perf_event.c 135.4 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
37
/*
38
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
39
 */
40
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
41

42 43 44 45
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
46

47
/*
48
 * perf event paranoia level:
49 50
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
51
 *   1 - disallow cpu events for unpriv
52
 *   2 - disallow kernel profiling for unpriv
53
 */
54
int sysctl_perf_event_paranoid __read_mostly = 1;
55

56
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57 58

/*
59
 * max perf event sample rate
60
 */
61
int sysctl_perf_event_sample_rate __read_mostly = 100000;
62

63
static atomic64_t perf_event_id;
64

65
void __weak perf_event_print_debug(void)	{ }
66

P
Peter Zijlstra 已提交
67
void perf_pmu_disable(struct pmu *pmu)
68
{
P
Peter Zijlstra 已提交
69 70 71
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
72 73
}

P
Peter Zijlstra 已提交
74
void perf_pmu_enable(struct pmu *pmu)
75
{
P
Peter Zijlstra 已提交
76 77 78
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
79 80
}

81
static void get_ctx(struct perf_event_context *ctx)
82
{
83
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
84 85
}

86 87
static void free_ctx(struct rcu_head *head)
{
88
	struct perf_event_context *ctx;
89

90
	ctx = container_of(head, struct perf_event_context, rcu_head);
91 92 93
	kfree(ctx);
}

94
static void put_ctx(struct perf_event_context *ctx)
95
{
96 97 98
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
99 100 101
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
102
	}
103 104
}

105
static void unclone_ctx(struct perf_event_context *ctx)
106 107 108 109 110 111 112
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

113
/*
114
 * If we inherit events we want to return the parent event id
115 116
 * to userspace.
 */
117
static u64 primary_event_id(struct perf_event *event)
118
{
119
	u64 id = event->id;
120

121 122
	if (event->parent)
		id = event->parent->id;
123 124 125 126

	return id;
}

127
/*
128
 * Get the perf_event_context for a task and lock it.
129 130 131
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
132
static struct perf_event_context *
133
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
134
{
135
	struct perf_event_context *ctx;
136 137

	rcu_read_lock();
P
Peter Zijlstra 已提交
138
retry:
139
	ctx = rcu_dereference(task->perf_event_ctxp);
140 141 142 143
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
144
		 * perf_event_task_sched_out, though the
145 146 147 148 149 150
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
151
		raw_spin_lock_irqsave(&ctx->lock, *flags);
152
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
153
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
154 155
			goto retry;
		}
156 157

		if (!atomic_inc_not_zero(&ctx->refcount)) {
158
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
159 160
			ctx = NULL;
		}
161 162 163 164 165 166 167 168 169 170
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
171
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
172
{
173
	struct perf_event_context *ctx;
174 175 176 177 178
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
179
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
180 181 182 183
	}
	return ctx;
}

184
static void perf_unpin_context(struct perf_event_context *ctx)
185 186 187
{
	unsigned long flags;

188
	raw_spin_lock_irqsave(&ctx->lock, flags);
189
	--ctx->pin_count;
190
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
191 192 193
	put_ctx(ctx);
}

194 195
static inline u64 perf_clock(void)
{
196
	return local_clock();
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

222 223 224 225 226 227
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
228 229 230 231 232 233 234 235 236

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

237 238 239 240 241 242 243 244 245 246 247 248
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

249 250 251 252 253 254 255 256 257
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

258
/*
259
 * Add a event from the lists for its context.
260 261
 * Must be called with ctx->mutex and ctx->lock held.
 */
262
static void
263
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
264
{
265 266
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
267 268

	/*
269 270 271
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
272
	 */
273
	if (event->group_leader == event) {
274 275
		struct list_head *list;

276 277 278
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

279 280
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
281
	}
P
Peter Zijlstra 已提交
282

283 284 285
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
286
		ctx->nr_stat++;
287 288
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

307
/*
308
 * Remove a event from the lists for its context.
309
 * Must be called with ctx->mutex and ctx->lock held.
310
 */
311
static void
312
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
313
{
314 315 316 317
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
318
		return;
319 320 321

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

322 323
	ctx->nr_events--;
	if (event->attr.inherit_stat)
324
		ctx->nr_stat--;
325

326
	list_del_rcu(&event->event_entry);
327

328 329
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
330

331
	update_group_times(event);
332 333 334 335 336 337 338 339 340 341

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
342 343
}

344
static void perf_group_detach(struct perf_event *event)
345 346
{
	struct perf_event *sibling, *tmp;
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
368

369
	/*
370 371
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
372
	 * to whatever list we are on.
373
	 */
374
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
375 376
		if (list)
			list_move_tail(&sibling->group_entry, list);
377
		sibling->group_leader = sibling;
378 379 380

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
381 382 383
	}
}

384 385 386 387 388 389
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

390
static void
391
event_sched_out(struct perf_event *event,
392
		  struct perf_cpu_context *cpuctx,
393
		  struct perf_event_context *ctx)
394
{
395 396 397 398 399 400 401 402 403 404 405 406 407 408
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

409
	if (event->state != PERF_EVENT_STATE_ACTIVE)
410 411
		return;

412 413 414 415
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
416
	}
417
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
418
	event->pmu->del(event, 0);
419
	event->oncpu = -1;
420

421
	if (!is_software_event(event))
422 423
		cpuctx->active_oncpu--;
	ctx->nr_active--;
424
	if (event->attr.exclusive || !cpuctx->active_oncpu)
425 426 427
		cpuctx->exclusive = 0;
}

428
static void
429
group_sched_out(struct perf_event *group_event,
430
		struct perf_cpu_context *cpuctx,
431
		struct perf_event_context *ctx)
432
{
433
	struct perf_event *event;
434
	int state = group_event->state;
435

436
	event_sched_out(group_event, cpuctx, ctx);
437 438 439 440

	/*
	 * Schedule out siblings (if any):
	 */
441 442
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
443

444
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
445 446 447
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
448
/*
449
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
450
 *
451
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
452 453
 * remove it from the context list.
 */
454
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
455 456
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
457 458
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
459 460 461 462 463 464

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
465
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
466 467
		return;

468
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
469

470
	event_sched_out(event, cpuctx, ctx);
471

472
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
473

474
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
475 476 477 478
}


/*
479
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
480
 *
481
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
482
 *
483
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
484
 * call when the task is on a CPU.
485
 *
486 487
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
488 489
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
490
 * When called from perf_event_exit_task, it's OK because the
491
 * context has been detached from its task.
T
Thomas Gleixner 已提交
492
 */
493
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
494
{
495
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
496 497 498 499
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
500
		 * Per cpu events are removed via an smp call and
501
		 * the removal is always successful.
T
Thomas Gleixner 已提交
502
		 */
503 504 505
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
506 507 508 509
		return;
	}

retry:
510 511
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
512

513
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
514 515 516
	/*
	 * If the context is active we need to retry the smp call.
	 */
517
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
518
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
519 520 521 522 523
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
524
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
525 526
	 * succeed.
	 */
P
Peter Zijlstra 已提交
527
	if (!list_empty(&event->group_entry))
528
		list_del_event(event, ctx);
529
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
530 531
}

532
/*
533
 * Cross CPU call to disable a performance event
534
 */
535
static void __perf_event_disable(void *info)
536
{
537
	struct perf_event *event = info;
538
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
539
	struct perf_event_context *ctx = event->ctx;
540 541

	/*
542 543
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
544
	 */
545
	if (ctx->task && cpuctx->task_ctx != ctx)
546 547
		return;

548
	raw_spin_lock(&ctx->lock);
549 550

	/*
551
	 * If the event is on, turn it off.
552 553
	 * If it is in error state, leave it in error state.
	 */
554
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
555
		update_context_time(ctx);
556 557 558
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
559
		else
560 561
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
562 563
	}

564
	raw_spin_unlock(&ctx->lock);
565 566 567
}

/*
568
 * Disable a event.
569
 *
570 571
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
572
 * remains valid.  This condition is satisifed when called through
573 574 575 576
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
577
 * is the current context on this CPU and preemption is disabled,
578
 * hence we can't get into perf_event_task_sched_out for this context.
579
 */
580
void perf_event_disable(struct perf_event *event)
581
{
582
	struct perf_event_context *ctx = event->ctx;
583 584 585 586
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
587
		 * Disable the event on the cpu that it's on
588
		 */
589 590
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
591 592 593
		return;
	}

P
Peter Zijlstra 已提交
594
retry:
595
	task_oncpu_function_call(task, __perf_event_disable, event);
596

597
	raw_spin_lock_irq(&ctx->lock);
598
	/*
599
	 * If the event is still active, we need to retry the cross-call.
600
	 */
601
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
602
		raw_spin_unlock_irq(&ctx->lock);
603 604 605 606 607 608 609
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
610 611 612
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
613
	}
614

615
	raw_spin_unlock_irq(&ctx->lock);
616 617
}

618
static int
619
event_sched_in(struct perf_event *event,
620
		 struct perf_cpu_context *cpuctx,
621
		 struct perf_event_context *ctx)
622
{
623
	if (event->state <= PERF_EVENT_STATE_OFF)
624 625
		return 0;

626
	event->state = PERF_EVENT_STATE_ACTIVE;
627
	event->oncpu = smp_processor_id();
628 629 630 631 632
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
633
	if (event->pmu->add(event, PERF_EF_START)) {
634 635
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
636 637 638
		return -EAGAIN;
	}

639
	event->tstamp_running += ctx->time - event->tstamp_stopped;
640

641
	if (!is_software_event(event))
642
		cpuctx->active_oncpu++;
643 644
	ctx->nr_active++;

645
	if (event->attr.exclusive)
646 647
		cpuctx->exclusive = 1;

648 649 650
	return 0;
}

651
static int
652
group_sched_in(struct perf_event *group_event,
653
	       struct perf_cpu_context *cpuctx,
654
	       struct perf_event_context *ctx)
655
{
656
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
657
	struct pmu *pmu = group_event->pmu;
658

659
	if (group_event->state == PERF_EVENT_STATE_OFF)
660 661
		return 0;

P
Peter Zijlstra 已提交
662
	pmu->start_txn(pmu);
663

664
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
665
		pmu->cancel_txn(pmu);
666
		return -EAGAIN;
667
	}
668 669 670 671

	/*
	 * Schedule in siblings as one group (if any):
	 */
672
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673
		if (event_sched_in(event, cpuctx, ctx)) {
674
			partial_group = event;
675 676 677 678
			goto group_error;
		}
	}

P
Peter Zijlstra 已提交
679
	if (!pmu->commit_txn(pmu))
680
		return 0;
681

682 683 684 685 686
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
687 688
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
689
			break;
690
		event_sched_out(event, cpuctx, ctx);
691
	}
692
	event_sched_out(group_event, cpuctx, ctx);
693

P
Peter Zijlstra 已提交
694
	pmu->cancel_txn(pmu);
695

696 697 698
	return -EAGAIN;
}

699
/*
700
 * Work out whether we can put this event group on the CPU now.
701
 */
702
static int group_can_go_on(struct perf_event *event,
703 704 705 706
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
707
	 * Groups consisting entirely of software events can always go on.
708
	 */
709
	if (event->group_flags & PERF_GROUP_SOFTWARE)
710 711 712
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
713
	 * events can go on.
714 715 716 717 718
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
719
	 * events on the CPU, it can't go on.
720
	 */
721
	if (event->attr.exclusive && cpuctx->active_oncpu)
722 723 724 725 726 727 728 729
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

730 731
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
732
{
733
	list_add_event(event, ctx);
734
	perf_group_attach(event);
735 736 737
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
738 739
}

