i915_gem.c 134.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/drm_pci.h>
30
#include <drm/i915_drm.h>
31
#include <linux/dma-fence-array.h>
32
#include <linux/kthread.h>
33
#include <linux/reservation.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/stop_machine.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40
#include <linux/mman.h>
41

42 43
#include "gt/intel_engine_pm.h"
#include "gt/intel_gt_pm.h"
44 45 46 47
#include "gt/intel_mocs.h"
#include "gt/intel_reset.h"
#include "gt/intel_workarounds.h"

48 49 50
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
51
#include "i915_gem_pm.h"
52 53 54
#include "i915_trace.h"
#include "i915_vgpu.h"

55
#include "intel_display.h"
56 57
#include "intel_drv.h"
#include "intel_frontbuffer.h"
58
#include "intel_pm.h"
59

60
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
61

62 63
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
64
	if (obj->cache_dirty)
65 66
		return false;

67
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
68 69
		return true;

70
	return obj->pin_global; /* currently in use by HW, keep flushed */
71 72
}

73
static int
74
insert_mappable_node(struct i915_ggtt *ggtt,
75 76 77
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
78
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
79 80 81
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
82 83 84 85 86 87 88 89
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

90 91
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
92
				  u64 size)
93
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99 100
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
101
				     u64 size)
102
{
103
	spin_lock(&dev_priv->mm.object_stat_lock);
104 105
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
106
	spin_unlock(&dev_priv->mm.object_stat_lock);
107 108
}

109 110
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
111
			    struct drm_file *file)
112
{
113
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
114
	struct drm_i915_gem_get_aperture *args = data;
115
	struct i915_vma *vma;
116
	u64 pinned;
117

118 119
	mutex_lock(&ggtt->vm.mutex);

120
	pinned = ggtt->vm.reserved;
121
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
122
		if (i915_vma_is_pinned(vma))
123
			pinned += vma->node.size;
124 125

	mutex_unlock(&ggtt->vm.mutex);
126

127
	args->aper_size = ggtt->vm.total;
128
	args->aper_available_size = args->aper_size - pinned;
129

130 131 132
	return 0;
}

133
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
134
{
135
	struct address_space *mapping = obj->base.filp->f_mapping;
136
	drm_dma_handle_t *phys;
137 138
	struct sg_table *st;
	struct scatterlist *sg;
139
	char *vaddr;
140
	int i;
141
	int err;
142

143
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
144
		return -EINVAL;
145

146 147 148 149 150
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
151
			     roundup_pow_of_two(obj->base.size),
152 153
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
154
		return -ENOMEM;
155 156

	vaddr = phys->vaddr;
157 158 159 160 161
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
162
		if (IS_ERR(page)) {
163
			err = PTR_ERR(page);
164 165
			goto err_phys;
		}
166 167 168 169 170 171

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

172
		put_page(page);
173 174 175
		vaddr += PAGE_SIZE;
	}

176
	i915_gem_chipset_flush(to_i915(obj->base.dev));
177 178

	st = kmalloc(sizeof(*st), GFP_KERNEL);
179
	if (!st) {
180
		err = -ENOMEM;
181 182
		goto err_phys;
	}
183 184 185

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
186
		err = -ENOMEM;
187
		goto err_phys;
188 189 190 191 192
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
193

194
	sg_dma_address(sg) = phys->busaddr;
195 196
	sg_dma_len(sg) = obj->base.size;

197
	obj->phys_handle = phys;
198

199
	__i915_gem_object_set_pages(obj, st, sg->length);
200 201

	return 0;
202 203 204

err_phys:
	drm_pci_free(obj->base.dev, phys);
205 206

	return err;
207 208
}

209 210
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
211 212
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
213 214 215 216
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

217
void
218
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
219 220
				struct sg_table *pages,
				bool needs_clflush)
221
{
C
Chris Wilson 已提交
222
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
223

C
Chris Wilson 已提交
224 225
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
226

227
	if (needs_clflush &&
228
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
229
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
230
		drm_clflush_sg(pages);
231

232
	__start_cpu_write(obj);
233 234 235 236 237 238
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
239
	__i915_gem_object_release_shmem(obj, pages, false);
240

C
Chris Wilson 已提交
241
	if (obj->mm.dirty) {
242
		struct address_space *mapping = obj->base.filp->f_mapping;
243
		char *vaddr = obj->phys_handle->vaddr;
244 245 246
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 248 249 250 251 252 253 254 255 256 257 258 259
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
260
			if (obj->mm.madv == I915_MADV_WILLNEED)
261
				mark_page_accessed(page);
262
			put_page(page);
263 264
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
265
		obj->mm.dirty = false;
266 267
	}

268 269
	sg_free_table(pages);
	kfree(pages);
270 271

	drm_pci_free(obj->base.dev, obj->phys_handle);
272 273 274 275 276
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
277
	i915_gem_object_unpin_pages(obj);
278 279 280 281 282 283 284 285
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

286 287
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

288
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
289 290 291
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
292 293 294
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
295

296 297 298 299
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
300
	 */
301
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
302 303 304
	if (ret)
		return ret;

305 306 307 308
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
309
		list_move_tail(&vma->obj_link, &still_in_list);
310 311
		spin_unlock(&obj->vma.lock);

312
		ret = i915_vma_unbind(vma);
313 314

		spin_lock(&obj->vma.lock);
315
	}
316 317
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
318 319 320 321

	return ret;
}

322 323 324
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
325
			   long timeout)
326
{
327
	struct i915_request *rq;
328

329
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
330

331 332 333 334 335 336 337 338 339
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
340
	if (i915_request_completed(rq))
341 342
		goto out;

343
	timeout = i915_request_wait(rq, flags, timeout);
344 345

out:
346 347
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
348 349 350 351 352 353 354

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
355
				 long timeout)
356
{
357
	unsigned int seq = __read_seqcount_begin(&resv->seq);
358
	struct dma_fence *excl;
359
	bool prune_fences = false;
360 361 362 363

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
364 365
		int ret;

366 367
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
368 369 370
		if (ret)
			return ret;

371 372
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
373
							     flags, timeout);
374
			if (timeout < 0)
375
				break;
376

377 378 379 380 381 382
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
383

384 385 386 387 388 389 390 391 392
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
393
		prune_fences = count && timeout >= 0;
394 395
	} else {
		excl = reservation_object_get_excl_rcu(resv);
396 397
	}

398
	if (excl && timeout >= 0)
399
		timeout = i915_gem_object_wait_fence(excl, flags, timeout);
400 401 402

	dma_fence_put(excl);

403 404
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
405 406 407
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
408
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
409 410 411 412 413
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
414 415
	}

416
	return timeout;
417 418
}

419 420
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
421
{
422
	struct i915_request *rq;
423 424
	struct intel_engine_cs *engine;

425
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
426 427 428 429 430
		return;

	rq = to_request(fence);
	engine = rq->engine;

431 432
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
433
	if (engine->schedule)
434
		engine->schedule(rq, attr);
435
	rcu_read_unlock();
436
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
437 438
}

439 440
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
441 442 443 444 445 446 447
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
448
			__fence_set_priority(array->fences[i], attr);
449
	} else {
450
		__fence_set_priority(fence, attr);
451 452 453 454 455 456
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
457
			      const struct i915_sched_attr *attr)
458 459 460 461 462 463 464 465 466 467 468 469 470 471
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
472
			fence_set_priority(shared[i], attr);
473 474 475 476 477 478 479 480 481
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
482
		fence_set_priority(excl, attr);
483 484 485 486 487
		dma_fence_put(excl);
	}
	return 0;
}

488 489 490 491 492
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
493
 */
494 495 496
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
497
		     long timeout)
498
{
499 500
	might_sleep();
	GEM_BUG_ON(timeout < 0);
501

502
	timeout = i915_gem_object_wait_reservation(obj->resv, flags, timeout);
503
	return timeout < 0 ? timeout : 0;
504 505
}

506 507 508
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
509
		     struct drm_file *file)
510 511
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
512
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
513 514 515 516

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
517
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
518 519
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
520

521
	drm_clflush_virt_range(vaddr, args->size);
522
	i915_gem_chipset_flush(to_i915(obj->base.dev));
523

524
	intel_fb_obj_flush(obj, ORIGIN_CPU);
525
	return 0;
526 527
}

528 529
static int
i915_gem_create(struct drm_file *file,
530
		struct drm_i915_private *dev_priv,
531
		u64 *size_p,
532
		u32 *handle_p)
533
{
534
	struct drm_i915_gem_object *obj;
535
	u32 handle;
536 537
	u64 size;
	int ret;
538

539
	size = round_up(*size_p, PAGE_SIZE);
540 541
	if (size == 0)
		return -EINVAL;
542 543

	/* Allocate the new object */
544
	obj = i915_gem_object_create(dev_priv, size);
545 546
	if (IS_ERR(obj))
		return PTR_ERR(obj);
547

548
	ret = drm_gem_handle_create(file, &obj->base, &handle);
549
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
550
	i915_gem_object_put(obj);
551 552
	if (ret)
		return ret;
553

554
	*handle_p = handle;
555
	*size_p = size;
556 557 558
	return 0;
}

559 560 561 562 563
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	int cpp = DIV_ROUND_UP(args->bpp, 8);
	u32 format;

	switch (cpp) {
	case 1:
		format = DRM_FORMAT_C8;
		break;
	case 2:
		format = DRM_FORMAT_RGB565;
		break;
	case 4:
		format = DRM_FORMAT_XRGB8888;
		break;
	default:
		return -EINVAL;
	}

581
	/* have to work out size/pitch and return them */
582 583 584 585 586 587 588
	args->pitch = ALIGN(args->width * cpp, 64);

	/* align stride to page size so that we can remap */
	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
						    DRM_FORMAT_MOD_LINEAR))
		args->pitch = ALIGN(args->pitch, 4096);

589
	args->size = args->pitch * args->height;
590
	return i915_gem_create(file, to_i915(dev),
591
			       &args->size, &args->handle);
592 593
}

