822
{
2823 2824
	atomic_set(&handle->data->poll, POLL_IN);

2825
	if (handle->nmi) {
2826 2827 2828
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2829
	} else
2830
		perf_event_wakeup(handle->event);
2831 2832
}

2833 2834 2835
/*
 * Curious locking construct.
 *
2836 2837
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2838 2839 2840 2841 2842 2843
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2844
 * event_id completes.
2845 2846 2847 2848
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2849
	int cur, cpu = get_cpu();
2850 2851 2852

	handle->locked = 0;

2853 2854 2855 2856 2857 2858 2859 2860
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2861 2862

		cpu_relax();
2863
	}
2864 2865 2866 2867 2868
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2869 2870
	unsigned long head;
	int cpu;
2871

2872
	data->done_head = data->head;
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2883
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2884 2885 2886
		data->user_page->data_head = head;

	/*
2887
	 * NMI can happen here, which means we can miss a done_head update.
2888 2889
	 */

2890
	cpu = atomic_xchg(&data->lock, -1);
2891 2892 2893 2894 2895
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2896
	if (unlikely(atomic_long_read(&data->done_head))) {
2897 2898 2899
		/*
		 * Since we had it locked, we can lock it again.
		 */
2900
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2901 2902 2903 2904 2905
			cpu_relax();

		goto again;
	}

2906
	if (atomic_xchg(&data->wakeup, 0))
2907 2908
		perf_output_wakeup(handle);
out:
2909
	put_cpu();
2910 2911
}

2912 2913
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2914 2915
{
	unsigned int pages_mask;
2916
	unsigned long offset;
2917 2918 2919 2920 2921 2922 2923 2924
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2925 2926
		unsigned long page_offset;
		unsigned long page_size;
2927 2928 2929
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2930 2931 2932
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2950
int perf_output_begin(struct perf_output_handle *handle,
2951
		      struct perf_event *event, unsigned int size,
2952
		      int nmi, int sample)
2953
{
2954
	struct perf_event *output_event;
2955
	struct perf_mmap_data *data;
2956
	unsigned long tail, offset, head;
2957 2958 2959 2960 2961 2962
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2963

2964
	rcu_read_lock();
2965
	/*
2966
	 * For inherited events we send all the output towards the parent.
2967
	 */
2968 2969
	if (event->parent)
		event = event->parent;
2970

2971 2972 2973
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2974

2975
	data = rcu_dereference(event->data);
2976 2977 2978
	if (!data)
		goto out;

2979
	handle->data	= data;
2980
	handle->event	= event;
2981 2982
	handle->nmi	= nmi;
	handle->sample	= sample;
2983

2984
	if (!data->nr_pages)
2985
		goto fail;
2986

2987 2988 2989 2990
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2991 2992
	perf_output_lock(handle);

2993
	do {
2994 2995 2996 2997 2998 2999 3000
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3001
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
3002
		head += size;
3003
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3004
			goto fail;
3005
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3006

3007
	handle->offset	= offset;
3008
	handle->head	= head;
3009

3010
	if (head - tail > data->watermark)
3011
		atomic_set(&data->wakeup, 1);
3012

3013
	if (have_lost) {
3014
		lost_event.header.type = PERF_RECORD_LOST;
3015 3016
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3017
		lost_event.id          = event->id;
3018 3019 3020 3021 3022
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3023
	return 0;
3024

3025
fail:
3026 3027
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3028 3029
out:
	rcu_read_unlock();
3030

3031 3032
	return -ENOSPC;
}
3033

3034
void perf_output_end(struct perf_output_handle *handle)
3035
{
3036
	struct perf_event *event = handle->event;
3037 3038
	struct perf_mmap_data *data = handle->data;

3039
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3040

3041
	if (handle->sample && wakeup_events) {
3042
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3043
		if (events >= wakeup_events) {
3044
			atomic_sub(wakeup_events, &data->events);
3045
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3046
		}
3047 3048 3049
	}

	perf_output_unlock(handle);
3050
	rcu_read_unlock();
3051 3052
}

3053
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3054 3055
{
	/*
3056
	 * only top level events have the pid namespace they were created in
3057
	 */
3058 3059
	if (event->parent)
		event = event->parent;
3060

3061
	return task_tgid_nr_ns(p, event->ns);
3062 3063
}

3064
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3065 3066
{
	/*
3067
	 * only top level events have the pid namespace they were created in
3068
	 */
3069 3070
	if (event->parent)
		event = event->parent;
3071

3072
	return task_pid_nr_ns(p, event->ns);
3073 3074
}

3075
static void perf_output_read_one(struct perf_output_handle *handle,
3076
				 struct perf_event *event)
3077
{
3078
	u64 read_format = event->attr.read_format;
3079 3080 3081
	u64 values[4];
	int n = 0;

3082
	values[n++] = atomic64_read(&event->count);
3083
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3084 3085
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3086 3087
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3088 3089
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3090 3091
	}
	if (read_format & PERF_FORMAT_ID)
3092
		values[n++] = primary_event_id(event);
3093 3094 3095 3096 3097

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3098
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3099 3100
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3101
			    struct perf_event *event)
3102
{
3103 3104
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3116
	if (leader != event)
3117 3118 3119 3120
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3121
		values[n++] = primary_event_id(leader);
3122 3123 3124

	perf_output_copy(handle, values, n * sizeof(u64));

3125
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3126 3127
		n = 0;

3128
		if (sub != event)
3129 3130 3131 3132
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3133
			values[n++] = primary_event_id(sub);
3134 3135 3136 3137 3138 3139

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3140
			     struct perf_event *event)
3141
{
3142 3143
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3144
	else
3145
		perf_output_read_one(handle, event);
3146 3147
}