T
Thomas Gleixner 已提交
740
/*
741
 * Cross CPU call to install and enable a performance event
742 743
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
744 745 746 747
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
748 749 750
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
751
	int err;
T
Thomas Gleixner 已提交
752 753 754 755 756

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
757
	 * Or possibly this is the right context but it isn't
758
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
759
	 */
760
	if (ctx->task && cpuctx->task_ctx != ctx) {
761
		if (cpuctx->task_ctx || ctx->task != current)
762 763 764
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
765

766
	raw_spin_lock(&ctx->lock);
767
	ctx->is_active = 1;
768
	update_context_time(ctx);
T
Thomas Gleixner 已提交
769

770
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
771

772 773 774
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

775
	/*
776
	 * Don't put the event on if it is disabled or if
777 778
	 * it is in a group and the group isn't on.
	 */
779 780
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
781 782
		goto unlock;

783
	/*
784 785 786
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
787
	 */
788
	if (!group_can_go_on(event, cpuctx, 1))
789 790
		err = -EEXIST;
	else
791
		err = event_sched_in(event, cpuctx, ctx);
792

793 794
	if (err) {
		/*
795
		 * This event couldn't go on.  If it is in a group
796
		 * then we have to pull the whole group off.
797
		 * If the event group is pinned then put it in error state.
798
		 */
799
		if (leader != event)
800
			group_sched_out(leader, cpuctx, ctx);
801
		if (leader->attr.pinned) {
802
			update_group_times(leader);
803
			leader->state = PERF_EVENT_STATE_ERROR;
804
		}
805
	}
T
Thomas Gleixner 已提交
806

P
Peter Zijlstra 已提交
807
unlock:
808
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
809 810 811
}

/*
812
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
813
 *
814 815
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
816
 *
817
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
818 819
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
820 821
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
822 823
 */
static void
824 825
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
826 827 828 829 830 831
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
832
		 * Per cpu events are installed via an smp call and
833
		 * the install is always successful.
T
Thomas Gleixner 已提交
834 835
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
836
					 event, 1);
T
Thomas Gleixner 已提交
837 838 839 840 841
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
842
				 event);
T
Thomas Gleixner 已提交
843

844
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
845 846 847
	/*
	 * we need to retry the smp call.
	 */
848
	if (ctx->is_active && list_empty(&event->group_entry)) {
849
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
850 851 852 853 854
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
855
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
856 857
	 * succeed.
	 */
858 859
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
860
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
861 862
}

863
/*
864
 * Put a event into inactive state and update time fields.
865 866 867 868 869 870
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
871 872
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
873
{
874
	struct perf_event *sub;
875

876 877
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
878 879
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
880 881
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
882 883
		}
	}
884 885
}

886
/*
887
 * Cross CPU call to enable a performance event
888
 */
889
static void __perf_event_enable(void *info)
890
{
891
	struct perf_event *event = info;
892
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
893 894
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
895
	int err;
896

897
	/*
898 899
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
900
	 */
901
	if (ctx->task && cpuctx->task_ctx != ctx) {
902
		if (cpuctx->task_ctx || ctx->task != current)
903 904 905
			return;
		cpuctx->task_ctx = ctx;
	}
906

907
	raw_spin_lock(&ctx->lock);
908
	ctx->is_active = 1;
909
	update_context_time(ctx);
910

911
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
912
		goto unlock;
913
	__perf_event_mark_enabled(event, ctx);
914

915 916 917
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

918
	/*
919
	 * If the event is in a group and isn't the group leader,
920
	 * then don't put it on unless the group is on.
921
	 */
922
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
923
		goto unlock;
924

925
	if (!group_can_go_on(event, cpuctx, 1)) {
926
		err = -EEXIST;
927
	} else {
928
		if (event == leader)
929
			err = group_sched_in(event, cpuctx, ctx);
930
		else
931
			err = event_sched_in(event, cpuctx, ctx);
932
	}
933 934 935

	if (err) {
		/*
936
		 * If this event can't go on and it's part of a
937 938
		 * group, then the whole group has to come off.
		 */
939
		if (leader != event)
940
			group_sched_out(leader, cpuctx, ctx);
941
		if (leader->attr.pinned) {
942
			update_group_times(leader);
943
			leader->state = PERF_EVENT_STATE_ERROR;
944
		}
945 946
	}

P
Peter Zijlstra 已提交
947
unlock:
948
	raw_spin_unlock(&ctx->lock);
949 950 951
}

/*
952
 * Enable a event.
953
 *
954 955
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
956
 * remains valid.  This condition is satisfied when called through
957 958
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
959
 */
960
void perf_event_enable(struct perf_event *event)
961
{
962
	struct perf_event_context *ctx = event->ctx;
963 964 965 966
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
967
		 * Enable the event on the cpu that it's on
968
		 */
969 970
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
971 972 973
		return;
	}

974
	raw_spin_lock_irq(&ctx->lock);
975
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
976 977 978
		goto out;

	/*
979 980
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
981 982 983 984
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
985 986
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
987

P
Peter Zijlstra 已提交
988
retry:
989
	raw_spin_unlock_irq(&ctx->lock);
990
	task_oncpu_function_call(task, __perf_event_enable, event);
991

992
	raw_spin_lock_irq(&ctx->lock);
993 994

	/*
995
	 * If the context is active and the event is still off,
996 997
	 * we need to retry the cross-call.
	 */
998
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
999 1000 1001 1002 1003 1004
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1005 1006
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1007

P
Peter Zijlstra 已提交
1008
out:
1009
	raw_spin_unlock_irq(&ctx->lock);
1010 1011
}

1012
static int perf_event_refresh(struct perf_event *event, int refresh)
1013
{
1014
	/*
1015
	 * not supported on inherited events
1016
	 */
1017
	if (event->attr.inherit)
1018 1019
		return -EINVAL;

1020 1021
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1022 1023

	return 0;
1024 1025
}

1026 1027 1028 1029 1030 1031 1032 1033 1034
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1035
{
1036
	struct perf_event *event;
1037

1038
	raw_spin_lock(&ctx->lock);
1039
	ctx->is_active = 0;
1040
	if (likely(!ctx->nr_events))
1041
		goto out;
1042
	update_context_time(ctx);
1043

1044
	if (!ctx->nr_active)
1045
		goto out;
1046

P
Peter Zijlstra 已提交
1047
	if (event_type & EVENT_PINNED) {
1048 1049
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1050
	}
1051

P
Peter Zijlstra 已提交
1052
	if (event_type & EVENT_FLEXIBLE) {
1053
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1054
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1055 1056
	}
out:
1057
	raw_spin_unlock(&ctx->lock);
1058 1059
}

1060 1061 1062
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1063 1064 1065 1066
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1067
 * in them directly with an fd; we can only enable/disable all
1068
 * events via prctl, or enable/disable all events in a family
1069 1070
 * via ioctl, which will have the same effect on both contexts.
 */
1071 1072
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1073 1074
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1075
		&& ctx1->parent_gen == ctx2->parent_gen
1076
		&& !ctx1->pin_count && !ctx2->pin_count;
1077 1078
}

1079 1080
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1081 1082 1083
{
	u64 value;

1084
	if (!event->attr.inherit_stat)
1085 1086 1087
		return;

	/*
1088
	 * Update the event value, we cannot use perf_event_read()
1089 1090
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1091
	 * we know the event must be on the current CPU, therefore we
1092 1093
	 * don't need to use it.
	 */
1094 1095
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1096 1097
		event->pmu->read(event);
		/* fall-through */
1098

1099 1100
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1101 1102 1103 1104 1105 1106 1107
		break;

	default:
		break;
	}

	/*
1108
	 * In order to keep per-task stats reliable we need to flip the event
1109 1110
	 * values when we flip the contexts.
	 */
1111 1112 1113
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1114

1115 1116
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1117

1118
	/*
1119
	 * Since we swizzled the values, update the user visible data too.
1120
	 */
1121 1122
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1123 1124 1125 1126 1127
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1128 1129
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1130
{
1131
	struct perf_event *event, *next_event;
1132 1133 1134 1135

	if (!ctx->nr_stat)
		return;

1136 1137
	update_context_time(ctx);

1138 1139
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1140

1141 1142
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1143

1144 1145
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1146

1147
		__perf_event_sync_stat(event, next_event);
1148

1149 1150
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1151 1152 1153
	}
}

T
Thomas Gleixner 已提交
1154
/*
1155
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1156 1157
 * with interrupts disabled.
 *
1158
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1159
 *
I
Ingo Molnar 已提交
1160
 * This does not protect us against NMI, but disable()
1161 1162 1163
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1164
 */
1165
void perf_event_task_sched_out(struct task_struct *task,
1166
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1167
{
1168
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1169 1170 1171
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1172
	int do_switch = 1;
T
Thomas Gleixner 已提交
1173

1174
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1175

1176
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1177 1178
		return;

1179 1180
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1181
	next_ctx = next->perf_event_ctxp;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1193 1194
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1195
		if (context_equiv(ctx, next_ctx)) {
1196 1197
			/*
			 * XXX do we need a memory barrier of sorts
1198
			 * wrt to rcu_dereference() of perf_event_ctxp
1199
			 */
1200 1201
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1202 1203 1204
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1205

1206
			perf_event_sync_stat(ctx, next_ctx);
1207
		}
1208 1209
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1210
	}
1211
	rcu_read_unlock();
1212

1213
	if (do_switch) {
1214
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1215 1216
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1217 1218
}

1219 1220
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1221 1222 1223
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1224 1225
	if (!cpuctx->task_ctx)
		return;
1226 1227 1228 1229

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1230
	ctx_sched_out(ctx, cpuctx, event_type);
1231 1232 1233
	cpuctx->task_ctx = NULL;
}

1234 1235 1236
/*
 * Called with IRQs disabled
 */
1237
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1238
{
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1249 1250
}

1251
static void
1252
ctx_pinned_sched_in(struct perf_event_context *ctx,
1253
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1254
{
1255
	struct perf_event *event;
T
Thomas Gleixner 已提交
1256

1257 1258
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1259
			continue;
1260
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1261 1262
			continue;

1263
		if (group_can_go_on(event, cpuctx, 1))
1264
			group_sched_in(event, cpuctx, ctx);
1265 1266 1267 1268 1269

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1270 1271 1272
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1273
		}
1274
	}
1275 1276 1277 1278
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1279
		      struct perf_cpu_context *cpuctx)
1280 1281 1282
{
	struct perf_event *event;
	int can_add_hw = 1;
1283

1284 1285 1286
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1287
			continue;
1288 1289
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1290
		 * of events:
1291
		 */
1292
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1293 1294
			continue;

P
Peter Zijlstra 已提交
1295
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1296
			if (group_sched_in(event, cpuctx, ctx))
1297
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1298
		}
T
Thomas Gleixner 已提交
1299
	}
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1319
		ctx_pinned_sched_in(ctx, cpuctx);
1320 1321 1322

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1323
		ctx_flexible_sched_in(ctx, cpuctx);
1324

P
Peter Zijlstra 已提交
1325
out:
1326
	raw_spin_unlock(&ctx->lock);
1327 1328
}

1329 1330 1331 1332 1333 1334 1335 1336
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1350
/*
1351
 * Called from scheduler to add the events of the current task
1352 1353
 * with interrupts disabled.
 *
1354
 * We restore the event value and then enable it.
1355 1356
 *
 * This does not protect us against NMI, but enable()
1357 1358 1359
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1360
 */
1361
void perf_event_task_sched_in(struct task_struct *task)
1362
{
1363 1364
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1365