594 595 596 597 598 599
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

600 601
/**
 * Creates a new mm object and returns a handle to it.
602 603 604
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
605 606 607 608 609
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
610
	struct drm_i915_private *dev_priv = to_i915(dev);
611
	struct drm_i915_gem_create *args = data;
612

613
	i915_gem_flush_free_objects(dev_priv);
614

615
	return i915_gem_create(file, dev_priv,
616
			       &args->size, &args->handle);
617 618
}

619 620 621 622 623 624 625
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

626
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
627
{
628 629
	intel_wakeref_t wakeref;

630 631 632 633 634
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
635 636 637 638 639 640 641 642 643 644
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
645 646
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
647
	 */
648

649 650 651 652 653
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

654
	i915_gem_chipset_flush(dev_priv);
655

656 657
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
658

659
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
660

661 662
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
663 664 665 666 667 668 669 670
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

671
	if (!(obj->write_domain & flush_domains))
672 673
		return;

674
	switch (obj->write_domain) {
675
	case I915_GEM_DOMAIN_GTT:
676
		i915_gem_flush_ggtt_writes(dev_priv);
677 678 679

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
680

681
		for_each_ggtt_vma(vma, obj) {
682 683 684 685 686
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
687 688
		break;

689 690 691 692
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

693 694 695
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
696 697 698 699 700

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
701 702
	}

703
	obj->write_domain = 0;
704 705
}

706 707 708 709 710 711
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
712
				    unsigned int *needs_clflush)
713 714 715
{
	int ret;

716
	lockdep_assert_held(&obj->base.dev->struct_mutex);
717

718
	*needs_clflush = 0;
719 720
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
721

722 723 724
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
725
				   MAX_SCHEDULE_TIMEOUT);
726 727 728
	if (ret)
		return ret;

C
Chris Wilson 已提交
729
	ret = i915_gem_object_pin_pages(obj);
730 731 732
	if (ret)
		return ret;

733 734
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
735 736 737 738 739 740 741
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

742
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
743

744 745 746 747 748
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
749
	if (!obj->cache_dirty &&
750
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
751
		*needs_clflush = CLFLUSH_BEFORE;
752

753
out:
754
	/* return with the pages pinned */
755
	return 0;
756 757 758 759

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
760 761 762 763 764 765 766
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

767 768
	lockdep_assert_held(&obj->base.dev->struct_mutex);

769 770 771 772
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

773 774 775 776
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
777
				   MAX_SCHEDULE_TIMEOUT);
778 779 780
	if (ret)
		return ret;

C
Chris Wilson 已提交
781
	ret = i915_gem_object_pin_pages(obj);
782 783 784
	if (ret)
		return ret;

785 786
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
787 788 789 790 791 792 793
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

794
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
795

796 797 798 799 800
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
801
	if (!obj->cache_dirty) {
802
		*needs_clflush |= CLFLUSH_AFTER;
803

804 805 806 807
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
808
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
809 810
			*needs_clflush |= CLFLUSH_BEFORE;
	}
811

812
out:
813
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
814
	obj->mm.dirty = true;
815
	/* return with the pages pinned */
816
	return 0;
817 818 819 820

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
821 822
}

823
static int
824 825
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
826 827 828 829 830 831
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

832 833
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
834

835
	ret = __copy_to_user(user_data, vaddr + offset, len);
836

837
	kunmap(page);
838

839
	return ret ? -EFAULT : 0;
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
866
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
886
{
887
	void __iomem *vaddr;
888
	unsigned long unwritten;
889 890

	/* We can use the cpu mem copy function because this is X86. */
891 892 893 894
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
895 896
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
897 898 899 900
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
901 902
		io_mapping_unmap(vaddr);
	}
903 904 905 906
	return unwritten;
}

static int
907 908
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
909
{
910 911
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
912
	intel_wakeref_t wakeref;
913
	struct drm_mm_node node;
914 915 916
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
917 918
	int ret;

919 920 921 922
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

923
	wakeref = intel_runtime_pm_get(i915);
924
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
925 926 927
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
928 929 930
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
931
		ret = i915_vma_put_fence(vma);
932 933 934 935 936
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
937
	if (IS_ERR(vma)) {
938
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
939
		if (ret)
940 941
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
942 943 944 945 946 947
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

948
	mutex_unlock(&i915->drm.struct_mutex);
949

950 951 952
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
953 954 955 956 957 958 959 960 961 962 963 964 965 966

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
967 968 969
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
970 971 972 973
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
974

975
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
976
				  user_data, page_length)) {
977 978 979 980 981 982 983 984 985
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

986
	mutex_lock(&i915->drm.struct_mutex);
987 988 989
out_unpin:
	if (node.allocated) {
		wmb();
990
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
991 992
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
993
		i915_vma_unpin(vma);
994
	}
995
out_unlock:
996
	intel_runtime_pm_put(i915, wakeref);
997
	mutex_unlock(&i915->drm.struct_mutex);
998

999 1000 1001
	return ret;
}

1002 1003
/**
 * Reads data from the object referenced by handle.
1004 1005 1006
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1007 1008 1009 1010 1011
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1012
		     struct drm_file *file)
1013 1014
{
	struct drm_i915_gem_pread *args = data;
1015
	struct drm_i915_gem_object *obj;
1016
	int ret;
1017

1018 1019 1020
	if (args->size == 0)
		return 0;

1021
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1022 1023 1024
		       args->size))
		return -EFAULT;

1025
	obj = i915_gem_object_lookup(file, args->handle);
1026 1027
	if (!obj)
		return -ENOENT;
1028

1029
	/* Bounds check source.  */
1030
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1031
		ret = -EINVAL;
1032
		goto out;
C
Chris Wilson 已提交
1033 1034
	}

C
Chris Wilson 已提交
1035 1036
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1037 1038
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1039
				   MAX_SCHEDULE_TIMEOUT);
1040
	if (ret)
1041
		goto out;
1042

1043
	ret = i915_gem_object_pin_pages(obj);
1044
	if (ret)
1045
		goto out;
1046

1047
	ret = i915_gem_shmem_pread(obj, args);
1048
	if (ret == -EFAULT || ret == -ENODEV)
1049
		ret = i915_gem_gtt_pread(obj, args);
1050

1051 1052
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1053
	i915_gem_object_put(obj);
1054
	return ret;
1055 1056
}

1057 1058
/* This is the fast write path which cannot handle
 * page faults in the source data
1059
 */
1060

1061 1062 1063 1064
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1065
{
1066
	void __iomem *vaddr;
1067
	unsigned long unwritten;
1068

1069
	/* We can use the cpu mem copy function because this is X86. */
1070 1071
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1072
						      user_data, length);
1073 1074
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1075 1076 1077
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1078 1079
		io_mapping_unmap(vaddr);
	}
1080 1081 1082 1083

	return unwritten;
}

1084 1085 1086
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1087
 * @obj: i915 GEM object
1088
 * @args: pwrite arguments structure
1089
 */
1090
static int
1091 1092
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1093
{
1094
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1095
	struct i915_ggtt *ggtt = &i915->ggtt;
1096
	intel_wakeref_t wakeref;
1097
	struct drm_mm_node node;
1098 1099 1100
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1101
	int ret;
1102

1103 1104 1105
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1106

1107 1108 1109 1110 1111 1112 1113 1114
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1115 1116
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1117 1118 1119 1120 1121
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1122
		wakeref = intel_runtime_pm_get(i915);
1123 1124
	}

C
Chris Wilson 已提交
1125
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1126 1127 1128
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1129 1130 1131
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1132
		ret = i915_vma_put_fence(vma);
1133 1134 1135 1136 1137
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1138
	if (IS_ERR(vma)) {
1139
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1140
		if (ret)
1141
			goto out_rpm;
1142
		GEM_BUG_ON(!node.allocated);
1143
	}
D
Daniel Vetter 已提交
1144 1145 1146 1147 1148

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1149 1150
	mutex_unlock(&i915->drm.struct_mutex);

1151
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1152

1153 1154 1155 1156
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1157 1158
		/* Operation in this page
		 *
1159 1160 1161
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1162
		 */
1163
		u32 page_base = node.start;
1164 1165
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1166 1167 1168
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1169 1170 1171
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1172 1173 1174 1175
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1176
		/* If we get a fault while copying data, then (presumably) our
1177 1178
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1179 1180
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1181
		 */
1182
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1183 1184 1185
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1186
		}
1187

1188 1189 1190
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1191
	}
1192
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1193 1194

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1195
out_unpin:
1196 1197
	if (node.allocated) {
		wmb();
1198
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1199 1200
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1201
		i915_vma_unpin(vma);
1202
	}
1203
out_rpm:
1204
	intel_runtime_pm_put(i915, wakeref);
1205
out_unlock:
1206
	mutex_unlock(&i915->drm.struct_mutex);
1207
	return ret;
1208 1209
}

1210 1211 1212 1213 1214
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1215
static int
1216 1217 1218
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1219
{
1220
	char *vaddr;
1221 1222
	int ret;

1223
	vaddr = kmap(page);
1224

1225 1226
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1227

1228 1229 1230
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1231

1232 1233 1234
	kunmap(page);

	return ret ? -EFAULT : 0;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1245
	unsigned int needs_clflush;
1246 1247
	unsigned int offset, idx;
	int ret;
1248

1249
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1250 1251 1252
	if (ret)
		return ret;

1253 1254 1255 1256
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1257

1258 1259 1260 1261 1262 1263 1264
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1265

1266 1267 1268 1269 1270
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1271
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1272

1273 1274 1275
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1276
		if (ret)
1277
			break;
1278

1279 1280 1281
		remain -= length;
		user_data += length;
		offset = 0;
1282
	}
1283

1284
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1285
	i915_gem_obj_finish_shmem_access(obj);
1286
	return ret;
1287 1288 1289 1290
}

/**
 * Writes data to the object referenced by handle.
1291 1292 1293
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1294 1295 1296 1297 1298
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1299
		      struct drm_file *file)
1300 1301
{
	struct drm_i915_gem_pwrite *args = data;
1302
	struct drm_i915_gem_object *obj;
1303 1304 1305 1306 1307
	int ret;

	if (args->size == 0)
		return 0;

