perf_event.c 138.1 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
P
Peter Zijlstra 已提交
78
extern __weak struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
void __weak perf_event_print_debug(void)	{ }
87

88
static DEFINE_PER_CPU(int, perf_disable_count);
89 90 91

void perf_disable(void)
{
P
Peter Zijlstra 已提交
92 93
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
94 95 96 97
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
98
	if (!--__get_cpu_var(perf_disable_count))
99 100 101
		hw_perf_enable();
}

102
static void get_ctx(struct perf_event_context *ctx)
103
{
104
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 106
}

107 108
static void free_ctx(struct rcu_head *head)
{
109
	struct perf_event_context *ctx;
110

111
	ctx = container_of(head, struct perf_event_context, rcu_head);
112 113 114
	kfree(ctx);
}

115
static void put_ctx(struct perf_event_context *ctx)
116
{
117 118 119
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
120 121 122
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
123
	}
124 125
}

126
static void unclone_ctx(struct perf_event_context *ctx)
127 128 129 130 131 132 133
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

134
/*
135
 * If we inherit events we want to return the parent event id
136 137
 * to userspace.
 */
138
static u64 primary_event_id(struct perf_event *event)
139
{
140
	u64 id = event->id;
141

142 143
	if (event->parent)
		id = event->parent->id;
144 145 146 147

	return id;
}

148
/*
149
 * Get the perf_event_context for a task and lock it.
150 151 152
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
153
static struct perf_event_context *
154
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155
{
156
	struct perf_event_context *ctx;
157 158 159

	rcu_read_lock();
 retry:
160
	ctx = rcu_dereference(task->perf_event_ctxp);
161 162 163 164
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
165
		 * perf_event_task_sched_out, though the
166 167 168 169 170 171
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
172
		raw_spin_lock_irqsave(&ctx->lock, *flags);
173
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 176
			goto retry;
		}
177 178

		if (!atomic_inc_not_zero(&ctx->refcount)) {
179
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 181
			ctx = NULL;
		}
182 183 184 185 186 187 188 189 190 191
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
192
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193
{
194
	struct perf_event_context *ctx;
195 196 197 198 199
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
200
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 202 203 204
	}
	return ctx;
}

205
static void perf_unpin_context(struct perf_event_context *ctx)
206 207 208
{
	unsigned long flags;

209
	raw_spin_lock_irqsave(&ctx->lock, flags);
210
	--ctx->pin_count;
211
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 213 214
	put_ctx(ctx);
}

215 216
static inline u64 perf_clock(void)
{
217
	return local_clock();
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

243 244 245 246 247 248
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
249 250 251 252 253 254 255 256 257

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

270 271 272 273 274 275 276 277 278
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

279
/*
280
 * Add a event from the lists for its context.
281 282
 * Must be called with ctx->mutex and ctx->lock held.
 */
283
static void
284
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285
{
286 287
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
288 289

	/*
290 291 292
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
293
	 */
294
	if (event->group_leader == event) {
295 296
		struct list_head *list;

297 298 299
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

300 301
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
302
	}
P
Peter Zijlstra 已提交
303

304 305 306
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

328
/*
329
 * Remove a event from the lists for its context.
330
 * Must be called with ctx->mutex and ctx->lock held.
331
 */
332
static void
333
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334
{
335 336 337 338
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339
		return;
340 341 342

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

343 344
	ctx->nr_events--;
	if (event->attr.inherit_stat)
345
		ctx->nr_stat--;
346

347
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
351

352
	update_group_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363 364
}

365
static void perf_group_detach(struct perf_event *event)
366 367
{
	struct perf_event *sibling, *tmp;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
389

390
	/*
391 392
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
393
	 * to whatever list we are on.
394
	 */
395
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 397
		if (list)
			list_move_tail(&sibling->group_entry, list);
398
		sibling->group_leader = sibling;
399 400 401

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
402 403 404
	}
}

405 406 407 408 409 410
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

411
static void
412
event_sched_out(struct perf_event *event,
413
		  struct perf_cpu_context *cpuctx,
414
		  struct perf_event_context *ctx)
415
{
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

430
	if (event->state != PERF_EVENT_STATE_ACTIVE)
431 432
		return;

433 434 435 436
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
437
	}
438 439 440
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
441

442
	if (!is_software_event(event))
443 444
		cpuctx->active_oncpu--;
	ctx->nr_active--;
445
	if (event->attr.exclusive || !cpuctx->active_oncpu)
446 447 448
		cpuctx->exclusive = 0;
}

449
static void
450
group_sched_out(struct perf_event *group_event,
451
		struct perf_cpu_context *cpuctx,
452
		struct perf_event_context *ctx)
453
{
454
	struct perf_event *event;
455
	int state = group_event->state;
456

457
	event_sched_out(group_event, cpuctx, ctx);
458 459 460 461

	/*
	 * Schedule out siblings (if any):
	 */
462 463
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
464

465
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 467 468
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
469
/*
470
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
471
 *
472
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
473 474
 * remove it from the context list.
 */
475
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
476 477
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
478 479
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
480 481 482 483 484 485

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
486
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
487 488
		return;

489
	raw_spin_lock(&ctx->lock);
490 491
	/*
	 * Protect the list operation against NMI by disabling the
492
	 * events on a global level.
493 494
	 */
	perf_disable();
T
Thomas Gleixner 已提交
495

496
	event_sched_out(event, cpuctx, ctx);
497

498
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
499 500 501

	if (!ctx->task) {
		/*
502
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
503 504 505
		 * reservation:
		 */
		cpuctx->max_pertask =
506 507
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
508 509
	}

510
	perf_enable();
511
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
512 513 514 515
}


/*
516
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
517
 *
518
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
519
 *
520
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
521
 * call when the task is on a CPU.
522
 *
523 524
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
525 526
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
527
 * When called from perf_event_exit_task, it's OK because the
528
 * context has been detached from its task.
T
Thomas Gleixner 已提交
529
 */
530
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
531
{
532
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
533 534 535 536
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
537
		 * Per cpu events are removed via an smp call and
538
		 * the removal is always successful.
T
Thomas Gleixner 已提交
539
		 */
540 541 542
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
543 544 545 546
		return;
	}

retry:
547 548
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
549

550
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
551 552 553
	/*
	 * If the context is active we need to retry the smp call.
	 */
554
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
555
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
556 557 558 559 560
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
561
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
562 563
	 * succeed.
	 */
P
Peter Zijlstra 已提交
564
	if (!list_empty(&event->group_entry))
565
		list_del_event(event, ctx);
566
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
567 568
}

569
/*
570
 * Cross CPU call to disable a performance event
571
 */
572
static void __perf_event_disable(void *info)
573
{
574
	struct perf_event *event = info;
575
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
576
	struct perf_event_context *ctx = event->ctx;
577 578

	/*
579 580
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
581
	 */
582
	if (ctx->task && cpuctx->task_ctx != ctx)
583 584
		return;

585
	raw_spin_lock(&ctx->lock);
586 587

	/*
588
	 * If the event is on, turn it off.
589 590
	 * If it is in error state, leave it in error state.
	 */
591
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592
		update_context_time(ctx);
593 594 595
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
596
		else
597 598
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
599 600
	}

601
	raw_spin_unlock(&ctx->lock);
602 603 604
}

/*
605
 * Disable a event.
606
 *
607 608
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
609
 * remains valid.  This condition is satisifed when called through
610 611 612 613
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
614
 * is the current context on this CPU and preemption is disabled,
615
 * hence we can't get into perf_event_task_sched_out for this context.
616
 */
617
void perf_event_disable(struct perf_event *event)
618
{
619
	struct perf_event_context *ctx = event->ctx;
620 621 622 623
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
624
		 * Disable the event on the cpu that it's on
625
		 */
626 627
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
628 629 630 631
		return;
	}

 retry:
632
	task_oncpu_function_call(task, __perf_event_disable, event);
633

634
	raw_spin_lock_irq(&ctx->lock);
635
	/*
636
	 * If the event is still active, we need to retry the cross-call.
637
	 */
638
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
639
		raw_spin_unlock_irq(&ctx->lock);
640 641 642 643 644 645 646
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
647 648 649
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
650
	}
651

652
	raw_spin_unlock_irq(&ctx->lock);
653 654
}

655
static int
656
event_sched_in(struct perf_event *event,
657
		 struct perf_cpu_context *cpuctx,
658
		 struct perf_event_context *ctx)
659
{
660
	if (event->state <= PERF_EVENT_STATE_OFF)
661 662
		return 0;

663
	event->state = PERF_EVENT_STATE_ACTIVE;
664
	event->oncpu = smp_processor_id();
665 666 667 668 669
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

670 671 672
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
673 674 675
		return -EAGAIN;
	}

676
	event->tstamp_running += ctx->time - event->tstamp_stopped;
677

678
	if (!is_software_event(event))
679
		cpuctx->active_oncpu++;
680 681
	ctx->nr_active++;

682
	if (event->attr.exclusive)
683 684
		cpuctx->exclusive = 1;

685 686 687
	return 0;
}

688
static int
689
group_sched_in(struct perf_event *group_event,
690
	       struct perf_cpu_context *cpuctx,
691
	       struct perf_event_context *ctx)
692
{
693
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
694
	struct pmu *pmu = group_event->pmu;
695
	bool txn = false;
696

697
	if (group_event->state == PERF_EVENT_STATE_OFF)
698 699
		return 0;

700 701 702 703 704 705
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
706

707 708 709
	if (event_sched_in(group_event, cpuctx, ctx)) {
		if (txn)
			pmu->cancel_txn(pmu);
710
		return -EAGAIN;
711
	}
712 713 714 715

	/*
	 * Schedule in siblings as one group (if any):
	 */
716
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717
		if (event_sched_in(event, cpuctx, ctx)) {
718
			partial_group = event;
719 720 721 722
			goto group_error;
		}
	}

723
	if (!txn || !pmu->commit_txn(pmu))
724
		return 0;
725

726 727 728 729 730
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
731 732
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
733
			break;
734
		event_sched_out(event, cpuctx, ctx);
735
	}
736
	event_sched_out(group_event, cpuctx, ctx);
737

738 739 740
	if (txn)
		pmu->cancel_txn(pmu);

741 742 743
	return -EAGAIN;
}

744
/*
745
 * Work out whether we can put this event group on the CPU now.
746
 */
747
static int group_can_go_on(struct perf_event *event,
748 749 750 751
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
752
	 * Groups consisting entirely of software events can always go on.
753
	 */
754
	if (event->group_flags & PERF_GROUP_SOFTWARE)
755 756 757
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
758
	 * events can go on.
759 760 761 762 763
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
764
	 * events on the CPU, it can't go on.
765
	 */
766
	if (event->attr.exclusive && cpuctx->active_oncpu)
767 768 769 770 771 772 773 774
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

775 776
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
777
{
778
	list_add_event(event, ctx);
779
	perf_group_attach(event);
780 781 782
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
783 784
}

T
Thomas Gleixner 已提交
785
/*
786
 * Cross CPU call to install and enable a performance event
787 788
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
789 790 791 792
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
793 794 795
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
796
	int err;
T
Thomas Gleixner 已提交
797 798 799 800 801

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
802
	 * Or possibly this is the right context but it isn't
803
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
804
	 */
805
	if (ctx->task && cpuctx->task_ctx != ctx) {
806
		if (cpuctx->task_ctx || ctx->task != current)
807 808 809
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
810

811
	raw_spin_lock(&ctx->lock);
812
	ctx->is_active = 1;
813
	update_context_time(ctx);
T
Thomas Gleixner 已提交
814 815 816

	/*
	 * Protect the list operation against NMI by disabling the
817
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
818
	 */
819
	perf_disable();
T
Thomas Gleixner 已提交
820

821
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
822

823 824 825
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

826
	/*
827
	 * Don't put the event on if it is disabled or if
828 829
	 * it is in a group and the group isn't on.
	 */
830 831
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
832 833
		goto unlock;

