perf_event.c 137.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
37
/*
38
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
39
 */
40
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
41

42
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
43 44 45
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

46 47 48 49
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
50

51
/*
52
 * perf event paranoia level:
53 54
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
55
 *   1 - disallow cpu events for unpriv
56
 *   2 - disallow kernel profiling for unpriv
57
 */
58
int sysctl_perf_event_paranoid __read_mostly = 1;
59

60
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
61 62

/*
63
 * max perf event sample rate
64
 */
65
int sysctl_perf_event_sample_rate __read_mostly = 100000;
66

67
static atomic64_t perf_event_id;
68

T
Thomas Gleixner 已提交
69
/*
70
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
71
 */
72
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
73

74 75 76
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

77
void __weak perf_event_print_debug(void)	{ }
78

79
static DEFINE_PER_CPU(int, perf_disable_count);
80 81 82

void perf_disable(void)
{
P
Peter Zijlstra 已提交
83 84
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
85 86 87 88
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
89
	if (!--__get_cpu_var(perf_disable_count))
90 91 92
		hw_perf_enable();
}

93
static void get_ctx(struct perf_event_context *ctx)
94
{
95
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
96 97
}

98 99
static void free_ctx(struct rcu_head *head)
{
100
	struct perf_event_context *ctx;
101

102
	ctx = container_of(head, struct perf_event_context, rcu_head);
103 104 105
	kfree(ctx);
}

106
static void put_ctx(struct perf_event_context *ctx)
107
{
108 109 110
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
111 112 113
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
114
	}
115 116
}

117
static void unclone_ctx(struct perf_event_context *ctx)
118 119 120 121 122 123 124
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

125
/*
126
 * If we inherit events we want to return the parent event id
127 128
 * to userspace.
 */
129
static u64 primary_event_id(struct perf_event *event)
130
{
131
	u64 id = event->id;
132

133 134
	if (event->parent)
		id = event->parent->id;
135 136 137 138

	return id;
}

139
/*
140
 * Get the perf_event_context for a task and lock it.
141 142 143
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
144
static struct perf_event_context *
145
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
146
{
147
	struct perf_event_context *ctx;
148 149 150

	rcu_read_lock();
 retry:
151
	ctx = rcu_dereference(task->perf_event_ctxp);
152 153 154 155
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
156
		 * perf_event_task_sched_out, though the
157 158 159 160 161 162
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
163
		raw_spin_lock_irqsave(&ctx->lock, *flags);
164
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
165
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
166 167
			goto retry;
		}
168 169

		if (!atomic_inc_not_zero(&ctx->refcount)) {
170
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
171 172
			ctx = NULL;
		}
173 174 175 176 177 178 179 180 181 182
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
183
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
184
{
185
	struct perf_event_context *ctx;
186 187 188 189 190
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
191
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
192 193 194 195
	}
	return ctx;
}

196
static void perf_unpin_context(struct perf_event_context *ctx)
197 198 199
{
	unsigned long flags;

200
	raw_spin_lock_irqsave(&ctx->lock, flags);
201
	--ctx->pin_count;
202
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
203 204 205
	put_ctx(ctx);
}

206 207
static inline u64 perf_clock(void)
{
208
	return local_clock();
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

234 235 236 237 238 239
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
240 241 242 243 244 245 246 247 248

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

249 250 251 252 253 254 255 256 257 258 259 260
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

261 262 263 264 265 266 267 268 269
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

270
/*
271
 * Add a event from the lists for its context.
272 273
 * Must be called with ctx->mutex and ctx->lock held.
 */
274
static void
275
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
276
{
277 278
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
279 280

	/*
281 282 283
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
284
	 */
285
	if (event->group_leader == event) {
286 287
		struct list_head *list;

288 289 290
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

291 292
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
293
	}
P
Peter Zijlstra 已提交
294

295 296 297
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
298
		ctx->nr_stat++;
299 300
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

319
/*
320
 * Remove a event from the lists for its context.
321
 * Must be called with ctx->mutex and ctx->lock held.
322
 */
323
static void
324
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325
{
326 327 328 329
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
330
		return;
331 332 333

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

334 335
	ctx->nr_events--;
	if (event->attr.inherit_stat)
336
		ctx->nr_stat--;
337

338
	list_del_rcu(&event->event_entry);
339

340 341
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
342

343
	update_group_times(event);
344 345 346 347 348 349 350 351 352 353

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
354 355
}

356
static void perf_group_detach(struct perf_event *event)
357 358
{
	struct perf_event *sibling, *tmp;
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
380

381
	/*
382 383
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
384
	 * to whatever list we are on.
385
	 */
386
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
387 388
		if (list)
			list_move_tail(&sibling->group_entry, list);
389
		sibling->group_leader = sibling;
390 391 392

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
393 394 395
	}
}

396 397 398 399 400 401
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

402
static void
403
event_sched_out(struct perf_event *event,
404
		  struct perf_cpu_context *cpuctx,
405
		  struct perf_event_context *ctx)
406
{
407 408 409 410 411 412 413 414 415 416 417 418 419 420
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

421
	if (event->state != PERF_EVENT_STATE_ACTIVE)
422 423
		return;

424 425 426 427
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
428
	}
429 430 431
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
432

433
	if (!is_software_event(event))
434 435
		cpuctx->active_oncpu--;
	ctx->nr_active--;
436
	if (event->attr.exclusive || !cpuctx->active_oncpu)
437 438 439
		cpuctx->exclusive = 0;
}

440
static void
441
group_sched_out(struct perf_event *group_event,
442
		struct perf_cpu_context *cpuctx,
443
		struct perf_event_context *ctx)
444
{
445
	struct perf_event *event;
446
	int state = group_event->state;
447

448
	event_sched_out(group_event, cpuctx, ctx);
449 450 451 452

	/*
	 * Schedule out siblings (if any):
	 */
453 454
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
455

456
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
457 458 459
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
460
/*
461
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
462
 *
463
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
464 465
 * remove it from the context list.
 */
466
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
467 468
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
469 470
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
471 472 473 474 475 476

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
477
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
478 479
		return;

480
	raw_spin_lock(&ctx->lock);
481 482
	/*
	 * Protect the list operation against NMI by disabling the
483
	 * events on a global level.
484 485
	 */
	perf_disable();
T
Thomas Gleixner 已提交
486

487
	event_sched_out(event, cpuctx, ctx);
488

489
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
490 491 492

	if (!ctx->task) {
		/*
493
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
494 495 496
		 * reservation:
		 */
		cpuctx->max_pertask =
497 498
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
499 500
	}

501
	perf_enable();
502
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
503 504 505 506
}


/*
507
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
508
 *
509
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
510
 *
511
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
512
 * call when the task is on a CPU.
513
 *
514 515
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
516 517
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
518
 * When called from perf_event_exit_task, it's OK because the
519
 * context has been detached from its task.
T
Thomas Gleixner 已提交
520
 */
521
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
522
{
523
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
524 525 526 527
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
528
		 * Per cpu events are removed via an smp call and
529
		 * the removal is always successful.
T
Thomas Gleixner 已提交
530
		 */
531 532 533
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
534 535 536 537
		return;
	}

retry:
538 539
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
540

541
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
542 543 544
	/*
	 * If the context is active we need to retry the smp call.
	 */
545
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
546
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
547 548 549 550 551
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
552
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
553 554
	 * succeed.
	 */
P
Peter Zijlstra 已提交
555
	if (!list_empty(&event->group_entry))
556
		list_del_event(event, ctx);
557
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
558 559
}

560
/*
561
 * Cross CPU call to disable a performance event
562
 */
563
static void __perf_event_disable(void *info)
564
{
565
	struct perf_event *event = info;
566
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
567
	struct perf_event_context *ctx = event->ctx;
568 569

	/*
570 571
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
572
	 */
573
	if (ctx->task && cpuctx->task_ctx != ctx)
574 575
		return;

576
	raw_spin_lock(&ctx->lock);
577 578

	/*
579
	 * If the event is on, turn it off.
580 581
	 * If it is in error state, leave it in error state.
	 */
582
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
583
		update_context_time(ctx);
584 585 586
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
587
		else
588 589
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
590 591
	}

592
	raw_spin_unlock(&ctx->lock);
593 594 595
}

/*
596
 * Disable a event.
597
 *
598 599
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
600
 * remains valid.  This condition is satisifed when called through
601 602 603 604
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
605
 * is the current context on this CPU and preemption is disabled,
606
 * hence we can't get into perf_event_task_sched_out for this context.
607
 */
608
void perf_event_disable(struct perf_event *event)
609
{
610
	struct perf_event_context *ctx = event->ctx;
611 612 613 614
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
615
		 * Disable the event on the cpu that it's on
616
		 */
617 618
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
619 620 621 622
		return;
	}

 retry:
623
	task_oncpu_function_call(task, __perf_event_disable, event);
624

625
	raw_spin_lock_irq(&ctx->lock);
626
	/*
627
	 * If the event is still active, we need to retry the cross-call.
628
	 */
629
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
630
		raw_spin_unlock_irq(&ctx->lock);
631 632 633 634 635 636 637
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
638 639 640
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
641
	}
642

643
	raw_spin_unlock_irq(&ctx->lock);
644 645
}

646
static int
647
event_sched_in(struct perf_event *event,
648
		 struct perf_cpu_context *cpuctx,
649
		 struct perf_event_context *ctx)
650
{
651
	if (event->state <= PERF_EVENT_STATE_OFF)
652 653
		return 0;

654
	event->state = PERF_EVENT_STATE_ACTIVE;
655
	event->oncpu = smp_processor_id();
656 657 658 659 660
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

661 662 663
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
664 665 666
		return -EAGAIN;
	}

667
	event->tstamp_running += ctx->time - event->tstamp_stopped;
668

669
	if (!is_software_event(event))
670
		cpuctx->active_oncpu++;
671 672
	ctx->nr_active++;

673
	if (event->attr.exclusive)
674 675
		cpuctx->exclusive = 1;

676 677 678
	return 0;
}

679
static int
680
group_sched_in(struct perf_event *group_event,
681
	       struct perf_cpu_context *cpuctx,
682
	       struct perf_event_context *ctx)
683
{
684
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
685
	struct pmu *pmu = group_event->pmu;
686
	bool txn = false;
687

688
	if (group_event->state == PERF_EVENT_STATE_OFF)
689 690
		return 0;

691 692 693 694 695 696
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
697

698 699 700
	if (event_sched_in(group_event, cpuctx, ctx)) {
		if (txn)
			pmu->cancel_txn(pmu);
701
		return -EAGAIN;
702
	}
703 704 705 706

	/*
	 * Schedule in siblings as one group (if any):
	 */
707
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
708
		if (event_sched_in(event, cpuctx, ctx)) {
709
			partial_group = event;
710 711 712 713
			goto group_error;
		}
	}

714
	if (!txn || !pmu->commit_txn(pmu))
715
		return 0;
716

717 718 719 720 721
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
722 723
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
724
			break;
725
		event_sched_out(event, cpuctx, ctx);
726
	}
727
	event_sched_out(group_event, cpuctx, ctx);
728

729 730 731
	if (txn)
		pmu->cancel_txn(pmu);

732 733 734
	return -EAGAIN;
}

735
/*
736
 * Work out whether we can put this event group on the CPU now.
737
 */
738
static int group_can_go_on(struct perf_event *event,
739 740 741 742
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
743
	 * Groups consisting entirely of software events can always go on.
744
	 */
745
	if (event->group_flags & PERF_GROUP_SOFTWARE)
746 747 748
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
749
	 * events can go on.
750 751 752 753 754
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
755
	 * events on the CPU, it can't go on.
756
	 */
757
	if (event->attr.exclusive && cpuctx->active_oncpu)
758 759 760 761 762 763 764 765
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

