i915_gem.c 143.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drm_vma_manager.h>
29
#include <drm/drm_pci.h>
30
#include <drm/i915_drm.h>
31
#include <linux/dma-fence-array.h>
32
#include <linux/kthread.h>
33
#include <linux/reservation.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/stop_machine.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40
#include <linux/mman.h>
41

42 43 44
#include "i915_drv.h"
#include "i915_gem_clflush.h"
#include "i915_gemfs.h"
45
#include "i915_globals.h"
46 47 48 49 50 51 52 53 54
#include "i915_reset.h"
#include "i915_trace.h"
#include "i915_vgpu.h"

#include "intel_drv.h"
#include "intel_frontbuffer.h"
#include "intel_mocs.h"
#include "intel_workarounds.h"

55
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
56

57 58
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
59
	if (obj->cache_dirty)
60 61
		return false;

62
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
63 64
		return true;

65
	return obj->pin_global; /* currently in use by HW, keep flushed */
66 67
}

68
static int
69
insert_mappable_node(struct i915_ggtt *ggtt,
70 71 72
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
73
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74 75 76
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
77 78 79 80 81 82 83 84
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
87
				  u64 size)
88
{
89
	spin_lock(&dev_priv->mm.object_stat_lock);
90 91
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
92
	spin_unlock(&dev_priv->mm.object_stat_lock);
93 94 95
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
96
				     u64 size)
97
{
98
	spin_lock(&dev_priv->mm.object_stat_lock);
99 100
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
101
	spin_unlock(&dev_priv->mm.object_stat_lock);
102 103
}

104
static void __i915_gem_park(struct drm_i915_private *i915)
105
{
C
Chris Wilson 已提交
106 107
	intel_wakeref_t wakeref;

108 109
	GEM_TRACE("\n");

110 111
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
112
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
113 114

	if (!i915->gt.awake)
115
		return;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
131
	i915_timelines_park(i915);
132 133

	i915_pmu_gt_parked(i915);
134
	i915_vma_parked(i915);
135

C
Chris Wilson 已提交
136 137
	wakeref = fetch_and_zero(&i915->gt.awake);
	GEM_BUG_ON(!wakeref);
138 139 140 141

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

142
	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ, wakeref);
143

144
	i915_globals_park();
145 146 147 148
}

void i915_gem_park(struct drm_i915_private *i915)
{
149 150
	GEM_TRACE("\n");

151 152 153 154 155 156 157 158 159 160 161 162
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
163 164
	GEM_TRACE("\n");

165 166
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);
167
	assert_rpm_wakelock_held(i915);
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

	if (i915->gt.awake)
		return;

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
183 184
	i915->gt.awake = intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
	GEM_BUG_ON(!i915->gt.awake);
185

186 187
	i915_globals_unpark();

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

203 204
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
205
			    struct drm_file *file)
206
{
207
	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
208
	struct drm_i915_gem_get_aperture *args = data;
209
	struct i915_vma *vma;
210
	u64 pinned;
211

212 213
	mutex_lock(&ggtt->vm.mutex);

214
	pinned = ggtt->vm.reserved;
215
	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
216
		if (i915_vma_is_pinned(vma))
217
			pinned += vma->node.size;
218 219

	mutex_unlock(&ggtt->vm.mutex);
220

221
	args->aper_size = ggtt->vm.total;
222
	args->aper_available_size = args->aper_size - pinned;
223

224 225 226
	return 0;
}

227
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
228
{
229
	struct address_space *mapping = obj->base.filp->f_mapping;
230
	drm_dma_handle_t *phys;
231 232
	struct sg_table *st;
	struct scatterlist *sg;
233
	char *vaddr;
234
	int i;
235
	int err;
236

237
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
238
		return -EINVAL;
239

240 241 242 243 244
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
245
			     roundup_pow_of_two(obj->base.size),
246 247
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
248
		return -ENOMEM;
249 250

	vaddr = phys->vaddr;
251 252 253 254 255
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
256
		if (IS_ERR(page)) {
257
			err = PTR_ERR(page);
258 259
			goto err_phys;
		}
260 261 262 263 264 265

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

266
		put_page(page);
267 268 269
		vaddr += PAGE_SIZE;
	}

270
	i915_gem_chipset_flush(to_i915(obj->base.dev));
271 272

	st = kmalloc(sizeof(*st), GFP_KERNEL);
273
	if (!st) {
274
		err = -ENOMEM;
275 276
		goto err_phys;
	}
277 278 279

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
280
		err = -ENOMEM;
281
		goto err_phys;
282 283 284 285 286
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
287

288
	sg_dma_address(sg) = phys->busaddr;
289 290
	sg_dma_len(sg) = obj->base.size;

291
	obj->phys_handle = phys;
292

293
	__i915_gem_object_set_pages(obj, st, sg->length);
294 295

	return 0;
296 297 298

err_phys:
	drm_pci_free(obj->base.dev, phys);
299 300

	return err;
301 302
}

303 304
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
305 306
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
307 308 309 310
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

311
static void
312
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
313 314
				struct sg_table *pages,
				bool needs_clflush)
315
{
C
Chris Wilson 已提交
316
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
317

C
Chris Wilson 已提交
318 319
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
320

321
	if (needs_clflush &&
322
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
323
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
324
		drm_clflush_sg(pages);
325

326
	__start_cpu_write(obj);
327 328 329 330 331 332
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
333
	__i915_gem_object_release_shmem(obj, pages, false);
334

C
Chris Wilson 已提交
335
	if (obj->mm.dirty) {
336
		struct address_space *mapping = obj->base.filp->f_mapping;
337
		char *vaddr = obj->phys_handle->vaddr;
338 339 340
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
341 342 343 344 345 346 347 348 349 350 351 352 353
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
354
			if (obj->mm.madv == I915_MADV_WILLNEED)
355
				mark_page_accessed(page);
356
			put_page(page);
357 358
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
359
		obj->mm.dirty = false;
360 361
	}

362 363
	sg_free_table(pages);
	kfree(pages);
364 365

	drm_pci_free(obj->base.dev, obj->phys_handle);
366 367 368 369 370
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
371
	i915_gem_object_unpin_pages(obj);
372 373 374 375 376 377 378 379
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

380 381
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

382
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
383 384 385
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
386 387 388
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
389

390 391 392 393
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
394
	 */
395
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
396 397 398
	if (ret)
		return ret;

399 400 401 402
	spin_lock(&obj->vma.lock);
	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
						       struct i915_vma,
						       obj_link))) {
403
		list_move_tail(&vma->obj_link, &still_in_list);
404 405
		spin_unlock(&obj->vma.lock);

406
		ret = i915_vma_unbind(vma);
407 408

		spin_lock(&obj->vma.lock);
409
	}
410 411
	list_splice(&still_in_list, &obj->vma.list);
	spin_unlock(&obj->vma.lock);
412 413 414 415

	return ret;
}

416 417 418
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
419
			   long timeout)
420
{
421
	struct i915_request *rq;
422

423
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
424

425 426 427 428 429 430 431 432 433
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
434
	if (i915_request_completed(rq))
435 436
		goto out;

437
	timeout = i915_request_wait(rq, flags, timeout);
438 439

out:
440 441
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
442 443 444 445 446 447 448

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
449
				 long timeout)
450
{
451
	unsigned int seq = __read_seqcount_begin(&resv->seq);
452
	struct dma_fence *excl;
453
	bool prune_fences = false;
454 455 456 457

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
458 459
		int ret;

460 461
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
462 463 464
		if (ret)
			return ret;

465 466
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
467
							     flags, timeout);
468
			if (timeout < 0)
469
				break;
470

471 472 473 474 475 476
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
477

478 479 480 481 482 483 484 485 486
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
487
		prune_fences = count && timeout >= 0;
488 489
	} else {
		excl = reservation_object_get_excl_rcu(resv);
490 491
	}

492
	if (excl && timeout >= 0)
493
		timeout = i915_gem_object_wait_fence(excl, flags, timeout);
494 495 496

	dma_fence_put(excl);

497 498
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
499 500 501
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
502
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
503 504 505 506 507
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
508 509
	}

510
	return timeout;
511 512
}

513 514
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
515
{
516
	struct i915_request *rq;
517 518
	struct intel_engine_cs *engine;

519
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
520 521 522 523 524
		return;

	rq = to_request(fence);
	engine = rq->engine;

525 526
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
527
	if (engine->schedule)
528
		engine->schedule(rq, attr);
529
	rcu_read_unlock();
530
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
531 532
}

533 534
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
535 536 537 538 539 540 541
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
542
			__fence_set_priority(array->fences[i], attr);
543
	} else {
544
		__fence_set_priority(fence, attr);
545 546 547 548 549 550
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
551
			      const struct i915_sched_attr *attr)
552 553 554 555 556 557 558 559 560 561 562 563 564 565
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
566
			fence_set_priority(shared[i], attr);
567 568 569 570 571 572 573 574 575
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
576
		fence_set_priority(excl, attr);
577 578 579 580 581
		dma_fence_put(excl);
	}
	return 0;
}