834
	/*
835 836 837
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
838
	 */
839
	if (!group_can_go_on(event, cpuctx, 1))
840 841
		err = -EEXIST;
	else
842
		err = event_sched_in(event, cpuctx, ctx);
843

844 845
	if (err) {
		/*
846
		 * This event couldn't go on.  If it is in a group
847
		 * then we have to pull the whole group off.
848
		 * If the event group is pinned then put it in error state.
849
		 */
850
		if (leader != event)
851
			group_sched_out(leader, cpuctx, ctx);
852
		if (leader->attr.pinned) {
853
			update_group_times(leader);
854
			leader->state = PERF_EVENT_STATE_ERROR;
855
		}
856
	}
T
Thomas Gleixner 已提交
857

858
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
859 860
		cpuctx->max_pertask--;

861
 unlock:
862
	perf_enable();
863

864
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
865 866 867
}

/*
868
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
869
 *
870 871
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
872
 *
873
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
874 875
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
876 877
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
878 879
 */
static void
880 881
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
882 883 884 885 886 887
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
888
		 * Per cpu events are installed via an smp call and
889
		 * the install is always successful.
T
Thomas Gleixner 已提交
890 891
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
892
					 event, 1);
T
Thomas Gleixner 已提交
893 894 895 896 897
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
898
				 event);
T
Thomas Gleixner 已提交
899

900
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
901 902 903
	/*
	 * we need to retry the smp call.
	 */
904
	if (ctx->is_active && list_empty(&event->group_entry)) {
905
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
906 907 908 909 910
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
911
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
912 913
	 * succeed.
	 */
914 915
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
916
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
917 918
}

919
/*
920
 * Put a event into inactive state and update time fields.
921 922 923 924 925 926
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
927 928
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
929
{
930
	struct perf_event *sub;
931

932 933 934 935
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
936 937 938 939
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

940
/*
941
 * Cross CPU call to enable a performance event
942
 */
943
static void __perf_event_enable(void *info)
944
{
945
	struct perf_event *event = info;
946
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
947 948
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
949
	int err;
950

951
	/*
952 953
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
954
	 */
955
	if (ctx->task && cpuctx->task_ctx != ctx) {
956
		if (cpuctx->task_ctx || ctx->task != current)
957 958 959
			return;
		cpuctx->task_ctx = ctx;
	}
960

961
	raw_spin_lock(&ctx->lock);
962
	ctx->is_active = 1;
963
	update_context_time(ctx);
964

965
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
966
		goto unlock;
967
	__perf_event_mark_enabled(event, ctx);
968

969 970 971
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

972
	/*
973
	 * If the event is in a group and isn't the group leader,
974
	 * then don't put it on unless the group is on.
975
	 */
976
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
977
		goto unlock;
978

979
	if (!group_can_go_on(event, cpuctx, 1)) {
980
		err = -EEXIST;
981
	} else {
982
		perf_disable();
983
		if (event == leader)
984
			err = group_sched_in(event, cpuctx, ctx);
985
		else
986
			err = event_sched_in(event, cpuctx, ctx);
987
		perf_enable();
988
	}
989 990 991

	if (err) {
		/*
992
		 * If this event can't go on and it's part of a
993 994
		 * group, then the whole group has to come off.
		 */
995
		if (leader != event)
996
			group_sched_out(leader, cpuctx, ctx);
997
		if (leader->attr.pinned) {
998
			update_group_times(leader);
999
			leader->state = PERF_EVENT_STATE_ERROR;
1000
		}
1001 1002 1003
	}

 unlock:
1004
	raw_spin_unlock(&ctx->lock);
1005 1006 1007
}

/*
1008
 * Enable a event.
1009
 *
1010 1011
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1012
 * remains valid.  This condition is satisfied when called through
1013 1014
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1015
 */
1016
void perf_event_enable(struct perf_event *event)
1017
{
1018
	struct perf_event_context *ctx = event->ctx;
1019 1020 1021 1022
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1023
		 * Enable the event on the cpu that it's on
1024
		 */
1025 1026
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1027 1028 1029
		return;
	}

1030
	raw_spin_lock_irq(&ctx->lock);
1031
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1032 1033 1034
		goto out;

	/*
1035 1036
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1037 1038 1039 1040
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1041 1042
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1043 1044

 retry:
1045
	raw_spin_unlock_irq(&ctx->lock);
1046
	task_oncpu_function_call(task, __perf_event_enable, event);
1047

1048
	raw_spin_lock_irq(&ctx->lock);
1049 1050

	/*
1051
	 * If the context is active and the event is still off,
1052 1053
	 * we need to retry the cross-call.
	 */
1054
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1055 1056 1057 1058 1059 1060
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1061 1062
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1063

1064
 out:
1065
	raw_spin_unlock_irq(&ctx->lock);
1066 1067
}

1068
static int perf_event_refresh(struct perf_event *event, int refresh)
1069
{
1070
	/*
1071
	 * not supported on inherited events
1072
	 */
1073
	if (event->attr.inherit)
1074 1075
		return -EINVAL;

1076 1077
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1078 1079

	return 0;
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1091
{
1092
	struct perf_event *event;
1093

1094
	raw_spin_lock(&ctx->lock);
1095
	ctx->is_active = 0;
1096
	if (likely(!ctx->nr_events))
1097
		goto out;
1098
	update_context_time(ctx);
1099

1100
	perf_disable();
1101 1102 1103 1104
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1105 1106 1107
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1108
	if (event_type & EVENT_FLEXIBLE)
1109
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1110
			group_sched_out(event, cpuctx, ctx);
1111 1112

 out_enable:
1113
	perf_enable();
1114
 out:
1115
	raw_spin_unlock(&ctx->lock);
1116 1117
}

1118 1119 1120
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1121 1122 1123 1124
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1125
 * in them directly with an fd; we can only enable/disable all
1126
 * events via prctl, or enable/disable all events in a family
1127 1128
 * via ioctl, which will have the same effect on both contexts.
 */
1129 1130
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1131 1132
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1133
		&& ctx1->parent_gen == ctx2->parent_gen
1134
		&& !ctx1->pin_count && !ctx2->pin_count;
1135 1136
}

1137 1138
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1139 1140 1141
{
	u64 value;

1142
	if (!event->attr.inherit_stat)
1143 1144 1145
		return;

	/*
1146
	 * Update the event value, we cannot use perf_event_read()
1147 1148
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1149
	 * we know the event must be on the current CPU, therefore we
1150 1151
	 * don't need to use it.
	 */
1152 1153
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1154 1155
		event->pmu->read(event);
		/* fall-through */
1156

1157 1158
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1159 1160 1161 1162 1163 1164 1165
		break;

	default:
		break;
	}

	/*
1166
	 * In order to keep per-task stats reliable we need to flip the event
1167 1168
	 * values when we flip the contexts.
	 */
1169 1170 1171
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1172

1173 1174
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1175

1176
	/*
1177
	 * Since we swizzled the values, update the user visible data too.
1178
	 */
1179 1180
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1181 1182 1183 1184 1185
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1186 1187
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1188
{
1189
	struct perf_event *event, *next_event;
1190 1191 1192 1193

	if (!ctx->nr_stat)
		return;

1194 1195
	update_context_time(ctx);

1196 1197
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1198

1199 1200
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1201

1202 1203
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1204

1205
		__perf_event_sync_stat(event, next_event);
1206

1207 1208
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1209 1210 1211
	}
}

T
Thomas Gleixner 已提交
1212
/*
1213
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1214 1215
 * with interrupts disabled.
 *
1216
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1217
 *
I
Ingo Molnar 已提交
1218
 * This does not protect us against NMI, but disable()
1219 1220 1221
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1222
 */
1223
void perf_event_task_sched_out(struct task_struct *task,
1224
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1225
{
1226
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1227 1228 1229
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1230
	int do_switch = 1;
T
Thomas Gleixner 已提交
1231

1232
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1233

1234
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1235 1236
		return;

1237 1238
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1239
	next_ctx = next->perf_event_ctxp;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1251 1252
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1253
		if (context_equiv(ctx, next_ctx)) {
1254 1255
			/*
			 * XXX do we need a memory barrier of sorts
1256
			 * wrt to rcu_dereference() of perf_event_ctxp
1257
			 */
1258 1259
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1260 1261 1262
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1263

1264
			perf_event_sync_stat(ctx, next_ctx);
1265
		}
1266 1267
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1268
	}
1269
	rcu_read_unlock();
1270

1271
	if (do_switch) {
1272
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1273 1274
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1275 1276
}

1277 1278
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1279 1280 1281
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1282 1283
	if (!cpuctx->task_ctx)
		return;
1284 1285 1286 1287

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1288
	ctx_sched_out(ctx, cpuctx, event_type);
1289 1290 1291
	cpuctx->task_ctx = NULL;
}

1292 1293 1294
/*
 * Called with IRQs disabled
 */
1295
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1296
{
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1307 1308
}

1309
static void
1310
ctx_pinned_sched_in(struct perf_event_context *ctx,
1311
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1312
{
1313
	struct perf_event *event;
T
Thomas Gleixner 已提交
1314

1315 1316
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1317
			continue;
1318
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1319 1320
			continue;

1321
		if (group_can_go_on(event, cpuctx, 1))
1322
			group_sched_in(event, cpuctx, ctx);
1323 1324 1325 1326 1327

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1328 1329 1330
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1331
		}
1332
	}
1333 1334 1335 1336
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1337
		      struct perf_cpu_context *cpuctx)
1338 1339 1340
{
	struct perf_event *event;
	int can_add_hw = 1;
1341

1342 1343 1344
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1345
			continue;
1346 1347
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1348
		 * of events:
1349
		 */
1350
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1351 1352
			continue;

1353
		if (group_can_go_on(event, cpuctx, can_add_hw))
1354
			if (group_sched_in(event, cpuctx, ctx))
1355
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1356
	}
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1378
		ctx_pinned_sched_in(ctx, cpuctx);
1379 1380 1381

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1382
		ctx_flexible_sched_in(ctx, cpuctx);
1383

1384
	perf_enable();
1385
 out:
1386
	raw_spin_unlock(&ctx->lock);
1387 1388
}

1389 1390 1391 1392 1393 1394 1395 1396
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1410
/*
1411
 * Called from scheduler to add the events of the current task
1412 1413
 * with interrupts disabled.
 *
1414
 * We restore the event value and then enable it.
1415 1416
 *
 * This does not protect us against NMI, but enable()
1417 1418 1419
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1420
 */
1421
void perf_event_task_sched_in(struct task_struct *task)
1422
{
1423 1424
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1425

1426 1427
	if (likely(!ctx))
		return;
1428

1429 1430 1431
	if (cpuctx->task_ctx == ctx)
		return;

1432 1433
	perf_disable();

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1446 1447

	perf_enable();
1448 1449
}

1450 1451
#define MAX_INTERRUPTS (~0ULL)

1452
static void perf_log_throttle(struct perf_event *event, int enable);
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1521 1522 1523
	if (!divisor)
		return dividend;

1524 1525 1526
	return div64_u64(dividend, divisor);
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1543
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1544
{
1545
	struct hw_perf_event *hwc = &event->hw;
1546
	s64 period, sample_period;
1547 1548
	s64 delta;

1549
	period = perf_calculate_period(event, nsec, count);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1560

1561
	if (local64_read(&hwc->period_left) > 8*sample_period) {
1562
		perf_disable();
1563
		perf_event_stop(event);
1564
		local64_set(&hwc->period_left, 0);
1565
		perf_event_start(event);
1566 1567
		perf_enable();
	}
1568 1569
}

1570
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1571
{
1572 1573
	struct perf_event *event;
	struct hw_perf_event *hwc;
1574 1575
	u64 interrupts, now;
	s64 delta;
1576

1577
	raw_spin_lock(&ctx->lock);
1578
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1579
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1580 1581
			continue;

1582 1583 1584
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1585
		hwc = &event->hw;
1586 1587 1588