3148 3149 3150
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3151
			struct perf_event *event)
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3182
		perf_output_read(handle, event);
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3220
			 struct perf_event *event,
3221
			 struct pt_regs *regs)
3222
{
3223
	u64 sample_type = event->attr.sample_type;
3224

3225
	data->type = sample_type;
3226

3227
	header->type = PERF_RECORD_SAMPLE;
3228 3229 3230 3231
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3232

3233
	if (sample_type & PERF_SAMPLE_IP) {
3234 3235 3236
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3237
	}
3238

3239
	if (sample_type & PERF_SAMPLE_TID) {
3240
		/* namespace issues */
3241 3242
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3243

3244
		header->size += sizeof(data->tid_entry);
3245 3246
	}

3247
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3248
		data->time = perf_clock();
3249

3250
		header->size += sizeof(data->time);
3251 3252
	}

3253
	if (sample_type & PERF_SAMPLE_ADDR)
3254
		header->size += sizeof(data->addr);
3255

3256
	if (sample_type & PERF_SAMPLE_ID) {
3257
		data->id = primary_event_id(event);
3258

3259 3260 3261 3262
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3263
		data->stream_id = event->id;
3264 3265 3266

		header->size += sizeof(data->stream_id);
	}
3267

3268
	if (sample_type & PERF_SAMPLE_CPU) {
3269 3270
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3271

3272
		header->size += sizeof(data->cpu_entry);
3273 3274
	}

3275
	if (sample_type & PERF_SAMPLE_PERIOD)
3276
		header->size += sizeof(data->period);
3277

3278
	if (sample_type & PERF_SAMPLE_READ)
3279
		header->size += perf_event_read_size(event);
3280

3281
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3282
		int size = 1;
3283

3284 3285 3286 3287 3288 3289
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3290 3291
	}

3292
	if (sample_type & PERF_SAMPLE_RAW) {
3293 3294 3295 3296 3297 3298 3299 3300
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3301
		header->size += size;
3302
	}
3303
}
3304

3305
static void perf_event_output(struct perf_event *event, int nmi,
3306 3307 3308 3309 3310
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3311

3312
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3313

3314
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3315
		return;
3316

3317
	perf_output_sample(&handle, &header, data, event);
3318

3319
	perf_output_end(&handle);
3320 3321
}

3322
/*
3323
 * read event_id
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3334
perf_event_read_event(struct perf_event *event,
3335 3336 3337
			struct task_struct *task)
{
	struct perf_output_handle handle;
3338
	struct perf_read_event read_event = {
3339
		.header = {
3340
			.type = PERF_RECORD_READ,
3341
			.misc = 0,
3342
			.size = sizeof(read_event) + perf_event_read_size(event),
3343
		},
3344 3345
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3346
	};
3347
	int ret;
3348

3349
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3350 3351 3352
	if (ret)
		return;

3353
	perf_output_put(&handle, read_event);
3354
	perf_output_read(&handle, event);
3355

3356 3357 3358
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3359
/*
P
Peter Zijlstra 已提交
3360 3361 3362
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3363 3364
 */

P
Peter Zijlstra 已提交
3365
struct perf_task_event {
3366
	struct task_struct		*task;
3367
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3368 3369 3370 3371 3372 3373

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3374 3375
		u32				tid;
		u32				ptid;
3376
		u64				time;
3377
	} event_id;
P
Peter Zijlstra 已提交
3378 3379
};

3380
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3381
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3382 3383
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3384
	struct task_struct *task = task_event->task;
3385 3386 3387 3388 3389 3390 3391 3392
	unsigned long flags;
	int size, ret;

	/*
	 * If this CPU attempts to acquire an rq lock held by a CPU spinning
	 * in perf_output_lock() from interrupt context, it's game over.
	 */
	local_irq_save(flags);
3393

3394 3395
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3396

3397 3398
	if (ret) {
		local_irq_restore(flags);
P
Peter Zijlstra 已提交
3399
		return;
3400
	}
P
Peter Zijlstra 已提交
3401

3402 3403
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3404

3405 3406
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3407

3408
	perf_output_put(&handle, task_event->event_id);
3409

P
Peter Zijlstra 已提交
3410
	perf_output_end(&handle);
3411
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
3412 3413
}

3414
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3415
{
P
Peter Zijlstra 已提交
3416
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3417 3418
		return 0;

3419 3420 3421
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3422
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3423 3424 3425 3426 3427
		return 1;

	return 0;
}

3428
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3429
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3430
{
3431
	struct perf_event *event;
P
Peter Zijlstra 已提交
3432

3433 3434 3435
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3436 3437 3438
	}
}

3439
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3440 3441
{
	struct perf_cpu_context *cpuctx;
3442
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3443

3444
	rcu_read_lock();
P
Peter Zijlstra 已提交
3445
	cpuctx = &get_cpu_var(perf_cpu_context);
3446
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3447
	if (!ctx)
P
Peter Zijlstra 已提交
3448
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3449
	if (ctx)
3450
		perf_event_task_ctx(ctx, task_event);
3451
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3452 3453 3454
	rcu_read_unlock();
}

3455 3456
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3457
			      int new)
P
Peter Zijlstra 已提交
3458
{
P
Peter Zijlstra 已提交
3459
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3460

3461 3462 3463
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3464 3465
		return;

P
Peter Zijlstra 已提交
3466
	task_event = (struct perf_task_event){
3467 3468
		.task	  = task,
		.task_ctx = task_ctx,
3469
		.event_id    = {
P
Peter Zijlstra 已提交
3470
			.header = {
3471
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3472
				.misc = 0,
3473
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3474
			},
3475 3476
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3477 3478
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3479
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3480 3481 3482
		},
	};

3483
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3484 3485
}

3486
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3487
{
3488
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3489 3490
}