582 583 584 585 586
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
587
 */
588 589 590
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
591
		     long timeout)
592
{
593 594
	might_sleep();
	GEM_BUG_ON(timeout < 0);
595

596
	timeout = i915_gem_object_wait_reservation(obj->resv, flags, timeout);
597
	return timeout < 0 ? timeout : 0;
598 599
}

600 601 602
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
603
		     struct drm_file *file)
604 605
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
606
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
607 608 609 610

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
611
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
612 613
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
614

615
	drm_clflush_virt_range(vaddr, args->size);
616
	i915_gem_chipset_flush(to_i915(obj->base.dev));
617

618
	intel_fb_obj_flush(obj, ORIGIN_CPU);
619
	return 0;
620 621
}

622 623
static int
i915_gem_create(struct drm_file *file,
624
		struct drm_i915_private *dev_priv,
625 626
		u64 size,
		u32 *handle_p)
627
{
628
	struct drm_i915_gem_object *obj;
629 630
	int ret;
	u32 handle;
631

632
	size = roundup(size, PAGE_SIZE);
633 634
	if (size == 0)
		return -EINVAL;
635 636

	/* Allocate the new object */
637
	obj = i915_gem_object_create(dev_priv, size);
638 639
	if (IS_ERR(obj))
		return PTR_ERR(obj);
640

641
	ret = drm_gem_handle_create(file, &obj->base, &handle);
642
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
643
	i915_gem_object_put(obj);
644 645
	if (ret)
		return ret;
646

647
	*handle_p = handle;
648 649 650
	return 0;
}

651 652 653 654 655 656
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
657
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
658
	args->size = args->pitch * args->height;
659
	return i915_gem_create(file, to_i915(dev),
660
			       args->size, &args->handle);
661 662
}

663 664 665 666 667 668
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

669 670
/**
 * Creates a new mm object and returns a handle to it.
671 672 673
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
674 675 676 677 678
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
679
	struct drm_i915_private *dev_priv = to_i915(dev);
680
	struct drm_i915_gem_create *args = data;
681

682
	i915_gem_flush_free_objects(dev_priv);
683

684
	return i915_gem_create(file, dev_priv,
685
			       args->size, &args->handle);
686 687
}

688 689 690 691 692 693 694
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

695
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
696
{
697 698
	intel_wakeref_t wakeref;

699 700 701 702 703
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
704 705 706 707 708 709 710 711 712 713
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
714 715
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
716
	 */
717

718 719 720 721 722
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

723
	i915_gem_chipset_flush(dev_priv);
724

725 726
	with_intel_runtime_pm(dev_priv, wakeref) {
		spin_lock_irq(&dev_priv->uncore.lock);
727

728
		POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
729

730 731
		spin_unlock_irq(&dev_priv->uncore.lock);
	}
732 733 734 735 736 737 738 739
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

740
	if (!(obj->write_domain & flush_domains))
741 742
		return;

743
	switch (obj->write_domain) {
744
	case I915_GEM_DOMAIN_GTT:
745
		i915_gem_flush_ggtt_writes(dev_priv);
746 747 748

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
749

750
		for_each_ggtt_vma(vma, obj) {
751 752 753 754 755
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
756 757
		break;

758 759 760 761
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

762 763 764
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
765 766 767 768 769

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
770 771
	}

772
	obj->write_domain = 0;
773 774
}

775 776 777 778 779 780
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
781
				    unsigned int *needs_clflush)
782 783 784
{
	int ret;

785
	lockdep_assert_held(&obj->base.dev->struct_mutex);
786

787
	*needs_clflush = 0;
788 789
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
790

791 792 793
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
794
				   MAX_SCHEDULE_TIMEOUT);
795 796 797
	if (ret)
		return ret;

C
Chris Wilson 已提交
798
	ret = i915_gem_object_pin_pages(obj);
799 800 801
	if (ret)
		return ret;

802 803
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 805 806 807 808 809 810
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

811
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812

813 814 815 816 817
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
818
	if (!obj->cache_dirty &&
819
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
820
		*needs_clflush = CLFLUSH_BEFORE;
821

822
out:
823
	/* return with the pages pinned */
824
	return 0;
825 826 827 828

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
829 830 831 832 833 834 835
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

836 837
	lockdep_assert_held(&obj->base.dev->struct_mutex);

838 839 840 841
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

842 843 844 845
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
846
				   MAX_SCHEDULE_TIMEOUT);
847 848 849
	if (ret)
		return ret;

C
Chris Wilson 已提交
850
	ret = i915_gem_object_pin_pages(obj);
851 852 853
	if (ret)
		return ret;

854 855
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
856 857 858 859 860 861 862
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

863
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
864

865 866 867 868 869
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
870
	if (!obj->cache_dirty) {
871
		*needs_clflush |= CLFLUSH_AFTER;
872

873 874 875 876
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
877
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
878 879
			*needs_clflush |= CLFLUSH_BEFORE;
	}
880

881
out:
882
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
883
	obj->mm.dirty = true;
884
	/* return with the pages pinned */
885
	return 0;
886 887 888 889

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
890 891
}

892
static int
893 894
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
	    bool needs_clflush)
895 896 897 898 899 900
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);

901 902
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + offset, len);
903

904
	ret = __copy_to_user(user_data, vaddr + offset, len);
905

906
	kunmap(page);
907

908
	return ret ? -EFAULT : 0;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
935
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

		ret = shmem_pread(page, offset, length, user_data,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
955
{
956
	void __iomem *vaddr;
957
	unsigned long unwritten;
958 959

	/* We can use the cpu mem copy function because this is X86. */
960 961 962 963
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
964 965
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
966 967 968 969
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
970 971
		io_mapping_unmap(vaddr);
	}
972 973 974 975
	return unwritten;
}

static int
976 977
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
978
{
979 980
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
981
	intel_wakeref_t wakeref;
982
	struct drm_mm_node node;
983 984 985
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
986 987
	int ret;

988 989 990 991
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

992
	wakeref = intel_runtime_pm_get(i915);
993
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
994 995 996
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
997 998 999
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1000
		ret = i915_vma_put_fence(vma);
1001 1002 1003 1004 1005
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1006
	if (IS_ERR(vma)) {
1007
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1008
		if (ret)
1009 1010
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1011 1012 1013 1014 1015 1016
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1017
	mutex_unlock(&i915->drm.struct_mutex);
1018

1019 1020 1021
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1036 1037 1038
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1039 1040 1041 1042
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1043

1044
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1045
				  user_data, page_length)) {
1046 1047 1048 1049 1050 1051 1052 1053 1054
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1055
	mutex_lock(&i915->drm.struct_mutex);
1056 1057 1058
out_unpin:
	if (node.allocated) {
		wmb();
1059
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1060 1061
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1062
		i915_vma_unpin(vma);
1063
	}
1064
out_unlock:
1065
	intel_runtime_pm_put(i915, wakeref);
1066
	mutex_unlock(&i915->drm.struct_mutex);
1067

1068 1069 1070
	return ret;
}

1071 1072
/**
 * Reads data from the object referenced by handle.
1073 1074 1075
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1076 1077 1078 1079 1080
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1081
		     struct drm_file *file)
1082 1083
{
	struct drm_i915_gem_pread *args = data;
1084
	struct drm_i915_gem_object *obj;
1085
	int ret;
1086

1087 1088 1089
	if (args->size == 0)
		return 0;

1090
	if (!access_ok(u64_to_user_ptr(args->data_ptr),
1091 1092 1093
		       args->size))
		return -EFAULT;

1094
	obj = i915_gem_object_lookup(file, args->handle);
1095 1096
	if (!obj)
		return -ENOENT;
1097

1098
	/* Bounds check source.  */
1099
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1100
		ret = -EINVAL;
1101
		goto out;
C
Chris Wilson 已提交
1102 1103
	}

C
Chris Wilson 已提交
1104 1105
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1106 1107
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1108
				   MAX_SCHEDULE_TIMEOUT);
1109
	if (ret)
1110
		goto out;
1111

1112
	ret = i915_gem_object_pin_pages(obj);
1113
	if (ret)
1114
		goto out;
1115

1116
	ret = i915_gem_shmem_pread(obj, args);
1117
	if (ret == -EFAULT || ret == -ENODEV)
1118
		ret = i915_gem_gtt_pread(obj, args);
1119

1120 1121
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1122
	i915_gem_object_put(obj);
1123
	return ret;
1124 1125
}

1126 1127
/* This is the fast write path which cannot handle
 * page faults in the source data
1128
 */
1129

1130 1131 1132 1133
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1134
{
1135
	void __iomem *vaddr;
1136
	unsigned long unwritten;
1137