1308
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1309 1310
		return -EFAULT;

1311
	obj = i915_gem_object_lookup(file, args->handle);
1312 1313
	if (!obj)
		return -ENOENT;
1314

1315
	/* Bounds check destination. */
1316
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1317
		ret = -EINVAL;
1318
		goto err;
C
Chris Wilson 已提交
1319 1320
	}

1321 1322 1323 1324 1325 1326
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1327 1328
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1329 1330 1331 1332 1333 1334
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1335 1336 1337
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
1338
				   MAX_SCHEDULE_TIMEOUT);
1339 1340 1341
	if (ret)
		goto err;

1342
	ret = i915_gem_object_pin_pages(obj);
1343
	if (ret)
1344
		goto err;
1345

D
Daniel Vetter 已提交
1346
	ret = -EFAULT;
1347 1348 1349 1350 1351 1352
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1353
	if (!i915_gem_object_has_struct_page(obj) ||
1354
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1355 1356
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1357 1358
		 * textures). Fallback to the shmem path in that case.
		 */
1359
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1360

1361
	if (ret == -EFAULT || ret == -ENOSPC) {
1362 1363
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1364
		else
1365
			ret = i915_gem_shmem_pwrite(obj, args);
1366
	}
1367

1368
	i915_gem_object_unpin_pages(obj);
1369
err:
C
Chris Wilson 已提交
1370
	i915_gem_object_put(obj);
1371
	return ret;
1372 1373
}

1374 1375
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
1376
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1377 1378 1379
	struct list_head *list;
	struct i915_vma *vma;

1380 1381
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1382
	mutex_lock(&i915->ggtt.vm.mutex);
1383
	for_each_ggtt_vma(vma, obj) {
1384 1385 1386
		if (!drm_mm_node_allocated(&vma->node))
			continue;

1387
		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1388
	}
1389
	mutex_unlock(&i915->ggtt.vm.mutex);
1390

1391
	spin_lock(&i915->mm.obj_lock);
1392
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1393 1394
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1395 1396
}

1397
/**
1398 1399
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1400 1401 1402
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1403 1404 1405
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1406
			  struct drm_file *file)
1407 1408
{
	struct drm_i915_gem_set_domain *args = data;
1409
	struct drm_i915_gem_object *obj;
1410 1411
	u32 read_domains = args->read_domains;
	u32 write_domain = args->write_domain;
1412
	int err;
1413

1414
	/* Only handle setting domains to types used by the CPU. */
1415
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1416 1417
		return -EINVAL;

1418 1419
	/*
	 * Having something in the write domain implies it's in the read
1420 1421
	 * domain, and only that read domain.  Enforce that in the request.
	 */
1422
	if (write_domain && read_domains != write_domain)
1423 1424
		return -EINVAL;

1425 1426 1427
	if (!read_domains)
		return 0;

1428
	obj = i915_gem_object_lookup(file, args->handle);
1429 1430
	if (!obj)
		return -ENOENT;
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	/*
	 * Already in the desired write domain? Nothing for us to do!
	 *
	 * We apply a little bit of cunning here to catch a broader set of
	 * no-ops. If obj->write_domain is set, we must be in the same
	 * obj->read_domains, and only that domain. Therefore, if that
	 * obj->write_domain matches the request read_domains, we are
	 * already in the same read/write domain and can skip the operation,
	 * without having to further check the requested write_domain.
	 */
	if (READ_ONCE(obj->write_domain) == read_domains) {
		err = 0;
		goto out;
	}

	/*
	 * Try to flush the object off the GPU without holding the lock.
1449 1450 1451
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1452
	err = i915_gem_object_wait(obj,
1453
				   I915_WAIT_INTERRUPTIBLE |
1454
				   I915_WAIT_PRIORITY |
1455
				   (write_domain ? I915_WAIT_ALL : 0),
1456
				   MAX_SCHEDULE_TIMEOUT);
1457
	if (err)
C
Chris Wilson 已提交
1458
		goto out;
1459

T
Tina Zhang 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1473 1474 1475 1476 1477 1478 1479 1480 1481
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1482
		goto out;
1483 1484 1485

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1486
		goto out_unpin;
1487

1488 1489 1490 1491
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1492
	else
1493
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1494

1495 1496
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1497

1498
	mutex_unlock(&dev->struct_mutex);
1499

1500
	if (write_domain != 0)
1501 1502
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1503

C
Chris Wilson 已提交
1504
out_unpin:
1505
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1506 1507
out:
	i915_gem_object_put(obj);
1508
	return err;
1509 1510 1511 1512
}

/**
 * Called when user space has done writes to this buffer
1513 1514 1515
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1516 1517 1518
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1519
			 struct drm_file *file)
1520 1521
{
	struct drm_i915_gem_sw_finish *args = data;
1522
	struct drm_i915_gem_object *obj;
1523

1524
	obj = i915_gem_object_lookup(file, args->handle);
1525 1526
	if (!obj)
		return -ENOENT;
1527

T
Tina Zhang 已提交
1528 1529 1530 1531 1532
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1533
	/* Pinned buffers may be scanout, so flush the cache */
1534
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1535
	i915_gem_object_put(obj);
1536 1537

	return 0;
1538 1539
}

1540 1541 1542 1543 1544 1545 1546
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

T
Tvrtko Ursulin 已提交
1547 1548
	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1549 1550
}

1551
/**
1552 1553 1554 1555 1556
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1557 1558 1559
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1570 1571 1572
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1573
		    struct drm_file *file)
1574 1575
{
	struct drm_i915_gem_mmap *args = data;
1576
	struct drm_i915_gem_object *obj;
1577 1578
	unsigned long addr;

1579 1580 1581
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1582
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1583 1584
		return -ENODEV;

1585 1586
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1587
		return -ENOENT;
1588

1589 1590 1591
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1592
	if (!obj->base.filp) {
1593 1594 1595 1596 1597 1598 1599
		addr = -ENXIO;
		goto err;
	}

	if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
		addr = -EINVAL;
		goto err;
1600 1601
	}

1602
	addr = vm_mmap(obj->base.filp, 0, args->size,
1603 1604
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1605 1606 1607
	if (IS_ERR_VALUE(addr))
		goto err;

1608 1609 1610 1611
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1612
		if (down_write_killable(&mm->mmap_sem)) {
1613 1614
			addr = -EINTR;
			goto err;
1615
		}
1616
		vma = find_vma(mm, addr);
1617
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1618 1619 1620 1621 1622
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1623 1624
		if (IS_ERR_VALUE(addr))
			goto err;
1625 1626

		/* This may race, but that's ok, it only gets set */
1627
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1628
	}
C
Chris Wilson 已提交
1629
	i915_gem_object_put(obj);
1630

1631
	args->addr_ptr = (u64)addr;
1632
	return 0;
1633 1634 1635 1636

err:
	i915_gem_object_put(obj);
	return addr;
1637 1638
}

1639
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1640
{
1641
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1642 1643
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1664 1665 1666
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1667 1668 1669
 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
 *     pagefault; swapin remains transparent.
 *
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1697
	return 3;
1698 1699
}

1700
static inline struct i915_ggtt_view
1701
compute_partial_view(const struct drm_i915_gem_object *obj,
1702 1703 1704 1705 1706 1707 1708 1709 1710
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1711 1712
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1713
		min_t(unsigned int, chunk,
1714
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1715 1716 1717 1718 1719 1720 1721 1722

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1723 1724
/**
 * i915_gem_fault - fault a page into the GTT
1725
 * @vmf: fault info
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1737 1738 1739
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1740
 */
1741
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1742
{
1743
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1744
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1745
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1746
	struct drm_device *dev = obj->base.dev;
1747 1748
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1749
	bool write = area->vm_flags & VM_WRITE;
1750
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1751
	struct i915_vma *vma;
1752
	pgoff_t page_offset;
1753
	int srcu;
1754
	int ret;
1755

1756 1757 1758 1759
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1760
	/* We don't use vmf->pgoff since that has the fake offset */
1761
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1762

C
Chris Wilson 已提交
1763 1764
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1765 1766 1767 1768
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1769
	wakeref = intel_runtime_pm_get(dev_priv);
1770

1771 1772 1773 1774 1775 1776
	srcu = i915_reset_trylock(dev_priv);
	if (srcu < 0) {
		ret = srcu;
		goto err_rpm;
	}

1777 1778
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
1779
		goto err_reset;
1780

1781
	/* Access to snoopable pages through the GTT is incoherent. */
1782
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1783
		ret = -EFAULT;
1784
		goto err_unlock;
1785 1786
	}

1787
	/* Now pin it into the GTT as needed */
1788 1789 1790 1791
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1792 1793
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1794
		struct i915_ggtt_view view =
1795
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1796
		unsigned int flags;
1797

1798 1799 1800 1801 1802 1803
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1804 1805 1806 1807
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1808 1809 1810 1811 1812 1813
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1814
	}
C
Chris Wilson 已提交
1815 1816
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1817
		goto err_unlock;
C
Chris Wilson 已提交
1818
	}
1819

1820 1821 1822 1823
	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

1824
	/* Finally, remap it using the new GTT offset */
1825
	ret = remap_io_mapping(area,
1826
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1827
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1828
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1829
			       &ggtt->iomap);
1830
	if (ret)
1831
		goto err_fence;
1832

1833 1834 1835 1836 1837 1838
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1839 1840
	i915_vma_set_ggtt_write(vma);

1841 1842
err_fence:
	i915_vma_unpin_fence(vma);
1843
err_unpin:
C
Chris Wilson 已提交
1844
	__i915_vma_unpin(vma);
1845
err_unlock:
1846
	mutex_unlock(&dev->struct_mutex);
1847 1848
err_reset:
	i915_reset_unlock(dev_priv, srcu);
1849
err_rpm:
1850
	intel_runtime_pm_put(dev_priv, wakeref);
1851
	i915_gem_object_unpin_pages(obj);
1852
err:
1853
	switch (ret) {
1854
	case -EIO:
1855 1856 1857 1858 1859 1860
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1861
		if (!i915_terminally_wedged(dev_priv))
1862
			return VM_FAULT_SIGBUS;
1863
		/* else: fall through */
1864
	case -EAGAIN:
D
Daniel Vetter 已提交
1865 1866 1867 1868
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1869
		 */
1870 1871
	case 0:
	case -ERESTARTSYS:
1872
	case -EINTR:
1873 1874 1875 1876 1877
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1878
		return VM_FAULT_NOPAGE;
1879
	case -ENOMEM:
1880
		return VM_FAULT_OOM;
1881
	case -ENOSPC:
1882
	case -EFAULT:
1883
		return VM_FAULT_SIGBUS;
1884
	default:
1885
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1886
		return VM_FAULT_SIGBUS;
1887 1888 1889
	}
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