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1589

1590
		/*
1591
		 * unthrottle events on the tick
1592
		 */
1593
		if (interrupts == MAX_INTERRUPTS) {
1594
			perf_log_throttle(event, 1);
1595
			perf_disable();
1596
			event->pmu->unthrottle(event);
1597
			perf_enable();
1598 1599
		}

1600
		if (!event->attr.freq || !event->attr.sample_freq)
1601 1602
			continue;

1603
		perf_disable();
1604
		event->pmu->read(event);
1605
		now = local64_read(&event->count);
1606 1607
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1608

1609 1610
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1611
		perf_enable();
1612
	}
1613
	raw_spin_unlock(&ctx->lock);
1614 1615
}

1616
/*
1617
 * Round-robin a context's events:
1618
 */
1619
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1620
{
1621
	raw_spin_lock(&ctx->lock);
1622 1623 1624 1625

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1626
	raw_spin_unlock(&ctx->lock);
1627 1628
}

1629
void perf_event_task_tick(struct task_struct *curr)
1630
{
1631
	struct perf_cpu_context *cpuctx;
1632
	struct perf_event_context *ctx;
1633
	int rotate = 0;
1634

1635
	if (!atomic_read(&nr_events))
1636 1637
		return;

1638
	cpuctx = &__get_cpu_var(perf_cpu_context);
1639 1640 1641
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1642

1643 1644 1645
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1646

1647
	perf_ctx_adjust_freq(&cpuctx->ctx);
1648
	if (ctx)
1649
		perf_ctx_adjust_freq(ctx);
1650

1651 1652 1653 1654
	if (!rotate)
		return;

	perf_disable();
1655
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1656
	if (ctx)
1657
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1658

1659
	rotate_ctx(&cpuctx->ctx);
1660 1661
	if (ctx)
		rotate_ctx(ctx);
1662

1663
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1664
	if (ctx)
1665
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1666
	perf_enable();
T
Thomas Gleixner 已提交
1667 1668
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1684
/*
1685
 * Enable all of a task's events that have been marked enable-on-exec.
1686 1687
 * This expects task == current.
 */
1688
static void perf_event_enable_on_exec(struct task_struct *task)
1689
{
1690 1691
	struct perf_event_context *ctx;
	struct perf_event *event;
1692 1693
	unsigned long flags;
	int enabled = 0;
1694
	int ret;
1695 1696

	local_irq_save(flags);
1697 1698
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1699 1700
		goto out;

1701
	__perf_event_task_sched_out(ctx);
1702

1703
	raw_spin_lock(&ctx->lock);
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1715 1716 1717
	}

	/*
1718
	 * Unclone this context if we enabled any event.
1719
	 */
1720 1721
	if (enabled)
		unclone_ctx(ctx);
1722

1723
	raw_spin_unlock(&ctx->lock);
1724

1725
	perf_event_task_sched_in(task);
1726 1727 1728 1729
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1730
/*
1731
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1732
 */
1733
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1734
{
1735
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1736 1737
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1738

1739 1740 1741 1742
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1743 1744
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1745 1746 1747 1748
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1749
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1750
	update_context_time(ctx);
1751
	update_event_times(event);
1752
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1753

P
Peter Zijlstra 已提交
1754
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1755 1756
}

P
Peter Zijlstra 已提交
1757 1758
static inline u64 perf_event_count(struct perf_event *event)
{
1759
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1760 1761
}

1762
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1763 1764
{
	/*
1765 1766
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1767
	 */
1768 1769 1770 1771
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1772 1773 1774
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1775
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1776
		update_context_time(ctx);
1777
		update_event_times(event);
1778
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1779 1780
	}

P
Peter Zijlstra 已提交
1781
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1782 1783
}

1784 1785 1786 1787 1788 1789 1790 1791 1792
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1793
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1849
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1994
/*
1995
 * Initialize the perf_event context in a task_struct:
1996 1997
 */
static void
1998
__perf_event_init_context(struct perf_event_context *ctx,
1999 2000
			    struct task_struct *task)
{
2001
	raw_spin_lock_init(&ctx->lock);
2002
	mutex_init(&ctx->mutex);
2003 2004
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2005 2006 2007 2008 2009
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

2010
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
2011
{
2012
	struct perf_event_context *ctx;
2013
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2014
	struct task_struct *task;
2015
	unsigned long flags;
2016
	int err;
T
Thomas Gleixner 已提交
2017

2018
	if (pid == -1 && cpu != -1) {
2019
		/* Must be root to operate on a CPU event: */
2020
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2021 2022
			return ERR_PTR(-EACCES);

2023
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2024 2025 2026
			return ERR_PTR(-EINVAL);

		/*
2027
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2028 2029 2030
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2031
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2032 2033 2034 2035
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
2036
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2053
	/*
2054
	 * Can't attach events to a dying task.
2055 2056 2057 2058 2059
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2060
	/* Reuse ptrace permission checks for now. */
2061 2062 2063 2064 2065
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
2066
	ctx = perf_lock_task_context(task, &flags);
2067
	if (ctx) {
2068
		unclone_ctx(ctx);
2069
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2070 2071
	}

2072
	if (!ctx) {
2073
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2074 2075 2076
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2077
		__perf_event_init_context(ctx, task);
2078
		get_ctx(ctx);
2079
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2080 2081 2082 2083 2084
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
2085
			goto retry;
2086
		}
2087
		get_task_struct(task);
2088 2089
	}

2090
	put_task_struct(task);
T
Thomas Gleixner 已提交
2091
	return ctx;
2092 2093 2094 2095

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2096 2097
}

L
Li Zefan 已提交
2098 2099
static void perf_event_free_filter(struct perf_event *event);

2100
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2101
{
2102
	struct perf_event *event;
P
Peter Zijlstra 已提交
2103

2104 2105 2106
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2107
	perf_event_free_filter(event);
2108
	kfree(event);
P
Peter Zijlstra 已提交
2109 2110
}

2111
static void perf_pending_sync(struct perf_event *event);
2112
static void perf_buffer_put(struct perf_buffer *buffer);
2113

2114
static void free_event(struct perf_event *event)
2115
{
2116
	perf_pending_sync(event);
2117

2118 2119
	if (!event->parent) {
		atomic_dec(&nr_events);
2120
		if (event->attr.mmap || event->attr.mmap_data)
2121 2122 2123 2124 2125
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2126 2127
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2128
	}
2129

2130 2131 2132
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2133 2134
	}

2135 2136
	if (event->destroy)
		event->destroy(event);
2137

2138 2139
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2140 2141
}

2142
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2143
{
2144
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2145

2146 2147 2148 2149 2150 2151
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2152
	WARN_ON_ONCE(ctx->parent_ctx);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2166
	raw_spin_lock_irq(&ctx->lock);
2167
	perf_group_detach(event);
2168 2169
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2170
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2171

2172 2173 2174 2175
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2176

2177
	free_event(event);
T
Thomas Gleixner 已提交
2178 2179 2180

	return 0;
}
2181
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2182

2183 2184 2185 2186
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2187
{
2188
	struct perf_event *event = file->private_data;
2189

2190
	file->private_data = NULL;
2191

2192
	return perf_event_release_kernel(event);
2193 2194
}

2195
static int perf_event_read_size(struct perf_event *event)
2196 2197 2198 2199 2200
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2201
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2202 2203
		size += sizeof(u64);

2204
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2205 2206
		size += sizeof(u64);

2207
	if (event->attr.read_format & PERF_FORMAT_ID)
2208 2209
		entry += sizeof(u64);

2210 2211
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2212 2213 2214 2215 2216 2217 2218 2219
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2220
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2221
{
2222
	struct perf_event *child;
2223 2224
	u64 total = 0;

2225 2226 2227
	*enabled = 0;
	*running = 0;

2228
	mutex_lock(&event->child_mutex);
2229
	total += perf_event_read(event);
2230 2231 2232 2233 2234 2235
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2236
		total += perf_event_read(child);
2237 2238 2239
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2240
	mutex_unlock(&event->child_mutex);
2241 2242 2243

	return total;
}
2244
EXPORT_SYMBOL_GPL(perf_event_read_value);
2245

2246
static int perf_event_read_group(struct perf_event *event,
2247 2248
				   u64 read_format, char __user *buf)
{
2249
	struct perf_event *leader = event->group_leader, *sub;
2250 2251
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2252
	u64 values[5];
2253
	u64 count, enabled, running;
2254

2255
	mutex_lock(&ctx->mutex);
2256
	count = perf_event_read_value(leader, &enabled, &running);
2257 2258

	values[n++] = 1 + leader->nr_siblings;
2259 2260 2261 2262
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2263 2264 2265
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2266 2267 2268 2269

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2270
		goto unlock;
2271

2272
	ret = size;
2273

2274
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2275
		n = 0;
2276

2277
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2278 2279 2280 2281 2282
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2283
		if (copy_to_user(buf + ret, values, size)) {
2284 2285 2286
			ret = -EFAULT;
			goto unlock;
		}
2287 2288

		ret += size;
2289
	}
2290 2291
unlock:
	mutex_unlock(&ctx->mutex);
2292

2293
	return ret;
2294 2295
}

2296
static int perf_event_read_one(struct perf_event *event,
2297 2298
				 u64 read_format, char __user *buf)
{
2299
	u64 enabled, running;
2300 2301 2302
	u64 values[4];
	int n = 0;

2303 2304 2305 2306 2307
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2308
	if (read_format & PERF_FORMAT_ID)
2309
		values[n++] = primary_event_id(event);
2310 2311 2312 2313 2314 2315 2316

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2317
/*
2318
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2319 2320
 */
static ssize_t
2321
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2322
{
2323
	u64 read_format = event->attr.read_format;
2324
	int ret;
T
Thomas Gleixner 已提交
2325

2326
	/*
2327
	 * Return end-of-file for a read on a event that is in
2328 2329 2330
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2331
	if (event->state == PERF_EVENT_STATE_ERROR)
2332 2333
		return 0;

2334
	if (count < perf_event_read_size(event))
2335 2336
		return -ENOSPC;

2337
	WARN_ON_ONCE(event->ctx->parent_ctx);
2338
	if (read_format & PERF_FORMAT_GROUP)
2339
		ret = perf_event_read_group(event, read_format, buf);
2340
	else
2341
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2342

2343
	return ret;
T
Thomas Gleixner 已提交
2344 2345 2346 2347 2348
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2349
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2350

2351
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2352 2353 2354 2355
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2356
	struct perf_event *event = file->private_data;
2357
	struct perf_buffer *buffer;
2358
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2359 2360

	rcu_read_lock();
2361 2362 2363
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2364
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2365

2366
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2367 2368 2369 2370

	return events;
}

2371
static void perf_event_reset(struct perf_event *event)
2372
{
2373
	(void)perf_event_read(event);
2374
	local64_set(&event->count, 0);
2375
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2376 2377
}

2378
/*
2379 2380 2381 2382
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2383
 */
2384 2385
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2386
{
2387
	struct perf_event *child;
P
Peter Zijlstra 已提交
2388

2389 2390 2391 2392
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2393
		func(child);
2394
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2395 2396
}

2397 2398
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2399
{
2400 2401
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2402

2403 2404
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2405
	event = event->group_leader;
2406

2407 2408 2409 2410
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2411
	mutex_unlock(&ctx->mutex);
2412 2413
}

2414
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2415
{
2416
	struct perf_event_context *ctx = event->ctx;
2417 2418 2419 2420
	unsigned long size;
	int ret = 0;
	u64 value;

2421
	if (!event->attr.sample_period)
2422 2423 2424 2425 2426 2427 2428 2429 2430
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2431
	raw_spin_lock_irq(&ctx->lock);
2432 2433
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2434 2435 2436 2437
			ret = -EINVAL;
			goto unlock;
		}

2438
		event->attr.sample_freq = value;
2439
	} else {
2440 2441
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2442 2443
	}
unlock:
2444
	raw_spin_unlock_irq(&ctx->lock);
2445 2446 2447 2448

	return ret;
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2470
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2471