1366 1367
	if (likely(!ctx))
		return;
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1384 1385
}

1386 1387
#define MAX_INTERRUPTS (~0ULL)

1388
static void perf_log_throttle(struct perf_event *event, int enable);
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1457 1458 1459
	if (!divisor)
		return dividend;

1460 1461 1462 1463
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1464
{
1465
	struct hw_perf_event *hwc = &event->hw;
1466
	s64 period, sample_period;
1467 1468
	s64 delta;

1469
	period = perf_calculate_period(event, nsec, count);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1480

1481
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1482
		event->pmu->stop(event, PERF_EF_UPDATE);
1483
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1484
		event->pmu->start(event, PERF_EF_RELOAD);
1485
	}
1486 1487
}

1488
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1489
{
1490 1491
	struct perf_event *event;
	struct hw_perf_event *hwc;
1492 1493
	u64 interrupts, now;
	s64 delta;
1494

1495
	raw_spin_lock(&ctx->lock);
1496
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1497
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1498 1499
			continue;

1500 1501 1502
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1503
		hwc = &event->hw;
1504 1505 1506

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1507

1508
		/*
1509
		 * unthrottle events on the tick
1510
		 */
1511
		if (interrupts == MAX_INTERRUPTS) {
1512
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1513
			event->pmu->start(event, 0);
1514 1515
		}

1516
		if (!event->attr.freq || !event->attr.sample_freq)
1517 1518
			continue;

1519
		event->pmu->read(event);
1520
		now = local64_read(&event->count);
1521 1522
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1523

1524 1525
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1526
	}
1527
	raw_spin_unlock(&ctx->lock);
1528 1529
}

1530
/*
1531
 * Round-robin a context's events:
1532
 */
1533
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1534
{
1535
	raw_spin_lock(&ctx->lock);
1536 1537 1538 1539

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1540
	raw_spin_unlock(&ctx->lock);
1541 1542
}

1543
void perf_event_task_tick(struct task_struct *curr)
1544
{
1545
	struct perf_cpu_context *cpuctx;
1546
	struct perf_event_context *ctx;
1547
	int rotate = 0;
1548

1549
	if (!atomic_read(&nr_events))
1550 1551
		return;

1552
	cpuctx = &__get_cpu_var(perf_cpu_context);
1553 1554 1555
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1556

1557 1558 1559
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1560

1561
	perf_ctx_adjust_freq(&cpuctx->ctx);
1562
	if (ctx)
1563
		perf_ctx_adjust_freq(ctx);
1564

1565 1566 1567
	if (!rotate)
		return;

1568
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1569
	if (ctx)
1570
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1571

1572
	rotate_ctx(&cpuctx->ctx);
1573 1574
	if (ctx)
		rotate_ctx(ctx);
1575

1576
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1577
	if (ctx)
1578
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1579 1580
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1596
/*
1597
 * Enable all of a task's events that have been marked enable-on-exec.
1598 1599
 * This expects task == current.
 */
1600
static void perf_event_enable_on_exec(struct task_struct *task)
1601
{
1602 1603
	struct perf_event_context *ctx;
	struct perf_event *event;
1604 1605
	unsigned long flags;
	int enabled = 0;
1606
	int ret;
1607 1608

	local_irq_save(flags);
1609 1610
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1611 1612
		goto out;

1613
	__perf_event_task_sched_out(ctx);
1614

1615
	raw_spin_lock(&ctx->lock);
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1627 1628 1629
	}

	/*
1630
	 * Unclone this context if we enabled any event.
1631
	 */
1632 1633
	if (enabled)
		unclone_ctx(ctx);
1634

1635
	raw_spin_unlock(&ctx->lock);
1636

1637
	perf_event_task_sched_in(task);
P
Peter Zijlstra 已提交
1638
out:
1639 1640 1641
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1642
/*
1643
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1644
 */
1645
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1646
{
1647
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1648 1649
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1650

1651 1652 1653 1654
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1655 1656
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1657 1658 1659 1660
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1661
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1662
	update_context_time(ctx);
1663
	update_event_times(event);
1664
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1665

P
Peter Zijlstra 已提交
1666
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1667 1668
}

P
Peter Zijlstra 已提交
1669 1670
static inline u64 perf_event_count(struct perf_event *event)
{
1671
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1672 1673
}

1674
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1675 1676
{
	/*
1677 1678
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1679
	 */
1680 1681 1682 1683
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1684 1685 1686
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1687
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1688
		update_context_time(ctx);
1689
		update_event_times(event);
1690
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1691 1692
	}

P
Peter Zijlstra 已提交
1693
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1694 1695
}

1696 1697 1698 1699 1700 1701 1702 1703 1704
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1705
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1761
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1906
/*
1907
 * Initialize the perf_event context in a task_struct:
1908 1909
 */
static void
1910
__perf_event_init_context(struct perf_event_context *ctx,
1911 1912
			    struct task_struct *task)
{
1913
	raw_spin_lock_init(&ctx->lock);
1914
	mutex_init(&ctx->mutex);
1915 1916
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1917 1918 1919 1920 1921
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1922
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1923
{
1924
	struct perf_event_context *ctx;
1925
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1926
	struct task_struct *task;
1927
	unsigned long flags;
1928
	int err;
T
Thomas Gleixner 已提交
1929

1930
	if (pid == -1 && cpu != -1) {
1931
		/* Must be root to operate on a CPU event: */
1932
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1933 1934
			return ERR_PTR(-EACCES);

1935
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1936 1937 1938
			return ERR_PTR(-EINVAL);

		/*
1939
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1940 1941 1942
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1943
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1944 1945 1946 1947
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1948
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1965
	/*
1966
	 * Can't attach events to a dying task.
1967 1968 1969 1970 1971
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1972
	/* Reuse ptrace permission checks for now. */
1973 1974 1975 1976
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

P
Peter Zijlstra 已提交
1977
retry:
1978
	ctx = perf_lock_task_context(task, &flags);
1979
	if (ctx) {
1980
		unclone_ctx(ctx);
1981
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1982 1983
	}

1984
	if (!ctx) {
1985
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1986 1987 1988
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1989
		__perf_event_init_context(ctx, task);
1990
		get_ctx(ctx);
1991
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1992 1993 1994 1995 1996
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1997
			goto retry;
1998
		}
1999
		get_task_struct(task);
2000 2001
	}

2002
	put_task_struct(task);
T
Thomas Gleixner 已提交
2003
	return ctx;
2004

P
Peter Zijlstra 已提交
2005
errout:
2006 2007
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2008 2009
}

L
Li Zefan 已提交
2010 2011
static void perf_event_free_filter(struct perf_event *event);

2012
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2013
{
2014
	struct perf_event *event;
P
Peter Zijlstra 已提交
2015

2016 2017 2018
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2019
	perf_event_free_filter(event);
2020
	kfree(event);
P
Peter Zijlstra 已提交
2021 2022
}

2023
static void perf_pending_sync(struct perf_event *event);
2024
static void perf_buffer_put(struct perf_buffer *buffer);
2025

2026
static void free_event(struct perf_event *event)
2027
{
2028
	perf_pending_sync(event);
2029

2030 2031
	if (!event->parent) {
		atomic_dec(&nr_events);
2032
		if (event->attr.mmap || event->attr.mmap_data)
2033 2034 2035 2036 2037
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2038 2039
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2040
	}
2041

2042 2043 2044
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2045 2046
	}

2047 2048
	if (event->destroy)
		event->destroy(event);
2049

2050 2051
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2052 2053
}

2054
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2055
{
2056
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2057

2058 2059 2060 2061 2062 2063
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2064
	WARN_ON_ONCE(ctx->parent_ctx);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2078
	raw_spin_lock_irq(&ctx->lock);
2079
	perf_group_detach(event);
2080 2081
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2082
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2083

2084 2085 2086 2087
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2088

2089
	free_event(event);
T
Thomas Gleixner 已提交
2090 2091 2092

	return 0;
}
2093
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2094

2095 2096 2097 2098
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2099
{
2100
	struct perf_event *event = file->private_data;
2101

2102
	file->private_data = NULL;
2103

2104
	return perf_event_release_kernel(event);
2105 2106
}

2107
static int perf_event_read_size(struct perf_event *event)
2108 2109 2110 2111 2112
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2113
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2114 2115
		size += sizeof(u64);

2116
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2117 2118
		size += sizeof(u64);

2119
	if (event->attr.read_format & PERF_FORMAT_ID)
2120 2121
		entry += sizeof(u64);

2122 2123
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2124 2125 2126 2127 2128 2129 2130 2131
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2132
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2133
{
2134
	struct perf_event *child;
2135 2136
	u64 total = 0;

2137 2138 2139
	*enabled = 0;
	*running = 0;

2140
	mutex_lock(&event->child_mutex);
2141
	total += perf_event_read(event);
2142 2143 2144 2145 2146 2147
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2148
		total += perf_event_read(child);
2149 2150 2151
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2152
	mutex_unlock(&event->child_mutex);
2153 2154 2155

	return total;
}
2156
EXPORT_SYMBOL_GPL(perf_event_read_value);
2157

2158
static int perf_event_read_group(struct perf_event *event,
2159 2160
				   u64 read_format, char __user *buf)
{
2161
	struct perf_event *leader = event->group_leader, *sub;
2162 2163
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2164
	u64 values[5];
2165
	u64 count, enabled, running;
2166

2167
	mutex_lock(&ctx->mutex);
2168
	count = perf_event_read_value(leader, &enabled, &running);
2169 2170

	values[n++] = 1 + leader->nr_siblings;
2171 2172 2173 2174
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2175 2176 2177
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2178 2179 2180 2181

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2182
		goto unlock;
2183

2184
	ret = size;
2185

2186
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2187
		n = 0;
2188

2189
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2190 2191 2192 2193 2194
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2195
		if (copy_to_user(buf + ret, values, size)) {
2196 2197 2198
			ret = -EFAULT;
			goto unlock;
		}
2199 2200

		ret += size;
2201
	}
2202 2203
unlock:
	mutex_unlock(&ctx->mutex);
2204

2205
	return ret;
2206 2207
}

2208
static int perf_event_read_one(struct perf_event *event,
2209 2210
				 u64 read_format, char __user *buf)
{
2211
	u64 enabled, running;
2212 2213 2214
	u64 values[4];
	int n = 0;

2215 2216 2217 2218 2219
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2220
	if (read_format & PERF_FORMAT_ID)
2221
		values[n++] = primary_event_id(event);
2222 2223 2224 2225 2226 2227 2228

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2229
/*
2230
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2231 2232
 */
static ssize_t
2233
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2234
{
2235
	u64 read_format = event->attr.read_format;
2236
	int ret;
T
Thomas Gleixner 已提交
2237

2238
	/*
2239
	 * Return end-of-file for a read on a event that is in
2240 2241 2242
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2243
	if (event->state == PERF_EVENT_STATE_ERROR)
2244 2245
		return 0;

2246
	if (count < perf_event_read_size(event))
2247 2248
		return -ENOSPC;

2249
	WARN_ON_ONCE(event->ctx->parent_ctx);
2250
	if (read_format & PERF_FORMAT_GROUP)
2251
		ret = perf_event_read_group(event, read_format, buf);
2252
	else
2253
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2254

2255
	return ret;
T
Thomas Gleixner 已提交
2256 2257 2258 2259 2260
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2261
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2262

2263
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2264 2265 2266 2267
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2268
	struct perf_event *event = file->private_data;
2269
	struct perf_buffer *buffer;
2270
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2271 2272

	rcu_read_lock();
2273 2274 2275
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2276
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2277