3491 3492 3493 3494 3495
/*
 * comm tracking
 */

struct perf_comm_event {
3496 3497
	struct task_struct	*task;
	char			*comm;
3498 3499 3500 3501 3502 3503 3504
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3505
	} event_id;
3506 3507
};

3508
static void perf_event_comm_output(struct perf_event *event,
3509 3510 3511
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3512 3513
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3514 3515 3516 3517

	if (ret)
		return;

3518 3519
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3520

3521
	perf_output_put(&handle, comm_event->event_id);
3522 3523 3524 3525 3526
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3527
static int perf_event_comm_match(struct perf_event *event)
3528
{
P
Peter Zijlstra 已提交
3529
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3530 3531
		return 0;

3532 3533 3534
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3535
	if (event->attr.comm)
3536 3537 3538 3539 3540
		return 1;

	return 0;
}

3541
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3542 3543
				  struct perf_comm_event *comm_event)
{
3544
	struct perf_event *event;
3545

3546 3547 3548
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3549 3550 3551
	}
}

3552
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3553 3554
{
	struct perf_cpu_context *cpuctx;
3555
	struct perf_event_context *ctx;
3556
	unsigned int size;
3557
	char comm[TASK_COMM_LEN];
3558

3559
	memset(comm, 0, sizeof(comm));
3560
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3561
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3562 3563 3564 3565

	comm_event->comm = comm;
	comm_event->comm_size = size;

3566
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3567

3568
	rcu_read_lock();
3569
	cpuctx = &get_cpu_var(perf_cpu_context);
3570 3571
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3572
	if (ctx)
3573
		perf_event_comm_ctx(ctx, comm_event);
3574
	put_cpu_var(perf_cpu_context);
3575
	rcu_read_unlock();
3576 3577
}

3578
void perf_event_comm(struct task_struct *task)
3579
{
3580 3581
	struct perf_comm_event comm_event;

3582 3583
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3584

3585
	if (!atomic_read(&nr_comm_events))
3586
		return;
3587

3588
	comm_event = (struct perf_comm_event){
3589
		.task	= task,
3590 3591
		/* .comm      */
		/* .comm_size */
3592
		.event_id  = {
3593
			.header = {
3594
				.type = PERF_RECORD_COMM,
3595 3596 3597 3598 3599
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3600 3601 3602
		},
	};

3603
	perf_event_comm_event(&comm_event);
3604 3605
}

3606 3607 3608 3609 3610
/*
 * mmap tracking
 */

struct perf_mmap_event {
3611 3612 3613 3614
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3615 3616 3617 3618 3619 3620 3621 3622 3623

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3624
	} event_id;
3625 3626
};

3627
static void perf_event_mmap_output(struct perf_event *event,
3628 3629 3630
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3631 3632
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3633 3634 3635 3636

	if (ret)
		return;

3637 3638
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3639

3640
	perf_output_put(&handle, mmap_event->event_id);
3641 3642
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3643
	perf_output_end(&handle);
3644 3645
}

3646
static int perf_event_mmap_match(struct perf_event *event,
3647 3648
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3649
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3650 3651
		return 0;

3652 3653 3654
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3655
	if (event->attr.mmap)
3656 3657 3658 3659 3660
		return 1;

	return 0;
}

3661
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3662 3663
				  struct perf_mmap_event *mmap_event)
{
3664
	struct perf_event *event;
3665

3666 3667 3668
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3669 3670 3671
	}
}

3672
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3673 3674
{
	struct perf_cpu_context *cpuctx;
3675
	struct perf_event_context *ctx;
3676 3677
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3678 3679 3680
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3681
	const char *name;
3682

3683 3684
	memset(tmp, 0, sizeof(tmp));

3685
	if (file) {
3686 3687 3688 3689 3690 3691
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3692 3693 3694 3695
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3696
		name = d_path(&file->f_path, buf, PATH_MAX);
3697 3698 3699 3700 3701
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3702 3703 3704
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3705
			goto got_name;
3706
		}
3707 3708 3709 3710 3711 3712

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3713 3714 3715 3716 3717
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3718
	size = ALIGN(strlen(name)+1, sizeof(u64));
3719 3720 3721 3722

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3723
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3724

3725
	rcu_read_lock();
3726
	cpuctx = &get_cpu_var(perf_cpu_context);
3727 3728
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3729
	if (ctx)
3730
		perf_event_mmap_ctx(ctx, mmap_event);
3731
	put_cpu_var(perf_cpu_context);
3732 3733
	rcu_read_unlock();

3734 3735 3736
	kfree(buf);
}

3737
void __perf_event_mmap(struct vm_area_struct *vma)
3738
{
3739 3740
	struct perf_mmap_event mmap_event;

3741
	if (!atomic_read(&nr_mmap_events))
3742 3743 3744
		return;

	mmap_event = (struct perf_mmap_event){
3745
		.vma	= vma,
3746 3747
		/* .file_name */
		/* .file_size */
3748
		.event_id  = {
3749
			.header = {
3750
				.type = PERF_RECORD_MMAP,
3751 3752 3753 3754 3755
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3756 3757
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3758
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3759 3760 3761
		},
	};

3762
	perf_event_mmap_event(&mmap_event);
3763 3764
}

3765 3766 3767 3768
/*
 * IRQ throttle logging
 */

3769
static void perf_log_throttle(struct perf_event *event, int enable)
3770 3771 3772 3773 3774 3775 3776
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3777
		u64				id;
3778
		u64				stream_id;
3779 3780
	} throttle_event = {
		.header = {
3781
			.type = PERF_RECORD_THROTTLE,
3782 3783 3784
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3785
		.time		= perf_clock(),
3786 3787
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3788 3789
	};

3790
	if (enable)
3791
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3792

3793
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3794 3795 3796 3797 3798 3799 3800
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3801
/*
3802
 * Generic event overflow handling, sampling.
3803 3804
 */