766 767
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
768
{
769
	list_add_event(event, ctx);
770
	perf_group_attach(event);
771 772 773
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
774 775
}

T
Thomas Gleixner 已提交
776
/*
777
 * Cross CPU call to install and enable a performance event
778 779
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
780 781 782 783
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
784 785 786
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
787
	int err;
T
Thomas Gleixner 已提交
788 789 790 791 792

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
793
	 * Or possibly this is the right context but it isn't
794
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
795
	 */
796
	if (ctx->task && cpuctx->task_ctx != ctx) {
797
		if (cpuctx->task_ctx || ctx->task != current)
798 799 800
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
801

802
	raw_spin_lock(&ctx->lock);
803
	ctx->is_active = 1;
804
	update_context_time(ctx);
T
Thomas Gleixner 已提交
805 806 807

	/*
	 * Protect the list operation against NMI by disabling the
808
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
809
	 */
810
	perf_disable();
T
Thomas Gleixner 已提交
811

812
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
813

814 815 816
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

817
	/*
818
	 * Don't put the event on if it is disabled or if
819 820
	 * it is in a group and the group isn't on.
	 */
821 822
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
823 824
		goto unlock;

825
	/*
826 827 828
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
829
	 */
830
	if (!group_can_go_on(event, cpuctx, 1))
831 832
		err = -EEXIST;
	else
833
		err = event_sched_in(event, cpuctx, ctx);
834

835 836
	if (err) {
		/*
837
		 * This event couldn't go on.  If it is in a group
838
		 * then we have to pull the whole group off.
839
		 * If the event group is pinned then put it in error state.
840
		 */
841
		if (leader != event)
842
			group_sched_out(leader, cpuctx, ctx);
843
		if (leader->attr.pinned) {
844
			update_group_times(leader);
845
			leader->state = PERF_EVENT_STATE_ERROR;
846
		}
847
	}
T
Thomas Gleixner 已提交
848

849
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
850 851
		cpuctx->max_pertask--;

852
 unlock:
853
	perf_enable();
854

855
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
856 857 858
}

/*
859
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
860
 *
861 862
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
863
 *
864
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
865 866
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
867 868
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
869 870
 */
static void
871 872
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
873 874 875 876 877 878
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
879
		 * Per cpu events are installed via an smp call and
880
		 * the install is always successful.
T
Thomas Gleixner 已提交
881 882
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
883
					 event, 1);
T
Thomas Gleixner 已提交
884 885 886 887 888
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
889
				 event);
T
Thomas Gleixner 已提交
890

891
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
892 893 894
	/*
	 * we need to retry the smp call.
	 */
895
	if (ctx->is_active && list_empty(&event->group_entry)) {
896
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
897 898 899 900 901
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
902
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
903 904
	 * succeed.
	 */
905 906
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
907
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
908 909
}

910
/*
911
 * Put a event into inactive state and update time fields.
912 913 914 915 916 917
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
918 919
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
920
{
921
	struct perf_event *sub;
922

923 924 925 926
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
927 928 929 930
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

931
/*
932
 * Cross CPU call to enable a performance event
933
 */
934
static void __perf_event_enable(void *info)
935
{
936
	struct perf_event *event = info;
937
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
938 939
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
940
	int err;
941

942
	/*
943 944
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
945
	 */
946
	if (ctx->task && cpuctx->task_ctx != ctx) {
947
		if (cpuctx->task_ctx || ctx->task != current)
948 949 950
			return;
		cpuctx->task_ctx = ctx;
	}
951

952
	raw_spin_lock(&ctx->lock);
953
	ctx->is_active = 1;
954
	update_context_time(ctx);
955

956
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
957
		goto unlock;
958
	__perf_event_mark_enabled(event, ctx);
959

960 961 962
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

963
	/*
964
	 * If the event is in a group and isn't the group leader,
965
	 * then don't put it on unless the group is on.
966
	 */
967
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
968
		goto unlock;
969

970
	if (!group_can_go_on(event, cpuctx, 1)) {
971
		err = -EEXIST;
972
	} else {
973
		perf_disable();
974
		if (event == leader)
975
			err = group_sched_in(event, cpuctx, ctx);
976
		else
977
			err = event_sched_in(event, cpuctx, ctx);
978
		perf_enable();
979
	}
980 981 982

	if (err) {
		/*
983
		 * If this event can't go on and it's part of a
984 985
		 * group, then the whole group has to come off.
		 */
986
		if (leader != event)
987
			group_sched_out(leader, cpuctx, ctx);
988
		if (leader->attr.pinned) {
989
			update_group_times(leader);
990
			leader->state = PERF_EVENT_STATE_ERROR;
991
		}
992 993 994
	}

 unlock:
995
	raw_spin_unlock(&ctx->lock);
996 997 998
}

/*
999
 * Enable a event.
1000
 *
1001 1002
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1003
 * remains valid.  This condition is satisfied when called through
1004 1005
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1006
 */
1007
void perf_event_enable(struct perf_event *event)
1008
{
1009
	struct perf_event_context *ctx = event->ctx;
1010 1011 1012 1013
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1014
		 * Enable the event on the cpu that it's on
1015
		 */
1016 1017
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1018 1019 1020
		return;
	}

1021
	raw_spin_lock_irq(&ctx->lock);
1022
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1023 1024 1025
		goto out;

	/*
1026 1027
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1028 1029 1030 1031
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1032 1033
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1034 1035

 retry:
1036
	raw_spin_unlock_irq(&ctx->lock);
1037
	task_oncpu_function_call(task, __perf_event_enable, event);
1038

1039
	raw_spin_lock_irq(&ctx->lock);
1040 1041

	/*
1042
	 * If the context is active and the event is still off,
1043 1044
	 * we need to retry the cross-call.
	 */
1045
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1046 1047 1048 1049 1050 1051
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1052 1053
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1054

1055
 out:
1056
	raw_spin_unlock_irq(&ctx->lock);
1057 1058
}

1059
static int perf_event_refresh(struct perf_event *event, int refresh)
1060
{
1061
	/*
1062
	 * not supported on inherited events
1063
	 */
1064
	if (event->attr.inherit)
1065 1066
		return -EINVAL;

1067 1068
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1069 1070

	return 0;
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080 1081
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1082
{
1083
	struct perf_event *event;
1084

1085
	raw_spin_lock(&ctx->lock);
1086
	ctx->is_active = 0;
1087
	if (likely(!ctx->nr_events))
1088
		goto out;
1089
	update_context_time(ctx);
1090

1091
	perf_disable();
1092 1093 1094 1095
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1096 1097 1098
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1099
	if (event_type & EVENT_FLEXIBLE)
1100
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1101
			group_sched_out(event, cpuctx, ctx);
1102 1103

 out_enable:
1104
	perf_enable();
1105
 out:
1106
	raw_spin_unlock(&ctx->lock);
1107 1108
}

1109 1110 1111
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1112 1113 1114 1115
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1116
 * in them directly with an fd; we can only enable/disable all
1117
 * events via prctl, or enable/disable all events in a family
1118 1119
 * via ioctl, which will have the same effect on both contexts.
 */
1120 1121
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1122 1123
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1124
		&& ctx1->parent_gen == ctx2->parent_gen
1125
		&& !ctx1->pin_count && !ctx2->pin_count;
1126 1127
}

1128 1129
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1130 1131 1132
{
	u64 value;

1133
	if (!event->attr.inherit_stat)
1134 1135 1136
		return;

	/*
1137
	 * Update the event value, we cannot use perf_event_read()
1138 1139
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1140
	 * we know the event must be on the current CPU, therefore we
1141 1142
	 * don't need to use it.
	 */
1143 1144
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1145 1146
		event->pmu->read(event);
		/* fall-through */
1147

1148 1149
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1150 1151 1152 1153 1154 1155 1156
		break;

	default:
		break;
	}

	/*
1157
	 * In order to keep per-task stats reliable we need to flip the event
1158 1159
	 * values when we flip the contexts.
	 */
1160 1161 1162
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1163

1164 1165
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1166

1167
	/*
1168
	 * Since we swizzled the values, update the user visible data too.
1169
	 */
1170 1171
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1172 1173 1174 1175 1176
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1177 1178
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1179
{
1180
	struct perf_event *event, *next_event;
1181 1182 1183 1184

	if (!ctx->nr_stat)
		return;

1185 1186
	update_context_time(ctx);

1187 1188
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1189

1190 1191
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1192

1193 1194
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1195

1196
		__perf_event_sync_stat(event, next_event);
1197

1198 1199
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1200 1201 1202
	}
}

T
Thomas Gleixner 已提交
1203
/*
1204
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1205 1206
 * with interrupts disabled.
 *
1207
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1208
 *
I
Ingo Molnar 已提交
1209
 * This does not protect us against NMI, but disable()
1210 1211 1212
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1213
 */
1214
void perf_event_task_sched_out(struct task_struct *task,
1215
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1216
{
1217
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1218 1219 1220
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1221
	int do_switch = 1;
T
Thomas Gleixner 已提交
1222

1223
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1224

1225
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1226 1227
		return;

1228 1229
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1230
	next_ctx = next->perf_event_ctxp;
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1242 1243
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1244
		if (context_equiv(ctx, next_ctx)) {
1245 1246
			/*
			 * XXX do we need a memory barrier of sorts
1247
			 * wrt to rcu_dereference() of perf_event_ctxp
1248
			 */
1249 1250
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1251 1252 1253
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1254

1255
			perf_event_sync_stat(ctx, next_ctx);
1256
		}
1257 1258
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1259
	}
1260
	rcu_read_unlock();
1261

1262
	if (do_switch) {
1263
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1264 1265
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1266 1267
}

1268 1269
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1270 1271 1272
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1273 1274
	if (!cpuctx->task_ctx)
		return;
1275 1276 1277 1278

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1279
	ctx_sched_out(ctx, cpuctx, event_type);
1280 1281 1282
	cpuctx->task_ctx = NULL;
}

1283 1284 1285
/*
 * Called with IRQs disabled
 */
1286
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1287
{
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1298 1299
}

1300
static void
1301
ctx_pinned_sched_in(struct perf_event_context *ctx,
1302
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1303
{
1304
	struct perf_event *event;
T
Thomas Gleixner 已提交
1305

1306 1307
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1308
			continue;
1309
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1310 1311
			continue;

1312
		if (group_can_go_on(event, cpuctx, 1))
1313
			group_sched_in(event, cpuctx, ctx);
1314 1315 1316 1317 1318

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1319 1320 1321
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1322
		}
1323
	}
1324 1325 1326 1327
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1328
		      struct perf_cpu_context *cpuctx)
1329 1330 1331
{
	struct perf_event *event;
	int can_add_hw = 1;
1332

1333 1334 1335
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1336
			continue;
1337 1338
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1339
		 * of events:
1340
		 */
1341
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1342 1343
			continue;

1344
		if (group_can_go_on(event, cpuctx, can_add_hw))
1345
			if (group_sched_in(event, cpuctx, ctx))
1346
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1347
	}
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1369
		ctx_pinned_sched_in(ctx, cpuctx);
1370 1371 1372

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1373
		ctx_flexible_sched_in(ctx, cpuctx);
1374