2278
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2279 2280 2281 2282

	return events;
}

2283
static void perf_event_reset(struct perf_event *event)
2284
{
2285
	(void)perf_event_read(event);
2286
	local64_set(&event->count, 0);
2287
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2288 2289
}

2290
/*
2291 2292 2293 2294
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2295
 */
2296 2297
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2298
{
2299
	struct perf_event *child;
P
Peter Zijlstra 已提交
2300

2301 2302 2303 2304
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2305
		func(child);
2306
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2307 2308
}

2309 2310
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2311
{
2312 2313
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2314

2315 2316
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2317
	event = event->group_leader;
2318

2319 2320 2321 2322
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2323
	mutex_unlock(&ctx->mutex);
2324 2325
}

2326
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2327
{
2328
	struct perf_event_context *ctx = event->ctx;
2329 2330 2331 2332
	unsigned long size;
	int ret = 0;
	u64 value;

2333
	if (!event->attr.sample_period)
2334 2335 2336 2337 2338 2339 2340 2341 2342
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2343
	raw_spin_lock_irq(&ctx->lock);
2344 2345
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2346 2347 2348 2349
			ret = -EINVAL;
			goto unlock;
		}

2350
		event->attr.sample_freq = value;
2351
	} else {
2352 2353
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2354 2355
	}
unlock:
2356
	raw_spin_unlock_irq(&ctx->lock);
2357 2358 2359 2360

	return ret;
}

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2382
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2383

2384 2385
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2386 2387
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2388
	u32 flags = arg;
2389 2390

	switch (cmd) {
2391 2392
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2393
		break;
2394 2395
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2396
		break;
2397 2398
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2399
		break;
P
Peter Zijlstra 已提交
2400

2401 2402
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2403

2404 2405
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2406

2407
	case PERF_EVENT_IOC_SET_OUTPUT:
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2425

L
Li Zefan 已提交
2426 2427 2428
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2429
	default:
P
Peter Zijlstra 已提交
2430
		return -ENOTTY;
2431
	}
P
Peter Zijlstra 已提交
2432 2433

	if (flags & PERF_IOC_FLAG_GROUP)
2434
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2435
	else
2436
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2437 2438

	return 0;
2439 2440
}

2441
int perf_event_task_enable(void)
2442
{
2443
	struct perf_event *event;
2444

2445 2446 2447 2448
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2449 2450 2451 2452

	return 0;
}

2453
int perf_event_task_disable(void)
2454
{
2455
	struct perf_event *event;
2456

2457 2458 2459 2460
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2461 2462 2463 2464

	return 0;
}

2465 2466
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2467 2468
#endif

2469
static int perf_event_index(struct perf_event *event)
2470
{
P
Peter Zijlstra 已提交
2471 2472 2473
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2474
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2475 2476
		return 0;

2477
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2478 2479
}

2480 2481 2482 2483 2484
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2485
void perf_event_update_userpage(struct perf_event *event)
2486
{
2487
	struct perf_event_mmap_page *userpg;
2488
	struct perf_buffer *buffer;
2489 2490

	rcu_read_lock();
2491 2492
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2493 2494
		goto unlock;

2495
	userpg = buffer->user_page;
2496

2497 2498 2499 2500 2501
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2502
	++userpg->lock;
2503
	barrier();
2504
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2505
	userpg->offset = perf_event_count(event);
2506
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2507
		userpg->offset -= local64_read(&event->hw.prev_count);
2508

2509 2510
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2511

2512 2513
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2514

2515
	barrier();
2516
	++userpg->lock;
2517
	preempt_enable();
2518
unlock:
2519
	rcu_read_unlock();
2520 2521
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2541
#ifndef CONFIG_PERF_USE_VMALLOC
2542

2543 2544 2545
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2546

2547
static struct page *
2548
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2549
{
2550
	if (pgoff > buffer->nr_pages)
2551
		return NULL;
2552

2553
	if (pgoff == 0)
2554
		return virt_to_page(buffer->user_page);
2555

2556
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2557 2558
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2572
static struct perf_buffer *
2573
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2574
{
2575
	struct perf_buffer *buffer;
2576 2577 2578
	unsigned long size;
	int i;

2579
	size = sizeof(struct perf_buffer);
2580 2581
	size += nr_pages * sizeof(void *);

2582 2583
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2584 2585
		goto fail;

2586
	buffer->user_page = perf_mmap_alloc_page(cpu);
2587
	if (!buffer->user_page)
2588 2589 2590
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2591
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2592
		if (!buffer->data_pages[i])
2593 2594 2595
			goto fail_data_pages;
	}

2596
	buffer->nr_pages = nr_pages;
2597

2598 2599
	perf_buffer_init(buffer, watermark, flags);

2600
	return buffer;
2601 2602 2603

fail_data_pages:
	for (i--; i >= 0; i--)
2604
		free_page((unsigned long)buffer->data_pages[i]);
2605

2606
	free_page((unsigned long)buffer->user_page);
2607 2608

fail_user_page:
2609
	kfree(buffer);
2610 2611

fail:
2612
	return NULL;
2613 2614
}

2615 2616
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2617
	struct page *page = virt_to_page((void *)addr);
2618 2619 2620 2621 2622

	page->mapping = NULL;
	__free_page(page);
}

2623
static void perf_buffer_free(struct perf_buffer *buffer)
2624 2625 2626
{
	int i;

2627 2628 2629 2630
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2631 2632
}

2633
static inline int page_order(struct perf_buffer *buffer)
2634 2635 2636 2637
{
	return 0;
}

2638 2639 2640 2641 2642 2643 2644 2645
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2646
static inline int page_order(struct perf_buffer *buffer)
2647
{
2648
	return buffer->page_order;
2649 2650
}

2651
static struct page *
2652
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2653
{
2654
	if (pgoff > (1UL << page_order(buffer)))
2655 2656
		return NULL;

2657
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2658 2659 2660 2661 2662 2663 2664 2665 2666
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2667
static void perf_buffer_free_work(struct work_struct *work)
2668
{
2669
	struct perf_buffer *buffer;
2670 2671 2672
	void *base;
	int i, nr;

2673 2674
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2675

2676
	base = buffer->user_page;
2677 2678 2679 2680
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2681
	kfree(buffer);
2682 2683
}

2684
static void perf_buffer_free(struct perf_buffer *buffer)
2685
{
2686
	schedule_work(&buffer->work);
2687 2688
}

2689
static struct perf_buffer *
2690
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2691
{
2692
	struct perf_buffer *buffer;
2693 2694 2695
	unsigned long size;
	void *all_buf;

2696
	size = sizeof(struct perf_buffer);
2697 2698
	size += sizeof(void *);

2699 2700
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2701 2702
		goto fail;

2703
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2704 2705 2706 2707 2708

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2709 2710 2711 2712
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2713

2714 2715
	perf_buffer_init(buffer, watermark, flags);

2716
	return buffer;
2717 2718

fail_all_buf:
2719
	kfree(buffer);
2720 2721 2722 2723 2724 2725 2726

fail:
	return NULL;
}

#endif

2727
static unsigned long perf_data_size(struct perf_buffer *buffer)
2728
{
2729
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2730 2731
}

2732 2733 2734
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2735
	struct perf_buffer *buffer;
2736 2737 2738 2739 2740 2741 2742 2743 2744
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2745 2746
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2747 2748 2749 2750 2751
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2752
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2767
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2768
{
2769
	struct perf_buffer *buffer;
2770

2771 2772
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2773 2774
}

2775
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2776
{
2777
	struct perf_buffer *buffer;
2778

2779
	rcu_read_lock();
2780 2781 2782 2783
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2784 2785 2786
	}
	rcu_read_unlock();

2787
	return buffer;
2788 2789
}

2790
static void perf_buffer_put(struct perf_buffer *buffer)
2791
{
2792
	if (!atomic_dec_and_test(&buffer->refcount))
2793
		return;
2794

2795
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2796 2797 2798 2799
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2800
	struct perf_event *event = vma->vm_file->private_data;
2801

2802
	atomic_inc(&event->mmap_count);
2803 2804 2805 2806
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2807
	struct perf_event *event = vma->vm_file->private_data;
2808

2809
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2810
		unsigned long size = perf_data_size(event->buffer);
2811
		struct user_struct *user = event->mmap_user;
2812
		struct perf_buffer *buffer = event->buffer;
2813

2814
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2815
		vma->vm_mm->locked_vm -= event->mmap_locked;
2816
		rcu_assign_pointer(event->buffer, NULL);
2817
		mutex_unlock(&event->mmap_mutex);
2818

2819
		perf_buffer_put(buffer);
2820
		free_uid(user);
2821
	}
2822 2823
}

2824
static const struct vm_operations_struct perf_mmap_vmops = {
2825 2826 2827 2828
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2829 2830 2831 2832
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2833
	struct perf_event *event = file->private_data;
2834
	unsigned long user_locked, user_lock_limit;
2835
	struct user_struct *user = current_user();
2836
	unsigned long locked, lock_limit;
2837
	struct perf_buffer *buffer;
2838 2839
	unsigned long vma_size;
	unsigned long nr_pages;
2840
	long user_extra, extra;
2841
	int ret = 0, flags = 0;
2842

2843 2844 2845 2846 2847 2848 2849 2850
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2851
	if (!(vma->vm_flags & VM_SHARED))
2852
		return -EINVAL;
2853 2854 2855 2856

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2857
	/*
2858
	 * If we have buffer pages ensure they're a power-of-two number, so we
2859 2860 2861
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2862 2863
		return -EINVAL;

2864
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2865 2866
		return -EINVAL;

2867 2868
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2869

2870 2871
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2872 2873 2874
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2875
		else
2876 2877 2878 2879
			ret = -EINVAL;
		goto unlock;
	}

2880
	user_extra = nr_pages + 1;
2881
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2882 2883 2884 2885 2886 2887

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2888
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2889

2890 2891 2892
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2893

2894
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2895
	lock_limit >>= PAGE_SHIFT;
2896
	locked = vma->vm_mm->locked_vm + extra;
2897

2898 2899
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2900 2901 2902
		ret = -EPERM;
		goto unlock;
	}
2903

2904
	WARN_ON(event->buffer);
2905

2906 2907 2908 2909 2910
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2911
	if (!buffer) {
2912
		ret = -ENOMEM;
2913
		goto unlock;
2914
	}
2915
	rcu_assign_pointer(event->buffer, buffer);
2916

2917 2918 2919 2920 2921
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2922
unlock:
2923 2924
	if (!ret)
		atomic_inc(&event->mmap_count);
2925
	mutex_unlock(&event->mmap_mutex);
2926 2927 2928

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2929 2930

	return ret;
2931 2932
}

P
Peter Zijlstra 已提交
2933 2934 2935
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2936
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2937 2938 2939
	int retval;

	mutex_lock(&inode->i_mutex);
2940
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2941 2942 2943 2944 2945 2946 2947 2948
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2949
static const struct file_operations perf_fops = {
2950
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2951 2952 2953
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2954 2955
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2956
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2957
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2958 2959
};

2960
/*
2961
 * Perf event wakeup
2962 2963 2964 2965 2966
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2967
void perf_event_wakeup(struct perf_event *event)
2968
{
2969
	wake_up_all(&event->waitq);
2970

2971 2972 2973
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2974
	}
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2986
static void perf_pending_event(struct perf_pending_entry *entry)
2987
{
2988 2989
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2990

2991 2992 2993
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2994 2995
	}

2996 2997 2998
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2999 3000 3001
	}
}

3002
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3003

3004
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3005 3006 3007
	PENDING_TAIL,
};