3805
static int __perf_event_overflow(struct perf_event *event, int nmi,
3806 3807
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3808
{
3809 3810
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3811 3812
	int ret = 0;

3813
	throttle = (throttle && event->pmu->unthrottle != NULL);
3814

3815
	if (!throttle) {
3816
		hwc->interrupts++;
3817
	} else {
3818 3819
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3820
			if (HZ * hwc->interrupts >
3821
					(u64)sysctl_perf_event_sample_rate) {
3822
				hwc->interrupts = MAX_INTERRUPTS;
3823
				perf_log_throttle(event, 0);
3824 3825 3826 3827
				ret = 1;
			}
		} else {
			/*
3828
			 * Keep re-disabling events even though on the previous
3829
			 * pass we disabled it - just in case we raced with a
3830
			 * sched-in and the event got enabled again:
3831
			 */
3832 3833 3834
			ret = 1;
		}
	}
3835

3836
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3837
		u64 now = perf_clock();
3838
		s64 delta = now - hwc->freq_time_stamp;
3839

3840
		hwc->freq_time_stamp = now;
3841

3842 3843
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3844 3845
	}

3846 3847
	/*
	 * XXX event_limit might not quite work as expected on inherited
3848
	 * events
3849 3850
	 */

3851 3852
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3853
		ret = 1;
3854
		event->pending_kill = POLL_HUP;
3855
		if (nmi) {
3856 3857 3858
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3859
		} else
3860
			perf_event_disable(event);
3861 3862
	}

3863 3864 3865 3866 3867
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3868
	return ret;
3869 3870
}

3871
int perf_event_overflow(struct perf_event *event, int nmi,
3872 3873
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3874
{
3875
	return __perf_event_overflow(event, nmi, 1, data, regs);
3876 3877
}

3878
/*
3879
 * Generic software event infrastructure
3880 3881
 */

3882
/*
3883 3884
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3885 3886 3887 3888
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3889
static u64 perf_swevent_set_period(struct perf_event *event)
3890
{
3891
	struct hw_perf_event *hwc = &event->hw;
3892 3893 3894 3895 3896
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3897 3898

again:
3899 3900 3901
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3902

3903 3904 3905 3906 3907
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3908

3909
	return nr;
3910 3911
}

3912
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3913 3914
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3915
{
3916
	struct hw_perf_event *hwc = &event->hw;
3917
	int throttle = 0;
3918

3919
	data->period = event->hw.last_period;
3920 3921
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3922

3923 3924
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3925

3926
	for (; overflow; overflow--) {
3927
		if (__perf_event_overflow(event, nmi, throttle,
3928
					    data, regs)) {
3929 3930 3931 3932 3933 3934
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3935
		throttle = 1;
3936
	}
3937 3938
}

3939
static void perf_swevent_unthrottle(struct perf_event *event)
3940 3941
{
	/*
3942
	 * Nothing to do, we already reset hwc->interrupts.
3943
	 */
3944
}
3945

3946
static void perf_swevent_add(struct perf_event *event, u64 nr,
3947 3948
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3949
{
3950
	struct hw_perf_event *hwc = &event->hw;
3951

3952
	atomic64_add(nr, &event->count);
3953

3954 3955 3956
	if (!regs)
		return;

3957 3958
	if (!hwc->sample_period)
		return;
3959

3960 3961 3962 3963
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3964
		return;
3965

3966
	perf_swevent_overflow(event, 0, nmi, data, regs);
3967 3968
}

3969
static int perf_swevent_is_counting(struct perf_event *event)
3970
{
3971
	/*
3972
	 * The event is active, we're good!
3973
	 */
3974
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3975 3976
		return 1;

3977
	/*
3978
	 * The event is off/error, not counting.
3979
	 */
3980
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3981 3982 3983
		return 0;

	/*
3984
	 * The event is inactive, if the context is active
3985 3986
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3987
	 */
3988
	if (event->ctx->is_active)
3989 3990 3991 3992 3993 3994 3995 3996
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3997 3998
}

L
Li Zefan 已提交
3999 4000 4001
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4016
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4017
				enum perf_type_id type,
L
Li Zefan 已提交
4018 4019 4020
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4021
{
4022 4023 4024
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4025
	if (!perf_swevent_is_counting(event))
4026 4027
		return 0;

4028
	if (event->attr.type != type)
4029
		return 0;
4030

4031
	if (event->attr.config != event_id)
4032 4033
		return 0;

4034 4035
	if (perf_exclude_event(event, regs))
		return 0;
4036

L
Li Zefan 已提交
4037 4038 4039 4040
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4041 4042 4043
	return 1;
}

4044
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4045
				     enum perf_type_id type,
4046
				     u32 event_id, u64 nr, int nmi,
4047 4048
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
4049
{
4050
	struct perf_event *event;
4051

4052
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
4053
		if (perf_swevent_match(event, type, event_id, data, regs))
4054
			perf_swevent_add(event, nr, nmi, data, regs);
4055 4056 4057
	}
}

4058
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4059
{
4060 4061
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4062

P
Peter Zijlstra 已提交
4063
	if (in_nmi())
4064
		rctx = 3;
4065
	else if (in_irq())
4066
		rctx = 2;
4067
	else if (in_softirq())
4068
		rctx = 1;
4069
	else
4070
		rctx = 0;
P
Peter Zijlstra 已提交
4071

4072 4073
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4074
		return -1;
4075
	}
P
Peter Zijlstra 已提交
4076

4077 4078
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4079

4080
	return rctx;
P
Peter Zijlstra 已提交
4081
}
I
Ingo Molnar 已提交
4082
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4083

4084
void perf_swevent_put_recursion_context(int rctx)
4085
{
4086 4087
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4088
	cpuctx->recursion[rctx]--;
4089
	put_cpu_var(perf_cpu_context);
4090
}
I
Ingo Molnar 已提交
4091
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4092