1138
	/* We can use the cpu mem copy function because this is X86. */
1139 1140
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1141
						      user_data, length);
1142 1143
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1144 1145 1146
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1147 1148
		io_mapping_unmap(vaddr);
	}
1149 1150 1151 1152

	return unwritten;
}

1153 1154 1155
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1156
 * @obj: i915 GEM object
1157
 * @args: pwrite arguments structure
1158
 */
1159
static int
1160 1161
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1162
{
1163
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1164
	struct i915_ggtt *ggtt = &i915->ggtt;
1165
	intel_wakeref_t wakeref;
1166
	struct drm_mm_node node;
1167 1168 1169
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1170
	int ret;
1171

1172 1173 1174
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1175

1176 1177 1178 1179 1180 1181 1182 1183
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
1184 1185
		wakeref = intel_runtime_pm_get_if_in_use(i915);
		if (!wakeref) {
1186 1187 1188 1189 1190
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
1191
		wakeref = intel_runtime_pm_get(i915);
1192 1193
	}

C
Chris Wilson 已提交
1194
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1195 1196 1197
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1198 1199 1200
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1201
		ret = i915_vma_put_fence(vma);
1202 1203 1204 1205 1206
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1207
	if (IS_ERR(vma)) {
1208
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1209
		if (ret)
1210
			goto out_rpm;
1211
		GEM_BUG_ON(!node.allocated);
1212
	}
D
Daniel Vetter 已提交
1213 1214 1215 1216 1217

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1218 1219
	mutex_unlock(&i915->drm.struct_mutex);

1220
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1221

1222 1223 1224 1225
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1226 1227
		/* Operation in this page
		 *
1228 1229 1230
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1231
		 */
1232
		u32 page_base = node.start;
1233 1234
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1235 1236 1237
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1238 1239 1240
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1241 1242 1243 1244
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1245
		/* If we get a fault while copying data, then (presumably) our
1246 1247
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1248 1249
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1250
		 */
1251
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1252 1253 1254
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1255
		}
1256

1257 1258 1259
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1260
	}
1261
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1262 1263

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1264
out_unpin:
1265 1266
	if (node.allocated) {
		wmb();
1267
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1268 1269
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1270
		i915_vma_unpin(vma);
1271
	}
1272
out_rpm:
1273
	intel_runtime_pm_put(i915, wakeref);
1274
out_unlock:
1275
	mutex_unlock(&i915->drm.struct_mutex);
1276
	return ret;
1277 1278
}

1279 1280 1281 1282 1283
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1284
static int
1285 1286 1287
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1288
{
1289
	char *vaddr;
1290 1291
	int ret;

1292
	vaddr = kmap(page);
1293

1294 1295
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + offset, len);
1296

1297 1298 1299
	ret = __copy_from_user(vaddr + offset, user_data, len);
	if (!ret && needs_clflush_after)
		drm_clflush_virt_range(vaddr + offset, len);
1300

1301 1302 1303
	kunmap(page);

	return ret ? -EFAULT : 0;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int partial_cacheline_write;
1314
	unsigned int needs_clflush;
1315 1316
	unsigned int offset, idx;
	int ret;
1317

1318
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1319 1320 1321
	if (ret)
		return ret;

1322 1323 1324 1325
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1326

1327 1328 1329 1330 1331 1332 1333
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1334

1335 1336 1337 1338 1339
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
1340
		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1341

1342 1343 1344
		ret = shmem_pwrite(page, offset, length, user_data,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1345
		if (ret)
1346
			break;
1347

1348 1349 1350
		remain -= length;
		user_data += length;
		offset = 0;
1351
	}
1352

1353
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1354
	i915_gem_obj_finish_shmem_access(obj);
1355
	return ret;
1356 1357 1358 1359
}

/**
 * Writes data to the object referenced by handle.
1360 1361 1362
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1363 1364 1365 1366 1367
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1368
		      struct drm_file *file)
1369 1370
{
	struct drm_i915_gem_pwrite *args = data;
1371
	struct drm_i915_gem_object *obj;
1372 1373 1374 1375 1376
	int ret;

	if (args->size == 0)
		return 0;

1377
	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
1378 1379
		return -EFAULT;

1380
	obj = i915_gem_object_lookup(file, args->handle);
1381 1382
	if (!obj)
		return -ENOENT;
1383

1384
	/* Bounds check destination. */
1385
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1386
		ret = -EINVAL;
1387
		goto err;
C
Chris Wilson 已提交
1388 1389
	}

1390 1391 1392 1393 1394 1395
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1396 1397
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1398 1399 1400 1401 1402 1403
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1404 1405 1406
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
1407
				   MAX_SCHEDULE_TIMEOUT);
1408 1409 1410
	if (ret)
		goto err;

1411
	ret = i915_gem_object_pin_pages(obj);
1412
	if (ret)
1413
		goto err;
1414

D
Daniel Vetter 已提交
1415
	ret = -EFAULT;
1416 1417 1418 1419 1420 1421
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1422
	if (!i915_gem_object_has_struct_page(obj) ||
1423
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1424 1425
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1426 1427
		 * textures). Fallback to the shmem path in that case.
		 */
1428
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1429

1430
	if (ret == -EFAULT || ret == -ENOSPC) {
1431 1432
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1433
		else
1434
			ret = i915_gem_shmem_pwrite(obj, args);
1435
	}
1436

1437
	i915_gem_object_unpin_pages(obj);
1438
err:
C
Chris Wilson 已提交
1439
	i915_gem_object_put(obj);
1440
	return ret;
1441 1442
}

1443 1444
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
1445
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1446 1447 1448
	struct list_head *list;
	struct i915_vma *vma;

1449 1450
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1451
	mutex_lock(&i915->ggtt.vm.mutex);
1452
	for_each_ggtt_vma(vma, obj) {
1453 1454 1455
		if (!drm_mm_node_allocated(&vma->node))
			continue;

1456
		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1457
	}
1458
	mutex_unlock(&i915->ggtt.vm.mutex);
1459

1460
	spin_lock(&i915->mm.obj_lock);
1461
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1462 1463
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1464 1465
}

1466
/**
1467 1468
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1469 1470 1471
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1472 1473 1474
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1475
			  struct drm_file *file)
1476 1477
{
	struct drm_i915_gem_set_domain *args = data;
1478
	struct drm_i915_gem_object *obj;
1479 1480
	u32 read_domains = args->read_domains;
	u32 write_domain = args->write_domain;
1481
	int err;
1482

1483
	/* Only handle setting domains to types used by the CPU. */
1484
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1485 1486 1487 1488 1489 1490 1491 1492
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1493
	obj = i915_gem_object_lookup(file, args->handle);
1494 1495
	if (!obj)
		return -ENOENT;
1496

1497 1498 1499 1500
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1501
	err = i915_gem_object_wait(obj,
1502
				   I915_WAIT_INTERRUPTIBLE |
1503
				   I915_WAIT_PRIORITY |
1504
				   (write_domain ? I915_WAIT_ALL : 0),
1505
				   MAX_SCHEDULE_TIMEOUT);
1506
	if (err)
C
Chris Wilson 已提交
1507
		goto out;
1508

T
Tina Zhang 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1522 1523 1524 1525 1526 1527 1528 1529 1530
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1531
		goto out;
1532 1533 1534

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1535
		goto out_unpin;
1536

1537 1538 1539 1540
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1541
	else
1542
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1543

1544 1545
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1546

1547
	mutex_unlock(&dev->struct_mutex);
1548

1549
	if (write_domain != 0)
1550 1551
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1552

C
Chris Wilson 已提交
1553
out_unpin:
1554
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1555 1556
out:
	i915_gem_object_put(obj);
1557
	return err;
1558 1559 1560 1561
}

/**
 * Called when user space has done writes to this buffer
1562 1563 1564
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1565 1566 1567
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1568
			 struct drm_file *file)
1569 1570
{
	struct drm_i915_gem_sw_finish *args = data;
1571
	struct drm_i915_gem_object *obj;
1572

1573
	obj = i915_gem_object_lookup(file, args->handle);
1574 1575
	if (!obj)
		return -ENOENT;
1576

T
Tina Zhang 已提交
1577 1578 1579 1580 1581
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1582
	/* Pinned buffers may be scanout, so flush the cache */
1583
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1584
	i915_gem_object_put(obj);
1585 1586

	return 0;
1587 1588
}

1589 1590 1591 1592 1593 1594 1595
static inline bool
__vma_matches(struct vm_area_struct *vma, struct file *filp,
	      unsigned long addr, unsigned long size)
{
	if (vma->vm_file != filp)
		return false;

T
Tvrtko Ursulin 已提交
1596 1597
	return vma->vm_start == addr &&
	       (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
1598 1599
}

1600
/**
1601 1602 1603 1604 1605
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1606 1607 1608
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1619 1620 1621
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1622
		    struct drm_file *file)
1623 1624
{
	struct drm_i915_gem_mmap *args = data;
1625
	struct drm_i915_gem_object *obj;
1626 1627
	unsigned long addr;