3008 3009
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3010
{
3011
	struct perf_pending_entry **head;
3012

3013
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3014 3015
		return;

3016 3017 3018
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3019 3020

	do {
3021 3022
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3023

3024
	set_perf_event_pending();
3025

3026
	put_cpu_var(perf_pending_head);
3027 3028 3029 3030
}

static int __perf_pending_run(void)
{
3031
	struct perf_pending_entry *list;
3032 3033
	int nr = 0;

3034
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3035
	while (list != PENDING_TAIL) {
3036 3037
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3038 3039 3040

		list = list->next;

3041 3042
		func = entry->func;
		entry->next = NULL;
3043 3044 3045 3046 3047 3048 3049
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3050
		func(entry);
3051 3052 3053 3054 3055 3056
		nr++;
	}

	return nr;
}

3057
static inline int perf_not_pending(struct perf_event *event)
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3072
	return event->pending.next == NULL;
3073 3074
}

3075
static void perf_pending_sync(struct perf_event *event)
3076
{
3077
	wait_event(event->waitq, perf_not_pending(event));
3078 3079
}

3080
void perf_event_do_pending(void)
3081 3082 3083 3084
{
	__perf_pending_run();
}

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3106 3107 3108
/*
 * Output
 */
3109
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3110
			      unsigned long offset, unsigned long head)
3111 3112 3113
{
	unsigned long mask;

3114
	if (!buffer->writable)
3115 3116
		return true;

3117
	mask = perf_data_size(buffer) - 1;
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3128
static void perf_output_wakeup(struct perf_output_handle *handle)
3129
{
3130
	atomic_set(&handle->buffer->poll, POLL_IN);
3131

3132
	if (handle->nmi) {
3133 3134 3135
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3136
	} else
3137
		perf_event_wakeup(handle->event);
3138 3139
}

3140
/*
3141
 * We need to ensure a later event_id doesn't publish a head when a former
3142
 * event isn't done writing. However since we need to deal with NMIs we
3143 3144 3145
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3146
 * event completes.
3147
 */
3148
static void perf_output_get_handle(struct perf_output_handle *handle)
3149
{
3150
	struct perf_buffer *buffer = handle->buffer;
3151

3152
	preempt_disable();
3153 3154
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3155 3156
}

3157
static void perf_output_put_handle(struct perf_output_handle *handle)
3158
{
3159
	struct perf_buffer *buffer = handle->buffer;
3160
	unsigned long head;
3161 3162

again:
3163
	head = local_read(&buffer->head);
3164 3165

	/*
3166
	 * IRQ/NMI can happen here, which means we can miss a head update.
3167 3168
	 */

3169
	if (!local_dec_and_test(&buffer->nest))
3170
		goto out;
3171 3172

	/*
3173
	 * Publish the known good head. Rely on the full barrier implied
3174
	 * by atomic_dec_and_test() order the buffer->head read and this
3175
	 * write.
3176
	 */
3177
	buffer->user_page->data_head = head;
3178

3179 3180
	/*
	 * Now check if we missed an update, rely on the (compiler)
3181
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3182
	 */
3183 3184
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3185 3186 3187
		goto again;
	}

3188
	if (handle->wakeup != local_read(&buffer->wakeup))
3189
		perf_output_wakeup(handle);
3190

P
Peter Zijlstra 已提交
3191
out:
3192
	preempt_enable();
3193 3194
}

3195
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3196
		      const void *buf, unsigned int len)
3197
{
3198
	do {
3199
		unsigned long size = min_t(unsigned long, handle->size, len);
3200 3201 3202 3203 3204

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3205
		buf += size;
3206 3207
		handle->size -= size;
		if (!handle->size) {
3208
			struct perf_buffer *buffer = handle->buffer;
3209

3210
			handle->page++;
3211 3212 3213
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3214 3215
		}
	} while (len);
3216 3217
}

3218
int perf_output_begin(struct perf_output_handle *handle,
3219
		      struct perf_event *event, unsigned int size,
3220
		      int nmi, int sample)
3221
{
3222
	struct perf_buffer *buffer;
3223
	unsigned long tail, offset, head;
3224 3225 3226 3227 3228 3229
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3230

3231
	rcu_read_lock();
3232
	/*
3233
	 * For inherited events we send all the output towards the parent.
3234
	 */
3235 3236
	if (event->parent)
		event = event->parent;
3237

3238 3239
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3240 3241
		goto out;

3242
	handle->buffer	= buffer;
3243
	handle->event	= event;
3244 3245
	handle->nmi	= nmi;
	handle->sample	= sample;
3246

3247
	if (!buffer->nr_pages)
3248
		goto out;
3249

3250
	have_lost = local_read(&buffer->lost);
3251 3252 3253
	if (have_lost)
		size += sizeof(lost_event);

3254
	perf_output_get_handle(handle);
3255

3256
	do {
3257 3258 3259 3260 3261
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3262
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3263
		smp_rmb();
3264
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3265
		head += size;
3266
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3267
			goto fail;
3268
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3269

3270 3271
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3272

3273 3274 3275 3276
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3277
	handle->addr += handle->size;
3278
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3279

3280
	if (have_lost) {
3281
		lost_event.header.type = PERF_RECORD_LOST;
3282 3283
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3284
		lost_event.id          = event->id;
3285
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3286 3287 3288 3289

		perf_output_put(handle, lost_event);
	}

3290
	return 0;
3291

3292
fail:
3293
	local_inc(&buffer->lost);
3294
	perf_output_put_handle(handle);
3295 3296
out:
	rcu_read_unlock();
3297

3298 3299
	return -ENOSPC;
}
3300

3301
void perf_output_end(struct perf_output_handle *handle)
3302
{
3303
	struct perf_event *event = handle->event;
3304
	struct perf_buffer *buffer = handle->buffer;
3305

3306
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3307

3308
	if (handle->sample && wakeup_events) {
3309
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3310
		if (events >= wakeup_events) {
3311 3312
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3313
		}
3314 3315
	}

3316
	perf_output_put_handle(handle);
3317
	rcu_read_unlock();
3318 3319
}

3320
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3321 3322
{
	/*
3323
	 * only top level events have the pid namespace they were created in
3324
	 */
3325 3326
	if (event->parent)
		event = event->parent;
3327

3328
	return task_tgid_nr_ns(p, event->ns);
3329 3330
}

3331
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3332 3333
{
	/*
3334
	 * only top level events have the pid namespace they were created in
3335
	 */
3336 3337
	if (event->parent)
		event = event->parent;
3338

3339
	return task_pid_nr_ns(p, event->ns);
3340 3341
}

3342
static void perf_output_read_one(struct perf_output_handle *handle,
3343
				 struct perf_event *event)
3344
{
3345
	u64 read_format = event->attr.read_format;
3346 3347 3348
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3349
	values[n++] = perf_event_count(event);
3350
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3351 3352
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3353 3354
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3355 3356
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3357 3358
	}
	if (read_format & PERF_FORMAT_ID)
3359
		values[n++] = primary_event_id(event);
3360 3361 3362 3363 3364

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3365
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3366 3367
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3368
			    struct perf_event *event)
3369
{
3370 3371
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3383
	if (leader != event)
3384 3385
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3386
	values[n++] = perf_event_count(leader);
3387
	if (read_format & PERF_FORMAT_ID)
3388
		values[n++] = primary_event_id(leader);
3389 3390 3391

	perf_output_copy(handle, values, n * sizeof(u64));

3392
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3393 3394
		n = 0;

3395
		if (sub != event)
3396 3397
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3398
		values[n++] = perf_event_count(sub);
3399
		if (read_format & PERF_FORMAT_ID)
3400
			values[n++] = primary_event_id(sub);
3401 3402 3403 3404 3405 3406

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3407
			     struct perf_event *event)
3408
{
3409 3410
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3411
	else
3412
		perf_output_read_one(handle, event);
3413 3414
}

3415 3416 3417
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3418
			struct perf_event *event)
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3449
		perf_output_read(handle, event);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3487
			 struct perf_event *event,
3488
			 struct pt_regs *regs)
3489
{
3490
	u64 sample_type = event->attr.sample_type;
3491

3492
	data->type = sample_type;
3493

3494
	header->type = PERF_RECORD_SAMPLE;
3495 3496 3497 3498
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3499

3500
	if (sample_type & PERF_SAMPLE_IP) {
3501 3502 3503
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3504
	}
3505

3506
	if (sample_type & PERF_SAMPLE_TID) {
3507
		/* namespace issues */
3508 3509
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3510

3511
		header->size += sizeof(data->tid_entry);
3512 3513
	}

3514
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3515
		data->time = perf_clock();
3516

3517
		header->size += sizeof(data->time);
3518 3519
	}

3520
	if (sample_type & PERF_SAMPLE_ADDR)
3521
		header->size += sizeof(data->addr);
3522

3523
	if (sample_type & PERF_SAMPLE_ID) {
3524
		data->id = primary_event_id(event);
3525

3526 3527 3528 3529
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3530
		data->stream_id = event->id;
3531 3532 3533

		header->size += sizeof(data->stream_id);
	}
3534

3535
	if (sample_type & PERF_SAMPLE_CPU) {
3536 3537
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3538

3539
		header->size += sizeof(data->cpu_entry);
3540 3541
	}

3542
	if (sample_type & PERF_SAMPLE_PERIOD)
3543
		header->size += sizeof(data->period);
3544

3545
	if (sample_type & PERF_SAMPLE_READ)
3546
		header->size += perf_event_read_size(event);
3547

3548
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3549
		int size = 1;
3550

3551 3552 3553 3554 3555 3556
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3557 3558
	}

3559
	if (sample_type & PERF_SAMPLE_RAW) {
3560 3561 3562 3563 3564 3565 3566 3567
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3568
		header->size += size;
3569
	}
3570
}
3571

3572
static void perf_event_output(struct perf_event *event, int nmi,
3573 3574 3575 3576 3577
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3578

3579 3580 3581
	/* protect the callchain buffers */
	rcu_read_lock();

3582
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3583

3584
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3585
		goto exit;
3586

3587
	perf_output_sample(&handle, &header, data, event);
3588

3589
	perf_output_end(&handle);
3590 3591 3592

exit:
	rcu_read_unlock();
3593 3594
}

3595
/*
3596
 * read event_id
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3607
perf_event_read_event(struct perf_event *event,
3608 3609 3610
			struct task_struct *task)
{
	struct perf_output_handle handle;
3611
	struct perf_read_event read_event = {
3612
		.header = {
3613
			.type = PERF_RECORD_READ,
3614
			.misc = 0,
3615
			.size = sizeof(read_event) + perf_event_read_size(event),
3616
		},
3617 3618
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3619
	};
3620
	int ret;
3621

3622
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3623 3624 3625
	if (ret)
		return;

3626
	perf_output_put(&handle, read_event);
3627
	perf_output_read(&handle, event);
3628

3629 3630 3631
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3632
/*
P
Peter Zijlstra 已提交
3633 3634
 * task tracking -- fork/exit
 *
3635
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3636 3637
 */

P
Peter Zijlstra 已提交
3638
struct perf_task_event {
3639
	struct task_struct		*task;
3640
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3641 3642 3643 3644 3645 3646

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3647 3648
		u32				tid;
		u32				ptid;
3649
		u64				time;
3650
	} event_id;
P
Peter Zijlstra 已提交
3651 3652
};

3653
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3654
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3655 3656
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3657
	struct task_struct *task = task_event->task;
3658 3659
	int size, ret;

3660 3661
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3662

3663
	if (ret)
P
Peter Zijlstra 已提交
3664 3665
		return;