4093 4094 4095 4096
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4097
{
4098
	struct perf_cpu_context *cpuctx;
4099
	struct perf_event_context *ctx;
4100

4101
	cpuctx = &__get_cpu_var(perf_cpu_context);
4102
	rcu_read_lock();
4103
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4104
				 nr, nmi, data, regs);
4105 4106 4107 4108
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
4109
	ctx = rcu_dereference(current->perf_event_ctxp);
4110
	if (ctx)
4111
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4112
	rcu_read_unlock();
4113
}
4114

4115
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4116
			    struct pt_regs *regs, u64 addr)
4117
{
4118
	struct perf_sample_data data;
4119 4120 4121 4122 4123
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4124

4125
	perf_sample_data_init(&data, addr);
4126

4127
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4128 4129

	perf_swevent_put_recursion_context(rctx);
4130 4131
}

4132
static void perf_swevent_read(struct perf_event *event)
4133 4134 4135
{
}

4136
static int perf_swevent_enable(struct perf_event *event)
4137
{
4138
	struct hw_perf_event *hwc = &event->hw;
4139 4140 4141

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4142
		perf_swevent_set_period(event);
4143
	}
4144 4145 4146
	return 0;
}

4147
static void perf_swevent_disable(struct perf_event *event)
4148 4149 4150
{
}

4151
static const struct pmu perf_ops_generic = {
4152 4153 4154 4155
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4156 4157
};

4158
/*
4159
 * hrtimer based swevent callback
4160 4161
 */

4162
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4163 4164 4165
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4166
	struct pt_regs *regs;
4167
	struct perf_event *event;
4168 4169
	u64 period;

4170
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4171
	event->pmu->read(event);
4172

4173
	perf_sample_data_init(&data, 0);
4174
	data.period = event->hw.last_period;
4175
	regs = get_irq_regs();
4176 4177 4178 4179
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4180 4181
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4182
		regs = task_pt_regs(current);
4183

4184
	if (regs) {
4185 4186 4187
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4188 4189
	}

4190
	period = max_t(u64, 10000, event->hw.sample_period);
4191 4192 4193 4194 4195
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4232
/*
4233
 * Software event: cpu wall time clock
4234 4235
 */

4236
static void cpu_clock_perf_event_update(struct perf_event *event)
4237 4238 4239 4240 4241 4242
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4243
	prev = atomic64_xchg(&event->hw.prev_count, now);
4244
	atomic64_add(now - prev, &event->count);
4245 4246
}

4247
static int cpu_clock_perf_event_enable(struct perf_event *event)
4248
{
4249
	struct hw_perf_event *hwc = &event->hw;
4250 4251 4252
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4253
	perf_swevent_start_hrtimer(event);
4254 4255 4256 4257

	return 0;
}

4258
static void cpu_clock_perf_event_disable(struct perf_event *event)
4259
{
4260
	perf_swevent_cancel_hrtimer(event);
4261
	cpu_clock_perf_event_update(event);
4262 4263
}

4264
static void cpu_clock_perf_event_read(struct perf_event *event)
4265
{
4266
	cpu_clock_perf_event_update(event);
4267 4268
}

4269
static const struct pmu perf_ops_cpu_clock = {
4270 4271 4272
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4273 4274
};

4275
/*
4276
 * Software event: task time clock
4277 4278
 */

4279
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4280
{
4281
	u64 prev;
I
Ingo Molnar 已提交
4282 4283
	s64 delta;

4284
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4285
	delta = now - prev;
4286
	atomic64_add(delta, &event->count);
4287 4288
}

4289
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4290
{
4291
	struct hw_perf_event *hwc = &event->hw;
4292 4293
	u64 now;

4294
	now = event->ctx->time;
4295

4296
	atomic64_set(&hwc->prev_count, now);
4297 4298

	perf_swevent_start_hrtimer(event);
4299 4300

	return 0;
I
Ingo Molnar 已提交
4301 4302
}

4303
static void task_clock_perf_event_disable(struct perf_event *event)
4304
{
4305
	perf_swevent_cancel_hrtimer(event);
4306
	task_clock_perf_event_update(event, event->ctx->time);
4307

4308
}
I
Ingo Molnar 已提交
4309

4310
static void task_clock_perf_event_read(struct perf_event *event)
4311
{
4312 4313 4314
	u64 time;

	if (!in_nmi()) {
4315 4316
		update_context_time(event->ctx);
		time = event->ctx->time;
4317 4318
	} else {
		u64 now = perf_clock();
4319 4320
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4321 4322
	}

4323
	task_clock_perf_event_update(event, time);
4324 4325
}

4326
static const struct pmu perf_ops_task_clock = {
4327 4328 4329
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4330 4331
};

4332
#ifdef CONFIG_EVENT_TRACING
L
Li Zefan 已提交
4333

4334
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4335
		   int entry_size, struct pt_regs *regs)
4336
{
4337
	struct perf_sample_data data;
4338
	struct perf_raw_record raw = {
4339
		.size = entry_size,
4340
		.data = record,
4341 4342
	};

4343 4344
	perf_sample_data_init(&data, addr);
	data.raw = &raw;
4345

4346
	/* Trace events already protected against recursion */
4347
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4348
			 &data, regs);
4349
}
4350
EXPORT_SYMBOL_GPL(perf_tp_event);
4351

L
Li Zefan 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4361

4362
static void tp_perf_event_destroy(struct perf_event *event)
4363
{
4364
	perf_trace_disable(event->attr.config);
4365 4366
}

4367
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4368
{
4369 4370 4371 4372
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4373
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4374
			perf_paranoid_tracepoint_raw() &&
4375 4376 4377
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4378
	if (perf_trace_enable(event->attr.config))
4379 4380
		return NULL;