1628 1629 1630
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1631
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1632 1633
		return -ENODEV;

1634 1635
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1636
		return -ENOENT;
1637

1638 1639 1640
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1641
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1642
		i915_gem_object_put(obj);
1643
		return -ENXIO;
1644 1645
	}

1646
	addr = vm_mmap(obj->base.filp, 0, args->size,
1647 1648
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1649 1650 1651
	if (IS_ERR_VALUE(addr))
		goto err;

1652 1653 1654 1655
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1656
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1657
			i915_gem_object_put(obj);
1658 1659
			return -EINTR;
		}
1660
		vma = find_vma(mm, addr);
1661
		if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
1662 1663 1664 1665 1666
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1667 1668
		if (IS_ERR_VALUE(addr))
			goto err;
1669 1670

		/* This may race, but that's ok, it only gets set */
1671
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1672
	}
C
Chris Wilson 已提交
1673
	i915_gem_object_put(obj);
1674

1675
	args->addr_ptr = (u64)addr;
1676 1677

	return 0;
1678 1679 1680 1681 1682

err:
	i915_gem_object_put(obj);

	return addr;
1683 1684
}

1685
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1686
{
1687
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1688 1689
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1710 1711 1712
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1740
	return 2;
1741 1742
}

1743
static inline struct i915_ggtt_view
1744
compute_partial_view(const struct drm_i915_gem_object *obj,
1745 1746 1747 1748 1749 1750 1751 1752 1753
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1754 1755
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1756
		min_t(unsigned int, chunk,
1757
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1758 1759 1760 1761 1762 1763 1764 1765

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1766 1767
/**
 * i915_gem_fault - fault a page into the GTT
1768
 * @vmf: fault info
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1780 1781 1782
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1783
 */
1784
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
1785
{
1786
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
1787
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1788
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1789
	struct drm_device *dev = obj->base.dev;
1790 1791
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1792
	bool write = area->vm_flags & VM_WRITE;
1793
	intel_wakeref_t wakeref;
C
Chris Wilson 已提交
1794
	struct i915_vma *vma;
1795
	pgoff_t page_offset;
1796
	int srcu;
1797
	int ret;
1798

1799 1800 1801 1802
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

1803
	/* We don't use vmf->pgoff since that has the fake offset */
1804
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1805

C
Chris Wilson 已提交
1806 1807
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1808
	/* Try to flush the object off the GPU first without holding the lock.
1809
	 * Upon acquiring the lock, we will perform our sanity checks and then
1810 1811 1812
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1813 1814
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
1815
				   MAX_SCHEDULE_TIMEOUT);
1816
	if (ret)
1817 1818
		goto err;

1819 1820 1821 1822
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1823
	wakeref = intel_runtime_pm_get(dev_priv);
1824

1825 1826 1827 1828 1829 1830
	srcu = i915_reset_trylock(dev_priv);
	if (srcu < 0) {
		ret = srcu;
		goto err_rpm;
	}

1831 1832
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
1833
		goto err_reset;
1834

1835
	/* Access to snoopable pages through the GTT is incoherent. */
1836
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1837
		ret = -EFAULT;
1838
		goto err_unlock;
1839 1840
	}

1841
	/* Now pin it into the GTT as needed */
1842 1843 1844 1845
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
1846 1847
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1848
		struct i915_ggtt_view view =
1849
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1850
		unsigned int flags;
1851

1852 1853 1854 1855 1856 1857
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
1858 1859 1860 1861
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1862 1863 1864 1865 1866 1867
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
1868
	}
C
Chris Wilson 已提交
1869 1870
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1871
		goto err_unlock;
C
Chris Wilson 已提交
1872
	}
1873

1874 1875
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1876
		goto err_unpin;
1877

1878 1879 1880 1881
	ret = i915_vma_pin_fence(vma);
	if (ret)
		goto err_unpin;

1882
	/* Finally, remap it using the new GTT offset */
1883
	ret = remap_io_mapping(area,
1884
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1885
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1886
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1887
			       &ggtt->iomap);
1888
	if (ret)
1889
		goto err_fence;
1890

1891 1892 1893 1894 1895 1896
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

1897 1898
	i915_vma_set_ggtt_write(vma);

1899 1900
err_fence:
	i915_vma_unpin_fence(vma);
1901
err_unpin:
C
Chris Wilson 已提交
1902
	__i915_vma_unpin(vma);
1903
err_unlock:
1904
	mutex_unlock(&dev->struct_mutex);
1905 1906
err_reset:
	i915_reset_unlock(dev_priv, srcu);
1907
err_rpm:
1908
	intel_runtime_pm_put(dev_priv, wakeref);
1909
	i915_gem_object_unpin_pages(obj);
1910
err:
1911
	switch (ret) {
1912
	case -EIO:
1913 1914 1915 1916 1917 1918
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
1919
		if (!i915_terminally_wedged(dev_priv))
1920
			return VM_FAULT_SIGBUS;
1921
		/* else: fall through */
1922
	case -EAGAIN:
D
Daniel Vetter 已提交
1923 1924 1925 1926
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1927
		 */
1928 1929
	case 0:
	case -ERESTARTSYS:
1930
	case -EINTR:
1931 1932 1933 1934 1935
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1936
		return VM_FAULT_NOPAGE;
1937
	case -ENOMEM:
1938
		return VM_FAULT_OOM;
1939
	case -ENOSPC:
1940
	case -EFAULT:
1941
		return VM_FAULT_SIGBUS;
1942
	default:
1943
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1944
		return VM_FAULT_SIGBUS;
1945 1946 1947
	}
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

1959
	for_each_ggtt_vma(vma, obj)
1960 1961 1962
		i915_vma_unset_userfault(vma);
}

1963 1964 1965 1966
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1967
 * Preserve the reservation of the mmapping with the DRM core code, but
1968 1969 1970 1971 1972 1973 1974 1975 1976
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1977
void
1978
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1979
{
1980
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1981
	intel_wakeref_t wakeref;
1982

1983 1984 1985
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1986 1987 1988 1989
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1990
	 */
1991
	lockdep_assert_held(&i915->drm.struct_mutex);
1992
	wakeref = intel_runtime_pm_get(i915);
1993

1994
	if (!obj->userfault_count)
1995
		goto out;
1996

1997
	__i915_gem_object_release_mmap(obj);
1998 1999 2000 2001 2002 2003 2004 2005 2006

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2007 2008

out:
2009
	intel_runtime_pm_put(i915, wakeref);
2010 2011
}

2012
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2013
{
2014
	struct drm_i915_gem_object *obj, *on;
2015
	int i;
2016

2017 2018 2019 2020 2021 2022
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2023

2024
	list_for_each_entry_safe(obj, on,
2025 2026
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2027 2028 2029 2030 2031 2032 2033 2034

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2045 2046 2047 2048

		if (!reg->vma)
			continue;

2049
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2050 2051
		reg->dirty = true;
	}
2052 2053
}

2054 2055
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2056
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2057
	int err;
2058

2059
	err = drm_gem_create_mmap_offset(&obj->base);
2060
	if (likely(!err))
2061
		return 0;
2062

2063 2064
	/* Attempt to reap some mmap space from dead objects */
	do {
2065 2066 2067
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2068 2069
		if (err)
			break;
2070

2071
		i915_gem_drain_freed_objects(dev_priv);
2072
		err = drm_gem_create_mmap_offset(&obj->base);
2073 2074 2075 2076
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2077

2078
	return err;
2079 2080 2081 2082 2083 2084 2085
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2086
int
2087 2088
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2089 2090
		  u32 handle,
		  u64 *offset)
2091
{
2092
	struct drm_i915_gem_object *obj;
2093 2094
	int ret;

2095
	obj = i915_gem_object_lookup(file, handle);
2096 2097
	if (!obj)
		return -ENOENT;
2098

2099
	ret = i915_gem_object_create_mmap_offset(obj);
2100 2101
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102

C
Chris Wilson 已提交
2103
	i915_gem_object_put(obj);
2104
	return ret;
2105 2106
}

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2128
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2129 2130
}

D
Daniel Vetter 已提交
2131 2132 2133
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2134
{
2135
	i915_gem_object_free_mmap_offset(obj);
2136

2137 2138
	if (obj->base.filp == NULL)
		return;
2139

D
Daniel Vetter 已提交
2140 2141 2142 2143 2144
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2145
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2146
	obj->mm.madv = __I915_MADV_PURGED;
2147
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2148
}
2149

2150
/* Try to discard unwanted pages */
2151
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2152
{
2153 2154
	struct address_space *mapping;

2155
	lockdep_assert_held(&obj->mm.lock);
2156
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2157

C
Chris Wilson 已提交
2158
	switch (obj->mm.madv) {
2159 2160 2161 2162 2163 2164 2165 2166 2167
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2168
	mapping = obj->base.filp->f_mapping,
2169
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 2171
}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
/*
 * Move pages to appropriate lru and release the pagevec, decrementing the
 * ref count of those pages.
 */
static void check_release_pagevec(struct pagevec *pvec)
{
	check_move_unevictable_pages(pvec);
	__pagevec_release(pvec);
	cond_resched();
}