3666 3667
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3668

3669 3670
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3671

3672
	perf_output_put(&handle, task_event->event_id);
3673

P
Peter Zijlstra 已提交
3674 3675 3676
	perf_output_end(&handle);
}

3677
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3678
{
P
Peter Zijlstra 已提交
3679
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3680 3681
		return 0;

3682 3683 3684
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3685 3686
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3687 3688 3689 3690 3691
		return 1;

	return 0;
}

3692
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3693
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3694
{
3695
	struct perf_event *event;
P
Peter Zijlstra 已提交
3696

3697 3698 3699
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3700 3701 3702
	}
}

3703
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3704 3705
{
	struct perf_cpu_context *cpuctx;
3706
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3707

3708
	rcu_read_lock();
P
Peter Zijlstra 已提交
3709
	cpuctx = &get_cpu_var(perf_cpu_context);
3710
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3711
	if (!ctx)
P
Peter Zijlstra 已提交
3712
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3713
	if (ctx)
3714
		perf_event_task_ctx(ctx, task_event);
3715
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3716 3717 3718
	rcu_read_unlock();
}

3719 3720
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3721
			      int new)
P
Peter Zijlstra 已提交
3722
{
P
Peter Zijlstra 已提交
3723
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3724

3725 3726 3727
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3728 3729
		return;

P
Peter Zijlstra 已提交
3730
	task_event = (struct perf_task_event){
3731 3732
		.task	  = task,
		.task_ctx = task_ctx,
3733
		.event_id    = {
P
Peter Zijlstra 已提交
3734
			.header = {
3735
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3736
				.misc = 0,
3737
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3738
			},
3739 3740
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3741 3742
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3743
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3744 3745 3746
		},
	};

3747
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3748 3749
}

3750
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3751
{
3752
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3753 3754
}

3755 3756 3757 3758 3759
/*
 * comm tracking
 */

struct perf_comm_event {
3760 3761
	struct task_struct	*task;
	char			*comm;
3762 3763 3764 3765 3766 3767 3768
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3769
	} event_id;
3770 3771
};

3772
static void perf_event_comm_output(struct perf_event *event,
3773 3774 3775
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3776 3777
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3778 3779 3780 3781

	if (ret)
		return;

3782 3783
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3784

3785
	perf_output_put(&handle, comm_event->event_id);
3786 3787 3788 3789 3790
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3791
static int perf_event_comm_match(struct perf_event *event)
3792
{
P
Peter Zijlstra 已提交
3793
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3794 3795
		return 0;

3796 3797 3798
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3799
	if (event->attr.comm)
3800 3801 3802 3803 3804
		return 1;

	return 0;
}

3805
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3806 3807
				  struct perf_comm_event *comm_event)
{
3808
	struct perf_event *event;
3809

3810 3811 3812
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3813 3814 3815
	}
}

3816
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3817 3818
{
	struct perf_cpu_context *cpuctx;
3819
	struct perf_event_context *ctx;
3820
	unsigned int size;
3821
	char comm[TASK_COMM_LEN];
3822

3823
	memset(comm, 0, sizeof(comm));
3824
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3825
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3826 3827 3828 3829

	comm_event->comm = comm;
	comm_event->comm_size = size;

3830
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3831

3832
	rcu_read_lock();
3833
	cpuctx = &get_cpu_var(perf_cpu_context);
3834 3835
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3836
	if (ctx)
3837
		perf_event_comm_ctx(ctx, comm_event);
3838
	put_cpu_var(perf_cpu_context);
3839
	rcu_read_unlock();
3840 3841
}

3842
void perf_event_comm(struct task_struct *task)
3843
{
3844 3845
	struct perf_comm_event comm_event;

3846 3847
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3848

3849
	if (!atomic_read(&nr_comm_events))
3850
		return;
3851

3852
	comm_event = (struct perf_comm_event){
3853
		.task	= task,
3854 3855
		/* .comm      */
		/* .comm_size */
3856
		.event_id  = {
3857
			.header = {
3858
				.type = PERF_RECORD_COMM,
3859 3860 3861 3862 3863
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3864 3865 3866
		},
	};

3867
	perf_event_comm_event(&comm_event);
3868 3869
}

3870 3871 3872 3873 3874
/*
 * mmap tracking
 */

struct perf_mmap_event {
3875 3876 3877 3878
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3879 3880 3881 3882 3883 3884 3885 3886 3887

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3888
	} event_id;
3889 3890
};

3891
static void perf_event_mmap_output(struct perf_event *event,
3892 3893 3894
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3895 3896
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3897 3898 3899 3900

	if (ret)
		return;

3901 3902
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3903

3904
	perf_output_put(&handle, mmap_event->event_id);
3905 3906
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3907
	perf_output_end(&handle);
3908 3909
}

3910
static int perf_event_mmap_match(struct perf_event *event,
3911 3912
				   struct perf_mmap_event *mmap_event,
				   int executable)
3913
{
P
Peter Zijlstra 已提交
3914
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3915 3916
		return 0;

3917 3918 3919
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3920 3921
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
3922 3923 3924 3925 3926
		return 1;

	return 0;
}

3927
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3928 3929
				  struct perf_mmap_event *mmap_event,
				  int executable)
3930
{
3931
	struct perf_event *event;
3932

3933
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3934
		if (perf_event_mmap_match(event, mmap_event, executable))
3935
			perf_event_mmap_output(event, mmap_event);
3936 3937 3938
	}
}

3939
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3940 3941
{
	struct perf_cpu_context *cpuctx;
3942
	struct perf_event_context *ctx;
3943 3944
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3945 3946 3947
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3948
	const char *name;
3949

3950 3951
	memset(tmp, 0, sizeof(tmp));

3952
	if (file) {
3953 3954 3955 3956 3957 3958
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3959 3960 3961 3962
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3963
		name = d_path(&file->f_path, buf, PATH_MAX);
3964 3965 3966 3967 3968
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3969 3970 3971
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3972
			goto got_name;
3973
		}
3974 3975 3976 3977

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
3978 3979 3980 3981 3982 3983 3984 3985
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
3986 3987
		}

3988 3989 3990 3991 3992
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3993
	size = ALIGN(strlen(name)+1, sizeof(u64));
3994 3995 3996 3997

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3998
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3999

4000
	rcu_read_lock();
4001
	cpuctx = &get_cpu_var(perf_cpu_context);
4002
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4003
	ctx = rcu_dereference(current->perf_event_ctxp);
4004
	if (ctx)
4005
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4006
	put_cpu_var(perf_cpu_context);
4007 4008
	rcu_read_unlock();

4009 4010 4011
	kfree(buf);
}

4012
void perf_event_mmap(struct vm_area_struct *vma)
4013
{
4014 4015
	struct perf_mmap_event mmap_event;

4016
	if (!atomic_read(&nr_mmap_events))
4017 4018 4019
		return;

	mmap_event = (struct perf_mmap_event){
4020
		.vma	= vma,
4021 4022
		/* .file_name */
		/* .file_size */
4023
		.event_id  = {
4024
			.header = {
4025
				.type = PERF_RECORD_MMAP,
4026
				.misc = PERF_RECORD_MISC_USER,
4027 4028 4029 4030
				/* .size */
			},
			/* .pid */
			/* .tid */
4031 4032
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4033
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4034 4035 4036
		},
	};

4037
	perf_event_mmap_event(&mmap_event);
4038 4039
}

4040 4041 4042 4043
/*
 * IRQ throttle logging
 */

4044
static void perf_log_throttle(struct perf_event *event, int enable)
4045 4046 4047 4048 4049 4050 4051
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4052
		u64				id;
4053
		u64				stream_id;
4054 4055
	} throttle_event = {
		.header = {
4056
			.type = PERF_RECORD_THROTTLE,
4057 4058 4059
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4060
		.time		= perf_clock(),
4061 4062
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4063 4064
	};

4065
	if (enable)
4066
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4067

4068
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4069 4070 4071 4072 4073 4074 4075
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4076
/*
4077
 * Generic event overflow handling, sampling.
4078 4079
 */

4080
static int __perf_event_overflow(struct perf_event *event, int nmi,
4081 4082
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4083
{
4084 4085
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4086 4087
	int ret = 0;

4088
	if (!throttle) {
4089
		hwc->interrupts++;
4090
	} else {
4091 4092
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4093
			if (HZ * hwc->interrupts >
4094
					(u64)sysctl_perf_event_sample_rate) {
4095
				hwc->interrupts = MAX_INTERRUPTS;
4096
				perf_log_throttle(event, 0);
4097 4098 4099 4100
				ret = 1;
			}
		} else {
			/*
4101
			 * Keep re-disabling events even though on the previous
4102
			 * pass we disabled it - just in case we raced with a
4103
			 * sched-in and the event got enabled again:
4104
			 */
4105 4106 4107
			ret = 1;
		}
	}
4108

4109
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4110
		u64 now = perf_clock();
4111
		s64 delta = now - hwc->freq_time_stamp;
4112

4113
		hwc->freq_time_stamp = now;
4114

4115 4116
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4117 4118
	}

4119 4120
	/*
	 * XXX event_limit might not quite work as expected on inherited
4121
	 * events
4122 4123
	 */

4124 4125
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4126
		ret = 1;
4127
		event->pending_kill = POLL_HUP;
4128
		if (nmi) {
4129 4130 4131
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4132
		} else
4133
			perf_event_disable(event);
4134 4135
	}

4136 4137 4138 4139 4140
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4141
	return ret;
4142 4143
}

4144
int perf_event_overflow(struct perf_event *event, int nmi,
4145 4146
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4147
{
4148
	return __perf_event_overflow(event, nmi, 1, data, regs);
4149 4150
}

4151
/*
4152
 * Generic software event infrastructure
4153 4154
 */

4155
/*
4156 4157
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4158 4159 4160 4161
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4162
static u64 perf_swevent_set_period(struct perf_event *event)
4163
{
4164
	struct hw_perf_event *hwc = &event->hw;
4165 4166 4167 4168 4169
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4170 4171

again:
4172
	old = val = local64_read(&hwc->period_left);
4173 4174
	if (val < 0)
		return 0;
4175

4176 4177 4178
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4179
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4180
		goto again;
4181

4182
	return nr;
4183 4184
}

4185
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4186 4187
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4188
{
4189
	struct hw_perf_event *hwc = &event->hw;
4190
	int throttle = 0;
4191

4192
	data->period = event->hw.last_period;
4193 4194
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4195

4196 4197
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4198

4199
	for (; overflow; overflow--) {
4200
		if (__perf_event_overflow(event, nmi, throttle,
4201
					    data, regs)) {
4202 4203 4204 4205 4206 4207
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4208
		throttle = 1;
4209
	}
4210 4211
}

P
Peter Zijlstra 已提交
4212
static void perf_swevent_event(struct perf_event *event, u64 nr,
4213 4214
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4215
{
4216
	struct hw_perf_event *hwc = &event->hw;
4217

4218
	local64_add(nr, &event->count);
4219

4220 4221 4222
	if (!regs)
		return;

4223 4224
	if (!hwc->sample_period)
		return;
4225

4226 4227 4228
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4229
	if (local64_add_negative(nr, &hwc->period_left))
4230
		return;
4231

4232
	perf_swevent_overflow(event, 0, nmi, data, regs);
4233 4234
}

4235 4236 4237
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4238 4239 4240
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4252
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4253
				enum perf_type_id type,
L
Li Zefan 已提交
4254 4255 4256
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4257
{
4258
	if (event->attr.type != type)
4259
		return 0;
4260

4261
	if (event->attr.config != event_id)
4262 4263
		return 0;