1901
	for_each_ggtt_vma(vma, obj)
1902 1903 1904
		i915_vma_unset_userfault(vma);
}

1905 1906 1907 1908
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1909
 * Preserve the reservation of the mmapping with the DRM core code, but
1910 1911 1912 1913 1914 1915 1916 1917 1918
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1919
void
1920
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1921
{
1922
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1923
	intel_wakeref_t wakeref;
1924

1925 1926 1927
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1928 1929 1930 1931
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1932
	 */
1933
	lockdep_assert_held(&i915->drm.struct_mutex);
1934
	wakeref = intel_runtime_pm_get(i915);
1935

1936
	if (!obj->userfault_count)
1937
		goto out;
1938

1939
	__i915_gem_object_release_mmap(obj);
1940 1941 1942 1943 1944 1945 1946 1947 1948

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1949 1950

out:
1951
	intel_runtime_pm_put(i915, wakeref);
1952 1953
}

1954
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1955
{
1956
	struct drm_i915_gem_object *obj, *on;
1957
	int i;
1958

1959 1960 1961 1962 1963 1964
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1965

1966
	list_for_each_entry_safe(obj, on,
1967 1968
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
1969 1970 1971 1972 1973 1974 1975 1976

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
1987 1988 1989 1990

		if (!reg->vma)
			continue;

1991
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
1992 1993
		reg->dirty = true;
	}
1994 1995
}

1996 1997
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
1998
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1999
	int err;
2000

2001
	err = drm_gem_create_mmap_offset(&obj->base);
2002
	if (likely(!err))
2003
		return 0;
2004

2005 2006
	/* Attempt to reap some mmap space from dead objects */
	do {
2007 2008 2009
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2010 2011
		if (err)
			break;
2012

2013
		i915_gem_drain_freed_objects(dev_priv);
2014
		err = drm_gem_create_mmap_offset(&obj->base);
2015 2016 2017
		if (!err)
			break;

2018
	} while (flush_delayed_work(&dev_priv->gem.retire_work));
2019

2020
	return err;
2021 2022 2023 2024 2025 2026 2027
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2028
int
2029 2030
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2031 2032
		  u32 handle,
		  u64 *offset)
2033
{
2034
	struct drm_i915_gem_object *obj;
2035 2036
	int ret;

2037
	obj = i915_gem_object_lookup(file, handle);
2038 2039
	if (!obj)
		return -ENOENT;
2040

2041
	ret = i915_gem_object_create_mmap_offset(obj);
2042 2043
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2044

C
Chris Wilson 已提交
2045
	i915_gem_object_put(obj);
2046
	return ret;
2047 2048
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2070
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2071 2072
}

D
Daniel Vetter 已提交
2073
/* Immediately discard the backing storage */
2074
void __i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2075
{
2076
	i915_gem_object_free_mmap_offset(obj);
2077

2078 2079
	if (obj->base.filp == NULL)
		return;
2080

D
Daniel Vetter 已提交
2081 2082 2083 2084 2085
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2086
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2087
	obj->mm.madv = __I915_MADV_PURGED;
2088
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2089
}
2090

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2102
static void
2103 2104
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2105
{
2106
	struct sgt_iter sgt_iter;
2107
	struct pagevec pvec;
2108
	struct page *page;
2109

2110
	__i915_gem_object_release_shmem(obj, pages, true);
2111
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2112

2113
	if (i915_gem_object_needs_bit17_swizzle(obj))
2114
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2115

2116 2117 2118
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2119
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2120
		if (obj->mm.dirty)
2121
			set_page_dirty(page);
2122

C
Chris Wilson 已提交
2123
		if (obj->mm.madv == I915_MADV_WILLNEED)
2124
			mark_page_accessed(page);
2125

2126 2127
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2128
	}
2129 2130
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2131
	obj->mm.dirty = false;
2132

2133 2134
	sg_free_table(pages);
	kfree(pages);
2135
}
C
Chris Wilson 已提交
2136

2137 2138 2139
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2140
	void __rcu **slot;
2141

2142
	rcu_read_lock();
C
Chris Wilson 已提交
2143 2144
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2145
	rcu_read_unlock();
2146 2147
}

2148 2149
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2150
{
2151
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2152
	struct sg_table *pages;
2153

2154
	pages = fetch_and_zero(&obj->mm.pages);
2155 2156
	if (IS_ERR_OR_NULL(pages))
		return pages;
2157

2158 2159 2160 2161
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2162
	if (obj->mm.mapping) {
2163 2164
		void *ptr;

2165
		ptr = page_mask_bits(obj->mm.mapping);
2166 2167
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2168
		else
2169 2170
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2171
		obj->mm.mapping = NULL;
2172 2173
	}

2174
	__i915_gem_object_reset_page_iter(obj);
2175 2176 2177 2178
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2179

2180 2181
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2182 2183
{
	struct sg_table *pages;
2184
	int ret;
2185 2186

	if (i915_gem_object_has_pinned_pages(obj))
2187
		return -EBUSY;
2188 2189 2190 2191 2192

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2193 2194
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2195
		goto unlock;
2196
	}
2197 2198 2199 2200 2201 2202 2203

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2214 2215 2216
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2217
	ret = 0;
2218 2219
unlock:
	mutex_unlock(&obj->mm.lock);
2220 2221

	return ret;
C
Chris Wilson 已提交
2222 2223
}

2224
bool i915_sg_trim(struct sg_table *orig_st)
2225 2226 2227 2228 2229 2230
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2231
		return false;
2232

2233
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2234
		return false;
2235 2236 2237 2238

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2239 2240 2241
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2242 2243
		new_sg = sg_next(new_sg);
	}
2244
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2245 2246 2247 2248

	sg_free_table(orig_st);

	*orig_st = new_st;
2249
	return true;
2250 2251
}

2252
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2253
{
2254
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2255 2256
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2257
	struct address_space *mapping;
2258 2259
	struct sg_table *st;
	struct scatterlist *sg;
2260
	struct sgt_iter sgt_iter;
2261
	struct page *page;
2262
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2263
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2264
	unsigned int sg_page_sizes;
2265
	struct pagevec pvec;
2266
	gfp_t noreclaim;
I
Imre Deak 已提交
2267
	int ret;
2268

2269 2270
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2271 2272 2273
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2274 2275
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2276

2277 2278 2279 2280
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2281
	if (page_count > totalram_pages())
2282 2283
		return -ENOMEM;

2284 2285
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2286
		return -ENOMEM;
2287

2288
rebuild_st:
2289 2290
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2291
		return -ENOMEM;
2292
	}
2293

2294 2295
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2296 2297 2298 2299
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2300
	mapping = obj->base.filp->f_mapping;
2301
	mapping_set_unevictable(mapping);
2302
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2303 2304
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2305 2306
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2307
	sg_page_sizes = 0;
2308
	for (i = 0; i < page_count; i++) {
2309 2310 2311 2312 2313 2314 2315
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2316
			cond_resched();
C
Chris Wilson 已提交
2317
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2318
			if (!IS_ERR(page))
2319 2320 2321 2322 2323 2324 2325
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2326
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2327

2328 2329
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2330 2331
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2332 2333 2334 2335
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2336
			 */
2337 2338 2339
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2340

2341 2342
				/*
				 * Our bo are always dirty and so we require
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2353
				 * this we want __GFP_RETRY_MAYFAIL.
2354
				 */
M
Michal Hocko 已提交
2355
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2356
			}
2357 2358
		} while (1);

2359 2360 2361
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2362
			if (i) {
M
Matthew Auld 已提交
2363
				sg_page_sizes |= sg->length;
2364
				sg = sg_next(sg);
2365
			}
2366 2367 2368 2369 2370 2371
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2372 2373 2374

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2375
	}
2376
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2377
		sg_page_sizes |= sg->length;
2378
		sg_mark_end(sg);
2379
	}
2380

2381 2382 2383
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2384
	ret = i915_gem_gtt_prepare_pages(obj, st);
2385
	if (ret) {
2386 2387
		/*
		 * DMA remapping failed? One possible cause is that
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2405

2406
	if (i915_gem_object_needs_bit17_swizzle(obj))
2407
		i915_gem_object_do_bit_17_swizzle(obj, st);
2408

M
Matthew Auld 已提交
2409
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2410 2411

	return 0;
2412

2413
err_sg:
2414
	sg_mark_end(sg);
2415
err_pages:
2416 2417 2418 2419 2420 2421 2422 2423
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2424 2425
	sg_free_table(st);
	kfree(st);
2426

2427 2428
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2429 2430 2431 2432 2433 2434 2435
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2436 2437 2438
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2439
	return ret;
2440 2441 2442
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2443
				 struct sg_table *pages,
M
Matthew Auld 已提交
2444
				 unsigned int sg_page_sizes)
2445
{
2446 2447 2448 2449
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2450
	lockdep_assert_held(&obj->mm.lock);
2451

2452 2453 2454 2455 2456 2457 2458 2459
	/* Make the pages coherent with the GPU (flushing any swapin). */
	if (obj->cache_dirty) {
		obj->write_domain = 0;
		if (i915_gem_object_has_struct_page(obj))
			drm_clflush_sg(pages);
		obj->cache_dirty = false;
	}

2460 2461 2462 2463
	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2464 2465

	if (i915_gem_object_is_tiled(obj) &&
2466
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2467 2468 2469 2470
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2471

M
Matthew Auld 已提交
2472 2473
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2474 2475