1375
	perf_enable();
1376
 out:
1377
	raw_spin_unlock(&ctx->lock);
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1401
/*
1402
 * Called from scheduler to add the events of the current task
1403 1404
 * with interrupts disabled.
 *
1405
 * We restore the event value and then enable it.
1406 1407
 *
 * This does not protect us against NMI, but enable()
1408 1409 1410
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1411
 */
1412
void perf_event_task_sched_in(struct task_struct *task)
1413
{
1414 1415
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1416

1417 1418
	if (likely(!ctx))
		return;
1419

1420 1421 1422
	if (cpuctx->task_ctx == ctx)
		return;

1423 1424
	perf_disable();

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1437 1438

	perf_enable();
1439 1440
}

1441 1442
#define MAX_INTERRUPTS (~0ULL)

1443
static void perf_log_throttle(struct perf_event *event, int enable);
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1512 1513 1514
	if (!divisor)
		return dividend;

1515 1516 1517
	return div64_u64(dividend, divisor);
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1534
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1535
{
1536
	struct hw_perf_event *hwc = &event->hw;
1537
	s64 period, sample_period;
1538 1539
	s64 delta;

1540
	period = perf_calculate_period(event, nsec, count);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1551

1552
	if (local64_read(&hwc->period_left) > 8*sample_period) {
1553
		perf_disable();
1554
		perf_event_stop(event);
1555
		local64_set(&hwc->period_left, 0);
1556
		perf_event_start(event);
1557 1558
		perf_enable();
	}
1559 1560
}

1561
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1562
{
1563 1564
	struct perf_event *event;
	struct hw_perf_event *hwc;
1565 1566
	u64 interrupts, now;
	s64 delta;
1567

1568
	raw_spin_lock(&ctx->lock);
1569
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1570
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1571 1572
			continue;

1573 1574 1575
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1576
		hwc = &event->hw;
1577 1578 1579

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1580

1581
		/*
1582
		 * unthrottle events on the tick
1583
		 */
1584
		if (interrupts == MAX_INTERRUPTS) {
1585
			perf_log_throttle(event, 1);
1586
			perf_disable();
1587
			event->pmu->unthrottle(event);
1588
			perf_enable();
1589 1590
		}

1591
		if (!event->attr.freq || !event->attr.sample_freq)
1592 1593
			continue;

1594
		perf_disable();
1595
		event->pmu->read(event);
1596
		now = local64_read(&event->count);
1597 1598
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1599

1600 1601
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1602
		perf_enable();
1603
	}
1604
	raw_spin_unlock(&ctx->lock);
1605 1606
}

1607
/*
1608
 * Round-robin a context's events:
1609
 */
1610
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1611
{
1612
	raw_spin_lock(&ctx->lock);
1613 1614 1615 1616

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1617
	raw_spin_unlock(&ctx->lock);
1618 1619
}

1620
void perf_event_task_tick(struct task_struct *curr)
1621
{
1622
	struct perf_cpu_context *cpuctx;
1623
	struct perf_event_context *ctx;
1624
	int rotate = 0;
1625

1626
	if (!atomic_read(&nr_events))
1627 1628
		return;

1629
	cpuctx = &__get_cpu_var(perf_cpu_context);
1630 1631 1632
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1633

1634 1635 1636
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1637

1638
	perf_ctx_adjust_freq(&cpuctx->ctx);
1639
	if (ctx)
1640
		perf_ctx_adjust_freq(ctx);
1641

1642 1643 1644 1645
	if (!rotate)
		return;

	perf_disable();
1646
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1647
	if (ctx)
1648
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1649

1650
	rotate_ctx(&cpuctx->ctx);
1651 1652
	if (ctx)
		rotate_ctx(ctx);
1653

1654
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1655
	if (ctx)
1656
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1657
	perf_enable();
T
Thomas Gleixner 已提交
1658 1659
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1675
/*
1676
 * Enable all of a task's events that have been marked enable-on-exec.
1677 1678
 * This expects task == current.
 */
1679
static void perf_event_enable_on_exec(struct task_struct *task)
1680
{
1681 1682
	struct perf_event_context *ctx;
	struct perf_event *event;
1683 1684
	unsigned long flags;
	int enabled = 0;
1685
	int ret;
1686 1687

	local_irq_save(flags);
1688 1689
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1690 1691
		goto out;

1692
	__perf_event_task_sched_out(ctx);
1693

1694
	raw_spin_lock(&ctx->lock);
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1706 1707 1708
	}

	/*
1709
	 * Unclone this context if we enabled any event.
1710
	 */
1711 1712
	if (enabled)
		unclone_ctx(ctx);
1713

1714
	raw_spin_unlock(&ctx->lock);
1715

1716
	perf_event_task_sched_in(task);
1717 1718 1719 1720
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1721
/*
1722
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1723
 */
1724
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1725
{
1726
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1727 1728
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1729

1730 1731 1732 1733
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1734 1735
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1736 1737 1738 1739
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1740
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1741
	update_context_time(ctx);
1742
	update_event_times(event);
1743
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1744

P
Peter Zijlstra 已提交
1745
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1746 1747
}

P
Peter Zijlstra 已提交
1748 1749
static inline u64 perf_event_count(struct perf_event *event)
{
1750
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1751 1752
}

1753
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1754 1755
{
	/*
1756 1757
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1758
	 */
1759 1760 1761 1762
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1763 1764 1765
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1766
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1767
		update_context_time(ctx);
1768
		update_event_times(event);
1769
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1770 1771
	}

P
Peter Zijlstra 已提交
1772
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782 1783
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1784
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1840
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1985
/*
1986
 * Initialize the perf_event context in a task_struct:
1987 1988
 */
static void
1989
__perf_event_init_context(struct perf_event_context *ctx,
1990 1991
			    struct task_struct *task)
{
1992
	raw_spin_lock_init(&ctx->lock);
1993
	mutex_init(&ctx->mutex);
1994 1995
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1996 1997 1998 1999 2000
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

2001
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
2002
{
2003
	struct perf_event_context *ctx;
2004
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2005
	struct task_struct *task;
2006
	unsigned long flags;
2007
	int err;
T
Thomas Gleixner 已提交
2008

2009
	if (pid == -1 && cpu != -1) {
2010
		/* Must be root to operate on a CPU event: */
2011
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2012 2013
			return ERR_PTR(-EACCES);

2014
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2015 2016 2017
			return ERR_PTR(-EINVAL);

		/*
2018
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2019 2020 2021
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2022
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2023 2024 2025 2026
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
2027
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2044
	/*
2045
	 * Can't attach events to a dying task.
2046 2047 2048 2049 2050
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2051
	/* Reuse ptrace permission checks for now. */
2052 2053 2054 2055 2056
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
2057
	ctx = perf_lock_task_context(task, &flags);
2058
	if (ctx) {
2059
		unclone_ctx(ctx);
2060
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2061 2062
	}

2063
	if (!ctx) {
2064
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2065 2066 2067
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2068
		__perf_event_init_context(ctx, task);
2069
		get_ctx(ctx);
2070
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2071 2072 2073 2074 2075
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
2076
			goto retry;
2077
		}
2078
		get_task_struct(task);
2079 2080
	}

2081
	put_task_struct(task);
T
Thomas Gleixner 已提交
2082
	return ctx;
2083 2084 2085 2086

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2087 2088
}

L
Li Zefan 已提交
2089 2090
static void perf_event_free_filter(struct perf_event *event);

2091
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2092
{
2093
	struct perf_event *event;
P
Peter Zijlstra 已提交
2094

2095 2096 2097
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2098
	perf_event_free_filter(event);
2099
	kfree(event);
P
Peter Zijlstra 已提交
2100 2101
}

2102
static void perf_pending_sync(struct perf_event *event);
2103
static void perf_buffer_put(struct perf_buffer *buffer);
2104

2105
static void free_event(struct perf_event *event)
2106
{
2107
	perf_pending_sync(event);
2108

2109 2110
	if (!event->parent) {
		atomic_dec(&nr_events);
2111
		if (event->attr.mmap || event->attr.mmap_data)
2112 2113 2114 2115 2116
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2117 2118
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2119
	}
2120

2121 2122 2123
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2124 2125
	}

2126 2127
	if (event->destroy)
		event->destroy(event);
2128

2129 2130
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2131 2132
}

2133
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2134
{
2135
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2136

2137 2138 2139 2140 2141 2142
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2143
	WARN_ON_ONCE(ctx->parent_ctx);
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2157
	raw_spin_lock_irq(&ctx->lock);
2158
	perf_group_detach(event);
2159 2160
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2161
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2162

2163 2164 2165 2166
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2167

2168
	free_event(event);
T
Thomas Gleixner 已提交
2169 2170 2171

	return 0;
}
2172
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2173

2174 2175 2176 2177
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2178
{
2179
	struct perf_event *event = file->private_data;
2180

2181
	file->private_data = NULL;
2182

2183
	return perf_event_release_kernel(event);
2184 2185
}

2186
static int perf_event_read_size(struct perf_event *event)
2187 2188 2189 2190 2191
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2192
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2193 2194
		size += sizeof(u64);

2195
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2196 2197
		size += sizeof(u64);

2198
	if (event->attr.read_format & PERF_FORMAT_ID)
2199 2200
		entry += sizeof(u64);

2201 2202
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2203 2204 2205 2206 2207 2208 2209 2210
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2211
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2212
{
2213
	struct perf_event *child;
2214 2215
	u64 total = 0;

2216 2217 2218
	*enabled = 0;
	*running = 0;

2219
	mutex_lock(&event->child_mutex);
2220
	total += perf_event_read(event);
2221 2222 2223 2224 2225 2226
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2227
		total += perf_event_read(child);
2228 2229 2230
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2231
	mutex_unlock(&event->child_mutex);
2232 2233 2234

	return total;
}
2235
EXPORT_SYMBOL_GPL(perf_event_read_value);
2236

2237
static int perf_event_read_group(struct perf_event *event,
2238 2239
				   u64 read_format, char __user *buf)
{
2240
	struct perf_event *leader = event->group_leader, *sub;
2241 2242
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2243
	u64 values[5];
2244
	u64 count, enabled, running;
2245

2246
	mutex_lock(&ctx->mutex);
2247
	count = perf_event_read_value(leader, &enabled, &running);
2248 2249

	values[n++] = 1 + leader->nr_siblings;
2250 2251 2252 2253
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2254 2255 2256
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2257 2258 2259 2260

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2261
		goto unlock;
2262

2263
	ret = size;
2264

2265
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2266
		n = 0;
2267

2268
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2269 2270 2271 2272 2273
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2274
		if (copy_to_user(buf + ret, values, size)) {
2275 2276 2277
			ret = -EFAULT;
			goto unlock;
		}
2278 2279

		ret += size;
2280
	}
2281 2282
unlock:
	mutex_unlock(&ctx->mutex);
2283

2284
	return ret;
2285 2286
}

2287
static int perf_event_read_one(struct perf_event *event,
2288 2289
				 u64 read_format, char __user *buf)
{
2290
	u64 enabled, running;
2291 2292 2293
	u64 values[4];
	int n = 0;

2294 2295 2296 2297 2298
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2299
	if (read_format & PERF_FORMAT_ID)
2300
		values[n++] = primary_event_id(event);
2301 2302 2303 2304 2305 2306 2307

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2308
/*
2309
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2310 2311
 */
static ssize_t
2312
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2313
{
2314
	u64 read_format = event->attr.read_format;
2315
	int ret;
T
Thomas Gleixner 已提交
2316

2317
	/*
2318
	 * Return end-of-file for a read on a event that is in
2319 2320 2321
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2322
	if (event->state == PERF_EVENT_STATE_ERROR)
2323 2324
		return 0;

2325
	if (count < perf_event_read_size(event))
2326 2327
		return -ENOSPC;