2183
static void
2184 2185
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2186
{
2187
	struct sgt_iter sgt_iter;
2188
	struct pagevec pvec;
2189
	struct page *page;
2190

2191
	__i915_gem_object_release_shmem(obj, pages, true);
2192

2193
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2194

2195
	if (i915_gem_object_needs_bit17_swizzle(obj))
2196
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2197

2198 2199 2200
	mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);

	pagevec_init(&pvec);
2201
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2202
		if (obj->mm.dirty)
2203
			set_page_dirty(page);
2204

C
Chris Wilson 已提交
2205
		if (obj->mm.madv == I915_MADV_WILLNEED)
2206
			mark_page_accessed(page);
2207

2208 2209
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
2210
	}
2211 2212
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
C
Chris Wilson 已提交
2213
	obj->mm.dirty = false;
2214

2215 2216
	sg_free_table(pages);
	kfree(pages);
2217
}
C
Chris Wilson 已提交
2218

2219 2220 2221
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2222
	void __rcu **slot;
2223

2224
	rcu_read_lock();
C
Chris Wilson 已提交
2225 2226
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2227
	rcu_read_unlock();
2228 2229
}

2230 2231
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2232
{
2233
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2234
	struct sg_table *pages;
2235

2236
	pages = fetch_and_zero(&obj->mm.pages);
2237 2238
	if (IS_ERR_OR_NULL(pages))
		return pages;
2239

2240 2241 2242 2243
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2244
	if (obj->mm.mapping) {
2245 2246
		void *ptr;

2247
		ptr = page_mask_bits(obj->mm.mapping);
2248 2249
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2250
		else
2251 2252
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2253
		obj->mm.mapping = NULL;
2254 2255
	}

2256
	__i915_gem_object_reset_page_iter(obj);
2257 2258 2259 2260
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2261

2262 2263
int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				enum i915_mm_subclass subclass)
2264 2265
{
	struct sg_table *pages;
2266
	int ret;
2267 2268

	if (i915_gem_object_has_pinned_pages(obj))
2269
		return -EBUSY;
2270 2271 2272 2273 2274

	GEM_BUG_ON(obj->bind_count);

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
2275 2276
	if (unlikely(atomic_read(&obj->mm.pages_pin_count))) {
		ret = -EBUSY;
2277
		goto unlock;
2278
	}
2279 2280 2281 2282 2283 2284 2285

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

	/*
	 * XXX Temporary hijinx to avoid updating all backends to handle
	 * NULL pages. In the future, when we have more asynchronous
	 * get_pages backends we should be better able to handle the
	 * cancellation of the async task in a more uniform manner.
	 */
	if (!pages && !i915_gem_object_needs_async_cancel(obj))
		pages = ERR_PTR(-EINVAL);

2296 2297 2298
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2299
	ret = 0;
2300 2301
unlock:
	mutex_unlock(&obj->mm.lock);
2302 2303

	return ret;
C
Chris Wilson 已提交
2304 2305
}

2306
bool i915_sg_trim(struct sg_table *orig_st)
2307 2308 2309 2310 2311 2312
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2313
		return false;
2314

2315
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2316
		return false;
2317 2318 2319 2320

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2321 2322 2323
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2324 2325
		new_sg = sg_next(new_sg);
	}
2326
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2327 2328 2329 2330

	sg_free_table(orig_st);

	*orig_st = new_st;
2331
	return true;
2332 2333
}

2334
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2335
{
2336
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2337 2338
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2339
	struct address_space *mapping;
2340 2341
	struct sg_table *st;
	struct scatterlist *sg;
2342
	struct sgt_iter sgt_iter;
2343
	struct page *page;
2344
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2345
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2346
	unsigned int sg_page_sizes;
2347
	struct pagevec pvec;
2348
	gfp_t noreclaim;
I
Imre Deak 已提交
2349
	int ret;
2350

2351 2352
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2353 2354 2355
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2356 2357
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2358

2359 2360 2361 2362
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
2363
	if (page_count > totalram_pages())
2364 2365
		return -ENOMEM;

2366 2367
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2368
		return -ENOMEM;
2369

2370
rebuild_st:
2371 2372
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2373
		return -ENOMEM;
2374
	}
2375

2376 2377
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2378 2379 2380 2381
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2382
	mapping = obj->base.filp->f_mapping;
2383
	mapping_set_unevictable(mapping);
2384
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2385 2386
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2387 2388
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2389
	sg_page_sizes = 0;
2390
	for (i = 0; i < page_count; i++) {
2391 2392 2393 2394 2395 2396 2397
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
2398
			cond_resched();
C
Chris Wilson 已提交
2399
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2400
			if (!IS_ERR(page))
2401 2402 2403 2404 2405 2406 2407
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2408
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2409

2410 2411
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2412 2413
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2414 2415 2416 2417
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2418
			 */
2419 2420 2421
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2422

2423 2424
				/*
				 * Our bo are always dirty and so we require
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2435
				 * this we want __GFP_RETRY_MAYFAIL.
2436
				 */
M
Michal Hocko 已提交
2437
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2438
			}
2439 2440
		} while (1);

2441 2442 2443
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2444
			if (i) {
M
Matthew Auld 已提交
2445
				sg_page_sizes |= sg->length;
2446
				sg = sg_next(sg);
2447
			}
2448 2449 2450 2451 2452 2453
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2454 2455 2456

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2457
	}
2458
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2459
		sg_page_sizes |= sg->length;
2460
		sg_mark_end(sg);
2461
	}
2462

2463 2464 2465
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2466
	ret = i915_gem_gtt_prepare_pages(obj, st);
2467
	if (ret) {
2468 2469
		/*
		 * DMA remapping failed? One possible cause is that
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2487

2488
	if (i915_gem_object_needs_bit17_swizzle(obj))
2489
		i915_gem_object_do_bit_17_swizzle(obj, st);
2490

M
Matthew Auld 已提交
2491
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2492 2493

	return 0;
2494

2495
err_sg:
2496
	sg_mark_end(sg);
2497
err_pages:
2498 2499 2500 2501 2502 2503 2504 2505
	mapping_clear_unevictable(mapping);
	pagevec_init(&pvec);
	for_each_sgt_page(page, sgt_iter, st) {
		if (!pagevec_add(&pvec, page))
			check_release_pagevec(&pvec);
	}
	if (pagevec_count(&pvec))
		check_release_pagevec(&pvec);
2506 2507
	sg_free_table(st);
	kfree(st);
2508

2509 2510
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2511 2512 2513 2514 2515 2516 2517
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2518 2519 2520
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2521
	return ret;
2522 2523 2524
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2525
				 struct sg_table *pages,
M
Matthew Auld 已提交
2526
				 unsigned int sg_page_sizes)
2527
{
2528 2529 2530 2531
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2532
	lockdep_assert_held(&obj->mm.lock);
2533 2534 2535 2536 2537

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2538 2539

	if (i915_gem_object_is_tiled(obj) &&
2540
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2541 2542 2543 2544
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2545

M
Matthew Auld 已提交
2546 2547
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2548 2549

	/*
M
Matthew Auld 已提交
2550 2551 2552 2553 2554 2555
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2556 2557 2558 2559 2560 2561 2562
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2563 2564 2565 2566

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2567 2568 2569 2570
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2571
	int err;
2572 2573 2574 2575 2576 2577

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2578
	err = obj->ops->get_pages(obj);
2579
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2580

2581
	return err;
2582 2583
}

2584
/* Ensure that the associated pages are gathered from the backing storage
2585
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2586
 * multiple times before they are released by a single call to
2587
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2588 2589 2590
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2591
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2592
{
2593
	int err;
2594

2595 2596 2597
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2598

2599
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2600 2601
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2602 2603 2604
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2605

2606 2607 2608
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2609

2610 2611
unlock:
	mutex_unlock(&obj->mm.lock);
2612
	return err;
2613 2614
}

2615
/* The 'mapping' part of i915_gem_object_pin_map() below */
2616 2617
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2618 2619
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2620
	struct sg_table *sgt = obj->mm.pages;
2621 2622
	struct sgt_iter sgt_iter;
	struct page *page;
2623 2624
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2625
	unsigned long i = 0;
2626
	pgprot_t pgprot;
2627 2628 2629
	void *addr;

	/* A single page can always be kmapped */
2630
	if (n_pages == 1 && type == I915_MAP_WB)
2631 2632
		return kmap(sg_page(sgt->sgl));

2633 2634
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2635
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2636 2637 2638
		if (!pages)
			return NULL;
	}
2639

2640 2641
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2642 2643 2644 2645

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2646
	switch (type) {
2647 2648 2649
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2650 2651 2652 2653 2654 2655 2656 2657
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2658