	/*
M
Matthew Auld 已提交
2476 2477 2478 2479 2480 2481
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2482 2483 2484 2485 2486 2487 2488
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2489 2490 2491 2492

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2493 2494 2495 2496
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2497
	int err;
2498 2499 2500 2501 2502 2503

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2504
	err = obj->ops->get_pages(obj);
2505
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2506

2507
	return err;
2508 2509
}

2510
/* Ensure that the associated pages are gathered from the backing storage
2511
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2512
 * multiple times before they are released by a single call to
2513
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2514 2515 2516
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2517
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2518
{
2519
	int err;
2520

2521 2522 2523
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2524

2525
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2526 2527
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2528 2529 2530
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2531

2532 2533 2534
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2535

2536 2537
unlock:
	mutex_unlock(&obj->mm.lock);
2538
	return err;
2539 2540
}

2541
/* The 'mapping' part of i915_gem_object_pin_map() below */
2542 2543
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2544 2545
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2546
	struct sg_table *sgt = obj->mm.pages;
2547 2548
	struct sgt_iter sgt_iter;
	struct page *page;
2549 2550
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2551
	unsigned long i = 0;
2552
	pgprot_t pgprot;
2553 2554 2555
	void *addr;

	/* A single page can always be kmapped */
2556
	if (n_pages == 1 && type == I915_MAP_WB)
2557 2558
		return kmap(sg_page(sgt->sgl));

2559 2560
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2561
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2562 2563 2564
		if (!pages)
			return NULL;
	}
2565

2566 2567
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2568 2569 2570 2571

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2572
	switch (type) {
2573 2574 2575
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2576 2577 2578 2579 2580 2581 2582 2583
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2584

2585
	if (pages != stack_pages)
M
Michal Hocko 已提交
2586
		kvfree(pages);
2587 2588 2589 2590 2591

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2592 2593
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2594
{
2595 2596 2597
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2598 2599
	int ret;

T
Tina Zhang 已提交
2600 2601
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2602

2603
	ret = mutex_lock_interruptible(&obj->mm.lock);
2604 2605 2606
	if (ret)
		return ERR_PTR(ret);

2607 2608 2609
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2610
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2611
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2612 2613
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2614 2615 2616
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2617

2618 2619 2620
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2621 2622
		pinned = false;
	}
2623
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2624

2625
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2626 2627 2628
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2629
			goto err_unpin;
2630
		}
2631 2632 2633 2634 2635 2636

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2637
		ptr = obj->mm.mapping = NULL;
2638 2639
	}

2640 2641 2642 2643
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2644
			goto err_unpin;
2645 2646
		}

2647
		obj->mm.mapping = page_pack_bits(ptr, type);
2648 2649
	}

2650 2651
out_unlock:
	mutex_unlock(&obj->mm.lock);
2652 2653
	return ptr;

2654 2655 2656 2657 2658
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2659 2660
}

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
				 unsigned long offset,
				 unsigned long size)
{
	enum i915_map_type has_type;
	void *ptr;

	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
				     offset, size, obj->base.size));

	obj->mm.dirty = true;

	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
		return;

	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
	if (has_type == I915_MAP_WC)
		return;

	drm_clflush_virt_range(ptr + offset, size);
	if (size == obj->base.size) {
		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
		obj->cache_dirty = false;
	}
}

2688 2689 2690 2691 2692 2693 2694 2695 2696
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

2697 2698 2699 2700 2701
	/* Caller already validated user args */
	GEM_BUG_ON(!access_ok(user_data, arg->size));

	/*
	 * Before we instantiate/pin the backing store for our use, we
2702 2703 2704 2705 2706 2707 2708
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2709
	if (i915_gem_object_has_pages(obj))
2710 2711
		return -ENODEV;

2712 2713 2714
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2715 2716
	/*
	 * Before the pages are instantiated the object is treated as being
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;
2732
		char c;
2733 2734 2735 2736 2737

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

2738 2739 2740 2741 2742 2743 2744 2745 2746
		/* Prefault the user page to reduce potential recursion */
		err = __get_user(c, user_data);
		if (err)
			return err;

		err = __get_user(c, user_data + len - 1);
		if (err)
			return err;

2747 2748 2749 2750 2751 2752
		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

2753 2754 2755 2756 2757
		vaddr = kmap_atomic(page);
		unwritten = __copy_from_user_inatomic(vaddr + pg,
						      user_data,
						      len);
		kunmap_atomic(vaddr);
2758 2759 2760 2761 2762 2763 2764

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

2765
		/* We don't handle -EFAULT, leave it to the caller to check */
2766
		if (unwritten)
2767
			return -ENODEV;
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2778 2779
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
2780
	struct drm_i915_private *i915 = to_i915(gem->dev);
2781 2782
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
2783
	struct i915_lut_handle *lut, *ln;
2784

2785 2786 2787 2788 2789 2790
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

2791
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
2792 2793 2794 2795
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
2796 2797 2798 2799 2800 2801 2802
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
2803
			i915_vma_close(vma);
2804

2805 2806
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
2807

2808
		i915_lut_handle_free(lut);
2809
		__i915_gem_object_release_unless_active(obj);
2810
	}
2811 2812

	mutex_unlock(&i915->drm.struct_mutex);
2813 2814
}

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2826 2827
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2828 2829 2830
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2831 2832 2833 2834 2835 2836 2837
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
2838
 *  -EAGAIN: incomplete, restart syscall
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2855 2856
	ktime_t start;
	long ret;
2857

2858 2859 2860
	if (args->flags != 0)
		return -EINVAL;

2861
	obj = i915_gem_object_lookup(file, args->bo_handle);
2862
	if (!obj)
2863 2864
		return -ENOENT;

2865 2866 2867
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
2868 2869 2870
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
2871
				   to_wait_timeout(args->timeout_ns));
2872 2873 2874 2875 2876

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
2887 2888 2889 2890

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
2891 2892
	}

C
Chris Wilson 已提交
2893
	i915_gem_object_put(obj);
2894
	return ret;
2895 2896
}

2897 2898
static int wait_for_engines(struct drm_i915_private *i915)
{
2899
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
2900 2901
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
2902
		GEM_TRACE_DUMP();
2903 2904
		i915_gem_set_wedged(i915);
		return -EIO;
2905 2906 2907 2908 2909
	}

	return 0;
}

2910 2911 2912 2913 2914 2915 2916 2917
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
2918
	list_for_each_entry(tl, &gt->active_list, link) {
2919 2920
		struct i915_request *rq;

2921
		rq = i915_active_request_get_unlocked(&tl->last_request);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
2937
			gen6_rps_boost(rq);
2938 2939 2940 2941 2942 2943 2944 2945

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
2946
		tl = list_entry(&gt->active_list, typeof(*tl), link);
2947 2948 2949 2950 2951 2952
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

2953 2954
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
2955
{
2956
	GEM_TRACE("flags=%x (%s), timeout=%ld%s, awake?=%s\n",
2957
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
2958 2959
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "",
		  yesno(i915->gt.awake));
2960

2961 2962 2963 2964
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

2965 2966 2967 2968
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

2969
	if (flags & I915_WAIT_LOCKED) {
2970
		int err;
2971 2972 2973

		lockdep_assert_held(&i915->drm.struct_mutex);

2974 2975 2976 2977
		err = wait_for_engines(i915);
		if (err)
			return err;

2978
		i915_retire_requests(i915);
2979
	}
2980 2981

	return 0;
2982 2983
}

2984 2985
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
2986 2987 2988 2989 2990 2991 2992
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
2993
	obj->write_domain = 0;
2994 2995 2996 2997
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
2998
	if (!READ_ONCE(obj->pin_global))
2999 3000 3001 3002 3003 3004 3005
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3025
				   MAX_SCHEDULE_TIMEOUT);
3026 3027 3028
	if (ret)
		return ret;

3029
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3050
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3051 3052 3053 3054 3055
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3056 3057
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3058
	if (write) {
3059 3060
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3061 3062 3063 3064 3065 3066 3067
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3068 3069
/**
 * Moves a single object to the GTT read, and possibly write domain.
3070 3071
 * @obj: object to act on
 * @write: ask for write access or read only
3072 3073 3074 3075
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3076
int
3077
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3078
{
3079
	int ret;
3080

3081
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3082

3083 3084 3085 3086
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3087
				   MAX_SCHEDULE_TIMEOUT);
3088 3089 3090
	if (ret)
		return ret;

3091
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3092 3093
		return 0;

3094 3095 3096 3097 3098 3099 3100 3101
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3102
	ret = i915_gem_object_pin_pages(obj);
3103 3104 3105
	if (ret)
		return ret;

3106
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3107

3108 3109 3110 3111
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3112
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3113 3114
		mb();

3115 3116 3117
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3118 3119
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3120
	if (write) {
3121 3122
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3123
		obj->mm.dirty = true;
3124 3125
	}

C
Chris Wilson 已提交
3126
	i915_gem_object_unpin_pages(obj);
3127 3128 3129
	return 0;
}

3130 3131
/**
 * Changes the cache-level of an object across all VMA.
3132 3133
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3145 3146 3147
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3148
	struct i915_vma *vma;
3149
	int ret;
3150

3151 3152
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3153
	if (obj->cache_level == cache_level)
3154
		return 0;
3155

3156 3157 3158 3159 3160
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3161
restart:
3162
	list_for_each_entry(vma, &obj->vma.list, obj_link) {
3163 3164 3165
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3166
		if (i915_vma_is_pinned(vma)) {
3167 3168 3169 3170
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3171 3172
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3184 3185
	}

3186 3187 3188 3189 3190 3191 3192
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3193
	if (obj->bind_count) {
3194 3195 3196 3197
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3198 3199 3200 3201
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
3202
					   MAX_SCHEDULE_TIMEOUT);
3203 3204 3205
		if (ret)
			return ret;

3206 3207
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3224
			for_each_ggtt_vma(vma, obj) {
3225 3226 3227 3228
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3229 3230 3231 3232 3233 3234 3235 3236
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3237 3238
		}

3239
		list_for_each_entry(vma, &obj->vma.list, obj_link) {
3240 3241 3242 3243 3244 3245 3246
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3247 3248
	}