2328
	WARN_ON_ONCE(event->ctx->parent_ctx);
2329
	if (read_format & PERF_FORMAT_GROUP)
2330
		ret = perf_event_read_group(event, read_format, buf);
2331
	else
2332
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2333

2334
	return ret;
T
Thomas Gleixner 已提交
2335 2336 2337 2338 2339
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2340
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2341

2342
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2343 2344 2345 2346
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2347
	struct perf_event *event = file->private_data;
2348
	struct perf_buffer *buffer;
2349
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2350 2351

	rcu_read_lock();
2352 2353 2354
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2355
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2356

2357
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2358 2359 2360 2361

	return events;
}

2362
static void perf_event_reset(struct perf_event *event)
2363
{
2364
	(void)perf_event_read(event);
2365
	local64_set(&event->count, 0);
2366
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2367 2368
}

2369
/*
2370 2371 2372 2373
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2374
 */
2375 2376
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2377
{
2378
	struct perf_event *child;
P
Peter Zijlstra 已提交
2379

2380 2381 2382 2383
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2384
		func(child);
2385
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2386 2387
}

2388 2389
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2390
{
2391 2392
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2393

2394 2395
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2396
	event = event->group_leader;
2397

2398 2399 2400 2401
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2402
	mutex_unlock(&ctx->mutex);
2403 2404
}

2405
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2406
{
2407
	struct perf_event_context *ctx = event->ctx;
2408 2409 2410 2411
	unsigned long size;
	int ret = 0;
	u64 value;

2412
	if (!event->attr.sample_period)
2413 2414 2415 2416 2417 2418 2419 2420 2421
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2422
	raw_spin_lock_irq(&ctx->lock);
2423 2424
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2425 2426 2427 2428
			ret = -EINVAL;
			goto unlock;
		}

2429
		event->attr.sample_freq = value;
2430
	} else {
2431 2432
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2433 2434
	}
unlock:
2435
	raw_spin_unlock_irq(&ctx->lock);
2436 2437 2438 2439

	return ret;
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2461
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2462

2463 2464
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2465 2466
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2467
	u32 flags = arg;
2468 2469

	switch (cmd) {
2470 2471
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2472
		break;
2473 2474
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2475
		break;
2476 2477
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2478
		break;
P
Peter Zijlstra 已提交
2479

2480 2481
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2482

2483 2484
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2485

2486
	case PERF_EVENT_IOC_SET_OUTPUT:
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2504

L
Li Zefan 已提交
2505 2506 2507
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2508
	default:
P
Peter Zijlstra 已提交
2509
		return -ENOTTY;
2510
	}
P
Peter Zijlstra 已提交
2511 2512

	if (flags & PERF_IOC_FLAG_GROUP)
2513
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2514
	else
2515
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2516 2517

	return 0;
2518 2519
}

2520
int perf_event_task_enable(void)
2521
{
2522
	struct perf_event *event;
2523

2524 2525 2526 2527
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2528 2529 2530 2531

	return 0;
}

2532
int perf_event_task_disable(void)
2533
{
2534
	struct perf_event *event;
2535

2536 2537 2538 2539
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2540 2541 2542 2543

	return 0;
}

2544 2545
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2546 2547
#endif

2548
static int perf_event_index(struct perf_event *event)
2549
{
2550
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2551 2552
		return 0;

2553
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2554 2555
}

2556 2557 2558 2559 2560
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2561
void perf_event_update_userpage(struct perf_event *event)
2562
{
2563
	struct perf_event_mmap_page *userpg;
2564
	struct perf_buffer *buffer;
2565 2566

	rcu_read_lock();
2567 2568
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2569 2570
		goto unlock;

2571
	userpg = buffer->user_page;
2572

2573 2574 2575 2576 2577
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2578
	++userpg->lock;
2579
	barrier();
2580
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2581
	userpg->offset = perf_event_count(event);
2582
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2583
		userpg->offset -= local64_read(&event->hw.prev_count);
2584

2585 2586
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2587

2588 2589
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2590

2591
	barrier();
2592
	++userpg->lock;
2593
	preempt_enable();
2594
unlock:
2595
	rcu_read_unlock();
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2617
#ifndef CONFIG_PERF_USE_VMALLOC
2618

2619 2620 2621
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2622

2623
static struct page *
2624
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2625
{
2626
	if (pgoff > buffer->nr_pages)
2627
		return NULL;
2628

2629
	if (pgoff == 0)
2630
		return virt_to_page(buffer->user_page);
2631

2632
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2633 2634
}

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2648
static struct perf_buffer *
2649
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2650
{
2651
	struct perf_buffer *buffer;
2652 2653 2654
	unsigned long size;
	int i;

2655
	size = sizeof(struct perf_buffer);
2656 2657
	size += nr_pages * sizeof(void *);

2658 2659
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2660 2661
		goto fail;

2662
	buffer->user_page = perf_mmap_alloc_page(cpu);
2663
	if (!buffer->user_page)
2664 2665 2666
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2667
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2668
		if (!buffer->data_pages[i])
2669 2670 2671
			goto fail_data_pages;
	}

2672
	buffer->nr_pages = nr_pages;
2673

2674 2675
	perf_buffer_init(buffer, watermark, flags);

2676
	return buffer;
2677 2678 2679

fail_data_pages:
	for (i--; i >= 0; i--)
2680
		free_page((unsigned long)buffer->data_pages[i]);
2681

2682
	free_page((unsigned long)buffer->user_page);
2683 2684

fail_user_page:
2685
	kfree(buffer);
2686 2687

fail:
2688
	return NULL;
2689 2690
}

2691 2692
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2693
	struct page *page = virt_to_page((void *)addr);
2694 2695 2696 2697 2698

	page->mapping = NULL;
	__free_page(page);
}

2699
static void perf_buffer_free(struct perf_buffer *buffer)
2700 2701 2702
{
	int i;

2703 2704 2705 2706
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2707 2708
}

2709
static inline int page_order(struct perf_buffer *buffer)
2710 2711 2712 2713
{
	return 0;
}

2714 2715 2716 2717 2718 2719 2720 2721
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2722
static inline int page_order(struct perf_buffer *buffer)
2723
{
2724
	return buffer->page_order;
2725 2726
}

2727
static struct page *
2728
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2729
{
2730
	if (pgoff > (1UL << page_order(buffer)))
2731 2732
		return NULL;

2733
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2734 2735 2736 2737 2738 2739 2740 2741 2742
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2743
static void perf_buffer_free_work(struct work_struct *work)
2744
{
2745
	struct perf_buffer *buffer;
2746 2747 2748
	void *base;
	int i, nr;

2749 2750
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2751

2752
	base = buffer->user_page;
2753 2754 2755 2756
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2757
	kfree(buffer);
2758 2759
}

2760
static void perf_buffer_free(struct perf_buffer *buffer)
2761
{
2762
	schedule_work(&buffer->work);
2763 2764
}

2765
static struct perf_buffer *
2766
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2767
{
2768
	struct perf_buffer *buffer;
2769 2770 2771
	unsigned long size;
	void *all_buf;

2772
	size = sizeof(struct perf_buffer);
2773 2774
	size += sizeof(void *);

2775 2776
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2777 2778
		goto fail;

2779
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2780 2781 2782 2783 2784

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2785 2786 2787 2788
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2789

2790 2791
	perf_buffer_init(buffer, watermark, flags);

2792
	return buffer;
2793 2794

fail_all_buf:
2795
	kfree(buffer);
2796 2797 2798 2799 2800 2801 2802

fail:
	return NULL;
}

#endif

2803
static unsigned long perf_data_size(struct perf_buffer *buffer)
2804
{
2805
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2806 2807
}

2808 2809 2810
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2811
	struct perf_buffer *buffer;
2812 2813 2814 2815 2816 2817 2818 2819 2820
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2821 2822
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2823 2824 2825 2826 2827
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2828
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2843
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2844
{
2845
	struct perf_buffer *buffer;
2846

2847 2848
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2849 2850
}

2851
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2852
{
2853
	struct perf_buffer *buffer;
2854

2855
	rcu_read_lock();
2856 2857 2858 2859
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2860 2861 2862
	}
	rcu_read_unlock();

2863
	return buffer;
2864 2865
}

2866
static void perf_buffer_put(struct perf_buffer *buffer)
2867
{
2868
	if (!atomic_dec_and_test(&buffer->refcount))
2869
		return;
2870

2871
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2872 2873 2874 2875
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2876
	struct perf_event *event = vma->vm_file->private_data;
2877

2878
	atomic_inc(&event->mmap_count);
2879 2880 2881 2882
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2883
	struct perf_event *event = vma->vm_file->private_data;
2884

2885
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2886
		unsigned long size = perf_data_size(event->buffer);
2887
		struct user_struct *user = event->mmap_user;
2888
		struct perf_buffer *buffer = event->buffer;
2889

2890
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2891
		vma->vm_mm->locked_vm -= event->mmap_locked;
2892
		rcu_assign_pointer(event->buffer, NULL);
2893
		mutex_unlock(&event->mmap_mutex);
2894

2895
		perf_buffer_put(buffer);
2896
		free_uid(user);
2897
	}
2898 2899
}

2900
static const struct vm_operations_struct perf_mmap_vmops = {
2901 2902 2903 2904
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2905 2906 2907 2908
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2909
	struct perf_event *event = file->private_data;
2910
	unsigned long user_locked, user_lock_limit;
2911
	struct user_struct *user = current_user();
2912
	unsigned long locked, lock_limit;
2913
	struct perf_buffer *buffer;
2914 2915
	unsigned long vma_size;
	unsigned long nr_pages;
2916
	long user_extra, extra;
2917
	int ret = 0, flags = 0;
2918

2919 2920 2921 2922 2923 2924 2925 2926
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2927
	if (!(vma->vm_flags & VM_SHARED))
2928
		return -EINVAL;
2929 2930 2931 2932

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2933
	/*
2934
	 * If we have buffer pages ensure they're a power-of-two number, so we
2935 2936 2937
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2938 2939
		return -EINVAL;

2940
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2941 2942
		return -EINVAL;

2943 2944
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2945

2946 2947
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2948 2949 2950
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2951
		else
2952 2953 2954 2955
			ret = -EINVAL;
		goto unlock;
	}

2956
	user_extra = nr_pages + 1;
2957
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2958 2959 2960 2961 2962 2963

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2964
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2965

2966 2967 2968
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2969

2970
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2971
	lock_limit >>= PAGE_SHIFT;
2972
	locked = vma->vm_mm->locked_vm + extra;
2973

2974 2975
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2976 2977 2978
		ret = -EPERM;
		goto unlock;
	}
2979

2980
	WARN_ON(event->buffer);
2981

2982 2983 2984 2985 2986
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2987
	if (!buffer) {
2988
		ret = -ENOMEM;
2989
		goto unlock;
2990
	}
2991
	rcu_assign_pointer(event->buffer, buffer);
2992

2993 2994 2995 2996 2997
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2998
unlock:
2999 3000
	if (!ret)
		atomic_inc(&event->mmap_count);
3001
	mutex_unlock(&event->mmap_mutex);
3002 3003 3004

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3005 3006

	return ret;
3007 3008
}

P
Peter Zijlstra 已提交
3009 3010 3011
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3012
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3013 3014 3015
	int retval;

	mutex_lock(&inode->i_mutex);
3016
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3017 3018 3019 3020 3021 3022 3023 3024
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3025
static const struct file_operations perf_fops = {
3026
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3027 3028 3029
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3030 3031
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3032
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3033
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3034 3035
};