2659
	if (pages != stack_pages)
M
Michal Hocko 已提交
2660
		kvfree(pages);
2661 2662 2663 2664 2665

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2666 2667
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2668
{
2669 2670 2671
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2672 2673
	int ret;

T
Tina Zhang 已提交
2674 2675
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2676

2677
	ret = mutex_lock_interruptible(&obj->mm.lock);
2678 2679 2680
	if (ret)
		return ERR_PTR(ret);

2681 2682 2683
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2684
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2685
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2686 2687
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2688 2689 2690
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2691

2692 2693 2694
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2695 2696
		pinned = false;
	}
2697
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2698

2699
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2700 2701 2702
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2703
			goto err_unpin;
2704
		}
2705 2706 2707 2708 2709 2710

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2711
		ptr = obj->mm.mapping = NULL;
2712 2713
	}

2714 2715 2716 2717
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2718
			goto err_unpin;
2719 2720
		}

2721
		obj->mm.mapping = page_pack_bits(ptr, type);
2722 2723
	}

2724 2725
out_unlock:
	mutex_unlock(&obj->mm.lock);
2726 2727
	return ptr;

2728 2729 2730 2731 2732
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2733 2734
}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2752
	if (i915_gem_object_has_pages(obj))
2753 2754
		return -ENODEV;

2755 2756 2757
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2807
static void
2808 2809
i915_gem_retire_work_handler(struct work_struct *work)
{
2810
	struct drm_i915_private *dev_priv =
2811
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2812
	struct drm_device *dev = &dev_priv->drm;
2813

2814
	/* Come back later if the device is busy... */
2815
	if (mutex_trylock(&dev->struct_mutex)) {
2816
		i915_retire_requests(dev_priv);
2817
		mutex_unlock(&dev->struct_mutex);
2818
	}
2819

2820 2821
	/*
	 * Keep the retire handler running until we are finally idle.
2822 2823 2824
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2825
	if (READ_ONCE(dev_priv->gt.awake))
2826 2827
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2828
				   round_jiffies_up_relative(HZ));
2829
}
2830

2831 2832 2833 2834 2835 2836 2837
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

2838 2839 2840 2841 2842
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2843
	if (i915_reset_failed(i915))
2844 2845 2846 2847
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
2848
		GEM_BUG_ON(__i915_active_request_peek(&engine->timeline.last_request));
2849 2850 2851 2852 2853
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

2854 2855 2856 2857
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2858 2859 2860 2861 2862 2863
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

2882 2883
	/*
	 * Wait for last execlists context complete, but bail out in case a
2884 2885 2886 2887 2888
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
2889
	 */
2890 2891 2892 2893
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
2894 2895 2896 2897

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

2898
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
2899 2900 2901 2902 2903 2904 2905
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2906 2907 2908 2909
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
2910
	if (new_requests_since_last_retire(dev_priv))
2911
		goto out_unlock;
2912

2913
	__i915_gem_park(dev_priv);
2914

2915 2916
	assert_kernel_context_is_current(dev_priv);

2917 2918
	rearm_hangcheck = false;
out_unlock:
2919
	mutex_unlock(&dev_priv->drm.struct_mutex);
2920

2921 2922 2923 2924
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2925
	}
2926 2927
}

2928 2929
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
2930
	struct drm_i915_private *i915 = to_i915(gem->dev);
2931 2932
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
2933
	struct i915_lut_handle *lut, *ln;
2934

2935 2936 2937 2938 2939 2940
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

2941
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
2942 2943 2944 2945
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
2946 2947 2948 2949 2950 2951 2952
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
2953
			i915_vma_close(vma);
2954

2955 2956
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
2957

2958
		i915_lut_handle_free(lut);
2959
		__i915_gem_object_release_unless_active(obj);
2960
	}
2961 2962

	mutex_unlock(&i915->drm.struct_mutex);
2963 2964
}

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2976 2977
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2978 2979 2980
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2981 2982 2983 2984 2985 2986 2987
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
2988
 *  -EAGAIN: incomplete, restart syscall
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3005 3006
	ktime_t start;
	long ret;
3007

3008 3009 3010
	if (args->flags != 0)
		return -EINVAL;

3011
	obj = i915_gem_object_lookup(file, args->bo_handle);
3012
	if (!obj)
3013 3014
		return -ENOENT;

3015 3016 3017
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
3018 3019 3020
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_PRIORITY |
				   I915_WAIT_ALL,
3021
				   to_wait_timeout(args->timeout_ns));
3022 3023 3024 3025 3026

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3037 3038 3039 3040

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3041 3042
	}

C
Chris Wilson 已提交
3043
	i915_gem_object_put(obj);
3044
	return ret;
3045 3046
}

3047 3048
static int wait_for_engines(struct drm_i915_private *i915)
{
3049
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3050 3051
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3052
		GEM_TRACE_DUMP();
3053 3054
		i915_gem_set_wedged(i915);
		return -EIO;
3055 3056 3057 3058 3059
	}

	return 0;
}

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
static long
wait_for_timelines(struct drm_i915_private *i915,
		   unsigned int flags, long timeout)
{
	struct i915_gt_timelines *gt = &i915->gt.timelines;
	struct i915_timeline *tl;

	if (!READ_ONCE(i915->gt.active_requests))
		return timeout;

	mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3071
	list_for_each_entry(tl, &gt->active_list, link) {
3072 3073
		struct i915_request *rq;

3074
		rq = i915_active_request_get_unlocked(&tl->last_request);
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		if (!rq)
			continue;

		mutex_unlock(&gt->mutex);

		/*
		 * "Race-to-idle".
		 *
		 * Switching to the kernel context is often used a synchronous
		 * step prior to idling, e.g. in suspend for flushing all
		 * current operations to memory before sleeping. These we
		 * want to complete as quickly as possible to avoid prolonged
		 * stalls, so allow the gpu to boost to maximum clocks.
		 */
		if (flags & I915_WAIT_FOR_IDLE_BOOST)
3090
			gen6_rps_boost(rq);
3091 3092 3093 3094 3095 3096 3097 3098

		timeout = i915_request_wait(rq, flags, timeout);
		i915_request_put(rq);
		if (timeout < 0)
			return timeout;

		/* restart after reacquiring the lock */
		mutex_lock(&gt->mutex);
C
Chris Wilson 已提交
3099
		tl = list_entry(&gt->active_list, typeof(*tl), link);
3100 3101 3102 3103 3104 3105
	}
	mutex_unlock(&gt->mutex);

	return timeout;
}

3106 3107
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3108
{
3109 3110 3111
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3112

3113 3114 3115 3116
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3117 3118 3119 3120
	timeout = wait_for_timelines(i915, flags, timeout);
	if (timeout < 0)
		return timeout;

3121
	if (flags & I915_WAIT_LOCKED) {
3122
		int err;
3123 3124 3125

		lockdep_assert_held(&i915->drm.struct_mutex);

3126 3127 3128 3129 3130 3131
		if (GEM_SHOW_DEBUG() && !timeout) {
			/* Presume that timeout was non-zero to begin with! */
			dev_warn(&i915->drm.pdev->dev,
				 "Missed idle-completion interrupt!\n");
			GEM_TRACE_DUMP();
		}
3132 3133 3134 3135 3136

		err = wait_for_engines(i915);
		if (err)
			return err;

3137
		i915_retire_requests(i915);
3138
		GEM_BUG_ON(i915->gt.active_requests);
3139
	}
3140 3141

	return 0;
3142 3143
}

3144 3145
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3146 3147 3148 3149 3150 3151 3152
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3153
	obj->write_domain = 0;
3154 3155 3156 3157
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3158
	if (!READ_ONCE(obj->pin_global))
3159 3160 3161 3162 3163 3164 3165
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3185
				   MAX_SCHEDULE_TIMEOUT);
3186 3187 3188
	if (ret)
		return ret;

3189
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3210
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3211 3212 3213 3214 3215
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3216 3217
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3218
	if (write) {
3219 3220
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3221 3222 3223 3224 3225 3226 3227
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3228 3229
/**
 * Moves a single object to the GTT read, and possibly write domain.
3230 3231
 * @obj: object to act on
 * @write: ask for write access or read only
3232 3233 3234 3235
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3236
int
3237
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3238
{
3239
	int ret;
3240

3241
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3242

3243 3244 3245 3246
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3247
				   MAX_SCHEDULE_TIMEOUT);
3248 3249 3250
	if (ret)
		return ret;

3251
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3252 3253
		return 0;

3254 3255 3256 3257 3258 3259 3260 3261
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3262
	ret = i915_gem_object_pin_pages(obj);
3263 3264 3265
	if (ret)
		return ret;

3266
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3267

3268 3269 3270 3271
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
3272
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3273 3274
		mb();

3275 3276 3277
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3278 3279
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3280
	if (write) {
3281 3282
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3283
		obj->mm.dirty = true;
3284 3285
	}

C
Chris Wilson 已提交
3286
	i915_gem_object_unpin_pages(obj);
3287 3288 3289
	return 0;
}