4381
	event->destroy = tp_perf_event_destroy;
4382 4383 4384

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4409
#else
L
Li Zefan 已提交
4410 4411 4412 4413 4414 4415 4416

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4417
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4418 4419 4420
{
	return NULL;
}
L
Li Zefan 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4431
#endif /* CONFIG_EVENT_TRACING */
4432

4433 4434 4435 4436 4437 4438 4439 4440 4441
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4442 4443

	err = register_perf_hw_breakpoint(bp);
4444 4445 4446 4447 4448 4449 4450 4451
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4452
void perf_bp_event(struct perf_event *bp, void *data)
4453
{
4454 4455 4456
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4457
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4458 4459 4460

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4473
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4474

4475
static void sw_perf_event_destroy(struct perf_event *event)
4476
{
4477
	u64 event_id = event->attr.config;
4478

4479
	WARN_ON(event->parent);
4480

4481
	atomic_dec(&perf_swevent_enabled[event_id]);
4482 4483
}

4484
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4485
{
4486
	const struct pmu *pmu = NULL;
4487
	u64 event_id = event->attr.config;
4488

4489
	/*
4490
	 * Software events (currently) can't in general distinguish
4491 4492 4493 4494 4495
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4496
	switch (event_id) {
4497
	case PERF_COUNT_SW_CPU_CLOCK:
4498
		pmu = &perf_ops_cpu_clock;
4499

4500
		break;
4501
	case PERF_COUNT_SW_TASK_CLOCK:
4502
		/*
4503 4504
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4505
		 */
4506
		if (event->ctx->task)
4507
			pmu = &perf_ops_task_clock;
4508
		else
4509
			pmu = &perf_ops_cpu_clock;
4510

4511
		break;
4512 4513 4514 4515 4516
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4517 4518
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4519 4520 4521
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4522
		}
4523
		pmu = &perf_ops_generic;
4524
		break;
4525
	}
4526

4527
	return pmu;
4528 4529
}

T
Thomas Gleixner 已提交
4530
/*
4531
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4532
 */
4533 4534
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4535
		   int cpu,
4536 4537 4538
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4539
		   perf_overflow_handler_t overflow_handler,
4540
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4541
{
4542
	const struct pmu *pmu;
4543 4544
	struct perf_event *event;
	struct hw_perf_event *hwc;
4545
	long err;
T
Thomas Gleixner 已提交
4546

4547 4548
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4549
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4550

4551
	/*
4552
	 * Single events are their own group leaders, with an
4553 4554 4555
	 * empty sibling list:
	 */
	if (!group_leader)
4556
		group_leader = event;
4557

4558 4559
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4560

4561 4562 4563 4564
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4565

4566
	mutex_init(&event->mmap_mutex);
4567

4568 4569 4570 4571 4572 4573
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4574

4575
	event->parent		= parent_event;
4576

4577 4578
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4579

4580
	event->state		= PERF_EVENT_STATE_INACTIVE;
4581

4582 4583
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4584
	
4585
	event->overflow_handler	= overflow_handler;
4586

4587
	if (attr->disabled)
4588
		event->state = PERF_EVENT_STATE_OFF;
4589

4590
	pmu = NULL;
4591

4592
	hwc = &event->hw;
4593
	hwc->sample_period = attr->sample_period;
4594
	if (attr->freq && attr->sample_freq)
4595
		hwc->sample_period = 1;
4596
	hwc->last_period = hwc->sample_period;
4597 4598

	atomic64_set(&hwc->period_left, hwc->sample_period);
4599

4600
	/*
4601
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4602
	 */
4603
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4604 4605
		goto done;

4606
	switch (attr->type) {
4607
	case PERF_TYPE_RAW:
4608
	case PERF_TYPE_HARDWARE:
4609
	case PERF_TYPE_HW_CACHE:
4610
		pmu = hw_perf_event_init(event);
4611 4612 4613
		break;

	case PERF_TYPE_SOFTWARE:
4614
		pmu = sw_perf_event_init(event);
4615 4616 4617
		break;

	case PERF_TYPE_TRACEPOINT:
4618
		pmu = tp_perf_event_init(event);
4619
		break;
4620

4621 4622 4623 4624 4625
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4626 4627
	default:
		break;
4628
	}
4629 4630
done:
	err = 0;
4631
	if (!pmu)
4632
		err = -EINVAL;
4633 4634
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4635

4636
	if (err) {
4637 4638 4639
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4640
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4641
	}
4642

4643
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4644

4645 4646 4647 4648 4649 4650 4651 4652
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4653
	}
4654

4655
	return event;
T
Thomas Gleixner 已提交
4656 4657
}

4658 4659
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4660 4661
{
	u32 size;
4662
	int ret;
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4687 4688 4689
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4690 4691
	 */
	if (size > sizeof(*attr)) {
4692 4693 4694
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4695

4696 4697
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4698

4699
		for (; addr < end; addr++) {
4700 4701 4702 4703 4704 4705
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4706
		size = sizeof(*attr);
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4720
	if (attr->__reserved_1)
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4738
static int perf_event_set_output(struct perf_event *event, int output_fd)
4739
{
4740
	struct perf_event *output_event = NULL;
4741
	struct file *output_file = NULL;
4742
	struct perf_event *old_output;
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4756
	output_event = output_file->private_data;
4757 4758

	/* Don't chain output fds */
4759
	if (output_event->output)
4760 4761 4762
		goto out;

	/* Don't set an output fd when we already have an output channel */
4763
	if (event->data)
4764 4765 4766 4767 4768
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4769 4770 4771 4772
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4773 4774 4775 4776