3036
/*
3037
 * Perf event wakeup
3038 3039 3040 3041 3042
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3043
void perf_event_wakeup(struct perf_event *event)
3044
{
3045
	wake_up_all(&event->waitq);
3046

3047 3048 3049
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3050
	}
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3062
static void perf_pending_event(struct perf_pending_entry *entry)
3063
{
3064 3065
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3066

3067 3068 3069
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3070 3071
	}

3072 3073 3074
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3075 3076 3077
	}
}

3078
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3079

3080
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3081 3082 3083
	PENDING_TAIL,
};

3084 3085
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3086
{
3087
	struct perf_pending_entry **head;
3088

3089
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3090 3091
		return;

3092 3093 3094
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3095 3096

	do {
3097 3098
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3099

3100
	set_perf_event_pending();
3101

3102
	put_cpu_var(perf_pending_head);
3103 3104 3105 3106
}

static int __perf_pending_run(void)
{
3107
	struct perf_pending_entry *list;
3108 3109
	int nr = 0;

3110
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3111
	while (list != PENDING_TAIL) {
3112 3113
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3114 3115 3116

		list = list->next;

3117 3118
		func = entry->func;
		entry->next = NULL;
3119 3120 3121 3122 3123 3124 3125
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3126
		func(entry);
3127 3128 3129 3130 3131 3132
		nr++;
	}

	return nr;
}

3133
static inline int perf_not_pending(struct perf_event *event)
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3148
	return event->pending.next == NULL;
3149 3150
}

3151
static void perf_pending_sync(struct perf_event *event)
3152
{
3153
	wait_event(event->waitq, perf_not_pending(event));
3154 3155
}

3156
void perf_event_do_pending(void)
3157 3158 3159 3160
{
	__perf_pending_run();
}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3182 3183 3184
/*
 * Output
 */
3185
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3186
			      unsigned long offset, unsigned long head)
3187 3188 3189
{
	unsigned long mask;

3190
	if (!buffer->writable)
3191 3192
		return true;

3193
	mask = perf_data_size(buffer) - 1;
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3204
static void perf_output_wakeup(struct perf_output_handle *handle)
3205
{
3206
	atomic_set(&handle->buffer->poll, POLL_IN);
3207

3208
	if (handle->nmi) {
3209 3210 3211
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3212
	} else
3213
		perf_event_wakeup(handle->event);
3214 3215
}

3216
/*
3217
 * We need to ensure a later event_id doesn't publish a head when a former
3218
 * event isn't done writing. However since we need to deal with NMIs we
3219 3220 3221
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3222
 * event completes.
3223
 */
3224
static void perf_output_get_handle(struct perf_output_handle *handle)
3225
{
3226
	struct perf_buffer *buffer = handle->buffer;
3227

3228
	preempt_disable();
3229 3230
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3231 3232
}

3233
static void perf_output_put_handle(struct perf_output_handle *handle)
3234
{
3235
	struct perf_buffer *buffer = handle->buffer;
3236
	unsigned long head;
3237 3238

again:
3239
	head = local_read(&buffer->head);
3240 3241

	/*
3242
	 * IRQ/NMI can happen here, which means we can miss a head update.
3243 3244
	 */

3245
	if (!local_dec_and_test(&buffer->nest))
3246
		goto out;
3247 3248

	/*
3249
	 * Publish the known good head. Rely on the full barrier implied
3250
	 * by atomic_dec_and_test() order the buffer->head read and this
3251
	 * write.
3252
	 */
3253
	buffer->user_page->data_head = head;
3254

3255 3256
	/*
	 * Now check if we missed an update, rely on the (compiler)
3257
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3258
	 */
3259 3260
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3261 3262 3263
		goto again;
	}

3264
	if (handle->wakeup != local_read(&buffer->wakeup))
3265
		perf_output_wakeup(handle);
3266

3267
 out:
3268
	preempt_enable();
3269 3270
}

3271
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3272
		      const void *buf, unsigned int len)
3273
{
3274
	do {
3275
		unsigned long size = min_t(unsigned long, handle->size, len);
3276 3277 3278 3279 3280

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3281
		buf += size;
3282 3283
		handle->size -= size;
		if (!handle->size) {
3284
			struct perf_buffer *buffer = handle->buffer;
3285

3286
			handle->page++;
3287 3288 3289
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3290 3291
		}
	} while (len);
3292 3293
}

3294
int perf_output_begin(struct perf_output_handle *handle,
3295
		      struct perf_event *event, unsigned int size,
3296
		      int nmi, int sample)
3297
{
3298
	struct perf_buffer *buffer;
3299
	unsigned long tail, offset, head;
3300 3301 3302 3303 3304 3305
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3306

3307
	rcu_read_lock();
3308
	/*
3309
	 * For inherited events we send all the output towards the parent.
3310
	 */
3311 3312
	if (event->parent)
		event = event->parent;
3313

3314 3315
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3316 3317
		goto out;

3318
	handle->buffer	= buffer;
3319
	handle->event	= event;
3320 3321
	handle->nmi	= nmi;
	handle->sample	= sample;
3322

3323
	if (!buffer->nr_pages)
3324
		goto out;
3325

3326
	have_lost = local_read(&buffer->lost);
3327 3328 3329
	if (have_lost)
		size += sizeof(lost_event);

3330
	perf_output_get_handle(handle);
3331

3332
	do {
3333 3334 3335 3336 3337
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3338
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3339
		smp_rmb();
3340
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3341
		head += size;
3342
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3343
			goto fail;
3344
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3345

3346 3347
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3348

3349 3350 3351 3352
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3353
	handle->addr += handle->size;
3354
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3355

3356
	if (have_lost) {
3357
		lost_event.header.type = PERF_RECORD_LOST;
3358 3359
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3360
		lost_event.id          = event->id;
3361
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3362 3363 3364 3365

		perf_output_put(handle, lost_event);
	}

3366
	return 0;
3367

3368
fail:
3369
	local_inc(&buffer->lost);
3370
	perf_output_put_handle(handle);
3371 3372
out:
	rcu_read_unlock();
3373

3374 3375
	return -ENOSPC;
}
3376

3377
void perf_output_end(struct perf_output_handle *handle)
3378
{
3379
	struct perf_event *event = handle->event;
3380
	struct perf_buffer *buffer = handle->buffer;
3381

3382
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3383

3384
	if (handle->sample && wakeup_events) {
3385
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3386
		if (events >= wakeup_events) {
3387 3388
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3389
		}
3390 3391
	}

3392
	perf_output_put_handle(handle);
3393
	rcu_read_unlock();
3394 3395
}

3396
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3397 3398
{
	/*
3399
	 * only top level events have the pid namespace they were created in
3400
	 */
3401 3402
	if (event->parent)
		event = event->parent;
3403

3404
	return task_tgid_nr_ns(p, event->ns);
3405 3406
}

3407
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3408 3409
{
	/*
3410
	 * only top level events have the pid namespace they were created in
3411
	 */
3412 3413
	if (event->parent)
		event = event->parent;
3414

3415
	return task_pid_nr_ns(p, event->ns);
3416 3417
}

3418
static void perf_output_read_one(struct perf_output_handle *handle,
3419
				 struct perf_event *event)
3420
{
3421
	u64 read_format = event->attr.read_format;
3422 3423 3424
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3425
	values[n++] = perf_event_count(event);
3426
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3427 3428
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3429 3430
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3431 3432
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3433 3434
	}
	if (read_format & PERF_FORMAT_ID)
3435
		values[n++] = primary_event_id(event);
3436 3437 3438 3439 3440

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3441
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3442 3443
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3444
			    struct perf_event *event)
3445
{
3446 3447
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3459
	if (leader != event)
3460 3461
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3462
	values[n++] = perf_event_count(leader);
3463
	if (read_format & PERF_FORMAT_ID)
3464
		values[n++] = primary_event_id(leader);
3465 3466 3467

	perf_output_copy(handle, values, n * sizeof(u64));

3468
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3469 3470
		n = 0;

3471
		if (sub != event)
3472 3473
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3474
		values[n++] = perf_event_count(sub);
3475
		if (read_format & PERF_FORMAT_ID)
3476
			values[n++] = primary_event_id(sub);
3477 3478 3479 3480 3481 3482

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3483
			     struct perf_event *event)
3484
{
3485 3486
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3487
	else
3488
		perf_output_read_one(handle, event);
3489 3490
}

3491 3492 3493
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3494
			struct perf_event *event)
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3525
		perf_output_read(handle, event);
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3563
			 struct perf_event *event,
3564
			 struct pt_regs *regs)
3565
{
3566
	u64 sample_type = event->attr.sample_type;
3567

3568
	data->type = sample_type;
3569

3570
	header->type = PERF_RECORD_SAMPLE;
3571 3572 3573 3574
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3575

3576
	if (sample_type & PERF_SAMPLE_IP) {
3577 3578 3579
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3580
	}
3581

3582
	if (sample_type & PERF_SAMPLE_TID) {
3583
		/* namespace issues */
3584 3585
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3586

3587
		header->size += sizeof(data->tid_entry);
3588 3589
	}

3590
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3591
		data->time = perf_clock();
3592

3593
		header->size += sizeof(data->time);
3594 3595
	}

3596
	if (sample_type & PERF_SAMPLE_ADDR)
3597
		header->size += sizeof(data->addr);
3598

3599
	if (sample_type & PERF_SAMPLE_ID) {
3600
		data->id = primary_event_id(event);
3601

3602 3603 3604 3605
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3606
		data->stream_id = event->id;
3607 3608 3609

		header->size += sizeof(data->stream_id);
	}
3610

3611
	if (sample_type & PERF_SAMPLE_CPU) {
3612 3613
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3614

3615
		header->size += sizeof(data->cpu_entry);
3616 3617
	}

3618
	if (sample_type & PERF_SAMPLE_PERIOD)
3619
		header->size += sizeof(data->period);
3620

3621
	if (sample_type & PERF_SAMPLE_READ)
3622
		header->size += perf_event_read_size(event);
3623

3624
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3625
		int size = 1;
3626

3627 3628 3629 3630 3631 3632
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3633 3634
	}

3635
	if (sample_type & PERF_SAMPLE_RAW) {
3636 3637 3638 3639 3640 3641 3642 3643
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3644
		header->size += size;
3645
	}
3646
}
3647

3648
static void perf_event_output(struct perf_event *event, int nmi,
3649 3650 3651 3652 3653
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3654

3655 3656 3657
	/* protect the callchain buffers */
	rcu_read_lock();

3658
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3659

3660
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3661
		goto exit;
3662

3663
	perf_output_sample(&handle, &header, data, event);
3664

3665
	perf_output_end(&handle);
3666 3667 3668

exit:
	rcu_read_unlock();
3669 3670
}

3671
/*
3672
 * read event_id
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3683
perf_event_read_event(struct perf_event *event,
3684 3685 3686
			struct task_struct *task)
{
	struct perf_output_handle handle;
3687
	struct perf_read_event read_event = {
3688
		.header = {
3689
			.type = PERF_RECORD_READ,
3690
			.misc = 0,
3691
			.size = sizeof(read_event) + perf_event_read_size(event),
3692
		},
3693 3694
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3695
	};
3696
	int ret;
3697

3698
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3699 3700 3701
	if (ret)
		return;

3702
	perf_output_put(&handle, read_event);
3703
	perf_output_read(&handle, event);
3704

3705 3706 3707
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3708
/*
P
Peter Zijlstra 已提交
3709 3710
 * task tracking -- fork/exit
 *
3711
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3712 3713
 */

P
Peter Zijlstra 已提交
3714
struct perf_task_event {
3715
	struct task_struct		*task;
3716
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3717 3718 3719 3720 3721 3722