3290 3291
/**
 * Changes the cache-level of an object across all VMA.
3292 3293
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3305 3306 3307
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3308
	struct i915_vma *vma;
3309
	int ret;
3310

3311 3312
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3313
	if (obj->cache_level == cache_level)
3314
		return 0;
3315

3316 3317 3318 3319 3320
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3321
restart:
3322
	list_for_each_entry(vma, &obj->vma.list, obj_link) {
3323 3324 3325
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3326
		if (i915_vma_is_pinned(vma)) {
3327 3328 3329 3330
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3331 3332
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3344 3345
	}

3346 3347 3348 3349 3350 3351 3352
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3353
	if (obj->bind_count) {
3354 3355 3356 3357
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3358 3359 3360 3361
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
3362
					   MAX_SCHEDULE_TIMEOUT);
3363 3364 3365
		if (ret)
			return ret;

3366 3367
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3384
			for_each_ggtt_vma(vma, obj) {
3385 3386 3387 3388
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3389 3390 3391 3392 3393 3394 3395 3396
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3397 3398
		}

3399
		list_for_each_entry(vma, &obj->vma.list, obj_link) {
3400 3401 3402 3403 3404 3405 3406
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3407 3408
	}

3409
	list_for_each_entry(vma, &obj->vma.list, obj_link)
3410
		vma->node.color = cache_level;
3411
	i915_gem_object_set_cache_coherency(obj, cache_level);
3412
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3413

3414 3415 3416
	return 0;
}

B
Ben Widawsky 已提交
3417 3418
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3419
{
B
Ben Widawsky 已提交
3420
	struct drm_i915_gem_caching *args = data;
3421
	struct drm_i915_gem_object *obj;
3422
	int err = 0;
3423

3424 3425 3426 3427 3428 3429
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3430

3431 3432 3433 3434 3435 3436
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3437 3438 3439 3440
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3441 3442 3443 3444
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3445 3446 3447
out:
	rcu_read_unlock();
	return err;
3448 3449
}

B
Ben Widawsky 已提交
3450 3451
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3452
{
3453
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3454
	struct drm_i915_gem_caching *args = data;
3455 3456
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3457
	int ret = 0;
3458

B
Ben Widawsky 已提交
3459 3460
	switch (args->caching) {
	case I915_CACHING_NONE:
3461 3462
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3463
	case I915_CACHING_CACHED:
3464 3465 3466 3467 3468 3469
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3470
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3471 3472
			return -ENODEV;

3473 3474
		level = I915_CACHE_LLC;
		break;
3475
	case I915_CACHING_DISPLAY:
3476
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3477
		break;
3478 3479 3480 3481
	default:
		return -EINVAL;
	}

3482 3483 3484 3485
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
3486 3487 3488 3489 3490 3491 3492 3493 3494
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

3495 3496 3497 3498 3499
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
3500
				   MAX_SCHEDULE_TIMEOUT);
B
Ben Widawsky 已提交
3501
	if (ret)
3502
		goto out;
B
Ben Widawsky 已提交
3503

3504 3505 3506
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3507 3508 3509

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3510 3511 3512

out:
	i915_gem_object_put(obj);
3513 3514 3515
	return ret;
}

3516
/*
3517 3518 3519 3520
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
3521
 */
C
Chris Wilson 已提交
3522
struct i915_vma *
3523 3524
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3525 3526
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
3527
{
C
Chris Wilson 已提交
3528
	struct i915_vma *vma;
3529 3530
	int ret;

3531 3532
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3533
	/* Mark the global pin early so that we account for the
3534 3535
	 * display coherency whilst setting up the cache domains.
	 */
3536
	obj->pin_global++;
3537

3538 3539 3540 3541 3542 3543 3544 3545 3546
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3547
	ret = i915_gem_object_set_cache_level(obj,
3548 3549
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3550 3551
	if (ret) {
		vma = ERR_PTR(ret);
3552
		goto err_unpin_global;
C
Chris Wilson 已提交
3553
	}
3554

3555 3556
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3557 3558 3559 3560
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3561
	 */
3562
	vma = ERR_PTR(-ENOSPC);
3563 3564
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
3565
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3566 3567 3568 3569
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
3570
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
3571
	if (IS_ERR(vma))
3572
		goto err_unpin_global;
3573

3574 3575
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3576
	__i915_gem_object_flush_for_display(obj);
3577

3578 3579 3580
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3581
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3582

C
Chris Wilson 已提交
3583
	return vma;
3584

3585 3586
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
3587
	return vma;
3588 3589 3590
}

void
C
Chris Wilson 已提交
3591
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3592
{
3593
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3594

3595
	if (WARN_ON(vma->obj->pin_global == 0))
3596 3597
		return;

3598
	if (--vma->obj->pin_global == 0)
3599
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3600

3601
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3602
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3603

C
Chris Wilson 已提交
3604
	i915_vma_unpin(vma);
3605 3606
}

3607 3608
/**
 * Moves a single object to the CPU read, and possibly write domain.
3609 3610
 * @obj: object to act on
 * @write: requesting write or read-only access
3611 3612 3613 3614
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3615
int
3616
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3617 3618 3619
{
	int ret;

3620
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3621

3622 3623 3624 3625
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
3626
				   MAX_SCHEDULE_TIMEOUT);
3627 3628 3629
	if (ret)
		return ret;

3630
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3631

3632
	/* Flush the CPU cache if it's still invalid. */
3633
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3634
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3635
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3636 3637 3638 3639 3640
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3641
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
3642 3643 3644 3645

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3646 3647
	if (write)
		__start_cpu_write(obj);
3648 3649 3650 3651

	return 0;
}

3652 3653 3654
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3655 3656 3657 3658
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3659 3660 3661
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3662
static int
3663
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3664
{
3665
	struct drm_i915_private *dev_priv = to_i915(dev);
3666
	struct drm_i915_file_private *file_priv = file->driver_priv;
3667
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3668
	struct i915_request *request, *target = NULL;
3669
	long ret;
3670

3671
	/* ABI: return -EIO if already wedged */
3672 3673 3674
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
		return ret;
3675

3676
	spin_lock(&file_priv->mm.lock);
3677
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3678 3679
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3680

3681 3682 3683 3684
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3685

3686
		target = request;
3687
	}
3688
	if (target)
3689
		i915_request_get(target);
3690
	spin_unlock(&file_priv->mm.lock);
3691

3692
	if (target == NULL)
3693
		return 0;
3694

3695
	ret = i915_request_wait(target,
3696 3697
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3698
	i915_request_put(target);
3699

3700
	return ret < 0 ? ret : 0;
3701 3702
}

C
Chris Wilson 已提交
3703
struct i915_vma *
3704 3705
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3706
			 u64 size,
3707 3708
			 u64 alignment,
			 u64 flags)
3709
{
3710
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3711
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
3712 3713
	struct i915_vma *vma;
	int ret;
3714

3715 3716
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3717 3718
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

3749
	vma = i915_vma_instance(obj, vm, view);
3750
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3751
		return vma;
3752 3753

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3754 3755 3756
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
3757

3758
			if (flags & PIN_MAPPABLE &&
3759
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3760 3761 3762
				return ERR_PTR(-ENOSPC);
		}

3763 3764
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3765 3766 3767
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3768
		     !!(flags & PIN_MAPPABLE),
3769
		     i915_vma_is_map_and_fenceable(vma));
3770 3771
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3772
			return ERR_PTR(ret);
3773 3774
	}

C
Chris Wilson 已提交
3775 3776 3777
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3778

C
Chris Wilson 已提交
3779
	return vma;
3780 3781
}

3782
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3783
{
3784 3785 3786 3787
	if (id == I915_ENGINE_CLASS_INVALID)
		return 0xffff0000;

	GEM_BUG_ON(id >= 16);
3788 3789 3790 3791 3792
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3793 3794
	/*
	 * The uABI guarantees an active writer is also amongst the read
3795 3796 3797 3798 3799 3800 3801
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
3802 3803 3804 3805
	if (id == I915_ENGINE_CLASS_INVALID)
		return 0xffffffff;

	return (id + 1) | __busy_read_flag(id);
3806 3807
}

3808
static __always_inline unsigned int
3809
__busy_set_if_active(const struct dma_fence *fence,
3810 3811
		     unsigned int (*flag)(unsigned int id))
{
3812
	const struct i915_request *rq;
3813

3814 3815
	/*
	 * We have to check the current hw status of the fence as the uABI
3816 3817 3818
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3819
	 *
3820
	 * Note we only report on the status of native fences.
3821
	 */
3822 3823 3824 3825
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
3826
	rq = container_of(fence, const struct i915_request, fence);
3827
	if (i915_request_completed(rq))
3828 3829
		return 0;

3830
	return flag(rq->engine->uabi_class);
3831 3832
}

3833
static __always_inline unsigned int
3834
busy_check_reader(const struct dma_fence *fence)
3835
{
3836
	return __busy_set_if_active(fence, __busy_read_flag);
3837 3838
}