2472 2473
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2474 2475
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2476
	u32 flags = arg;
2477 2478

	switch (cmd) {
2479 2480
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2481
		break;
2482 2483
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2484
		break;
2485 2486
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2487
		break;
P
Peter Zijlstra 已提交
2488

2489 2490
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2491

2492 2493
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2494

2495
	case PERF_EVENT_IOC_SET_OUTPUT:
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2513

L
Li Zefan 已提交
2514 2515 2516
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2517
	default:
P
Peter Zijlstra 已提交
2518
		return -ENOTTY;
2519
	}
P
Peter Zijlstra 已提交
2520 2521

	if (flags & PERF_IOC_FLAG_GROUP)
2522
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2523
	else
2524
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2525 2526

	return 0;
2527 2528
}

2529
int perf_event_task_enable(void)
2530
{
2531
	struct perf_event *event;
2532

2533 2534 2535 2536
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2537 2538 2539 2540

	return 0;
}

2541
int perf_event_task_disable(void)
2542
{
2543
	struct perf_event *event;
2544

2545 2546 2547 2548
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2549 2550 2551 2552

	return 0;
}

2553 2554
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2555 2556
#endif

2557
static int perf_event_index(struct perf_event *event)
2558
{
2559
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2560 2561
		return 0;

2562
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2563 2564
}

2565 2566 2567 2568 2569
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2570
void perf_event_update_userpage(struct perf_event *event)
2571
{
2572
	struct perf_event_mmap_page *userpg;
2573
	struct perf_buffer *buffer;
2574 2575

	rcu_read_lock();
2576 2577
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2578 2579
		goto unlock;

2580
	userpg = buffer->user_page;
2581

2582 2583 2584 2585 2586
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2587
	++userpg->lock;
2588
	barrier();
2589
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2590
	userpg->offset = perf_event_count(event);
2591
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2592
		userpg->offset -= local64_read(&event->hw.prev_count);
2593

2594 2595
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2596

2597 2598
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2599

2600
	barrier();
2601
	++userpg->lock;
2602
	preempt_enable();
2603
unlock:
2604
	rcu_read_unlock();
2605 2606
}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2626
#ifndef CONFIG_PERF_USE_VMALLOC
2627

2628 2629 2630
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2631

2632
static struct page *
2633
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2634
{
2635
	if (pgoff > buffer->nr_pages)
2636
		return NULL;
2637

2638
	if (pgoff == 0)
2639
		return virt_to_page(buffer->user_page);
2640

2641
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2642 2643
}

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2657
static struct perf_buffer *
2658
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2659
{
2660
	struct perf_buffer *buffer;
2661 2662 2663
	unsigned long size;
	int i;

2664
	size = sizeof(struct perf_buffer);
2665 2666
	size += nr_pages * sizeof(void *);

2667 2668
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2669 2670
		goto fail;

2671
	buffer->user_page = perf_mmap_alloc_page(cpu);
2672
	if (!buffer->user_page)
2673 2674 2675
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2676
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2677
		if (!buffer->data_pages[i])
2678 2679 2680
			goto fail_data_pages;
	}

2681
	buffer->nr_pages = nr_pages;
2682

2683 2684
	perf_buffer_init(buffer, watermark, flags);

2685
	return buffer;
2686 2687 2688

fail_data_pages:
	for (i--; i >= 0; i--)
2689
		free_page((unsigned long)buffer->data_pages[i]);
2690

2691
	free_page((unsigned long)buffer->user_page);
2692 2693

fail_user_page:
2694
	kfree(buffer);
2695 2696

fail:
2697
	return NULL;
2698 2699
}

2700 2701
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2702
	struct page *page = virt_to_page((void *)addr);
2703 2704 2705 2706 2707

	page->mapping = NULL;
	__free_page(page);
}

2708
static void perf_buffer_free(struct perf_buffer *buffer)
2709 2710 2711
{
	int i;

2712 2713 2714 2715
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2716 2717
}

2718
static inline int page_order(struct perf_buffer *buffer)
2719 2720 2721 2722
{
	return 0;
}

2723 2724 2725 2726 2727 2728 2729 2730
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2731
static inline int page_order(struct perf_buffer *buffer)
2732
{
2733
	return buffer->page_order;
2734 2735
}

2736
static struct page *
2737
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2738
{
2739
	if (pgoff > (1UL << page_order(buffer)))
2740 2741
		return NULL;

2742
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2743 2744 2745 2746 2747 2748 2749 2750 2751
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2752
static void perf_buffer_free_work(struct work_struct *work)
2753
{
2754
	struct perf_buffer *buffer;
2755 2756 2757
	void *base;
	int i, nr;

2758 2759
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2760

2761
	base = buffer->user_page;
2762 2763 2764 2765
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2766
	kfree(buffer);
2767 2768
}

2769
static void perf_buffer_free(struct perf_buffer *buffer)
2770
{
2771
	schedule_work(&buffer->work);
2772 2773
}

2774
static struct perf_buffer *
2775
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2776
{
2777
	struct perf_buffer *buffer;
2778 2779 2780
	unsigned long size;
	void *all_buf;

2781
	size = sizeof(struct perf_buffer);
2782 2783
	size += sizeof(void *);

2784 2785
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2786 2787
		goto fail;

2788
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2789 2790 2791 2792 2793

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2794 2795 2796 2797
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2798

2799 2800
	perf_buffer_init(buffer, watermark, flags);

2801
	return buffer;
2802 2803

fail_all_buf:
2804
	kfree(buffer);
2805 2806 2807 2808 2809 2810 2811

fail:
	return NULL;
}

#endif

2812
static unsigned long perf_data_size(struct perf_buffer *buffer)
2813
{
2814
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2815 2816
}

2817 2818 2819
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2820
	struct perf_buffer *buffer;
2821 2822 2823 2824 2825 2826 2827 2828 2829
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2830 2831
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2832 2833 2834 2835 2836
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2837
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2852
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2853
{
2854
	struct perf_buffer *buffer;
2855

2856 2857
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2858 2859
}

2860
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2861
{
2862
	struct perf_buffer *buffer;
2863

2864
	rcu_read_lock();
2865 2866 2867 2868
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2869 2870 2871
	}
	rcu_read_unlock();

2872
	return buffer;
2873 2874
}

2875
static void perf_buffer_put(struct perf_buffer *buffer)
2876
{
2877
	if (!atomic_dec_and_test(&buffer->refcount))
2878
		return;
2879

2880
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2881 2882 2883 2884
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2885
	struct perf_event *event = vma->vm_file->private_data;
2886

2887
	atomic_inc(&event->mmap_count);
2888 2889 2890 2891
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2892
	struct perf_event *event = vma->vm_file->private_data;
2893

2894
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2895
		unsigned long size = perf_data_size(event->buffer);
2896
		struct user_struct *user = event->mmap_user;
2897
		struct perf_buffer *buffer = event->buffer;
2898

2899
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2900
		vma->vm_mm->locked_vm -= event->mmap_locked;
2901
		rcu_assign_pointer(event->buffer, NULL);
2902
		mutex_unlock(&event->mmap_mutex);
2903

2904
		perf_buffer_put(buffer);
2905
		free_uid(user);
2906
	}
2907 2908
}

2909
static const struct vm_operations_struct perf_mmap_vmops = {
2910 2911 2912 2913
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2914 2915 2916 2917
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2918
	struct perf_event *event = file->private_data;
2919
	unsigned long user_locked, user_lock_limit;
2920
	struct user_struct *user = current_user();
2921
	unsigned long locked, lock_limit;
2922
	struct perf_buffer *buffer;
2923 2924
	unsigned long vma_size;
	unsigned long nr_pages;
2925
	long user_extra, extra;
2926
	int ret = 0, flags = 0;
2927

2928 2929 2930 2931 2932 2933 2934 2935
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2936
	if (!(vma->vm_flags & VM_SHARED))
2937
		return -EINVAL;
2938 2939 2940 2941

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2942
	/*
2943
	 * If we have buffer pages ensure they're a power-of-two number, so we
2944 2945 2946
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2947 2948
		return -EINVAL;

2949
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2950 2951
		return -EINVAL;

2952 2953
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2954

2955 2956
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2957 2958 2959
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2960
		else
2961 2962 2963 2964
			ret = -EINVAL;
		goto unlock;
	}

2965
	user_extra = nr_pages + 1;
2966
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2967 2968 2969 2970 2971 2972

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2973
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2974

2975 2976 2977
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2978

2979
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2980
	lock_limit >>= PAGE_SHIFT;
2981
	locked = vma->vm_mm->locked_vm + extra;
2982

2983 2984
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2985 2986 2987
		ret = -EPERM;
		goto unlock;
	}
2988

2989
	WARN_ON(event->buffer);
2990

2991 2992 2993 2994 2995
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2996
	if (!buffer) {
2997
		ret = -ENOMEM;
2998
		goto unlock;
2999
	}
3000
	rcu_assign_pointer(event->buffer, buffer);
3001

3002 3003 3004 3005 3006
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3007
unlock:
3008 3009
	if (!ret)
		atomic_inc(&event->mmap_count);
3010
	mutex_unlock(&event->mmap_mutex);
3011 3012 3013

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3014 3015

	return ret;
3016 3017
}

P
Peter Zijlstra 已提交
3018 3019 3020
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3021
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3022 3023 3024
	int retval;

	mutex_lock(&inode->i_mutex);
3025
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3026 3027 3028 3029 3030 3031 3032 3033
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3034
static const struct file_operations perf_fops = {
3035
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3036 3037 3038
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3039 3040
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3041
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3042
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3043 3044
};

3045
/*
3046
 * Perf event wakeup
3047 3048 3049 3050 3051
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3052
void perf_event_wakeup(struct perf_event *event)
3053
{
3054
	wake_up_all(&event->waitq);
3055

3056 3057 3058
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3059
	}
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3071
static void perf_pending_event(struct perf_pending_entry *entry)
3072
{
3073 3074
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3075

3076 3077 3078
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3079 3080
	}

3081 3082 3083
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3084 3085 3086
	}
}

3087
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3088

3089
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3090 3091 3092
	PENDING_TAIL,
};

3093 3094
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3095
{
3096
	struct perf_pending_entry **head;
3097

3098
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3099 3100
		return;

3101 3102 3103
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3104 3105

	do {
3106 3107
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3108

3109
	set_perf_event_pending();
3110

3111
	put_cpu_var(perf_pending_head);
3112 3113 3114 3115
}

static int __perf_pending_run(void)
{
3116
	struct perf_pending_entry *list;
3117 3118
	int nr = 0;

3119
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3120
	while (list != PENDING_TAIL) {
3121 3122
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3123 3124 3125

		list = list->next;

3126 3127
		func = entry->func;
		entry->next = NULL;
3128 3129 3130 3131 3132 3133 3134
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3135
		func(entry);
3136 3137 3138 3139 3140 3141
		nr++;
	}

	return nr;
}

3142
static inline int perf_not_pending(struct perf_event *event)
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3157
	return event->pending.next == NULL;
3158 3159
}

3160
static void perf_pending_sync(struct perf_event *event)
3161
{
3162
	wait_event(event->waitq, perf_not_pending(event));
3163 3164
}

3165
void perf_event_do_pending(void)
3166 3167 3168 3169
{
	__perf_pending_run();
}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3191 3192 3193
/*
 * Output
 */
3194
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3195
			      unsigned long offset, unsigned long head)
3196 3197 3198
{
	unsigned long mask;

3199
	if (!buffer->writable)
3200 3201
		return true;

3202
	mask = perf_data_size(buffer) - 1;
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3213
static void perf_output_wakeup(struct perf_output_handle *handle)
3214
{
3215
	atomic_set(&handle->buffer->poll, POLL_IN);
3216

3217
	if (handle->nmi) {
3218 3219 3220
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3221
	} else
3222
		perf_event_wakeup(handle->event);
3223 3224
}