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3723 3724
		u32				tid;
		u32				ptid;
3725
		u64				time;
3726
	} event_id;
P
Peter Zijlstra 已提交
3727 3728
};

3729
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3730
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3731 3732
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3733
	struct task_struct *task = task_event->task;
3734 3735
	int size, ret;

3736 3737
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3738

3739
	if (ret)
P
Peter Zijlstra 已提交
3740 3741
		return;

3742 3743
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3744

3745 3746
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3747

3748
	perf_output_put(&handle, task_event->event_id);
3749

P
Peter Zijlstra 已提交
3750 3751 3752
	perf_output_end(&handle);
}

3753
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3754
{
P
Peter Zijlstra 已提交
3755
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3756 3757
		return 0;

3758 3759 3760
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3761 3762
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3763 3764 3765 3766 3767
		return 1;

	return 0;
}

3768
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3769
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3770
{
3771
	struct perf_event *event;
P
Peter Zijlstra 已提交
3772

3773 3774 3775
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3776 3777 3778
	}
}

3779
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3780 3781
{
	struct perf_cpu_context *cpuctx;
3782
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3783

3784
	rcu_read_lock();
P
Peter Zijlstra 已提交
3785
	cpuctx = &get_cpu_var(perf_cpu_context);
3786
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3787
	if (!ctx)
P
Peter Zijlstra 已提交
3788
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3789
	if (ctx)
3790
		perf_event_task_ctx(ctx, task_event);
3791
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3792 3793 3794
	rcu_read_unlock();
}

3795 3796
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3797
			      int new)
P
Peter Zijlstra 已提交
3798
{
P
Peter Zijlstra 已提交
3799
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3800

3801 3802 3803
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3804 3805
		return;

P
Peter Zijlstra 已提交
3806
	task_event = (struct perf_task_event){
3807 3808
		.task	  = task,
		.task_ctx = task_ctx,
3809
		.event_id    = {
P
Peter Zijlstra 已提交
3810
			.header = {
3811
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3812
				.misc = 0,
3813
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3814
			},
3815 3816
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3817 3818
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3819
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3820 3821 3822
		},
	};

3823
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3824 3825
}

3826
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3827
{
3828
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3829 3830
}

3831 3832 3833 3834 3835
/*
 * comm tracking
 */

struct perf_comm_event {
3836 3837
	struct task_struct	*task;
	char			*comm;
3838 3839 3840 3841 3842 3843 3844
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3845
	} event_id;
3846 3847
};

3848
static void perf_event_comm_output(struct perf_event *event,
3849 3850 3851
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3852 3853
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3854 3855 3856 3857

	if (ret)
		return;

3858 3859
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3860

3861
	perf_output_put(&handle, comm_event->event_id);
3862 3863 3864 3865 3866
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3867
static int perf_event_comm_match(struct perf_event *event)
3868
{
P
Peter Zijlstra 已提交
3869
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3870 3871
		return 0;

3872 3873 3874
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3875
	if (event->attr.comm)
3876 3877 3878 3879 3880
		return 1;

	return 0;
}

3881
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3882 3883
				  struct perf_comm_event *comm_event)
{
3884
	struct perf_event *event;
3885

3886 3887 3888
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3889 3890 3891
	}
}

3892
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3893 3894
{
	struct perf_cpu_context *cpuctx;
3895
	struct perf_event_context *ctx;
3896
	unsigned int size;
3897
	char comm[TASK_COMM_LEN];
3898

3899
	memset(comm, 0, sizeof(comm));
3900
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3901
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3902 3903 3904 3905

	comm_event->comm = comm;
	comm_event->comm_size = size;

3906
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3907

3908
	rcu_read_lock();
3909
	cpuctx = &get_cpu_var(perf_cpu_context);
3910 3911
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3912
	if (ctx)
3913
		perf_event_comm_ctx(ctx, comm_event);
3914
	put_cpu_var(perf_cpu_context);
3915
	rcu_read_unlock();
3916 3917
}

3918
void perf_event_comm(struct task_struct *task)
3919
{
3920 3921
	struct perf_comm_event comm_event;

3922 3923
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3924

3925
	if (!atomic_read(&nr_comm_events))
3926
		return;
3927

3928
	comm_event = (struct perf_comm_event){
3929
		.task	= task,
3930 3931
		/* .comm      */
		/* .comm_size */
3932
		.event_id  = {
3933
			.header = {
3934
				.type = PERF_RECORD_COMM,
3935 3936 3937 3938 3939
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3940 3941 3942
		},
	};

3943
	perf_event_comm_event(&comm_event);
3944 3945
}

3946 3947 3948 3949 3950
/*
 * mmap tracking
 */

struct perf_mmap_event {
3951 3952 3953 3954
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3955 3956 3957 3958 3959 3960 3961 3962 3963

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3964
	} event_id;
3965 3966
};

3967
static void perf_event_mmap_output(struct perf_event *event,
3968 3969 3970
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3971 3972
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3973 3974 3975 3976

	if (ret)
		return;

3977 3978
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3979

3980
	perf_output_put(&handle, mmap_event->event_id);
3981 3982
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3983
	perf_output_end(&handle);
3984 3985
}

3986
static int perf_event_mmap_match(struct perf_event *event,
3987 3988
				   struct perf_mmap_event *mmap_event,
				   int executable)
3989
{
P
Peter Zijlstra 已提交
3990
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3991 3992
		return 0;

3993 3994 3995
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3996 3997
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
3998 3999 4000 4001 4002
		return 1;

	return 0;
}

4003
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4004 4005
				  struct perf_mmap_event *mmap_event,
				  int executable)
4006
{
4007
	struct perf_event *event;
4008

4009
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4010
		if (perf_event_mmap_match(event, mmap_event, executable))
4011
			perf_event_mmap_output(event, mmap_event);
4012 4013 4014
	}
}

4015
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4016 4017
{
	struct perf_cpu_context *cpuctx;
4018
	struct perf_event_context *ctx;
4019 4020
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4021 4022 4023
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4024
	const char *name;
4025

4026 4027
	memset(tmp, 0, sizeof(tmp));

4028
	if (file) {
4029 4030 4031 4032 4033 4034
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4035 4036 4037 4038
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4039
		name = d_path(&file->f_path, buf, PATH_MAX);
4040 4041 4042 4043 4044
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4045 4046 4047
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4048
			goto got_name;
4049
		}
4050 4051 4052 4053

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4054 4055 4056 4057 4058 4059 4060 4061
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4062 4063
		}

4064 4065 4066 4067 4068
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4069
	size = ALIGN(strlen(name)+1, sizeof(u64));
4070 4071 4072 4073

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4074
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4075

4076
	rcu_read_lock();
4077
	cpuctx = &get_cpu_var(perf_cpu_context);
4078
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4079
	ctx = rcu_dereference(current->perf_event_ctxp);
4080
	if (ctx)
4081
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4082
	put_cpu_var(perf_cpu_context);
4083 4084
	rcu_read_unlock();

4085 4086 4087
	kfree(buf);
}

4088
void perf_event_mmap(struct vm_area_struct *vma)
4089
{
4090 4091
	struct perf_mmap_event mmap_event;

4092
	if (!atomic_read(&nr_mmap_events))
4093 4094 4095
		return;

	mmap_event = (struct perf_mmap_event){
4096
		.vma	= vma,
4097 4098
		/* .file_name */
		/* .file_size */
4099
		.event_id  = {
4100
			.header = {
4101
				.type = PERF_RECORD_MMAP,
4102
				.misc = PERF_RECORD_MISC_USER,
4103 4104 4105 4106
				/* .size */
			},
			/* .pid */
			/* .tid */
4107 4108
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4109
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4110 4111 4112
		},
	};

4113
	perf_event_mmap_event(&mmap_event);
4114 4115
}

4116 4117 4118 4119
/*
 * IRQ throttle logging
 */

4120
static void perf_log_throttle(struct perf_event *event, int enable)
4121 4122 4123 4124 4125 4126 4127
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4128
		u64				id;
4129
		u64				stream_id;
4130 4131
	} throttle_event = {
		.header = {
4132
			.type = PERF_RECORD_THROTTLE,
4133 4134 4135
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4136
		.time		= perf_clock(),
4137 4138
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4139 4140
	};

4141
	if (enable)
4142
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4143

4144
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4145 4146 4147 4148 4149 4150 4151
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4152
/*
4153
 * Generic event overflow handling, sampling.
4154 4155
 */

4156
static int __perf_event_overflow(struct perf_event *event, int nmi,
4157 4158
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4159
{
4160 4161
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4162 4163
	int ret = 0;

4164
	throttle = (throttle && event->pmu->unthrottle != NULL);
4165

4166
	if (!throttle) {
4167
		hwc->interrupts++;
4168
	} else {
4169 4170
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4171
			if (HZ * hwc->interrupts >
4172
					(u64)sysctl_perf_event_sample_rate) {
4173
				hwc->interrupts = MAX_INTERRUPTS;
4174
				perf_log_throttle(event, 0);
4175 4176 4177 4178
				ret = 1;
			}
		} else {
			/*
4179
			 * Keep re-disabling events even though on the previous
4180
			 * pass we disabled it - just in case we raced with a
4181
			 * sched-in and the event got enabled again:
4182
			 */
4183 4184 4185
			ret = 1;
		}
	}
4186

4187
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4188
		u64 now = perf_clock();
4189
		s64 delta = now - hwc->freq_time_stamp;
4190

4191
		hwc->freq_time_stamp = now;
4192

4193 4194
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4195 4196
	}

4197 4198
	/*
	 * XXX event_limit might not quite work as expected on inherited
4199
	 * events
4200 4201
	 */

4202 4203
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4204
		ret = 1;
4205
		event->pending_kill = POLL_HUP;
4206
		if (nmi) {
4207 4208 4209
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4210
		} else
4211
			perf_event_disable(event);
4212 4213
	}

4214 4215 4216 4217 4218
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4219
	return ret;
4220 4221
}

4222
int perf_event_overflow(struct perf_event *event, int nmi,
4223 4224
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4225
{
4226
	return __perf_event_overflow(event, nmi, 1, data, regs);
4227 4228
}

4229
/*
4230
 * Generic software event infrastructure
4231 4232
 */

4233
/*
4234 4235
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4236 4237 4238 4239
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4240
static u64 perf_swevent_set_period(struct perf_event *event)
4241
{
4242
	struct hw_perf_event *hwc = &event->hw;
4243 4244 4245 4246 4247
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4248 4249

again:
4250
	old = val = local64_read(&hwc->period_left);
4251 4252
	if (val < 0)
		return 0;
4253

4254 4255 4256
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4257
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4258
		goto again;
4259

4260
	return nr;
4261 4262
}

4263
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4264 4265
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4266
{
4267
	struct hw_perf_event *hwc = &event->hw;
4268
	int throttle = 0;
4269

4270
	data->period = event->hw.last_period;
4271 4272
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4273

4274 4275
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4276

4277
	for (; overflow; overflow--) {
4278
		if (__perf_event_overflow(event, nmi, throttle,
4279
					    data, regs)) {
4280 4281 4282 4283 4284 4285
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4286
		throttle = 1;
4287
	}
4288 4289
}

4290
static void perf_swevent_add(struct perf_event *event, u64 nr,
4291 4292
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4293
{
4294
	struct hw_perf_event *hwc = &event->hw;
4295

4296
	local64_add(nr, &event->count);
4297

4298 4299 4300
	if (!regs)
		return;