4264 4265
	if (perf_exclude_event(event, regs))
		return 0;
4266 4267 4268 4269

	return 1;
}

4270 4271 4272 4273 4274 4275 4276
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4277 4278
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4279
{
4280 4281 4282 4283
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4284

4285 4286 4287 4288 4289
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4290 4291 4292 4293 4294

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4317 4318 4319 4320 4321 4322
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4323
{
4324
	struct perf_cpu_context *cpuctx;
4325
	struct perf_event *event;
4326 4327
	struct hlist_node *node;
	struct hlist_head *head;
4328

4329 4330 4331 4332
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4333
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4334 4335 4336 4337 4338

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4339
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4340
			perf_swevent_event(event, nr, nmi, data, regs);
4341
	}
4342 4343
end:
	rcu_read_unlock();
4344 4345
}

4346
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4347
{
4348
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4349

4350
	return get_recursion_context(cpuctx->recursion);
P
Peter Zijlstra 已提交
4351
}
I
Ingo Molnar 已提交
4352
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4353

4354
void inline perf_swevent_put_recursion_context(int rctx)
4355
{
4356
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4357 4358

	put_recursion_context(cpuctx->recursion, rctx);
4359
}
4360

4361
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4362
			    struct pt_regs *regs, u64 addr)
4363
{
4364
	struct perf_sample_data data;
4365 4366
	int rctx;

4367
	preempt_disable_notrace();
4368 4369 4370
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4371

4372
	perf_sample_data_init(&data, addr);
4373

4374
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4375 4376

	perf_swevent_put_recursion_context(rctx);
4377
	preempt_enable_notrace();
4378 4379
}

4380
static void perf_swevent_read(struct perf_event *event)
4381 4382 4383
{
}

P
Peter Zijlstra 已提交
4384
static int perf_swevent_add(struct perf_event *event, int flags)
4385
{
4386
	struct hw_perf_event *hwc = &event->hw;
4387 4388 4389 4390
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4391 4392 4393

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4394
		perf_swevent_set_period(event);
4395
	}
4396

P
Peter Zijlstra 已提交
4397 4398
	hwc->state = !(flags & PERF_EF_START);

4399
	head = find_swevent_head(cpuctx, event);
4400 4401 4402 4403 4404
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4405 4406 4407
	return 0;
}

P
Peter Zijlstra 已提交
4408
static void perf_swevent_del(struct perf_event *event, int flags)
4409
{
4410
	hlist_del_rcu(&event->hlist_entry);
4411 4412
}

P
Peter Zijlstra 已提交
4413
static void perf_swevent_start(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4414
{
P
Peter Zijlstra 已提交
4415
	event->hw.state = 0;
P
Peter Zijlstra 已提交
4416 4417
}

P
Peter Zijlstra 已提交
4418
static void perf_swevent_stop(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4419
{
P
Peter Zijlstra 已提交
4420
	event->hw.state = PERF_HES_STOPPED;
P
Peter Zijlstra 已提交
4421 4422
}

4423 4424 4425 4426 4427 4428 4429 4430
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4441
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4442

4443
	if (!hlist)
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4482
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
P
Peter Zijlstra 已提交
4493
exit:
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4518
fail:
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4529
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4530

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4576 4577 4578 4579
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4580 4581 4582
	.read		= perf_swevent_read,
};

4583 4584
#ifdef CONFIG_EVENT_TRACING

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4599 4600 4601 4602
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4603 4604 4605 4606 4607 4608 4609 4610 4611
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4612
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4613 4614
{
	struct perf_sample_data data;
4615 4616 4617
	struct perf_event *event;
	struct hlist_node *node;

4618 4619 4620 4621 4622 4623 4624 4625
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4626 4627
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4628
			perf_swevent_event(event, count, 1, &data, regs);
4629
	}
4630 4631

	perf_swevent_put_recursion_context(rctx);
4632 4633 4634
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4635
static void tp_perf_event_destroy(struct perf_event *event)
4636
{
4637
	perf_trace_destroy(event);
4638 4639
}

4640
static int perf_tp_event_init(struct perf_event *event)
4641
{
4642 4643
	int err;

4644 4645 4646
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4647 4648 4649 4650
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4651
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4652
			perf_paranoid_tracepoint_raw() &&
4653
			!capable(CAP_SYS_ADMIN))
4654
		return -EPERM;
4655

4656 4657
	err = perf_trace_init(event);
	if (err)
4658
		return err;
4659

4660
	event->destroy = tp_perf_event_destroy;
4661

4662 4663 4664 4665 4666
	return 0;
}

static struct pmu perf_tracepoint = {
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4667 4668 4669 4670
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4671 4672 4673 4674 4675 4676
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4677
}
L
Li Zefan 已提交
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4702
#else
L
Li Zefan 已提交
4703

4704
static inline void perf_tp_register(void)
4705 4706
{
}
L
Li Zefan 已提交
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4717
#endif /* CONFIG_EVENT_TRACING */
4718

4719
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4720
void perf_bp_event(struct perf_event *bp, void *data)
4721
{
4722 4723 4724 4725 4726
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4727 4728
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4729
}
4730 4731 4732 4733 4734
#endif

/*
 * hrtimer based swevent callback
 */
4735

4736
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4737
{
4738 4739 4740 4741 4742
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4743

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4756

4757 4758
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4759

4760
	return ret;
4761 4762
}

4763
static void perf_swevent_start_hrtimer(struct perf_event *event)
4764
{
4765
	struct hw_perf_event *hwc = &event->hw;
4766

4767 4768 4769
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4770
		s64 period = local64_read(&hwc->period_left);
4771

P
Peter Zijlstra 已提交
4772 4773
		if (period) {
			if (period < 0)
4774
				period = 10000;
P
Peter Zijlstra 已提交
4775 4776

			local64_set(&hwc->period_left, 0);
4777 4778 4779 4780 4781 4782 4783
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
4784
}
4785 4786

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4787
{
4788 4789 4790 4791
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4792
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4793 4794 4795

		hrtimer_cancel(&hwc->hrtimer);
	}
4796 4797
}

4798 4799 4800 4801 4802
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4803
{
4804 4805 4806
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4807
	now = local_clock();
4808 4809
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4810 4811
}

P
Peter Zijlstra 已提交
4812
static void cpu_clock_event_start(struct perf_event *event, int flags)
4813
{
P
Peter Zijlstra 已提交
4814
	local64_set(&event->hw.prev_count, local_clock());
4815 4816 4817
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4818
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4819
{
4820 4821 4822
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4823

P
Peter Zijlstra 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4837 4838 4839 4840
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4841

4842 4843 4844 4845 4846 4847 4848 4849 4850
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4851 4852
}

4853 4854
static struct pmu perf_cpu_clock = {
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
4855 4856 4857 4858
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
4859 4860 4861 4862 4863 4864 4865 4866
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
4867
{
4868 4869
	u64 prev;
	s64 delta;
4870

4871 4872 4873 4874
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
4875

P
Peter Zijlstra 已提交
4876
static void task_clock_event_start(struct perf_event *event, int flags)
4877
{
P
Peter Zijlstra 已提交
4878
	local64_set(&event->hw.prev_count, event->ctx->time);
4879 4880 4881
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4882
static void task_clock_event_stop(struct perf_event *event, int flags)
4883 4884 4885
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
4886 4887 4888 4889 4890 4891
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
4892

P
Peter Zijlstra 已提交
4893 4894 4895 4896 4897 4898
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
4930 4931 4932 4933
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
4934 4935 4936 4937 4938 4939 4940
	.read		= task_clock_event_read,
};

static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

P
Peter Zijlstra 已提交
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
static void perf_pmu_nop_void(struct pmu *pmu)
{
}

static int perf_pmu_nop_int(struct pmu *pmu)
{
	return 0;
}

static void perf_pmu_start_txn(struct pmu *pmu)
{
	perf_pmu_disable(pmu);
}

static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}

static void perf_pmu_cancel_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
}

4966 4967
int perf_pmu_register(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
4968 4969
	int ret;

4970
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
4971 4972 4973 4974
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
P
Peter Zijlstra 已提交
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997

	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

4998
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
4999 5000
	ret = 0;
unlock:
5001 5002
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5003
	return ret;
5004 5005 5006 5007 5008 5009 5010 5011 5012
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5013 5014

	free_percpu(pmu->pmu_disable_count);
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
			break;
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
			break;
5030
		}
5031
	}
5032
	srcu_read_unlock(&pmus_srcu, idx);
5033

5034
	return pmu;
5035 5036
}

T
Thomas Gleixner 已提交
5037
/*
5038
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5039
 */
5040 5041
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
5042
		   int cpu,
5043 5044 5045
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5046
		   perf_overflow_handler_t overflow_handler,
5047
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
5048
{
P
Peter Zijlstra 已提交
5049
	struct pmu *pmu;
5050 5051
	struct perf_event *event;
	struct hw_perf_event *hwc;
5052
	long err;
T
Thomas Gleixner 已提交
5053

5054 5055
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
5056
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5057

5058
	/*
5059
	 * Single events are their own group leaders, with an
5060 5061 5062
	 * empty sibling list:
	 */
	if (!group_leader)
5063
		group_leader = event;
5064

5065 5066
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5067

5068 5069 5070 5071
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5072

5073
	mutex_init(&event->mmap_mutex);
5074

5075 5076 5077 5078 5079 5080
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
5081

5082
	event->parent		= parent_event;
5083

5084 5085
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5086

5087
	event->state		= PERF_EVENT_STATE_INACTIVE;
5088

5089 5090
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5091
	
5092
	event->overflow_handler	= overflow_handler;
5093

5094
	if (attr->disabled)
5095
		event->state = PERF_EVENT_STATE_OFF;
5096

5097
	pmu = NULL;
5098

5099
	hwc = &event->hw;
5100
	hwc->sample_period = attr->sample_period;
5101
	if (attr->freq && attr->sample_freq)
5102
		hwc->sample_period = 1;
5103
	hwc->last_period = hwc->sample_period;
5104

5105
	local64_set(&hwc->period_left, hwc->sample_period);
5106

5107
	/*
5108
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5109
	 */
5110
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5111 5112
		goto done;

5113
	pmu = perf_init_event(event);
5114

5115 5116
done:
	err = 0;
5117
	if (!pmu)
5118
		err = -EINVAL;
5119 5120
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5121

5122
	if (err) {
5123 5124 5125
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5126
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5127
	}
5128

5129
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5130

5131 5132
	if (!event->parent) {
		atomic_inc(&nr_events);
5133
		if (event->attr.mmap || event->attr.mmap_data)
5134 5135 5136 5137 5138
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5139 5140 5141 5142 5143 5144 5145
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5146
	}
5147

5148
	return event;
T
Thomas Gleixner 已提交
5149 5150
}

5151 5152
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5153 5154
{
	u32 size;
5155
	int ret;
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5180 5181 5182
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5183 5184
	 */
	if (size > sizeof(*attr)) {
5185 5186 5187
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5188

5189 5190
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5191

5192
		for (; addr < end; addr++) {
5193 5194 5195 5196 5197 5198
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5199
		size = sizeof(*attr);
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5213
	if (attr->__reserved_1)
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5231 5232
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5233
{
5234
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5235 5236
	int ret = -EINVAL;

5237
	if (!output_event)
5238 5239
		goto set;

5240 5241
	/* don't allow circular references */
	if (event == output_event)
5242 5243
		goto out;

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5256
set:
5257
	mutex_lock(&event->mmap_mutex);
5258 5259 5260
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5261

5262 5263
	if (output_event) {
		/* get the buffer we want to redirect to */
5264 5265
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5266
			goto unlock;
5267 5268
	}