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4777
		 * is still referencing this event.
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4789
/**
4790
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4791
 *
4792
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4793
 * @pid:		target pid
I
Ingo Molnar 已提交
4794
 * @cpu:		target cpu
4795
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4796
 */
4797 4798
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4799
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4800
{
4801 4802 4803 4804
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4805 4806
	struct file *group_file = NULL;
	int fput_needed = 0;
4807
	int fput_needed2 = 0;
4808
	int err;
T
Thomas Gleixner 已提交
4809

4810
	/* for future expandability... */
4811
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4812 4813
		return -EINVAL;

4814 4815 4816
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4817

4818 4819 4820 4821 4822
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4823
	if (attr.freq) {
4824
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4825 4826 4827
			return -EINVAL;
	}

4828
	/*
I
Ingo Molnar 已提交
4829 4830 4831 4832 4833 4834 4835
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4836
	 * Look up the group leader (we will attach this event to it):
4837 4838
	 */
	group_leader = NULL;
4839
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4840
		err = -EINVAL;
4841 4842
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4843
			goto err_put_context;
4844
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4845
			goto err_put_context;
4846 4847 4848

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4849 4850 4851 4852 4853 4854 4855 4856
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4857
		 */
I
Ingo Molnar 已提交
4858 4859
		if (group_leader->ctx != ctx)
			goto err_put_context;
4860 4861 4862
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4863
		if (attr.exclusive || attr.pinned)
4864
			goto err_put_context;
4865 4866
	}

4867
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4868
				     NULL, NULL, GFP_KERNEL);
4869 4870
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4871 4872
		goto err_put_context;

4873
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4874
	if (err < 0)
4875 4876
		goto err_free_put_context;

4877 4878
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4879 4880
		goto err_free_put_context;

4881
	if (flags & PERF_FLAG_FD_OUTPUT) {
4882
		err = perf_event_set_output(event, group_fd);
4883 4884
		if (err)
			goto err_fput_free_put_context;
4885 4886
	}

4887
	event->filp = event_file;
4888
	WARN_ON_ONCE(ctx->parent_ctx);
4889
	mutex_lock(&ctx->mutex);
4890
	perf_install_in_context(ctx, event, cpu);
4891
	++ctx->generation;
4892
	mutex_unlock(&ctx->mutex);
4893

4894
	event->owner = current;
4895
	get_task_struct(current);
4896 4897 4898
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4899

4900
err_fput_free_put_context:
4901
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4902

4903
err_free_put_context:
4904
	if (err < 0)
4905
		kfree(event);
T
Thomas Gleixner 已提交
4906 4907

err_put_context:
4908 4909 4910 4911
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4912

4913
	return err;
T
Thomas Gleixner 已提交
4914 4915
}

4916 4917 4918 4919 4920 4921 4922 4923 4924
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4925 4926
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4937 4938 4939 4940
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4941 4942

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4943
				 NULL, overflow_handler, GFP_KERNEL);
4944 4945
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4946
		goto err_put_context;
4947
	}
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4964 4965 4966 4967
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4968 4969 4970
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4971
/*
4972
 * inherit a event from parent task to child task:
4973
 */
4974 4975
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4976
	      struct task_struct *parent,
4977
	      struct perf_event_context *parent_ctx,
4978
	      struct task_struct *child,
4979 4980
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4981
{
4982
	struct perf_event *child_event;
4983

4984
	/*
4985 4986
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4987 4988 4989
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4990 4991
	if (parent_event->parent)
		parent_event = parent_event->parent;
4992

4993 4994 4995
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4996
					   NULL, GFP_KERNEL);
4997 4998
	if (IS_ERR(child_event))
		return child_event;
4999
	get_ctx(child_ctx);
5000

5001
	/*
5002
	 * Make the child state follow the state of the parent event,
5003
	 * not its attr.disabled bit.  We hold the parent's mutex,
5004
	 * so we won't race with perf_event_{en, dis}able_family.
5005
	 */
5006 5007
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5008
	else
5009
		child_event->state = PERF_EVENT_STATE_OFF;
5010

5011 5012 5013 5014 5015 5016 5017 5018 5019
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5020

5021 5022
	child_event->overflow_handler = parent_event->overflow_handler;

5023 5024 5025
	/*
	 * Link it up in the child's context:
	 */
5026
	add_event_to_ctx(child_event, child_ctx);
5027 5028 5029

	/*
	 * Get a reference to the parent filp - we will fput it
5030
	 * when the child event exits. This is safe to do because
5031 5032 5033
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5034
	atomic_long_inc(&parent_event->filp->f_count);
5035

5036
	/*
5037
	 * Link this into the parent event's child list
5038
	 */
5039 5040 5041 5042
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5043

5044
	return child_event;
5045 5046
}

5047
static int inherit_group(struct perf_event *parent_event,
5048
	      struct task_struct *parent,
5049
	      struct perf_event_context *parent_ctx,
5050
	      struct task_struct *child,
5051
	      struct perf_event_context *child_ctx)
5052
{
5053 5054 5055
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5056

5057
	leader = inherit_event(parent_event, parent, parent_ctx,
5058
				 child, NULL, child_ctx);
5059 5060
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5061 5062
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5063 5064 5065
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5066
	}
5067 5068 5069
	return 0;
}

5070
static void sync_child_event(struct perf_event *child_event,
5071
			       struct task_struct *child)
5072
{
5073
	struct perf_event *parent_event = child_event->parent;
5074
	u64 child_val;
5075

5076 5077
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5078

5079
	child_val = atomic64_read(&child_event->count);
5080 5081 5082 5083

	/*
	 * Add back the child's count to the parent's count:
	 */
5084 5085 5086 5087 5088
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5089 5090

	/*
5091
	 * Remove this event from the parent's list
5092
	 */
5093 5094 5095 5096
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5097 5098