3225
/*
3226
 * We need to ensure a later event_id doesn't publish a head when a former
3227
 * event isn't done writing. However since we need to deal with NMIs we
3228 3229 3230
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3231
 * event completes.
3232
 */
3233
static void perf_output_get_handle(struct perf_output_handle *handle)
3234
{
3235
	struct perf_buffer *buffer = handle->buffer;
3236

3237
	preempt_disable();
3238 3239
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3240 3241
}

3242
static void perf_output_put_handle(struct perf_output_handle *handle)
3243
{
3244
	struct perf_buffer *buffer = handle->buffer;
3245
	unsigned long head;
3246 3247

again:
3248
	head = local_read(&buffer->head);
3249 3250

	/*
3251
	 * IRQ/NMI can happen here, which means we can miss a head update.
3252 3253
	 */

3254
	if (!local_dec_and_test(&buffer->nest))
3255
		goto out;
3256 3257

	/*
3258
	 * Publish the known good head. Rely on the full barrier implied
3259
	 * by atomic_dec_and_test() order the buffer->head read and this
3260
	 * write.
3261
	 */
3262
	buffer->user_page->data_head = head;
3263

3264 3265
	/*
	 * Now check if we missed an update, rely on the (compiler)
3266
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3267
	 */
3268 3269
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3270 3271 3272
		goto again;
	}

3273
	if (handle->wakeup != local_read(&buffer->wakeup))
3274
		perf_output_wakeup(handle);
3275

3276
 out:
3277
	preempt_enable();
3278 3279
}

3280
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3281
		      const void *buf, unsigned int len)
3282
{
3283
	do {
3284
		unsigned long size = min_t(unsigned long, handle->size, len);
3285 3286 3287 3288 3289

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3290
		buf += size;
3291 3292
		handle->size -= size;
		if (!handle->size) {
3293
			struct perf_buffer *buffer = handle->buffer;
3294

3295
			handle->page++;
3296 3297 3298
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3299 3300
		}
	} while (len);
3301 3302
}

3303
int perf_output_begin(struct perf_output_handle *handle,
3304
		      struct perf_event *event, unsigned int size,
3305
		      int nmi, int sample)
3306
{
3307
	struct perf_buffer *buffer;
3308
	unsigned long tail, offset, head;
3309 3310 3311 3312 3313 3314
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3315

3316
	rcu_read_lock();
3317
	/*
3318
	 * For inherited events we send all the output towards the parent.
3319
	 */
3320 3321
	if (event->parent)
		event = event->parent;
3322

3323 3324
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3325 3326
		goto out;

3327
	handle->buffer	= buffer;
3328
	handle->event	= event;
3329 3330
	handle->nmi	= nmi;
	handle->sample	= sample;
3331

3332
	if (!buffer->nr_pages)
3333
		goto out;
3334

3335
	have_lost = local_read(&buffer->lost);
3336 3337 3338
	if (have_lost)
		size += sizeof(lost_event);

3339
	perf_output_get_handle(handle);
3340

3341
	do {
3342 3343 3344 3345 3346
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3347
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3348
		smp_rmb();
3349
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3350
		head += size;
3351
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3352
			goto fail;
3353
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3354

3355 3356
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3357

3358 3359 3360 3361
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3362
	handle->addr += handle->size;
3363
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3364

3365
	if (have_lost) {
3366
		lost_event.header.type = PERF_RECORD_LOST;
3367 3368
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3369
		lost_event.id          = event->id;
3370
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3371 3372 3373 3374

		perf_output_put(handle, lost_event);
	}

3375
	return 0;
3376

3377
fail:
3378
	local_inc(&buffer->lost);
3379
	perf_output_put_handle(handle);
3380 3381
out:
	rcu_read_unlock();
3382

3383 3384
	return -ENOSPC;
}
3385

3386
void perf_output_end(struct perf_output_handle *handle)
3387
{
3388
	struct perf_event *event = handle->event;
3389
	struct perf_buffer *buffer = handle->buffer;
3390

3391
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3392

3393
	if (handle->sample && wakeup_events) {
3394
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3395
		if (events >= wakeup_events) {
3396 3397
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3398
		}
3399 3400
	}

3401
	perf_output_put_handle(handle);
3402
	rcu_read_unlock();
3403 3404
}

3405
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3406 3407
{
	/*
3408
	 * only top level events have the pid namespace they were created in
3409
	 */
3410 3411
	if (event->parent)
		event = event->parent;
3412

3413
	return task_tgid_nr_ns(p, event->ns);
3414 3415
}

3416
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3417 3418
{
	/*
3419
	 * only top level events have the pid namespace they were created in
3420
	 */
3421 3422
	if (event->parent)
		event = event->parent;
3423

3424
	return task_pid_nr_ns(p, event->ns);
3425 3426
}

3427
static void perf_output_read_one(struct perf_output_handle *handle,
3428
				 struct perf_event *event)
3429
{
3430
	u64 read_format = event->attr.read_format;
3431 3432 3433
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3434
	values[n++] = perf_event_count(event);
3435
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3436 3437
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3438 3439
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3440 3441
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3442 3443
	}
	if (read_format & PERF_FORMAT_ID)
3444
		values[n++] = primary_event_id(event);
3445 3446 3447 3448 3449

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3450
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3451 3452
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3453
			    struct perf_event *event)
3454
{
3455 3456
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3468
	if (leader != event)
3469 3470
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3471
	values[n++] = perf_event_count(leader);
3472
	if (read_format & PERF_FORMAT_ID)
3473
		values[n++] = primary_event_id(leader);
3474 3475 3476

	perf_output_copy(handle, values, n * sizeof(u64));

3477
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3478 3479
		n = 0;

3480
		if (sub != event)
3481 3482
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3483
		values[n++] = perf_event_count(sub);
3484
		if (read_format & PERF_FORMAT_ID)
3485
			values[n++] = primary_event_id(sub);
3486 3487 3488 3489 3490 3491

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3492
			     struct perf_event *event)
3493
{
3494 3495
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3496
	else
3497
		perf_output_read_one(handle, event);
3498 3499
}

3500 3501 3502
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3503
			struct perf_event *event)
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3534
		perf_output_read(handle, event);
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3572
			 struct perf_event *event,
3573
			 struct pt_regs *regs)
3574
{
3575
	u64 sample_type = event->attr.sample_type;
3576

3577
	data->type = sample_type;
3578

3579
	header->type = PERF_RECORD_SAMPLE;
3580 3581 3582 3583
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3584

3585
	if (sample_type & PERF_SAMPLE_IP) {
3586 3587 3588
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3589
	}
3590

3591
	if (sample_type & PERF_SAMPLE_TID) {
3592
		/* namespace issues */
3593 3594
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3595

3596
		header->size += sizeof(data->tid_entry);
3597 3598
	}

3599
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3600
		data->time = perf_clock();
3601

3602
		header->size += sizeof(data->time);
3603 3604
	}

3605
	if (sample_type & PERF_SAMPLE_ADDR)
3606
		header->size += sizeof(data->addr);
3607

3608
	if (sample_type & PERF_SAMPLE_ID) {
3609
		data->id = primary_event_id(event);
3610

3611 3612 3613 3614
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3615
		data->stream_id = event->id;
3616 3617 3618

		header->size += sizeof(data->stream_id);
	}
3619

3620
	if (sample_type & PERF_SAMPLE_CPU) {
3621 3622
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3623

3624
		header->size += sizeof(data->cpu_entry);
3625 3626
	}

3627
	if (sample_type & PERF_SAMPLE_PERIOD)
3628
		header->size += sizeof(data->period);
3629

3630
	if (sample_type & PERF_SAMPLE_READ)
3631
		header->size += perf_event_read_size(event);
3632

3633
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3634
		int size = 1;
3635

3636 3637 3638 3639 3640 3641
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3642 3643
	}

3644
	if (sample_type & PERF_SAMPLE_RAW) {
3645 3646 3647 3648 3649 3650 3651 3652
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3653
		header->size += size;
3654
	}
3655
}
3656

3657
static void perf_event_output(struct perf_event *event, int nmi,
3658 3659 3660 3661 3662
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3663

3664 3665 3666
	/* protect the callchain buffers */
	rcu_read_lock();

3667
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3668

3669
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3670
		goto exit;
3671

3672
	perf_output_sample(&handle, &header, data, event);
3673

3674
	perf_output_end(&handle);
3675 3676 3677

exit:
	rcu_read_unlock();
3678 3679
}

3680
/*
3681
 * read event_id
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3692
perf_event_read_event(struct perf_event *event,
3693 3694 3695
			struct task_struct *task)
{
	struct perf_output_handle handle;
3696
	struct perf_read_event read_event = {
3697
		.header = {
3698
			.type = PERF_RECORD_READ,
3699
			.misc = 0,
3700
			.size = sizeof(read_event) + perf_event_read_size(event),
3701
		},
3702 3703
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3704
	};
3705
	int ret;
3706

3707
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3708 3709 3710
	if (ret)
		return;

3711
	perf_output_put(&handle, read_event);
3712
	perf_output_read(&handle, event);
3713

3714 3715 3716
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3717
/*
P
Peter Zijlstra 已提交
3718 3719
 * task tracking -- fork/exit
 *
3720
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3721 3722
 */

P
Peter Zijlstra 已提交
3723
struct perf_task_event {
3724
	struct task_struct		*task;
3725
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3726 3727 3728 3729 3730 3731

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3732 3733
		u32				tid;
		u32				ptid;
3734
		u64				time;
3735
	} event_id;
P
Peter Zijlstra 已提交
3736 3737
};

3738
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3739
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3740 3741
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3742
	struct task_struct *task = task_event->task;
3743 3744
	int size, ret;

3745 3746
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3747

3748
	if (ret)
P
Peter Zijlstra 已提交
3749 3750
		return;

3751 3752
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3753

3754 3755
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3756

3757
	perf_output_put(&handle, task_event->event_id);
3758

P
Peter Zijlstra 已提交
3759 3760 3761
	perf_output_end(&handle);
}

3762
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3763
{
P
Peter Zijlstra 已提交
3764
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3765 3766
		return 0;

3767 3768 3769
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3770 3771
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3772 3773 3774 3775 3776
		return 1;

	return 0;
}

3777
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3778
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3779
{
3780
	struct perf_event *event;
P
Peter Zijlstra 已提交
3781

3782 3783 3784
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3785 3786 3787
	}
}

3788
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3789 3790
{
	struct perf_cpu_context *cpuctx;
3791
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3792

3793
	rcu_read_lock();
P
Peter Zijlstra 已提交
3794
	cpuctx = &get_cpu_var(perf_cpu_context);
3795
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3796
	if (!ctx)
P
Peter Zijlstra 已提交
3797
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3798
	if (ctx)
3799
		perf_event_task_ctx(ctx, task_event);
3800
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3801 3802 3803
	rcu_read_unlock();
}

3804 3805
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3806
			      int new)
P
Peter Zijlstra 已提交
3807
{
P
Peter Zijlstra 已提交
3808
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3809

3810 3811 3812
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3813 3814
		return;

P
Peter Zijlstra 已提交
3815
	task_event = (struct perf_task_event){
3816 3817
		.task	  = task,
		.task_ctx = task_ctx,
3818
		.event_id    = {
P
Peter Zijlstra 已提交
3819
			.header = {
3820
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3821
				.misc = 0,
3822
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3823
			},
3824 3825
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3826 3827
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3828
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3829 3830 3831
		},
	};

3832
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3833 3834
}

3835
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3836
{
3837
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3838 3839
}

3840 3841 3842 3843 3844
/*
 * comm tracking
 */

struct perf_comm_event {
3845 3846
	struct task_struct	*task;
	char			*comm;
3847 3848 3849 3850 3851 3852 3853
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3854
	} event_id;
3855 3856
};

3857
static void perf_event_comm_output(struct perf_event *event,
3858 3859 3860
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3861 3862
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3863 3864 3865 3866

	if (ret)
		return;