3249
	list_for_each_entry(vma, &obj->vma.list, obj_link)
3250
		vma->node.color = cache_level;
3251
	i915_gem_object_set_cache_coherency(obj, cache_level);
3252
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3253

3254 3255 3256
	return 0;
}

B
Ben Widawsky 已提交
3257 3258
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3259
{
B
Ben Widawsky 已提交
3260
	struct drm_i915_gem_caching *args = data;
3261
	struct drm_i915_gem_object *obj;
3262
	int err = 0;
3263

3264 3265 3266 3267 3268 3269
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3270

3271 3272 3273 3274 3275 3276
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3277 3278 3279 3280
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3281 3282 3283 3284
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3285 3286 3287
out:
	rcu_read_unlock();
	return err;
3288 3289
}

B
Ben Widawsky 已提交
3290 3291
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3292
{
3293
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3294
	struct drm_i915_gem_caching *args = data;
3295 3296
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3297
	int ret = 0;
3298

B
Ben Widawsky 已提交
3299 3300
	switch (args->caching) {
	case I915_CACHING_NONE:
3301 3302
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3303
	case I915_CACHING_CACHED:
3304 3305 3306 3307 3308 3309
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3310
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3311 3312
			return -ENODEV;

3313 3314
		level = I915_CACHE_LLC;
		break;
3315
	case I915_CACHING_DISPLAY:
3316
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3317
		break;
3318 3319 3320 3321
	default:
		return -EINVAL;
	}

3322 3323 3324 3325
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

3335 3336 3337 3338 3339
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
3340
				   MAX_SCHEDULE_TIMEOUT);
B
Ben Widawsky 已提交
3341
	if (ret)
3342
		goto out;
B
Ben Widawsky 已提交
3343

3344 3345 3346
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3347 3348 3349

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3350 3351 3352

out:
	i915_gem_object_put(obj);
3353 3354 3355
	return ret;
}

3356
/*
3357 3358 3359 3360
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
3361
 */
C
Chris Wilson 已提交
3362
struct i915_vma *
3363 3364
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3365 3366
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
3367
{
C
Chris Wilson 已提交
3368
	struct i915_vma *vma;
3369 3370
	int ret;

3371 3372
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3373
	/* Mark the global pin early so that we account for the
3374 3375
	 * display coherency whilst setting up the cache domains.
	 */
3376
	obj->pin_global++;
3377

3378 3379 3380 3381 3382 3383 3384 3385 3386
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3387
	ret = i915_gem_object_set_cache_level(obj,
3388 3389
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3390 3391
	if (ret) {
		vma = ERR_PTR(ret);
3392
		goto err_unpin_global;
C
Chris Wilson 已提交
3393
	}
3394

3395 3396
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3397 3398 3399 3400
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3401
	 */
3402
	vma = ERR_PTR(-ENOSPC);
3403 3404
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
3405
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3406 3407 3408 3409
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
3410
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
3411
	if (IS_ERR(vma))
3412
		goto err_unpin_global;
3413

3414 3415
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3416
	__i915_gem_object_flush_for_display(obj);
3417

3418 3419 3420
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3421
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3422

C
Chris Wilson 已提交
3423
	return vma;
3424

3425 3426
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3427
	return vma;
3428 3429 3430
}

void
C
Chris Wilson 已提交
3431
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3432
{
3433
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3434

3435
	if (WARN_ON(vma->obj->pin_global == 0))
3436 3437
		return;

3438
	if (--vma->obj->pin_global == 0)
3439
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3440

3441
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3442
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3443

C
Chris Wilson 已提交
3444
	i915_vma_unpin(vma);
3445 3446
}

3447 3448
/**
 * Moves a single object to the CPU read, and possibly write domain.
3449 3450
 * @obj: object to act on
 * @write: requesting write or read-only access
3451 3452 3453 3454
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3455
int
3456
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3457 3458 3459
{
	int ret;

3460
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3461

3462 3463 3464 3465
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3466
				   MAX_SCHEDULE_TIMEOUT);
3467 3468 3469
	if (ret)
		return ret;

3470
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3471

3472
	/* Flush the CPU cache if it's still invalid. */
3473
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3474
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3475
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3476 3477 3478 3479 3480
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3481
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3482 3483 3484 3485

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3486 3487
	if (write)
		__start_cpu_write(obj);
3488 3489 3490 3491

	return 0;
}

3492 3493 3494
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3495 3496 3497 3498
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3499 3500 3501
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3502
static int
3503
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3504
{
3505
	struct drm_i915_private *dev_priv = to_i915(dev);
3506
	struct drm_i915_file_private *file_priv = file->driver_priv;
3507
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3508
	struct i915_request *request, *target = NULL;
3509
	long ret;
3510

3511
	/* ABI: return -EIO if already wedged */
3512 3513 3514
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
		return ret;
3515

3516
	spin_lock(&file_priv->mm.lock);
3517
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3518 3519
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3520

3521 3522 3523 3524
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3525

3526
		target = request;
3527
	}
3528
	if (target)
3529
		i915_request_get(target);
3530
	spin_unlock(&file_priv->mm.lock);
3531

3532
	if (target == NULL)
3533
		return 0;
3534

3535
	ret = i915_request_wait(target,
3536 3537
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3538
	i915_request_put(target);
3539

3540
	return ret < 0 ? ret : 0;
3541 3542
}

C
Chris Wilson 已提交
3543
struct i915_vma *
3544 3545
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3546
			 u64 size,
3547 3548
			 u64 alignment,
			 u64 flags)
3549
{
3550
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3551
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
3552 3553
	struct i915_vma *vma;
	int ret;
3554

3555 3556
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3557 3558
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

3589
	vma = i915_vma_instance(obj, vm, view);
3590
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3591
		return vma;
3592 3593

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3594 3595 3596
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
3597

3598
			if (flags & PIN_MAPPABLE &&
3599
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3600 3601 3602
				return ERR_PTR(-ENOSPC);
		}

3603 3604
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3605 3606 3607
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3608
		     !!(flags & PIN_MAPPABLE),
3609
		     i915_vma_is_map_and_fenceable(vma));
3610 3611
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3612
			return ERR_PTR(ret);
3613 3614
	}

C
Chris Wilson 已提交
3615 3616 3617
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3618

C
Chris Wilson 已提交
3619
	return vma;
3620 3621
}

3622
static __always_inline u32 __busy_read_flag(u8 id)
3623
{
3624 3625
	if (id == (u8)I915_ENGINE_CLASS_INVALID)
		return 0xffff0000u;
3626 3627

	GEM_BUG_ON(id >= 16);
3628
	return 0x10000u << id;
3629 3630
}

3631
static __always_inline u32 __busy_write_id(u8 id)
3632
{
3633 3634
	/*
	 * The uABI guarantees an active writer is also amongst the read
3635 3636 3637 3638 3639 3640 3641
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
3642 3643
	if (id == (u8)I915_ENGINE_CLASS_INVALID)
		return 0xffffffffu;
3644 3645

	return (id + 1) | __busy_read_flag(id);
3646 3647
}

3648
static __always_inline unsigned int
3649
__busy_set_if_active(const struct dma_fence *fence, u32 (*flag)(u8 id))
3650
{
3651
	const struct i915_request *rq;
3652

3653 3654
	/*
	 * We have to check the current hw status of the fence as the uABI
3655 3656 3657
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3658
	 *
3659
	 * Note we only report on the status of native fences.
3660
	 */
3661 3662 3663 3664
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
3665
	rq = container_of(fence, const struct i915_request, fence);
3666
	if (i915_request_completed(rq))
3667 3668
		return 0;

3669 3670
	/* Beware type-expansion follies! */
	BUILD_BUG_ON(!typecheck(u8, rq->engine->uabi_class));
3671
	return flag(rq->engine->uabi_class);
3672 3673
}

3674
static __always_inline unsigned int
3675
busy_check_reader(const struct dma_fence *fence)
3676
{
3677
	return __busy_set_if_active(fence, __busy_read_flag);
3678 3679
}

3680
static __always_inline unsigned int
3681
busy_check_writer(const struct dma_fence *fence)
3682
{
3683 3684 3685 3686
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3687 3688
}

3689 3690
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3691
		    struct drm_file *file)
3692 3693
{
	struct drm_i915_gem_busy *args = data;
3694
	struct drm_i915_gem_object *obj;
3695 3696
	struct reservation_object_list *list;
	unsigned int seq;
3697
	int err;
3698

3699
	err = -ENOENT;
3700 3701
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3702
	if (!obj)
3703
		goto out;
3704

3705 3706
	/*
	 * A discrepancy here is that we do not report the status of
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3724

3725 3726
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3727

3728 3729 3730 3731
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3732

3733 3734 3735 3736 3737 3738
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3739
	}
3740

3741 3742 3743 3744
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3745 3746 3747
out:
	rcu_read_unlock();
	return err;
3748 3749 3750 3751 3752 3753
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3754
	return i915_gem_ring_throttle(dev, file_priv);
3755 3756
}

3757 3758 3759 3760
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3761
	struct drm_i915_private *dev_priv = to_i915(dev);
3762
	struct drm_i915_gem_madvise *args = data;
3763
	struct drm_i915_gem_object *obj;
3764
	int err;
3765 3766 3767 3768 3769 3770 3771 3772 3773

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3774
	obj = i915_gem_object_lookup(file_priv, args->handle);
3775 3776 3777 3778 3779 3780
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3781

3782
	if (i915_gem_object_has_pages(obj) &&
3783
	    i915_gem_object_is_tiled(obj) &&
3784
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3785 3786
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3787
			__i915_gem_object_unpin_pages(obj);
3788 3789 3790
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3791
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3792
			__i915_gem_object_pin_pages(obj);
3793 3794
			obj->mm.quirked = true;
		}
3795 3796
	}

C
Chris Wilson 已提交
3797 3798
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3799

C
Chris Wilson 已提交
3800
	/* if the object is no longer attached, discard its backing storage */
3801 3802
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
3803
		__i915_gem_object_truncate(obj);
3804

C
Chris Wilson 已提交
3805
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3806
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3807