	/*
5099
	 * Release the parent event, if this was the last
5100 5101
	 * reference to it.
	 */
5102
	fput(parent_event->filp);
5103 5104
}

5105
static void
5106 5107
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5108
			 struct task_struct *child)
5109
{
5110
	struct perf_event *parent_event;
5111

5112
	perf_event_remove_from_context(child_event);
5113

5114
	parent_event = child_event->parent;
5115
	/*
5116
	 * It can happen that parent exits first, and has events
5117
	 * that are still around due to the child reference. These
5118
	 * events need to be zapped - but otherwise linger.
5119
	 */
5120 5121 5122
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5123
	}
5124 5125 5126
}

/*
5127
 * When a child task exits, feed back event values to parent events.
5128
 */
5129
void perf_event_exit_task(struct task_struct *child)
5130
{
5131 5132
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5133
	unsigned long flags;
5134

5135 5136
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5137
		return;
P
Peter Zijlstra 已提交
5138
	}
5139

5140
	local_irq_save(flags);
5141 5142 5143 5144 5145 5146
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5147 5148
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5149 5150 5151

	/*
	 * Take the context lock here so that if find_get_context is
5152
	 * reading child->perf_event_ctxp, we wait until it has
5153 5154
	 * incremented the context's refcount before we do put_ctx below.
	 */
5155
	raw_spin_lock(&child_ctx->lock);
5156
	child->perf_event_ctxp = NULL;
5157 5158 5159
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5160
	 * the events from it.
5161 5162
	 */
	unclone_ctx(child_ctx);
5163
	update_context_time(child_ctx);
5164
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5165 5166

	/*
5167 5168 5169
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5170
	 */
5171
	perf_event_task(child, child_ctx, 0);
5172

5173 5174 5175
	/*
	 * We can recurse on the same lock type through:
	 *
5176 5177 5178
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5179 5180 5181 5182 5183 5184
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5185

5186
again:
5187 5188 5189 5190 5191
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5192
				 group_entry)
5193
		__perf_event_exit_task(child_event, child_ctx, child);
5194 5195

	/*
5196
	 * If the last event was a group event, it will have appended all
5197 5198 5199
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5200 5201
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5202
		goto again;
5203 5204 5205 5206

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5207 5208
}

5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5227 5228 5229 5230
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5231
void perf_event_free_task(struct task_struct *task)
5232
{
5233 5234
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5235 5236 5237 5238 5239 5240

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5241 5242
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5243

5244 5245 5246
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5247

5248 5249 5250
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5251

5252
	mutex_unlock(&ctx->mutex);
5253

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5269 5270
	}

5271 5272 5273 5274 5275 5276 5277
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5278

5279 5280 5281 5282
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5283

5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5296 5297
}

5298

5299
/*
5300
 * Initialize the perf_event context in task_struct
5301
 */
5302
int perf_event_init_task(struct task_struct *child)
5303
{
5304
	struct perf_event_context *child_ctx, *parent_ctx;
5305 5306
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5307
	struct task_struct *parent = current;
5308
	int inherited_all = 1;
5309
	int ret = 0;
5310

5311
	child->perf_event_ctxp = NULL;
5312

5313 5314
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5315

5316
	if (likely(!parent->perf_event_ctxp))
5317 5318
		return 0;

5319
	/*
5320 5321
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5322
	 */
5323 5324
	parent_ctx = perf_pin_task_context(parent);

5325 5326 5327 5328 5329 5330 5331
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5332 5333 5334 5335
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5336
	mutex_lock(&parent_ctx->mutex);
5337 5338 5339 5340 5341

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5342 5343 5344 5345 5346 5347
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5348

5349 5350 5351 5352
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5353
			break;
5354 5355
	}

5356 5357
	child_ctx = child->perf_event_ctxp;

5358
	if (child_ctx && inherited_all) {
5359 5360 5361
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5362 5363
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5364
		 * because the list of events and the generation
5365
		 * count can't have changed since we took the mutex.
5366
		 */
5367 5368 5369
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5370
			child_ctx->parent_gen = parent_ctx->parent_gen;
5371 5372 5373 5374 5375
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5376 5377
	}

5378
	mutex_unlock(&parent_ctx->mutex);
5379

5380
	perf_unpin_context(parent_ctx);
5381

5382
	return ret;
5383 5384
}

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5396
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5397
{
5398
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5399

5400
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5401

5402
	spin_lock(&perf_resource_lock);
5403
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5404
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5405 5406 5407
}

#ifdef CONFIG_HOTPLUG_CPU
5408
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5409 5410
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5411 5412
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5413

5414 5415 5416
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5417
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5418
}
5419
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5420
{
5421
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5422
	struct perf_event_context *ctx = &cpuctx->ctx;
5423 5424

	mutex_lock(&ctx->mutex);
5425
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5426
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5427 5428
}
#else
5429
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5441
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5442 5443 5444 5445
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5446
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5447 5448 5449 5450 5451 5452 5453 5454 5455
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5456 5457 5458
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5459 5460
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5461
	.priority		= 20,
T
Thomas Gleixner 已提交
5462 5463
};

5464
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5465
{
5466
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5467 5468
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5469 5470
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5471 5472 5473
	register_cpu_notifier(&perf_cpu_nb);
}

5474 5475 5476
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5477 5478 5479 5480 5481 5482
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5483
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5494
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5495 5496
		return -EINVAL;

5497
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5498 5499 5500
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5501
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5502 5503
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5504
		cpuctx->max_pertask = mpt;
5505
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5506
	}
5507
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5508 5509 5510 5511

	return count;
}

5512 5513 5514
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5515 5516 5517 5518 5519
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5520 5521 5522
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5533
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5534
	perf_overcommit = val;
5535
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5562
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5563 5564
};

5565
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5566 5567 5568 5569
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5570
device_initcall(perf_event_sysfs_init);