4301 4302
	if (!hwc->sample_period)
		return;
4303

4304 4305 4306
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4307
	if (local64_add_negative(nr, &hwc->period_left))
4308
		return;
4309

4310
	perf_swevent_overflow(event, 0, nmi, data, regs);
4311 4312
}

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4327
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4328
				enum perf_type_id type,
L
Li Zefan 已提交
4329 4330 4331
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4332
{
4333
	if (event->attr.type != type)
4334
		return 0;
4335

4336
	if (event->attr.config != event_id)
4337 4338
		return 0;

4339 4340
	if (perf_exclude_event(event, regs))
		return 0;
4341 4342 4343 4344

	return 1;
}

4345 4346 4347 4348 4349 4350 4351
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4352 4353
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4354
{
4355 4356 4357 4358
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4359

4360 4361 4362 4363 4364
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4365 4366 4367 4368 4369

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4392 4393 4394 4395 4396 4397
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4398
{
4399
	struct perf_cpu_context *cpuctx;
4400
	struct perf_event *event;
4401 4402
	struct hlist_node *node;
	struct hlist_head *head;
4403

4404 4405 4406 4407
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4408
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4409 4410 4411 4412 4413

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4414
		if (perf_swevent_match(event, type, event_id, data, regs))
4415
			perf_swevent_add(event, nr, nmi, data, regs);
4416
	}
4417 4418
end:
	rcu_read_unlock();
4419 4420
}

4421
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4422
{
4423
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4424

4425
	return get_recursion_context(cpuctx->recursion);
P
Peter Zijlstra 已提交
4426
}
I
Ingo Molnar 已提交
4427
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4428

4429
void inline perf_swevent_put_recursion_context(int rctx)
4430
{
4431
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4432 4433

	put_recursion_context(cpuctx->recursion, rctx);
4434
}
4435

4436
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4437
			    struct pt_regs *regs, u64 addr)
4438
{
4439
	struct perf_sample_data data;
4440 4441
	int rctx;

4442
	preempt_disable_notrace();
4443 4444 4445
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4446

4447
	perf_sample_data_init(&data, addr);
4448

4449
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4450 4451

	perf_swevent_put_recursion_context(rctx);
4452
	preempt_enable_notrace();
4453 4454
}

4455
static void perf_swevent_read(struct perf_event *event)
4456 4457 4458
{
}

4459
static int perf_swevent_enable(struct perf_event *event)
4460
{
4461
	struct hw_perf_event *hwc = &event->hw;
4462 4463 4464 4465
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4466 4467 4468

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4469
		perf_swevent_set_period(event);
4470
	}
4471

4472
	head = find_swevent_head(cpuctx, event);
4473 4474 4475 4476 4477
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4478 4479 4480
	return 0;
}

4481
static void perf_swevent_disable(struct perf_event *event)
4482
{
4483
	hlist_del_rcu(&event->hlist_entry);
4484 4485
}

P
Peter Zijlstra 已提交
4486 4487 4488 4489 4490 4491 4492 4493 4494
static void perf_swevent_void(struct perf_event *event)
{
}

static int perf_swevent_int(struct perf_event *event)
{
	return 0;
}

4495 4496 4497 4498 4499 4500 4501 4502
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4513
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4514

4515
	if (!hlist)
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4554
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4601
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4602

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
	.event_init	= perf_swevent_init,
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
P
Peter Zijlstra 已提交
4650 4651
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4652
	.read		= perf_swevent_read,
4653
	.unthrottle	= perf_swevent_void, /* hwc->interrupts already reset */
4654 4655
};

4656 4657
#ifdef CONFIG_EVENT_TRACING

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4672 4673 4674 4675
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4676 4677 4678 4679 4680 4681 4682 4683 4684
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4685
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4686 4687
{
	struct perf_sample_data data;
4688 4689 4690
	struct perf_event *event;
	struct hlist_node *node;

4691 4692 4693 4694 4695 4696 4697 4698
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4699 4700 4701
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
			perf_swevent_add(event, count, 1, &data, regs);
4702
	}
4703 4704

	perf_swevent_put_recursion_context(rctx);
4705 4706 4707
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4708
static void tp_perf_event_destroy(struct perf_event *event)
4709
{
4710
	perf_trace_destroy(event);
4711 4712
}

4713
static int perf_tp_event_init(struct perf_event *event)
4714
{
4715 4716
	int err;

4717 4718 4719
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4720 4721 4722 4723
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4724
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4725
			perf_paranoid_tracepoint_raw() &&
4726
			!capable(CAP_SYS_ADMIN))
4727
		return -EPERM;
4728

4729 4730
	err = perf_trace_init(event);
	if (err)
4731
		return err;
4732

4733
	event->destroy = tp_perf_event_destroy;
4734

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
	return 0;
}

static struct pmu perf_tracepoint = {
	.event_init	= perf_tp_event_init,
	.enable		= perf_trace_enable,
	.disable	= perf_trace_disable,
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_void,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4751
}
L
Li Zefan 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4776
#else
L
Li Zefan 已提交
4777

4778
static inline void perf_tp_register(void)
4779 4780
{
}
L
Li Zefan 已提交
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4791
#endif /* CONFIG_EVENT_TRACING */
4792

4793
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4794
void perf_bp_event(struct perf_event *bp, void *data)
4795
{
4796 4797 4798 4799 4800 4801 4802
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4803
}
4804 4805 4806 4807 4808
#endif

/*
 * hrtimer based swevent callback
 */
4809

4810
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4811
{
4812 4813 4814 4815 4816
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4817

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4830

4831 4832
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4833

4834
	return ret;
4835 4836
}

4837
static void perf_swevent_start_hrtimer(struct perf_event *event)
4838
{
4839
	struct hw_perf_event *hwc = &event->hw;
4840

4841 4842 4843 4844
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;
4845

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
4859
}
4860 4861

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4862
{
4863 4864 4865 4866 4867 4868 4869 4870
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
4871 4872
}

4873 4874 4875 4876 4877
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4878
{
4879 4880 4881 4882 4883 4884 4885
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4886 4887
}

4888 4889 4890 4891
static int cpu_clock_event_enable(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int cpu = raw_smp_processor_id();
4892

4893 4894 4895 4896 4897 4898 4899
	local64_set(&hwc->prev_count, cpu_clock(cpu));
	perf_swevent_start_hrtimer(event);

	return 0;
}

static void cpu_clock_event_disable(struct perf_event *event)
4900
{
4901 4902 4903
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4904

4905 4906 4907 4908
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4909

4910 4911 4912 4913 4914 4915 4916 4917 4918
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4919 4920
}

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
static struct pmu perf_cpu_clock = {
	.event_init	= cpu_clock_event_init,
	.enable		= cpu_clock_event_enable,
	.disable	= cpu_clock_event_disable,
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
4933
{
4934 4935
	u64 prev;
	s64 delta;
4936

4937 4938 4939 4940
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
4941

4942 4943 4944 4945
static int task_clock_event_enable(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	u64 now;
4946

4947
	now = event->ctx->time;
4948

4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
	local64_set(&hwc->prev_count, now);

	perf_swevent_start_hrtimer(event);

	return 0;
}

static void task_clock_event_disable(struct perf_event *event)
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);

}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
	.event_init	= task_clock_event_init,
	.enable		= task_clock_event_enable,
	.disable	= task_clock_event_disable,
	.read		= task_clock_event_read,
};

static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

int perf_pmu_register(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_add_rcu(&pmu->entry, &pmus);
	mutex_unlock(&pmus_lock);

	return 0;
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

	synchronize_srcu(&pmus_srcu);
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
			break;
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
			break;
5032
		}
5033
	}
5034
	srcu_read_unlock(&pmus_srcu, idx);
5035

5036
	return pmu;
5037 5038
}

T
Thomas Gleixner 已提交
5039
/*
5040
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5041
 */
5042 5043
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
5044
		   int cpu,
5045 5046 5047
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5048
		   perf_overflow_handler_t overflow_handler,
5049
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
5050
{
P
Peter Zijlstra 已提交
5051
	struct pmu *pmu;
5052 5053
	struct perf_event *event;
	struct hw_perf_event *hwc;
5054
	long err;
T
Thomas Gleixner 已提交
5055

5056 5057
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
5058
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5059

5060
	/*
5061
	 * Single events are their own group leaders, with an
5062 5063 5064
	 * empty sibling list:
	 */
	if (!group_leader)
5065
		group_leader = event;
5066

5067 5068
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5069

5070 5071 5072 5073
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5074

5075
	mutex_init(&event->mmap_mutex);
5076

5077 5078 5079 5080 5081 5082
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
5083

5084
	event->parent		= parent_event;
5085

5086 5087
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5088

5089
	event->state		= PERF_EVENT_STATE_INACTIVE;
5090

5091 5092
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5093
	
5094
	event->overflow_handler	= overflow_handler;
5095

5096
	if (attr->disabled)
5097
		event->state = PERF_EVENT_STATE_OFF;
5098

5099
	pmu = NULL;
5100

5101
	hwc = &event->hw;
5102
	hwc->sample_period = attr->sample_period;
5103
	if (attr->freq && attr->sample_freq)
5104
		hwc->sample_period = 1;
5105
	hwc->last_period = hwc->sample_period;
5106

5107
	local64_set(&hwc->period_left, hwc->sample_period);
5108

5109
	/*
5110
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5111
	 */
5112
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5113 5114
		goto done;

5115
	pmu = perf_init_event(event);
5116

5117 5118
done:
	err = 0;
5119
	if (!pmu)
5120
		err = -EINVAL;
5121 5122
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5123

5124
	if (err) {
5125 5126 5127
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5128
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5129
	}
5130

5131
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5132

5133 5134
	if (!event->parent) {
		atomic_inc(&nr_events);
5135
		if (event->attr.mmap || event->attr.mmap_data)
5136 5137 5138 5139 5140
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5141 5142 5143 5144 5145 5146 5147
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5148
	}
5149

5150
	return event;
T
Thomas Gleixner 已提交
5151 5152
}

5153 5154
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5155 5156
{
	u32 size;
5157
	int ret;
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5182 5183 5184
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5185 5186
	 */
	if (size > sizeof(*attr)) {
5187 5188 5189
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5190

5191 5192
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5193

5194
		for (; addr < end; addr++) {
5195 5196 5197 5198 5199 5200
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5201
		size = sizeof(*attr);
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5215
	if (attr->__reserved_1)
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5233 5234
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5235
{
5236
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5237 5238
	int ret = -EINVAL;

5239
	if (!output_event)
5240 5241
		goto set;

5242 5243
	/* don't allow circular references */
	if (event == output_event)
5244 5245
		goto out;

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5258
set:
5259
	mutex_lock(&event->mmap_mutex);
5260 5261 5262
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5263

5264 5265
	if (output_event) {
		/* get the buffer we want to redirect to */
5266 5267
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5268
			goto unlock;
5269 5270
	}

5271 5272
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5273
	ret = 0;
5274 5275 5276
unlock:
	mutex_unlock(&event->mmap_mutex);

5277 5278
	if (old_buffer)
		perf_buffer_put(old_buffer);
5279 5280 5281 5282
out:
	return ret;
}

T
Thomas Gleixner 已提交
5283
/**
5284
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5285
 *
5286
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5287
 * @pid:		target pid
I
Ingo Molnar 已提交
5288
 * @cpu:		target cpu
5289
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5290
 */
5291 5292
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5293
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5294
{
5295
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5296 5297 5298
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5299
	struct file *group_file = NULL;
5300
	int event_fd;
5301
	int fput_needed = 0;
5302
	int err;
T
Thomas Gleixner 已提交
5303