3867 3868
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3869

3870
	perf_output_put(&handle, comm_event->event_id);
3871 3872 3873 3874 3875
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3876
static int perf_event_comm_match(struct perf_event *event)
3877
{
P
Peter Zijlstra 已提交
3878
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3879 3880
		return 0;

3881 3882 3883
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3884
	if (event->attr.comm)
3885 3886 3887 3888 3889
		return 1;

	return 0;
}

3890
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3891 3892
				  struct perf_comm_event *comm_event)
{
3893
	struct perf_event *event;
3894

3895 3896 3897
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3898 3899 3900
	}
}

3901
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3902 3903
{
	struct perf_cpu_context *cpuctx;
3904
	struct perf_event_context *ctx;
3905
	unsigned int size;
3906
	char comm[TASK_COMM_LEN];
3907

3908
	memset(comm, 0, sizeof(comm));
3909
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3910
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3911 3912 3913 3914

	comm_event->comm = comm;
	comm_event->comm_size = size;

3915
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3916

3917
	rcu_read_lock();
3918
	cpuctx = &get_cpu_var(perf_cpu_context);
3919 3920
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3921
	if (ctx)
3922
		perf_event_comm_ctx(ctx, comm_event);
3923
	put_cpu_var(perf_cpu_context);
3924
	rcu_read_unlock();
3925 3926
}

3927
void perf_event_comm(struct task_struct *task)
3928
{
3929 3930
	struct perf_comm_event comm_event;

3931 3932
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3933

3934
	if (!atomic_read(&nr_comm_events))
3935
		return;
3936

3937
	comm_event = (struct perf_comm_event){
3938
		.task	= task,
3939 3940
		/* .comm      */
		/* .comm_size */
3941
		.event_id  = {
3942
			.header = {
3943
				.type = PERF_RECORD_COMM,
3944 3945 3946 3947 3948
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3949 3950 3951
		},
	};

3952
	perf_event_comm_event(&comm_event);
3953 3954
}

3955 3956 3957 3958 3959
/*
 * mmap tracking
 */

struct perf_mmap_event {
3960 3961 3962 3963
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3964 3965 3966 3967 3968 3969 3970 3971 3972

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3973
	} event_id;
3974 3975
};

3976
static void perf_event_mmap_output(struct perf_event *event,
3977 3978 3979
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3980 3981
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3982 3983 3984 3985

	if (ret)
		return;

3986 3987
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3988

3989
	perf_output_put(&handle, mmap_event->event_id);
3990 3991
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3992
	perf_output_end(&handle);
3993 3994
}

3995
static int perf_event_mmap_match(struct perf_event *event,
3996 3997
				   struct perf_mmap_event *mmap_event,
				   int executable)
3998
{
P
Peter Zijlstra 已提交
3999
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4000 4001
		return 0;

4002 4003 4004
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4005 4006
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4007 4008 4009 4010 4011
		return 1;

	return 0;
}

4012
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4013 4014
				  struct perf_mmap_event *mmap_event,
				  int executable)
4015
{
4016
	struct perf_event *event;
4017

4018
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4019
		if (perf_event_mmap_match(event, mmap_event, executable))
4020
			perf_event_mmap_output(event, mmap_event);
4021 4022 4023
	}
}

4024
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4025 4026
{
	struct perf_cpu_context *cpuctx;
4027
	struct perf_event_context *ctx;
4028 4029
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4030 4031 4032
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4033
	const char *name;
4034

4035 4036
	memset(tmp, 0, sizeof(tmp));

4037
	if (file) {
4038 4039 4040 4041 4042 4043
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4044 4045 4046 4047
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4048
		name = d_path(&file->f_path, buf, PATH_MAX);
4049 4050 4051 4052 4053
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4054 4055 4056
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4057
			goto got_name;
4058
		}
4059 4060 4061 4062

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4063 4064 4065 4066 4067 4068 4069 4070
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4071 4072
		}

4073 4074 4075 4076 4077
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4078
	size = ALIGN(strlen(name)+1, sizeof(u64));
4079 4080 4081 4082

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4083
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4084

4085
	rcu_read_lock();
4086
	cpuctx = &get_cpu_var(perf_cpu_context);
4087
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4088
	ctx = rcu_dereference(current->perf_event_ctxp);
4089
	if (ctx)
4090
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4091
	put_cpu_var(perf_cpu_context);
4092 4093
	rcu_read_unlock();

4094 4095 4096
	kfree(buf);
}

4097
void perf_event_mmap(struct vm_area_struct *vma)
4098
{
4099 4100
	struct perf_mmap_event mmap_event;

4101
	if (!atomic_read(&nr_mmap_events))
4102 4103 4104
		return;

	mmap_event = (struct perf_mmap_event){
4105
		.vma	= vma,
4106 4107
		/* .file_name */
		/* .file_size */
4108
		.event_id  = {
4109
			.header = {
4110
				.type = PERF_RECORD_MMAP,
4111
				.misc = PERF_RECORD_MISC_USER,
4112 4113 4114 4115
				/* .size */
			},
			/* .pid */
			/* .tid */
4116 4117
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4118
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4119 4120 4121
		},
	};

4122
	perf_event_mmap_event(&mmap_event);
4123 4124
}

4125 4126 4127 4128
/*
 * IRQ throttle logging
 */

4129
static void perf_log_throttle(struct perf_event *event, int enable)
4130 4131 4132 4133 4134 4135 4136
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4137
		u64				id;
4138
		u64				stream_id;
4139 4140
	} throttle_event = {
		.header = {
4141
			.type = PERF_RECORD_THROTTLE,
4142 4143 4144
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4145
		.time		= perf_clock(),
4146 4147
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4148 4149
	};

4150
	if (enable)
4151
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4152

4153
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4154 4155 4156 4157 4158 4159 4160
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4161
/*
4162
 * Generic event overflow handling, sampling.
4163 4164
 */

4165
static int __perf_event_overflow(struct perf_event *event, int nmi,
4166 4167
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4168
{
4169 4170
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4171 4172
	int ret = 0;

4173
	throttle = (throttle && event->pmu->unthrottle != NULL);
4174

4175
	if (!throttle) {
4176
		hwc->interrupts++;
4177
	} else {
4178 4179
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4180
			if (HZ * hwc->interrupts >
4181
					(u64)sysctl_perf_event_sample_rate) {
4182
				hwc->interrupts = MAX_INTERRUPTS;
4183
				perf_log_throttle(event, 0);
4184 4185 4186 4187
				ret = 1;
			}
		} else {
			/*
4188
			 * Keep re-disabling events even though on the previous
4189
			 * pass we disabled it - just in case we raced with a
4190
			 * sched-in and the event got enabled again:
4191
			 */
4192 4193 4194
			ret = 1;
		}
	}
4195

4196
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4197
		u64 now = perf_clock();
4198
		s64 delta = now - hwc->freq_time_stamp;
4199

4200
		hwc->freq_time_stamp = now;
4201

4202 4203
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4204 4205
	}

4206 4207
	/*
	 * XXX event_limit might not quite work as expected on inherited
4208
	 * events
4209 4210
	 */

4211 4212
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4213
		ret = 1;
4214
		event->pending_kill = POLL_HUP;
4215
		if (nmi) {
4216 4217 4218
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4219
		} else
4220
			perf_event_disable(event);
4221 4222
	}

4223 4224 4225 4226 4227
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4228
	return ret;
4229 4230
}

4231
int perf_event_overflow(struct perf_event *event, int nmi,
4232 4233
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4234
{
4235
	return __perf_event_overflow(event, nmi, 1, data, regs);
4236 4237
}

4238
/*
4239
 * Generic software event infrastructure
4240 4241
 */

4242
/*
4243 4244
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4245 4246 4247 4248
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4249
static u64 perf_swevent_set_period(struct perf_event *event)
4250
{
4251
	struct hw_perf_event *hwc = &event->hw;
4252 4253 4254 4255 4256
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4257 4258

again:
4259
	old = val = local64_read(&hwc->period_left);
4260 4261
	if (val < 0)
		return 0;
4262

4263 4264 4265
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4266
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4267
		goto again;
4268

4269
	return nr;
4270 4271
}

4272
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4273 4274
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4275
{
4276
	struct hw_perf_event *hwc = &event->hw;
4277
	int throttle = 0;
4278

4279
	data->period = event->hw.last_period;
4280 4281
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4282

4283 4284
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4285

4286
	for (; overflow; overflow--) {
4287
		if (__perf_event_overflow(event, nmi, throttle,
4288
					    data, regs)) {
4289 4290 4291 4292 4293 4294
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4295
		throttle = 1;
4296
	}
4297 4298
}

4299
static void perf_swevent_add(struct perf_event *event, u64 nr,
4300 4301
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4302
{
4303
	struct hw_perf_event *hwc = &event->hw;
4304

4305
	local64_add(nr, &event->count);
4306

4307 4308 4309
	if (!regs)
		return;

4310 4311
	if (!hwc->sample_period)
		return;
4312

4313 4314 4315
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4316
	if (local64_add_negative(nr, &hwc->period_left))
4317
		return;
4318

4319
	perf_swevent_overflow(event, 0, nmi, data, regs);
4320 4321
}

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4336
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4337
				enum perf_type_id type,
L
Li Zefan 已提交
4338 4339 4340
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4341
{
4342
	if (event->attr.type != type)
4343
		return 0;
4344

4345
	if (event->attr.config != event_id)
4346 4347
		return 0;

4348 4349
	if (perf_exclude_event(event, regs))
		return 0;
4350 4351 4352 4353

	return 1;
}

4354 4355 4356 4357 4358 4359 4360
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4361 4362
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4363
{
4364 4365 4366 4367
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4368

4369 4370 4371 4372 4373
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4374 4375 4376 4377 4378

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4401 4402 4403 4404 4405 4406
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4407
{
4408
	struct perf_cpu_context *cpuctx;
4409
	struct perf_event *event;
4410 4411
	struct hlist_node *node;
	struct hlist_head *head;
4412

4413 4414 4415 4416
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4417
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4418 4419 4420 4421 4422

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4423
		if (perf_swevent_match(event, type, event_id, data, regs))
4424
			perf_swevent_add(event, nr, nmi, data, regs);
4425
	}
4426 4427
end:
	rcu_read_unlock();
4428 4429
}

4430
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4431
{
4432
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4433

4434
	return get_recursion_context(cpuctx->recursion);
P
Peter Zijlstra 已提交
4435
}
I
Ingo Molnar 已提交
4436
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4437

4438
void inline perf_swevent_put_recursion_context(int rctx)
4439
{
4440
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4441 4442

	put_recursion_context(cpuctx->recursion, rctx);
4443
}
4444

4445
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4446
			    struct pt_regs *regs, u64 addr)
4447
{
4448
	struct perf_sample_data data;
4449 4450
	int rctx;

4451
	preempt_disable_notrace();
4452 4453 4454
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4455

4456
	perf_sample_data_init(&data, addr);
4457

4458
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4459 4460

	perf_swevent_put_recursion_context(rctx);
4461
	preempt_enable_notrace();
4462 4463
}

4464
static void perf_swevent_read(struct perf_event *event)
4465 4466 4467
{
}

4468
static int perf_swevent_enable(struct perf_event *event)
4469
{
4470
	struct hw_perf_event *hwc = &event->hw;
4471 4472 4473 4474
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4475 4476 4477

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4478
		perf_swevent_set_period(event);
4479
	}
4480

4481
	head = find_swevent_head(cpuctx, event);
4482 4483 4484 4485 4486
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4487 4488 4489
	return 0;
}

4490
static void perf_swevent_disable(struct perf_event *event)
4491
{
4492
	hlist_del_rcu(&event->hlist_entry);
4493 4494
}