3808
out:
3809
	i915_gem_object_put(obj);
3810
	return err;
3811 3812
}

3813
static void
3814 3815
frontbuffer_retire(struct i915_active_request *active,
		   struct i915_request *request)
3816 3817 3818 3819
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

3820
	intel_fb_obj_flush(obj, ORIGIN_CS);
3821 3822
}

3823 3824
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3825
{
3826 3827
	mutex_init(&obj->mm.lock);

3828 3829 3830
	spin_lock_init(&obj->vma.lock);
	INIT_LIST_HEAD(&obj->vma.list);

3831
	INIT_LIST_HEAD(&obj->lut_list);
3832
	INIT_LIST_HEAD(&obj->batch_pool_link);
3833

3834 3835
	init_rcu_head(&obj->rcu);

3836 3837
	obj->ops = ops;

3838 3839 3840
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3841
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3842 3843
	i915_active_request_init(&obj->frontbuffer_write,
				 NULL, frontbuffer_retire);
C
Chris Wilson 已提交
3844 3845 3846 3847

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3848

3849
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3850 3851
}

3852
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3853 3854
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3855

3856 3857
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
3858 3859

	.pwrite = i915_gem_object_pwrite_gtt,
3860 3861
};

M
Matthew Auld 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

3886
struct drm_i915_gem_object *
3887
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3888
{
3889
	struct drm_i915_gem_object *obj;
3890
	struct address_space *mapping;
3891
	unsigned int cache_level;
D
Daniel Vetter 已提交
3892
	gfp_t mask;
3893
	int ret;
3894

3895 3896 3897 3898 3899
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
3900
	if (size >> PAGE_SHIFT > INT_MAX)
3901 3902 3903 3904 3905
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

3906
	obj = i915_gem_object_alloc();
3907
	if (obj == NULL)
3908
		return ERR_PTR(-ENOMEM);
3909

M
Matthew Auld 已提交
3910
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
3911 3912
	if (ret)
		goto fail;
3913

3914
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3915
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
3916 3917 3918 3919 3920
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3921
	mapping = obj->base.filp->f_mapping;
3922
	mapping_set_gfp_mask(mapping, mask);
3923
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
3924

3925
	i915_gem_object_init(obj, &i915_gem_object_ops);
3926

3927 3928
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
3929

3930
	if (HAS_LLC(dev_priv))
3931
		/* On some devices, we can have the GPU use the LLC (the CPU
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
3943 3944 3945
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
3946

3947
	i915_gem_object_set_cache_coherency(obj, cache_level);
3948

3949 3950
	trace_i915_gem_object_create(obj);

3951
	return obj;
3952 3953 3954 3955

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
3956 3957
}

3958 3959 3960 3961 3962 3963 3964 3965
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
3966
	if (obj->mm.madv != I915_MADV_WILLNEED)
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

3982 3983
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
3984
{
3985
	struct drm_i915_gem_object *obj, *on;
3986
	intel_wakeref_t wakeref;
3987

3988
	wakeref = intel_runtime_pm_get(i915);
3989
	llist_for_each_entry_safe(obj, on, freed, freed) {
3990 3991 3992 3993
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

3994 3995
		mutex_lock(&i915->drm.struct_mutex);

3996
		GEM_BUG_ON(i915_gem_object_is_active(obj));
3997
		list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
3998 3999
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4000
			i915_vma_destroy(vma);
4001
		}
4002 4003
		GEM_BUG_ON(!list_empty(&obj->vma.list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
4004

4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4017
		mutex_unlock(&i915->drm.struct_mutex);
4018 4019

		GEM_BUG_ON(obj->bind_count);
4020
		GEM_BUG_ON(obj->userfault_count);
4021
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4022
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4023 4024 4025

		if (obj->ops->release)
			obj->ops->release(obj);
4026

4027 4028
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4029
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4030
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4031 4032 4033 4034

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4035
		reservation_object_fini(&obj->__builtin_resv);
4036 4037 4038
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

4039
		bitmap_free(obj->bit_17);
4040
		i915_gem_object_free(obj);
4041

4042 4043 4044
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4045 4046
		if (on)
			cond_resched();
4047
	}
4048
	intel_runtime_pm_put(i915, wakeref);
4049 4050 4051 4052 4053 4054
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4065
		__i915_gem_free_objects(i915, freed);
4066
	}
4067 4068 4069 4070 4071 4072 4073
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4074

4075 4076
	/*
	 * All file-owned VMA should have been released by this point through
4077 4078 4079 4080 4081 4082
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4083

4084
	spin_lock(&i915->mm.free_lock);
4085
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4086 4087
		spin_unlock(&i915->mm.free_lock);

4088
		__i915_gem_free_objects(i915, freed);
4089
		if (need_resched())
4090 4091 4092
			return;

		spin_lock(&i915->mm.free_lock);
4093
	}
4094
	spin_unlock(&i915->mm.free_lock);
4095
}
4096

4097 4098 4099 4100 4101
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4102 4103 4104 4105 4106 4107 4108

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4109

4110 4111 4112 4113 4114 4115 4116 4117 4118
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4119 4120
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4121
		queue_work(i915->wq, &i915->mm.free_work);
4122
}
4123

4124 4125 4126
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4127

4128 4129 4130
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4131
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4132
		obj->mm.madv = I915_MADV_DONTNEED;
4133

4134 4135
	/*
	 * Before we free the object, make sure any pure RCU-only
4136 4137 4138 4139
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4140
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4141
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4142 4143
}

4144 4145 4146 4147
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4148 4149
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4150 4151 4152 4153 4154
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4155 4156
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4157 4158
	intel_wakeref_t wakeref;

4159 4160
	GEM_TRACE("\n");

4161
	wakeref = intel_runtime_pm_get(i915);
4162
	intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
4163 4164 4165 4166 4167 4168 4169

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4170
	if (i915_terminally_wedged(i915))
4171 4172
		i915_gem_unset_wedged(i915);

4173 4174 4175 4176 4177 4178
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4179
	 * of the reset, so this could be applied to even earlier gen.
4180
	 */
4181
	intel_gt_sanitize(i915, false);
4182

4183
	intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
4184
	intel_runtime_pm_put(i915, wakeref);
4185

4186
	mutex_lock(&i915->drm.struct_mutex);
4187 4188
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4189 4190
}

4191
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4192
{
4193
	if (INTEL_GEN(dev_priv) < 5 ||
4194 4195 4196 4197 4198 4199
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4200
	if (IS_GEN(dev_priv, 5))
4201 4202
		return;

4203
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4204
	if (IS_GEN(dev_priv, 6))
4205
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4206
	else if (IS_GEN(dev_priv, 7))
4207
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4208
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
4209
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4210 4211
	else
		BUG();
4212
}
D
Daniel Vetter 已提交
4213

4214
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4215 4216 4217 4218 4219 4220 4221
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4222
static void init_unused_rings(struct drm_i915_private *dev_priv)
4223
{
4224 4225 4226 4227 4228 4229
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
4230
	} else if (IS_GEN(dev_priv, 2)) {
4231 4232
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
4233
	} else if (IS_GEN(dev_priv, 3)) {
4234 4235
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4236 4237 4238
	}
}

4239 4240
int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4241
	int ret;
4242

4243 4244
	dev_priv->gt.last_init_time = ktime_get();

4245
	/* Double layer security blanket, see i915_gem_init() */
4246
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4247

4248
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4249
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4250

4251
	if (IS_HASWELL(dev_priv))
4252
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4253
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4254

4255
	/* Apply the GT workarounds... */
4256
	intel_gt_apply_workarounds(dev_priv);
4257 4258
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
4259

4260
	i915_gem_init_swizzling(dev_priv);
4261

4262 4263 4264 4265 4266 4267
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4268
	init_unused_rings(dev_priv);
4269

4270
	BUG_ON(!dev_priv->kernel_context);
4271 4272
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
4273
		goto out;
4274

4275
	ret = i915_ppgtt_init_hw(dev_priv);
4276
	if (ret) {
4277
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4278 4279 4280
		goto out;
	}

4281 4282 4283 4284 4285 4286
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

4287 4288
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
4289 4290
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
4291
		goto out;
4292
	}
4293

4294
	intel_mocs_init_l3cc_table(dev_priv);
4295

4296
	/* Only when the HW is re-initialised, can we replay the requests */
4297
	ret = intel_engines_resume(dev_priv);
4298 4299
	if (ret)
		goto cleanup_uc;
4300

4301
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4302

4303
	intel_engines_set_scheduler_caps(dev_priv);
4304
	return 0;
4305 4306 4307

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
4308
out:
4309
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4310 4311

	return ret;
4312 4313
}

4314 4315 4316
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
4317 4318
	struct i915_gem_context *ctx;
	struct i915_gem_engines *e;
4319
	enum intel_engine_id id;
4320
	int err = 0;
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

4335 4336
	e = i915_gem_context_lock_engines(ctx);

4337
	for_each_engine(engine, i915, id) {
4338
		struct intel_context *ce = e->engines[id];
4339
		struct i915_request *rq;
4340

4341
		rq = intel_context_create_request(ce);
4342 4343
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
4344
			goto err_active;
4345 4346
		}

4347
		err = 0;
4348 4349
		if (rq->engine->init_context)
			err = rq->engine->init_context(rq);
4350

4351
		i915_request_add(rq);
4352 4353 4354 4355
		if (err)
			goto err_active;
	}

4356
	/* Flush the default context image to memory, and enable powersaving. */
4357
	if (!i915_gem_load_power_context(i915)) {
4358
		err = -EIO;
4359
		goto err_active;
4360
	}
4361 4362

	for_each_engine(engine, i915, id) {
4363 4364
		struct intel_context *ce = e->engines[id];
		struct i915_vma *state = ce->state;
4365
		void *vaddr;
4366 4367 4368 4369

		if (!state)
			continue;

4370
		GEM_BUG_ON(intel_context_is_pinned(ce));
4371

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
4389 4390
		i915_gem_object_set_cache_coherency(engine->default_state,
						    I915_CACHE_LLC);
4391 4392 4393