5304
	/* for future expandability... */
5305
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5306 5307
		return -EINVAL;

5308 5309 5310
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5311

5312 5313 5314 5315 5316
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5317
	if (attr.freq) {
5318
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5319 5320 5321
			return -EINVAL;
	}

5322 5323 5324 5325
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5326
	/*
I
Ingo Molnar 已提交
5327 5328 5329
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5330 5331 5332 5333
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5334

5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5348
	/*
5349
	 * Look up the group leader (we will attach this event to it):
5350
	 */
5351
	if (group_leader) {
5352
		err = -EINVAL;
5353 5354

		/*
I
Ingo Molnar 已提交
5355 5356 5357 5358 5359 5360 5361 5362
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5363
		 */
I
Ingo Molnar 已提交
5364 5365
		if (group_leader->ctx != ctx)
			goto err_put_context;
5366 5367 5368
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5369
		if (attr.exclusive || attr.pinned)
5370
			goto err_put_context;
5371 5372
	}

5373
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5374
				     NULL, NULL, GFP_KERNEL);
5375 5376
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5377
		goto err_put_context;
5378 5379 5380 5381 5382 5383 5384
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5385

5386 5387 5388
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5389
		goto err_free_put_context;
5390
	}
5391

5392
	event->filp = event_file;
5393
	WARN_ON_ONCE(ctx->parent_ctx);
5394
	mutex_lock(&ctx->mutex);
5395
	perf_install_in_context(ctx, event, cpu);
5396
	++ctx->generation;
5397
	mutex_unlock(&ctx->mutex);
5398

5399
	event->owner = current;
5400
	get_task_struct(current);
5401 5402 5403
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5404

5405 5406 5407 5408 5409 5410
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5411 5412 5413
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5414

5415
err_free_put_context:
5416
	free_event(event);
T
Thomas Gleixner 已提交
5417
err_put_context:
5418
	fput_light(group_file, fput_needed);
5419 5420 5421
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5422
	return err;
T
Thomas Gleixner 已提交
5423 5424
}

5425 5426 5427 5428 5429 5430 5431 5432 5433
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5434 5435
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5446 5447 5448 5449
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5450 5451

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5452
				 NULL, overflow_handler, GFP_KERNEL);
5453 5454
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5455
		goto err_put_context;
5456
	}
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5473 5474 5475 5476
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5477 5478 5479
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5480
/*
5481
 * inherit a event from parent task to child task:
5482
 */
5483 5484
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5485
	      struct task_struct *parent,
5486
	      struct perf_event_context *parent_ctx,
5487
	      struct task_struct *child,
5488 5489
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5490
{
5491
	struct perf_event *child_event;
5492

5493
	/*
5494 5495
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5496 5497 5498
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5499 5500
	if (parent_event->parent)
		parent_event = parent_event->parent;
5501

5502 5503 5504
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5505
					   NULL, GFP_KERNEL);
5506 5507
	if (IS_ERR(child_event))
		return child_event;
5508
	get_ctx(child_ctx);
5509

5510
	/*
5511
	 * Make the child state follow the state of the parent event,
5512
	 * not its attr.disabled bit.  We hold the parent's mutex,
5513
	 * so we won't race with perf_event_{en, dis}able_family.
5514
	 */
5515 5516
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5517
	else
5518
		child_event->state = PERF_EVENT_STATE_OFF;
5519

5520 5521 5522 5523 5524 5525 5526
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

5527
		local64_set(&hwc->period_left, sample_period);
5528
	}
5529

5530 5531
	child_event->overflow_handler = parent_event->overflow_handler;

5532 5533 5534
	/*
	 * Link it up in the child's context:
	 */
5535
	add_event_to_ctx(child_event, child_ctx);
5536 5537 5538

	/*
	 * Get a reference to the parent filp - we will fput it
5539
	 * when the child event exits. This is safe to do because
5540 5541 5542
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5543
	atomic_long_inc(&parent_event->filp->f_count);
5544

5545
	/*
5546
	 * Link this into the parent event's child list
5547
	 */
5548 5549 5550 5551
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5552

5553
	return child_event;
5554 5555
}

5556
static int inherit_group(struct perf_event *parent_event,
5557
	      struct task_struct *parent,
5558
	      struct perf_event_context *parent_ctx,
5559
	      struct task_struct *child,
5560
	      struct perf_event_context *child_ctx)
5561
{
5562 5563 5564
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5565

5566
	leader = inherit_event(parent_event, parent, parent_ctx,
5567
				 child, NULL, child_ctx);
5568 5569
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5570 5571
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5572 5573 5574
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5575
	}
5576 5577 5578
	return 0;
}

5579
static void sync_child_event(struct perf_event *child_event,
5580
			       struct task_struct *child)
5581
{
5582
	struct perf_event *parent_event = child_event->parent;
5583
	u64 child_val;
5584

5585 5586
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5587

P
Peter Zijlstra 已提交
5588
	child_val = perf_event_count(child_event);
5589 5590 5591 5592

	/*
	 * Add back the child's count to the parent's count:
	 */
5593
	atomic64_add(child_val, &parent_event->child_count);
5594 5595 5596 5597
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5598 5599

	/*
5600
	 * Remove this event from the parent's list
5601
	 */
5602 5603 5604 5605
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5606 5607

	/*
5608
	 * Release the parent event, if this was the last
5609 5610
	 * reference to it.
	 */
5611
	fput(parent_event->filp);
5612 5613
}

5614
static void
5615 5616
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5617
			 struct task_struct *child)
5618
{
5619
	struct perf_event *parent_event;
5620

5621
	perf_event_remove_from_context(child_event);
5622

5623
	parent_event = child_event->parent;
5624
	/*
5625
	 * It can happen that parent exits first, and has events
5626
	 * that are still around due to the child reference. These
5627
	 * events need to be zapped - but otherwise linger.
5628
	 */
5629 5630 5631
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5632
	}
5633 5634 5635
}

/*
5636
 * When a child task exits, feed back event values to parent events.
5637
 */
5638
void perf_event_exit_task(struct task_struct *child)
5639
{
5640 5641
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5642
	unsigned long flags;
5643

5644 5645
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5646
		return;
P
Peter Zijlstra 已提交
5647
	}
5648

5649
	local_irq_save(flags);
5650 5651 5652 5653 5654 5655
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5656 5657
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5658 5659 5660

	/*
	 * Take the context lock here so that if find_get_context is
5661
	 * reading child->perf_event_ctxp, we wait until it has
5662 5663
	 * incremented the context's refcount before we do put_ctx below.
	 */
5664
	raw_spin_lock(&child_ctx->lock);
5665
	child->perf_event_ctxp = NULL;
5666 5667 5668
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5669
	 * the events from it.
5670 5671
	 */
	unclone_ctx(child_ctx);
5672
	update_context_time(child_ctx);
5673
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5674 5675

	/*
5676 5677 5678
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5679
	 */
5680
	perf_event_task(child, child_ctx, 0);
5681

5682 5683 5684
	/*
	 * We can recurse on the same lock type through:
	 *
5685 5686 5687
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5688 5689 5690 5691 5692
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5693
	mutex_lock(&child_ctx->mutex);
5694

5695
again:
5696 5697 5698 5699 5700
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5701
				 group_entry)
5702
		__perf_event_exit_task(child_event, child_ctx, child);
5703 5704

	/*
5705
	 * If the last event was a group event, it will have appended all
5706 5707 5708
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5709 5710
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5711
		goto again;
5712 5713 5714 5715

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5716 5717
}

5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5732
	perf_group_detach(event);
5733 5734 5735 5736
	list_del_event(event, ctx);
	free_event(event);
}

5737 5738 5739 5740
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5741
void perf_event_free_task(struct task_struct *task)
5742
{
5743 5744
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5745 5746 5747 5748 5749 5750

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5751 5752
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5753

5754 5755 5756
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5757

5758 5759 5760
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5761

5762
	mutex_unlock(&ctx->mutex);
5763

5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5779 5780
	}

5781 5782 5783 5784 5785 5786 5787
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5788

5789 5790 5791 5792
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5793

5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5806 5807
}

5808

5809
/*
5810
 * Initialize the perf_event context in task_struct
5811
 */
5812
int perf_event_init_task(struct task_struct *child)
5813
{
5814
	struct perf_event_context *child_ctx, *parent_ctx;
5815 5816
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5817
	struct task_struct *parent = current;
5818
	int inherited_all = 1;
5819
	int ret = 0;
5820

5821
	child->perf_event_ctxp = NULL;
5822

5823 5824
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5825

5826
	if (likely(!parent->perf_event_ctxp))
5827 5828
		return 0;

5829
	/*
5830 5831
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5832
	 */
5833 5834
	parent_ctx = perf_pin_task_context(parent);

5835 5836 5837 5838 5839 5840 5841
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5842 5843 5844 5845
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5846
	mutex_lock(&parent_ctx->mutex);
5847 5848 5849 5850 5851

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5852 5853 5854 5855 5856 5857
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5858

5859 5860 5861 5862
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5863
			break;
5864 5865
	}

5866 5867
	child_ctx = child->perf_event_ctxp;

5868
	if (child_ctx && inherited_all) {
5869 5870 5871
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5872 5873
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5874
		 * because the list of events and the generation
5875
		 * count can't have changed since we took the mutex.
5876
		 */
5877 5878 5879
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5880
			child_ctx->parent_gen = parent_ctx->parent_gen;
5881 5882 5883 5884 5885
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5886 5887
	}

5888
	mutex_unlock(&parent_ctx->mutex);
5889

5890
	perf_unpin_context(parent_ctx);
5891

5892
	return ret;
5893 5894
}

5895 5896 5897 5898 5899 5900 5901
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5902
		mutex_init(&cpuctx->hlist_mutex);
5903 5904 5905 5906
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5907
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5908
{
5909
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5910

5911
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5912

5913
	spin_lock(&perf_resource_lock);
5914
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5915
	spin_unlock(&perf_resource_lock);
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5926 5927 5928
}

#ifdef CONFIG_HOTPLUG_CPU
5929
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5930 5931
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5932 5933
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5934

5935 5936 5937
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5938
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5939
}
5940
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5941
{
5942
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5943
	struct perf_event_context *ctx = &cpuctx->ctx;
5944

5945 5946 5947 5948
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5949
	mutex_lock(&ctx->mutex);
5950
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5951
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5952 5953
}
#else
5954
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5955 5956 5957 5958 5959 5960 5961
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
5962
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
5963 5964

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
5965
	case CPU_DOWN_FAILED:
5966
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5967 5968
		break;

P
Peter Zijlstra 已提交
5969
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
5970
	case CPU_DOWN_PREPARE:
5971
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5972 5973 5974 5975 5976 5977 5978 5979 5980
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5981
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5982
{
5983
	perf_event_init_all_cpus();
5984 5985 5986 5987 5988 5989
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
5990 5991
}

5992 5993 5994
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5995 5996 5997 5998 5999 6000
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
6001
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
6012
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
6013 6014
		return -EINVAL;

6015
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6016 6017 6018
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
6019
		raw_spin_lock_irq(&cpuctx->ctx.lock);
6020 6021
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
6022
		cpuctx->max_pertask = mpt;
6023
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
6024
	}
6025
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6026 6027 6028 6029

	return count;
}

6030 6031 6032
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
6033 6034 6035 6036 6037
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
6038 6039 6040
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

6051
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6052
	perf_overcommit = val;
6053
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
6080
	.name			= "perf_events",
T
Thomas Gleixner 已提交
6081 6082
};

6083
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
6084 6085 6086 6087
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
6088
device_initcall(perf_event_sysfs_init);