P
Peter Zijlstra 已提交
4495 4496 4497 4498 4499 4500 4501 4502 4503
static void perf_swevent_void(struct perf_event *event)
{
}

static int perf_swevent_int(struct perf_event *event)
{
	return 0;
}

P
Peter Zijlstra 已提交
4504
static struct pmu perf_ops_generic = {
4505 4506
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
P
Peter Zijlstra 已提交
4507 4508
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4509
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4510
	.unthrottle	= perf_swevent_void, /* hwc->interrupts already reset */
4511 4512
};

4513
/*
4514
 * hrtimer based swevent callback
4515 4516
 */

4517
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4518 4519 4520
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4521
	struct pt_regs *regs;
4522
	struct perf_event *event;
4523 4524
	u64 period;

4525
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4526
	event->pmu->read(event);
4527

4528
	perf_sample_data_init(&data, 0);
4529
	data.period = event->hw.last_period;
4530
	regs = get_irq_regs();
4531

4532
	if (regs && !perf_exclude_event(event, regs)) {
4533 4534 4535
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4536 4537
	}

4538
	period = max_t(u64, 10000, event->hw.sample_period);
4539 4540 4541 4542 4543
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4580
/*
4581
 * Software event: cpu wall time clock
4582 4583
 */

4584
static void cpu_clock_perf_event_update(struct perf_event *event)
4585 4586 4587 4588 4589 4590
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4591 4592
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4593 4594
}

4595
static int cpu_clock_perf_event_enable(struct perf_event *event)
4596
{
4597
	struct hw_perf_event *hwc = &event->hw;
4598 4599
	int cpu = raw_smp_processor_id();

4600
	local64_set(&hwc->prev_count, cpu_clock(cpu));
4601
	perf_swevent_start_hrtimer(event);
4602 4603 4604 4605

	return 0;
}

4606
static void cpu_clock_perf_event_disable(struct perf_event *event)
4607
{
4608
	perf_swevent_cancel_hrtimer(event);
4609
	cpu_clock_perf_event_update(event);
4610 4611
}

4612
static void cpu_clock_perf_event_read(struct perf_event *event)
4613
{
4614
	cpu_clock_perf_event_update(event);
4615 4616
}

P
Peter Zijlstra 已提交
4617
static struct pmu perf_ops_cpu_clock = {
4618 4619 4620
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4621 4622
};

4623
/*
4624
 * Software event: task time clock
4625 4626
 */

4627
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4628
{
4629
	u64 prev;
I
Ingo Molnar 已提交
4630 4631
	s64 delta;

4632
	prev = local64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4633
	delta = now - prev;
4634
	local64_add(delta, &event->count);
4635 4636
}

4637
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4638
{
4639
	struct hw_perf_event *hwc = &event->hw;
4640 4641
	u64 now;

4642
	now = event->ctx->time;
4643

4644
	local64_set(&hwc->prev_count, now);
4645 4646

	perf_swevent_start_hrtimer(event);
4647 4648

	return 0;
I
Ingo Molnar 已提交
4649 4650
}

4651
static void task_clock_perf_event_disable(struct perf_event *event)
4652
{
4653
	perf_swevent_cancel_hrtimer(event);
4654
	task_clock_perf_event_update(event, event->ctx->time);
4655

4656
}
I
Ingo Molnar 已提交
4657

4658
static void task_clock_perf_event_read(struct perf_event *event)
4659
{
4660 4661 4662
	u64 time;

	if (!in_nmi()) {
4663 4664
		update_context_time(event->ctx);
		time = event->ctx->time;
4665 4666
	} else {
		u64 now = perf_clock();
4667 4668
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4669 4670
	}

4671
	task_clock_perf_event_update(event, time);
4672 4673
}

P
Peter Zijlstra 已提交
4674
static struct pmu perf_ops_task_clock = {
4675 4676 4677
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4678 4679
};

4680 4681 4682 4683 4684 4685 4686 4687
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4698
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4699

4700
	if (!hlist)
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4739
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4786 4787
#ifdef CONFIG_EVENT_TRACING

P
Peter Zijlstra 已提交
4788
static struct pmu perf_ops_tracepoint = {
4789 4790
	.enable		= perf_trace_enable,
	.disable	= perf_trace_disable,
P
Peter Zijlstra 已提交
4791 4792
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4793
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4794
	.unthrottle	= perf_swevent_void,
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
};

static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4811 4812 4813 4814
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4815 4816 4817 4818 4819 4820 4821 4822 4823
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4824
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4825 4826
{
	struct perf_sample_data data;
4827 4828 4829
	struct perf_event *event;
	struct hlist_node *node;

4830 4831 4832 4833 4834 4835 4836 4837
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4838 4839 4840
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
			perf_swevent_add(event, count, 1, &data, regs);
4841
	}
4842 4843

	perf_swevent_put_recursion_context(rctx);
4844 4845 4846
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4847
static void tp_perf_event_destroy(struct perf_event *event)
4848
{
4849
	perf_trace_destroy(event);
4850 4851
}

P
Peter Zijlstra 已提交
4852
static struct pmu *tp_perf_event_init(struct perf_event *event)
4853
{
4854 4855
	int err;

4856 4857 4858 4859
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4860
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4861
			perf_paranoid_tracepoint_raw() &&
4862 4863 4864
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4865 4866
	err = perf_trace_init(event);
	if (err)
4867 4868
		return NULL;

4869
	event->destroy = tp_perf_event_destroy;
4870

4871
	return &perf_ops_tracepoint;
4872
}
L
Li Zefan 已提交
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4897
#else
L
Li Zefan 已提交
4898

P
Peter Zijlstra 已提交
4899
static struct pmu *tp_perf_event_init(struct perf_event *event)
4900 4901 4902
{
	return NULL;
}
L
Li Zefan 已提交
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4913
#endif /* CONFIG_EVENT_TRACING */
4914

4915 4916 4917 4918 4919 4920
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

P
Peter Zijlstra 已提交
4921
static struct pmu *bp_perf_event_init(struct perf_event *bp)
4922 4923
{
	int err;
4924 4925

	err = register_perf_hw_breakpoint(bp);
4926 4927 4928 4929 4930 4931 4932 4933
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4934
void perf_bp_event(struct perf_event *bp, void *data)
4935
{
4936 4937 4938
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4939
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4940 4941 4942

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4943 4944
}
#else
P
Peter Zijlstra 已提交
4945
static struct pmu *bp_perf_event_init(struct perf_event *bp)
4946 4947 4948 4949 4950 4951 4952 4953 4954
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4955
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4956

4957
static void sw_perf_event_destroy(struct perf_event *event)
4958
{
4959
	u64 event_id = event->attr.config;
4960

4961
	WARN_ON(event->parent);
4962

4963
	atomic_dec(&perf_swevent_enabled[event_id]);
4964
	swevent_hlist_put(event);
4965 4966
}

P
Peter Zijlstra 已提交
4967
static struct pmu *sw_perf_event_init(struct perf_event *event)
4968
{
P
Peter Zijlstra 已提交
4969
	struct pmu *pmu = NULL;
4970
	u64 event_id = event->attr.config;
4971

4972
	/*
4973
	 * Software events (currently) can't in general distinguish
4974 4975 4976 4977 4978
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4979
	switch (event_id) {
4980
	case PERF_COUNT_SW_CPU_CLOCK:
4981
		pmu = &perf_ops_cpu_clock;
4982

4983
		break;
4984
	case PERF_COUNT_SW_TASK_CLOCK:
4985
		/*
4986 4987
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4988
		 */
4989
		if (event->ctx->task)
4990
			pmu = &perf_ops_task_clock;
4991
		else
4992
			pmu = &perf_ops_cpu_clock;
4993

4994
		break;
4995 4996 4997 4998 4999
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
5000 5001
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
5002
		if (!event->parent) {
5003 5004 5005 5006 5007 5008
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

5009 5010
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
5011
		}
5012
		pmu = &perf_ops_generic;
5013
		break;
5014
	}
5015

5016
	return pmu;
5017 5018
}

T
Thomas Gleixner 已提交
5019
/*
5020
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5021
 */
5022 5023
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
5024
		   int cpu,
5025 5026 5027
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5028
		   perf_overflow_handler_t overflow_handler,
5029
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
5030
{
P
Peter Zijlstra 已提交
5031
	struct pmu *pmu;
5032 5033
	struct perf_event *event;
	struct hw_perf_event *hwc;
5034
	long err;
T
Thomas Gleixner 已提交
5035

5036 5037
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
5038
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5039

5040
	/*
5041
	 * Single events are their own group leaders, with an
5042 5043 5044
	 * empty sibling list:
	 */
	if (!group_leader)
5045
		group_leader = event;
5046

5047 5048
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5049

5050 5051 5052 5053
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5054

5055
	mutex_init(&event->mmap_mutex);
5056

5057 5058 5059 5060 5061 5062
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
5063

5064
	event->parent		= parent_event;
5065

5066 5067
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5068

5069
	event->state		= PERF_EVENT_STATE_INACTIVE;
5070

5071 5072
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5073
	
5074
	event->overflow_handler	= overflow_handler;
5075

5076
	if (attr->disabled)
5077
		event->state = PERF_EVENT_STATE_OFF;
5078

5079
	pmu = NULL;
5080

5081
	hwc = &event->hw;
5082
	hwc->sample_period = attr->sample_period;
5083
	if (attr->freq && attr->sample_freq)
5084
		hwc->sample_period = 1;
5085
	hwc->last_period = hwc->sample_period;
5086

5087
	local64_set(&hwc->period_left, hwc->sample_period);
5088

5089
	/*
5090
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5091
	 */
5092
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5093 5094
		goto done;

5095
	switch (attr->type) {
5096
	case PERF_TYPE_RAW:
5097
	case PERF_TYPE_HARDWARE:
5098
	case PERF_TYPE_HW_CACHE:
5099
		pmu = hw_perf_event_init(event);
5100 5101 5102
		break;

	case PERF_TYPE_SOFTWARE:
5103
		pmu = sw_perf_event_init(event);
5104 5105 5106
		break;

	case PERF_TYPE_TRACEPOINT:
5107
		pmu = tp_perf_event_init(event);
5108
		break;
5109

5110 5111 5112 5113 5114
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


5115 5116
	default:
		break;
5117
	}
5118 5119
done:
	err = 0;
5120
	if (!pmu)
5121
		err = -EINVAL;
5122 5123
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5124

5125
	if (err) {
5126 5127 5128
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5129
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5130
	}
5131

5132
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5133

5134 5135
	if (!event->parent) {
		atomic_inc(&nr_events);
5136
		if (event->attr.mmap || event->attr.mmap_data)
5137 5138 5139 5140 5141
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5142 5143 5144 5145 5146 5147 5148
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5149
	}
5150

5151
	return event;
T
Thomas Gleixner 已提交
5152 5153
}

5154 5155
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5156 5157
{
	u32 size;
5158
	int ret;
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5183 5184 5185
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5186 5187
	 */
	if (size > sizeof(*attr)) {
5188 5189 5190
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5191

5192 5193
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5194

5195
		for (; addr < end; addr++) {
5196 5197 5198 5199 5200 5201
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5202
		size = sizeof(*attr);
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5216
	if (attr->__reserved_1)
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5234 5235
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5236
{
5237
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5238 5239
	int ret = -EINVAL;

5240
	if (!output_event)
5241 5242
		goto set;

5243 5244
	/* don't allow circular references */
	if (event == output_event)
5245 5246
		goto out;

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5259
set:
5260
	mutex_lock(&event->mmap_mutex);
5261 5262 5263
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5264

5265 5266
	if (output_event) {
		/* get the buffer we want to redirect to */
5267 5268
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5269
			goto unlock;
5270 5271
	}

5272 5273
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5274
	ret = 0;
5275 5276 5277
unlock:
	mutex_unlock(&event->mmap_mutex);

5278 5279
	if (old_buffer)
		perf_buffer_put(old_buffer);
5280 5281 5282 5283
out:
	return ret;
}