5269 5270
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5271
	ret = 0;
5272 5273 5274
unlock:
	mutex_unlock(&event->mmap_mutex);

5275 5276
	if (old_buffer)
		perf_buffer_put(old_buffer);
5277 5278 5279 5280
out:
	return ret;
}

T
Thomas Gleixner 已提交
5281
/**
5282
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5283
 *
5284
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5285
 * @pid:		target pid
I
Ingo Molnar 已提交
5286
 * @cpu:		target cpu
5287
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5288
 */
5289 5290
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5291
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5292
{
5293
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5294 5295 5296
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5297
	struct file *group_file = NULL;
5298
	int event_fd;
5299
	int fput_needed = 0;
5300
	int err;
T
Thomas Gleixner 已提交
5301

5302
	/* for future expandability... */
5303
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5304 5305
		return -EINVAL;

5306 5307 5308
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5309

5310 5311 5312 5313 5314
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5315
	if (attr.freq) {
5316
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5317 5318 5319
			return -EINVAL;
	}

5320 5321 5322 5323
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5324
	/*
I
Ingo Molnar 已提交
5325 5326 5327
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5328 5329 5330 5331
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5332

5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5346
	/*
5347
	 * Look up the group leader (we will attach this event to it):
5348
	 */
5349
	if (group_leader) {
5350
		err = -EINVAL;
5351 5352

		/*
I
Ingo Molnar 已提交
5353 5354 5355 5356 5357 5358 5359 5360
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5361
		 */
I
Ingo Molnar 已提交
5362 5363
		if (group_leader->ctx != ctx)
			goto err_put_context;
5364 5365 5366
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5367
		if (attr.exclusive || attr.pinned)
5368
			goto err_put_context;
5369 5370
	}

5371
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5372
				     NULL, NULL, GFP_KERNEL);
5373 5374
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5375
		goto err_put_context;
5376 5377 5378 5379 5380 5381 5382
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5383

5384 5385 5386
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5387
		goto err_free_put_context;
5388
	}
5389

5390
	event->filp = event_file;
5391
	WARN_ON_ONCE(ctx->parent_ctx);
5392
	mutex_lock(&ctx->mutex);
5393
	perf_install_in_context(ctx, event, cpu);
5394
	++ctx->generation;
5395
	mutex_unlock(&ctx->mutex);
5396

5397
	event->owner = current;
5398
	get_task_struct(current);
5399 5400 5401
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5402

5403 5404 5405 5406 5407 5408
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5409 5410 5411
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5412

5413
err_free_put_context:
5414
	free_event(event);
T
Thomas Gleixner 已提交
5415
err_put_context:
5416
	fput_light(group_file, fput_needed);
5417 5418 5419
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5420
	return err;
T
Thomas Gleixner 已提交
5421 5422
}

5423 5424 5425 5426 5427 5428 5429 5430 5431
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5432 5433
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5444 5445 5446 5447
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5448 5449

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5450
				 NULL, overflow_handler, GFP_KERNEL);
5451 5452
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5453
		goto err_put_context;
5454
	}
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5471 5472 5473 5474
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5475 5476 5477
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5478
/*
5479
 * inherit a event from parent task to child task:
5480
 */
5481 5482
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5483
	      struct task_struct *parent,
5484
	      struct perf_event_context *parent_ctx,
5485
	      struct task_struct *child,
5486 5487
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5488
{
5489
	struct perf_event *child_event;
5490

5491
	/*
5492 5493
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5494 5495 5496
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5497 5498
	if (parent_event->parent)
		parent_event = parent_event->parent;
5499

5500 5501 5502
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5503
					   NULL, GFP_KERNEL);
5504 5505
	if (IS_ERR(child_event))
		return child_event;
5506
	get_ctx(child_ctx);
5507

5508
	/*
5509
	 * Make the child state follow the state of the parent event,
5510
	 * not its attr.disabled bit.  We hold the parent's mutex,
5511
	 * so we won't race with perf_event_{en, dis}able_family.
5512
	 */
5513 5514
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5515
	else
5516
		child_event->state = PERF_EVENT_STATE_OFF;
5517

5518 5519 5520 5521 5522 5523 5524
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

5525
		local64_set(&hwc->period_left, sample_period);
5526
	}
5527

5528 5529
	child_event->overflow_handler = parent_event->overflow_handler;

5530 5531 5532
	/*
	 * Link it up in the child's context:
	 */
5533
	add_event_to_ctx(child_event, child_ctx);
5534 5535 5536

	/*
	 * Get a reference to the parent filp - we will fput it
5537
	 * when the child event exits. This is safe to do because
5538 5539 5540
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5541
	atomic_long_inc(&parent_event->filp->f_count);
5542

5543
	/*
5544
	 * Link this into the parent event's child list
5545
	 */
5546 5547 5548 5549
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5550

5551
	return child_event;
5552 5553
}

5554
static int inherit_group(struct perf_event *parent_event,
5555
	      struct task_struct *parent,
5556
	      struct perf_event_context *parent_ctx,
5557
	      struct task_struct *child,
5558
	      struct perf_event_context *child_ctx)
5559
{
5560 5561 5562
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5563

5564
	leader = inherit_event(parent_event, parent, parent_ctx,
5565
				 child, NULL, child_ctx);
5566 5567
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5568 5569
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5570 5571 5572
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5573
	}
5574 5575 5576
	return 0;
}

5577
static void sync_child_event(struct perf_event *child_event,
5578
			       struct task_struct *child)
5579
{
5580
	struct perf_event *parent_event = child_event->parent;
5581
	u64 child_val;
5582

5583 5584
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5585

P
Peter Zijlstra 已提交
5586
	child_val = perf_event_count(child_event);
5587 5588 5589 5590

	/*
	 * Add back the child's count to the parent's count:
	 */
5591
	atomic64_add(child_val, &parent_event->child_count);
5592 5593 5594 5595
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5596 5597

	/*
5598
	 * Remove this event from the parent's list
5599
	 */
5600 5601 5602 5603
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5604 5605

	/*
5606
	 * Release the parent event, if this was the last
5607 5608
	 * reference to it.
	 */
5609
	fput(parent_event->filp);
5610 5611
}

5612
static void
5613 5614
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5615
			 struct task_struct *child)
5616
{
5617
	struct perf_event *parent_event;
5618

5619
	perf_event_remove_from_context(child_event);
5620

5621
	parent_event = child_event->parent;
5622
	/*
5623
	 * It can happen that parent exits first, and has events
5624
	 * that are still around due to the child reference. These
5625
	 * events need to be zapped - but otherwise linger.
5626
	 */
5627 5628 5629
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5630
	}
5631 5632 5633
}

/*
5634
 * When a child task exits, feed back event values to parent events.
5635
 */
5636
void perf_event_exit_task(struct task_struct *child)
5637
{
5638 5639
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5640
	unsigned long flags;
5641

5642 5643
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5644
		return;
P
Peter Zijlstra 已提交
5645
	}
5646

5647
	local_irq_save(flags);
5648 5649 5650 5651 5652 5653
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5654 5655
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5656 5657 5658

	/*
	 * Take the context lock here so that if find_get_context is
5659
	 * reading child->perf_event_ctxp, we wait until it has
5660 5661
	 * incremented the context's refcount before we do put_ctx below.
	 */
5662
	raw_spin_lock(&child_ctx->lock);
5663
	child->perf_event_ctxp = NULL;
5664 5665 5666
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5667
	 * the events from it.
5668 5669
	 */
	unclone_ctx(child_ctx);
5670
	update_context_time(child_ctx);
5671
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5672 5673

	/*
5674 5675 5676
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5677
	 */
5678
	perf_event_task(child, child_ctx, 0);
5679

5680 5681 5682
	/*
	 * We can recurse on the same lock type through:
	 *
5683 5684 5685
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5686 5687 5688 5689 5690
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5691
	mutex_lock(&child_ctx->mutex);
5692

5693
again:
5694 5695 5696 5697 5698
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5699
				 group_entry)
5700
		__perf_event_exit_task(child_event, child_ctx, child);
5701 5702

	/*
5703
	 * If the last event was a group event, it will have appended all
5704 5705 5706
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5707 5708
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5709
		goto again;
5710 5711 5712 5713

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5714 5715
}

5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5730
	perf_group_detach(event);
5731 5732 5733 5734
	list_del_event(event, ctx);
	free_event(event);
}

5735 5736 5737 5738
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5739
void perf_event_free_task(struct task_struct *task)
5740
{
5741 5742
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5743 5744 5745 5746 5747 5748

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5749 5750
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5751

5752 5753 5754
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5755

5756 5757 5758
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5759

5760
	mutex_unlock(&ctx->mutex);
5761

5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5777 5778
	}

5779 5780 5781 5782 5783 5784 5785
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5786

5787 5788 5789 5790
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5791

5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5804 5805
}

5806

5807
/*
5808
 * Initialize the perf_event context in task_struct
5809
 */
5810
int perf_event_init_task(struct task_struct *child)
5811
{
5812
	struct perf_event_context *child_ctx, *parent_ctx;
5813 5814
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5815
	struct task_struct *parent = current;
5816
	int inherited_all = 1;
5817
	int ret = 0;
5818

5819
	child->perf_event_ctxp = NULL;
5820

5821 5822
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5823

5824
	if (likely(!parent->perf_event_ctxp))
5825 5826
		return 0;

5827
	/*
5828 5829
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5830
	 */
5831 5832
	parent_ctx = perf_pin_task_context(parent);

5833 5834 5835 5836 5837 5838 5839
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5840 5841 5842 5843
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5844
	mutex_lock(&parent_ctx->mutex);
5845 5846 5847 5848 5849

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5850 5851 5852 5853 5854 5855
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5856

5857 5858 5859 5860
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5861
			break;
5862 5863
	}

5864 5865
	child_ctx = child->perf_event_ctxp;

5866
	if (child_ctx && inherited_all) {
5867 5868 5869
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5870 5871
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5872
		 * because the list of events and the generation
5873
		 * count can't have changed since we took the mutex.
5874
		 */
5875 5876 5877
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5878
			child_ctx->parent_gen = parent_ctx->parent_gen;
5879 5880 5881 5882 5883
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5884 5885
	}

5886
	mutex_unlock(&parent_ctx->mutex);
5887

5888
	perf_unpin_context(parent_ctx);
5889

5890
	return ret;
5891 5892
}

5893 5894 5895 5896 5897 5898 5899
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5900
		mutex_init(&cpuctx->hlist_mutex);
5901 5902 5903 5904
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5905
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5906
{
5907
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5908

5909
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5910

5911 5912 5913 5914 5915 5916 5917 5918 5919
	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5920 5921 5922
}

#ifdef CONFIG_HOTPLUG_CPU
5923
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5924 5925
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5926 5927
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5928

5929 5930 5931
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5932
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5933
}
5934
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5935
{
5936
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5937
	struct perf_event_context *ctx = &cpuctx->ctx;
5938

5939 5940 5941 5942
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5943
	mutex_lock(&ctx->mutex);
5944
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5945
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5946 5947
}
#else
5948
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5949 5950 5951 5952 5953 5954 5955
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
5956
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
5957 5958

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
5959
	case CPU_DOWN_FAILED:
5960
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5961 5962
		break;

P
Peter Zijlstra 已提交
5963
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
5964
	case CPU_DOWN_PREPARE:
5965
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5966 5967 5968 5969 5970 5971 5972 5973 5974
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5975
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5976
{
5977
	perf_event_init_all_cpus();
5978 5979 5980 5981 5982 5983
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
5984
}