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
4394
						I915_MAP_FORCE_WB);
4395 4396 4397 4398 4399 4400
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
4422
	i915_gem_context_unlock_engines(ctx);
4423 4424 4425 4426 4427 4428 4429
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
4430 4431
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
4432
	 */
4433
	i915_gem_set_wedged(i915);
4434 4435 4436
	goto out_ctx;
}

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, i915, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

	return err;
}

4492
int i915_gem_init(struct drm_i915_private *dev_priv)
4493 4494 4495
{
	int ret;

4496 4497
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
4498 4499 4500
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4501
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4502

4503 4504
	i915_timelines_init(dev_priv);

4505 4506 4507 4508
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

4509
	ret = intel_uc_init_misc(dev_priv);
4510 4511 4512
	if (ret)
		return ret;

4513
	ret = intel_wopcm_init(&dev_priv->wopcm);
4514
	if (ret)
4515
		goto err_uc_misc;
4516

4517 4518 4519 4520 4521 4522
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
4523
	mutex_lock(&dev_priv->drm.struct_mutex);
4524
	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
4525

4526
	ret = i915_gem_init_ggtt(dev_priv);
4527 4528 4529 4530
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
4531

4532
	ret = i915_gem_init_scratch(dev_priv,
4533
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
4534 4535 4536 4537
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
4538

4539 4540 4541 4542 4543 4544
	ret = intel_engines_setup(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}

4545 4546 4547 4548 4549 4550
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

4551
	ret = intel_engines_init(dev_priv);
4552 4553 4554 4555
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
4556

4557 4558
	intel_init_gt_powersave(dev_priv);

4559
	ret = intel_uc_init(dev_priv);
4560
	if (ret)
4561
		goto err_pm;
4562

4563 4564 4565 4566
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

4578 4579 4580 4581
	ret = intel_engines_verify_workarounds(dev_priv);
	if (ret)
		goto err_init_hw;

4582
	ret = __intel_engines_record_defaults(dev_priv);
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

4596
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
4608 4609
	mutex_unlock(&dev_priv->drm.struct_mutex);

4610
	i915_gem_set_wedged(dev_priv);
4611
	i915_gem_suspend(dev_priv);
4612 4613
	i915_gem_suspend_late(dev_priv);

4614 4615
	i915_gem_drain_workqueue(dev_priv);

4616
	mutex_lock(&dev_priv->drm.struct_mutex);
4617
	intel_uc_fini_hw(dev_priv);
4618 4619
err_uc_init:
	intel_uc_fini(dev_priv);
4620 4621 4622
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
4623
		intel_engines_cleanup(dev_priv);
4624 4625 4626 4627
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
4628 4629
err_scratch:
	i915_gem_fini_scratch(dev_priv);
4630 4631
err_ggtt:
err_unlock:
4632
	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
4633 4634
	mutex_unlock(&dev_priv->drm.struct_mutex);

4635
err_uc_misc:
4636
	intel_uc_fini_misc(dev_priv);
4637

4638
	if (ret != -EIO) {
4639
		i915_gem_cleanup_userptr(dev_priv);
4640 4641
		i915_timelines_fini(dev_priv);
	}
4642

4643
	if (ret == -EIO) {
4644 4645
		mutex_lock(&dev_priv->drm.struct_mutex);

4646 4647
		/*
		 * Allow engine initialisation to fail by marking the GPU as
4648 4649 4650
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
4651
		if (!i915_reset_failed(dev_priv)) {
4652 4653
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
4654 4655
			i915_gem_set_wedged(dev_priv);
		}
4656 4657 4658 4659 4660 4661 4662 4663

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
4664 4665
	}

4666
	i915_gem_drain_freed_objects(dev_priv);
4667
	return ret;
4668 4669
}

4670 4671
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
4672 4673
	GEM_BUG_ON(dev_priv->gt.awake);

4674
	i915_gem_suspend_late(dev_priv);
4675
	intel_disable_gt_powersave(dev_priv);
4676 4677 4678 4679 4680 4681 4682

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
4683
	intel_engines_cleanup(dev_priv);
4684
	i915_gem_contexts_fini(dev_priv);
4685
	i915_gem_fini_scratch(dev_priv);
4686 4687
	mutex_unlock(&dev_priv->drm.struct_mutex);

4688 4689
	intel_wa_list_free(&dev_priv->gt_wa_list);

4690 4691
	intel_cleanup_gt_powersave(dev_priv);

4692 4693
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
4694
	i915_timelines_fini(dev_priv);
4695 4696 4697 4698 4699 4700

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

4701 4702 4703 4704 4705
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4706 4707 4708
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4709
	int i;
4710

4711
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4712 4713
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4714
	else if (INTEL_GEN(dev_priv) >= 4 ||
4715 4716
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4717 4718 4719 4720
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4721
	if (intel_vgpu_active(dev_priv))
4722 4723 4724 4725
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4726 4727 4728 4729 4730 4731 4732
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4733
	i915_gem_restore_fences(dev_priv);
4734

4735
	i915_gem_detect_bit_6_swizzle(dev_priv);
4736 4737
}

4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

4754
int i915_gem_init_early(struct drm_i915_private *dev_priv)
4755
{
4756
	int err;
4757

4758 4759
	intel_gt_pm_init(dev_priv);

4760
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
4761
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
4762

4763
	i915_gem_init__mm(dev_priv);
4764
	i915_gem_init__pm(dev_priv);
4765

4766
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4767
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4768
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
4769
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
4770

4771 4772
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4773
	spin_lock_init(&dev_priv->fb_tracking.lock);
4774

M
Matthew Auld 已提交
4775 4776 4777 4778
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

4779
	return 0;
4780
}
4781

4782
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
4783
{
4784
	i915_gem_drain_freed_objects(dev_priv);
4785 4786
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
4787
	WARN_ON(dev_priv->mm.object_count);
4788

4789 4790
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
4791
	i915_gemfs_fini(dev_priv);
4792 4793
}

4794 4795
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4796 4797 4798
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4799 4800 4801 4802 4803
	i915_gem_shrink_all(dev_priv);

	return 0;
}

4804
int i915_gem_freeze_late(struct drm_i915_private *i915)
4805 4806
{
	struct drm_i915_gem_object *obj;
4807
	struct list_head *phases[] = {
4808 4809
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
4810
		NULL
4811
	}, **phase;
4812

4813 4814
	/*
	 * Called just before we write the hibernation image.
4815 4816 4817 4818 4819 4820 4821 4822
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4823 4824
	 *
	 * To try and reduce the hibernation image, we manually shrink
4825
	 * the objects as well, see i915_gem_freeze()
4826 4827
	 */

4828 4829
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
4830

4831 4832 4833 4834
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
4835
	}
4836
	mutex_unlock(&i915->drm.struct_mutex);
4837 4838 4839 4840

	return 0;
}

4841
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4842
{
4843
	struct drm_i915_file_private *file_priv = file->driver_priv;
4844
	struct i915_request *request;
4845 4846 4847 4848 4849

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4850
	spin_lock(&file_priv->mm.lock);
4851
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4852
		request->file_priv = NULL;
4853
	spin_unlock(&file_priv->mm.lock);
4854 4855
}

4856
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
4857 4858
{
	struct drm_i915_file_private *file_priv;
4859
	int ret;
4860

4861
	DRM_DEBUG("\n");
4862 4863 4864 4865 4866 4867

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4868
	file_priv->dev_priv = i915;
4869
	file_priv->file = file;
4870 4871 4872 4873

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4874
	file_priv->bsd_engine = -1;
4875
	file_priv->hang_timestamp = jiffies;
4876

4877
	ret = i915_gem_context_open(i915, file);
4878 4879
	if (ret)
		kfree(file_priv);
4880

4881
	return ret;
4882 4883
}

4884 4885
/**
 * i915_gem_track_fb - update frontbuffer tracking
4886 4887 4888
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4889 4890 4891 4892
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4893 4894 4895 4896
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4897 4898 4899 4900 4901 4902 4903
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4904
		     BITS_PER_TYPE(atomic_t));
4905

4906
	if (old) {
4907 4908
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4909 4910 4911
	}

	if (new) {
4912 4913
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4914 4915 4916
	}
}

4917 4918
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4919
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4920 4921 4922
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
4923 4924 4925
	struct file *file;
	size_t offset;
	int err;
4926

4927
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4928
	if (IS_ERR(obj))
4929 4930
		return obj;

4931
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
4932

4933 4934 4935 4936 4937 4938
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
4939

4940 4941 4942 4943 4944
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
4945

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
4960 4961 4962 4963

	return obj;

fail:
4964
	i915_gem_object_put(obj);
4965
	return ERR_PTR(err);
4966
}
4967 4968 4969 4970 4971 4972

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4973
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4974 4975 4976 4977 4978
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4979
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5005 5006
		void *entry;
		unsigned long i;
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5021
		entry = xa_mk_value(idx);
5022
		for (i = 1; i < count; i++) {
5023
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5061
	 * the radix tree will contain a value entry that points
5062 5063 5064 5065 5066
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
5067 5068
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5101
	if (!obj->mm.dirty)
5102 5103 5104 5105 5106 5107
		set_page_dirty(page);

	return page;
}

dma_addr_t
5108 5109 5110
i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
				    unsigned long n,
				    unsigned int *len)
5111 5112 5113 5114 5115
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
5116 5117 5118 5119

	if (len)
		*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);

5120 5121
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5122

5123 5124 5125 5126 5127 5128 5129 5130
dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	return i915_gem_object_get_dma_address_len(obj, n, NULL);
}


5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5166
	pages = __i915_gem_object_unset_pages(obj);
5167

5168 5169
	obj->ops = &i915_gem_phys_ops;

5170
	err = ____i915_gem_object_get_pages(obj);
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
5184 5185 5186 5187 5188
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
5189 5190 5191 5192 5193
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5194 5195
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5196
#include "selftests/mock_gem_device.c"
5197
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5198
#include "selftests/huge_pages.c"
5199
#include "selftests/i915_gem_object.c"
5200
#include "selftests/i915_gem_coherency.c"
5201
#include "selftests/i915_gem.c"
5202
#endif