T
Thomas Gleixner 已提交
5284
/**
5285
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5286
 *
5287
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5288
 * @pid:		target pid
I
Ingo Molnar 已提交
5289
 * @cpu:		target cpu
5290
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5291
 */
5292 5293
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5294
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5295
{
5296
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5297 5298 5299
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5300
	struct file *group_file = NULL;
5301
	int event_fd;
5302
	int fput_needed = 0;
5303
	int err;
T
Thomas Gleixner 已提交
5304

5305
	/* for future expandability... */
5306
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5307 5308
		return -EINVAL;

5309 5310 5311
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5312

5313 5314 5315 5316 5317
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5318
	if (attr.freq) {
5319
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5320 5321 5322
			return -EINVAL;
	}

5323 5324 5325 5326
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5327
	/*
I
Ingo Molnar 已提交
5328 5329 5330
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5331 5332 5333 5334
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5335

5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5349
	/*
5350
	 * Look up the group leader (we will attach this event to it):
5351
	 */
5352
	if (group_leader) {
5353
		err = -EINVAL;
5354 5355

		/*
I
Ingo Molnar 已提交
5356 5357 5358 5359 5360 5361 5362 5363
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5364
		 */
I
Ingo Molnar 已提交
5365 5366
		if (group_leader->ctx != ctx)
			goto err_put_context;
5367 5368 5369
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5370
		if (attr.exclusive || attr.pinned)
5371
			goto err_put_context;
5372 5373
	}

5374
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5375
				     NULL, NULL, GFP_KERNEL);
5376 5377
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5378
		goto err_put_context;
5379 5380 5381 5382 5383 5384 5385
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5386

5387 5388 5389
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5390
		goto err_free_put_context;
5391
	}
5392

5393
	event->filp = event_file;
5394
	WARN_ON_ONCE(ctx->parent_ctx);
5395
	mutex_lock(&ctx->mutex);
5396
	perf_install_in_context(ctx, event, cpu);
5397
	++ctx->generation;
5398
	mutex_unlock(&ctx->mutex);
5399

5400
	event->owner = current;
5401
	get_task_struct(current);
5402 5403 5404
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5405

5406 5407 5408 5409 5410 5411
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5412 5413 5414
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5415

5416
err_free_put_context:
5417
	free_event(event);
T
Thomas Gleixner 已提交
5418
err_put_context:
5419
	fput_light(group_file, fput_needed);
5420 5421 5422
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5423
	return err;
T
Thomas Gleixner 已提交
5424 5425
}

5426 5427 5428 5429 5430 5431 5432 5433 5434
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5435 5436
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5447 5448 5449 5450
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5451 5452

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5453
				 NULL, overflow_handler, GFP_KERNEL);
5454 5455
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5456
		goto err_put_context;
5457
	}
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5474 5475 5476 5477
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5478 5479 5480
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5481
/*
5482
 * inherit a event from parent task to child task:
5483
 */
5484 5485
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5486
	      struct task_struct *parent,
5487
	      struct perf_event_context *parent_ctx,
5488
	      struct task_struct *child,
5489 5490
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5491
{
5492
	struct perf_event *child_event;
5493

5494
	/*
5495 5496
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5497 5498 5499
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5500 5501
	if (parent_event->parent)
		parent_event = parent_event->parent;
5502

5503 5504 5505
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5506
					   NULL, GFP_KERNEL);
5507 5508
	if (IS_ERR(child_event))
		return child_event;
5509
	get_ctx(child_ctx);
5510

5511
	/*
5512
	 * Make the child state follow the state of the parent event,
5513
	 * not its attr.disabled bit.  We hold the parent's mutex,
5514
	 * so we won't race with perf_event_{en, dis}able_family.
5515
	 */
5516 5517
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5518
	else
5519
		child_event->state = PERF_EVENT_STATE_OFF;
5520

5521 5522 5523 5524 5525 5526 5527
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

5528
		local64_set(&hwc->period_left, sample_period);
5529
	}
5530

5531 5532
	child_event->overflow_handler = parent_event->overflow_handler;

5533 5534 5535
	/*
	 * Link it up in the child's context:
	 */
5536
	add_event_to_ctx(child_event, child_ctx);
5537 5538 5539

	/*
	 * Get a reference to the parent filp - we will fput it
5540
	 * when the child event exits. This is safe to do because
5541 5542 5543
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5544
	atomic_long_inc(&parent_event->filp->f_count);
5545

5546
	/*
5547
	 * Link this into the parent event's child list
5548
	 */
5549 5550 5551 5552
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5553

5554
	return child_event;
5555 5556
}

5557
static int inherit_group(struct perf_event *parent_event,
5558
	      struct task_struct *parent,
5559
	      struct perf_event_context *parent_ctx,
5560
	      struct task_struct *child,
5561
	      struct perf_event_context *child_ctx)
5562
{
5563 5564 5565
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5566

5567
	leader = inherit_event(parent_event, parent, parent_ctx,
5568
				 child, NULL, child_ctx);
5569 5570
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5571 5572
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5573 5574 5575
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5576
	}
5577 5578 5579
	return 0;
}

5580
static void sync_child_event(struct perf_event *child_event,
5581
			       struct task_struct *child)
5582
{
5583
	struct perf_event *parent_event = child_event->parent;
5584
	u64 child_val;
5585

5586 5587
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5588

P
Peter Zijlstra 已提交
5589
	child_val = perf_event_count(child_event);
5590 5591 5592 5593

	/*
	 * Add back the child's count to the parent's count:
	 */
5594
	atomic64_add(child_val, &parent_event->child_count);
5595 5596 5597 5598
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5599 5600

	/*
5601
	 * Remove this event from the parent's list
5602
	 */
5603 5604 5605 5606
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5607 5608

	/*
5609
	 * Release the parent event, if this was the last
5610 5611
	 * reference to it.
	 */
5612
	fput(parent_event->filp);
5613 5614
}

5615
static void
5616 5617
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5618
			 struct task_struct *child)
5619
{
5620
	struct perf_event *parent_event;
5621

5622
	perf_event_remove_from_context(child_event);
5623

5624
	parent_event = child_event->parent;
5625
	/*
5626
	 * It can happen that parent exits first, and has events
5627
	 * that are still around due to the child reference. These
5628
	 * events need to be zapped - but otherwise linger.
5629
	 */
5630 5631 5632
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5633
	}
5634 5635 5636
}

/*
5637
 * When a child task exits, feed back event values to parent events.
5638
 */
5639
void perf_event_exit_task(struct task_struct *child)
5640
{
5641 5642
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5643
	unsigned long flags;
5644

5645 5646
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5647
		return;
P
Peter Zijlstra 已提交
5648
	}
5649

5650
	local_irq_save(flags);
5651 5652 5653 5654 5655 5656
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5657 5658
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5659 5660 5661

	/*
	 * Take the context lock here so that if find_get_context is
5662
	 * reading child->perf_event_ctxp, we wait until it has
5663 5664
	 * incremented the context's refcount before we do put_ctx below.
	 */
5665
	raw_spin_lock(&child_ctx->lock);
5666
	child->perf_event_ctxp = NULL;
5667 5668 5669
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5670
	 * the events from it.
5671 5672
	 */
	unclone_ctx(child_ctx);
5673
	update_context_time(child_ctx);
5674
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5675 5676

	/*
5677 5678 5679
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5680
	 */
5681
	perf_event_task(child, child_ctx, 0);
5682

5683 5684 5685
	/*
	 * We can recurse on the same lock type through:
	 *
5686 5687 5688
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5689 5690 5691 5692 5693
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5694
	mutex_lock(&child_ctx->mutex);
5695

5696
again:
5697 5698 5699 5700 5701
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5702
				 group_entry)
5703
		__perf_event_exit_task(child_event, child_ctx, child);
5704 5705

	/*
5706
	 * If the last event was a group event, it will have appended all
5707 5708 5709
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5710 5711
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5712
		goto again;
5713 5714 5715 5716

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5717 5718
}

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5733
	perf_group_detach(event);
5734 5735 5736 5737
	list_del_event(event, ctx);
	free_event(event);
}

5738 5739 5740 5741
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5742
void perf_event_free_task(struct task_struct *task)
5743
{
5744 5745
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5746 5747 5748 5749 5750 5751

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5752 5753
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5754

5755 5756 5757
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5758

5759 5760 5761
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5762

5763
	mutex_unlock(&ctx->mutex);
5764

5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5780 5781
	}

5782 5783 5784 5785 5786 5787 5788
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5789

5790 5791 5792 5793
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5794

5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5807 5808
}

5809

5810
/*
5811
 * Initialize the perf_event context in task_struct
5812
 */
5813
int perf_event_init_task(struct task_struct *child)
5814
{
5815
	struct perf_event_context *child_ctx, *parent_ctx;
5816 5817
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5818
	struct task_struct *parent = current;
5819
	int inherited_all = 1;
5820
	int ret = 0;
5821

5822
	child->perf_event_ctxp = NULL;
5823

5824 5825
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5826

5827
	if (likely(!parent->perf_event_ctxp))
5828 5829
		return 0;

5830
	/*
5831 5832
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5833
	 */
5834 5835
	parent_ctx = perf_pin_task_context(parent);

5836 5837 5838 5839 5840 5841 5842
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5843 5844 5845 5846
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5847
	mutex_lock(&parent_ctx->mutex);
5848 5849 5850 5851 5852

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5853 5854 5855 5856 5857 5858
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5859

5860 5861 5862 5863
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5864
			break;
5865 5866
	}

5867 5868
	child_ctx = child->perf_event_ctxp;

5869
	if (child_ctx && inherited_all) {
5870 5871 5872
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5873 5874
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5875
		 * because the list of events and the generation
5876
		 * count can't have changed since we took the mutex.
5877
		 */
5878 5879 5880
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5881
			child_ctx->parent_gen = parent_ctx->parent_gen;
5882 5883 5884 5885 5886
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5887 5888
	}

5889
	mutex_unlock(&parent_ctx->mutex);
5890

5891
	perf_unpin_context(parent_ctx);
5892

5893
	return ret;
5894 5895
}

5896 5897 5898 5899 5900 5901 5902
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5903
		mutex_init(&cpuctx->hlist_mutex);
5904 5905 5906 5907
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5908
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5909
{
5910
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5911

5912
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5913

5914
	spin_lock(&perf_resource_lock);
5915
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5916
	spin_unlock(&perf_resource_lock);
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5927 5928 5929
}

#ifdef CONFIG_HOTPLUG_CPU
5930
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5931 5932
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5933 5934
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5935

5936 5937 5938
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5939
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5940
}
5941
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5942
{
5943
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5944
	struct perf_event_context *ctx = &cpuctx->ctx;
5945

5946 5947 5948 5949
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5950
	mutex_lock(&ctx->mutex);
5951
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5952
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5953 5954
}
#else
5955
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5956 5957 5958 5959 5960 5961 5962
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
5963
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
5964 5965

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
5966
	case CPU_DOWN_FAILED:
5967
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5968 5969
		break;

P
Peter Zijlstra 已提交
5970
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
5971
	case CPU_DOWN_PREPARE:
5972
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5982 5983 5984
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5985 5986
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5987
	.priority		= 20,
T
Thomas Gleixner 已提交
5988 5989
};

5990
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5991
{
5992
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5993 5994
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5995 5996
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5997 5998 5999
	register_cpu_notifier(&perf_cpu_nb);
}

6000 6001 6002
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
6003 6004 6005 6006 6007 6008
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
6009
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
6020
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
6021 6022
		return -EINVAL;

6023
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6024 6025 6026
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
6027
		raw_spin_lock_irq(&cpuctx->ctx.lock);
6028 6029
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
6030
		cpuctx->max_pertask = mpt;
6031
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
6032
	}
6033
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6034 6035 6036 6037

	return count;
}

6038 6039 6040
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
6041 6042 6043 6044 6045
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
6046 6047 6048
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

6059
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6060
	perf_overcommit = val;
6061
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
6088
	.name			= "perf_events",
T
Thomas Gleixner 已提交
6089 6090
};

6091
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
6092 6093 6094 6095
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
6096
device_initcall(perf_event_sysfs_init);