3839
static __always_inline unsigned int
3840
busy_check_writer(const struct dma_fence *fence)
3841
{
3842 3843 3844 3845
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3846 3847
}

3848 3849
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3850
		    struct drm_file *file)
3851 3852
{
	struct drm_i915_gem_busy *args = data;
3853
	struct drm_i915_gem_object *obj;
3854 3855
	struct reservation_object_list *list;
	unsigned int seq;
3856
	int err;
3857

3858
	err = -ENOENT;
3859 3860
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3861
	if (!obj)
3862
		goto out;
3863

3864 3865
	/*
	 * A discrepancy here is that we do not report the status of
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3883

3884 3885
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3886

3887 3888 3889 3890
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3891

3892 3893 3894 3895 3896 3897
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3898
	}
3899

3900 3901 3902 3903
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3904 3905 3906
out:
	rcu_read_unlock();
	return err;
3907 3908 3909 3910 3911 3912
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3913
	return i915_gem_ring_throttle(dev, file_priv);
3914 3915
}

3916 3917 3918 3919
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3920
	struct drm_i915_private *dev_priv = to_i915(dev);
3921
	struct drm_i915_gem_madvise *args = data;
3922
	struct drm_i915_gem_object *obj;
3923
	int err;
3924 3925 3926 3927 3928 3929 3930 3931 3932

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3933
	obj = i915_gem_object_lookup(file_priv, args->handle);
3934 3935 3936 3937 3938 3939
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3940

3941
	if (i915_gem_object_has_pages(obj) &&
3942
	    i915_gem_object_is_tiled(obj) &&
3943
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3944 3945
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3946
			__i915_gem_object_unpin_pages(obj);
3947 3948 3949
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3950
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3951
			__i915_gem_object_pin_pages(obj);
3952 3953
			obj->mm.quirked = true;
		}
3954 3955
	}

C
Chris Wilson 已提交
3956 3957
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3958

C
Chris Wilson 已提交
3959
	/* if the object is no longer attached, discard its backing storage */
3960 3961
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
3962 3963
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3964
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3965
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3966

3967
out:
3968
	i915_gem_object_put(obj);
3969
	return err;
3970 3971
}

3972
static void
3973 3974
frontbuffer_retire(struct i915_active_request *active,
		   struct i915_request *request)
3975 3976 3977 3978
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

3979
	intel_fb_obj_flush(obj, ORIGIN_CS);
3980 3981
}

3982 3983
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3984
{
3985 3986
	mutex_init(&obj->mm.lock);

3987 3988 3989
	spin_lock_init(&obj->vma.lock);
	INIT_LIST_HEAD(&obj->vma.list);

3990
	INIT_LIST_HEAD(&obj->lut_list);
3991
	INIT_LIST_HEAD(&obj->batch_pool_link);
3992

3993 3994
	init_rcu_head(&obj->rcu);

3995 3996
	obj->ops = ops;

3997 3998 3999
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4000
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4001 4002
	i915_active_request_init(&obj->frontbuffer_write,
				 NULL, frontbuffer_retire);
C
Chris Wilson 已提交
4003 4004 4005 4006

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4007

4008
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4009 4010
}

4011
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4012 4013
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4014

4015 4016
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4017 4018

	.pwrite = i915_gem_object_pwrite_gtt,
4019 4020
};

M
Matthew Auld 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4045
struct drm_i915_gem_object *
4046
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4047
{
4048
	struct drm_i915_gem_object *obj;
4049
	struct address_space *mapping;
4050
	unsigned int cache_level;
D
Daniel Vetter 已提交
4051
	gfp_t mask;
4052
	int ret;
4053

4054 4055 4056 4057 4058
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4059
	if (size >> PAGE_SHIFT > INT_MAX)
4060 4061 4062 4063 4064
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4065
	obj = i915_gem_object_alloc();
4066
	if (obj == NULL)
4067
		return ERR_PTR(-ENOMEM);
4068

M
Matthew Auld 已提交
4069
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4070 4071
	if (ret)
		goto fail;
4072

4073
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4074
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4075 4076 4077 4078 4079
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4080
	mapping = obj->base.filp->f_mapping;
4081
	mapping_set_gfp_mask(mapping, mask);
4082
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4083

4084
	i915_gem_object_init(obj, &i915_gem_object_ops);
4085

4086 4087
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4088

4089
	if (HAS_LLC(dev_priv))
4090
		/* On some devices, we can have the GPU use the LLC (the CPU
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4102 4103 4104
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4105

4106
	i915_gem_object_set_cache_coherency(obj, cache_level);
4107

4108 4109
	trace_i915_gem_object_create(obj);

4110
	return obj;
4111 4112 4113 4114

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4115 4116
}

4117 4118 4119 4120 4121 4122 4123 4124
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4125
	if (obj->mm.madv != I915_MADV_WILLNEED)
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4141 4142
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4143
{
4144
	struct drm_i915_gem_object *obj, *on;
4145
	intel_wakeref_t wakeref;
4146

4147
	wakeref = intel_runtime_pm_get(i915);
4148
	llist_for_each_entry_safe(obj, on, freed, freed) {
4149 4150 4151 4152
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4153 4154
		mutex_lock(&i915->drm.struct_mutex);

4155
		GEM_BUG_ON(i915_gem_object_is_active(obj));
4156
		list_for_each_entry_safe(vma, vn, &obj->vma.list, obj_link) {
4157 4158
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4159
			i915_vma_destroy(vma);
4160
		}
4161 4162
		GEM_BUG_ON(!list_empty(&obj->vma.list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma.tree));
4163

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4176
		mutex_unlock(&i915->drm.struct_mutex);
4177 4178

		GEM_BUG_ON(obj->bind_count);
4179
		GEM_BUG_ON(obj->userfault_count);
4180
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4181
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4182 4183 4184

		if (obj->ops->release)
			obj->ops->release(obj);
4185

4186 4187
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4188
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4189
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4190 4191 4192 4193

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4194
		reservation_object_fini(&obj->__builtin_resv);
4195 4196 4197 4198 4199
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4200

4201 4202 4203
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4204 4205
		if (on)
			cond_resched();
4206
	}
4207
	intel_runtime_pm_put(i915, wakeref);
4208 4209 4210 4211 4212 4213
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4224
		__i915_gem_free_objects(i915, freed);
4225
	}
4226 4227 4228 4229 4230 4231 4232
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4233

4234 4235
	/*
	 * All file-owned VMA should have been released by this point through
4236 4237 4238 4239 4240 4241
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4242

4243
	spin_lock(&i915->mm.free_lock);
4244
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4245 4246
		spin_unlock(&i915->mm.free_lock);

4247
		__i915_gem_free_objects(i915, freed);
4248
		if (need_resched())
4249 4250 4251
			return;

		spin_lock(&i915->mm.free_lock);
4252
	}
4253
	spin_unlock(&i915->mm.free_lock);
4254
}
4255

4256 4257 4258 4259 4260
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4261 4262 4263 4264 4265 4266 4267

	/*
	 * We reuse obj->rcu for the freed list, so we had better not treat
	 * it like a rcu_head from this point forwards. And we expect all
	 * objects to be freed via this path.
	 */
	destroy_rcu_head(&obj->rcu);
4268

4269 4270 4271 4272 4273 4274 4275 4276 4277
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4278 4279
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4280
		queue_work(i915->wq, &i915->mm.free_work);
4281
}
4282

4283 4284 4285
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4286

4287 4288 4289
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4290
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4291
		obj->mm.madv = I915_MADV_DONTNEED;
4292

4293 4294
	/*
	 * Before we free the object, make sure any pure RCU-only
4295 4296 4297 4298
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
4299
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4300
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4301 4302
}

4303 4304 4305 4306
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4307 4308
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4309 4310 4311 4312 4313
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4314 4315
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4316 4317
	intel_wakeref_t wakeref;

4318 4319
	GEM_TRACE("\n");

4320
	wakeref = intel_runtime_pm_get(i915);
4321 4322 4323 4324 4325 4326 4327 4328
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
4329
	if (i915_terminally_wedged(i915))
4330 4331
		i915_gem_unset_wedged(i915);

4332 4333 4334 4335 4336 4337
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4338
	 * of the reset, so this could be applied to even earlier gen.
4339
	 */
4340
	intel_engines_sanitize(i915, false);
4341 4342

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4343
	intel_runtime_pm_put(i915, wakeref);
4344

4345
	mutex_lock(&i915->drm.struct_mutex);
4346 4347
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
4348 4349
}

C
Chris Wilson 已提交
4350
int i915_gem_suspend(struct drm_i915_private *i915)
4351
{
4352
	intel_wakeref_t wakeref;
4353
	int ret;
4354

4355 4356
	GEM_TRACE("\n");

4357
	wakeref = intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
4358
	intel_suspend_gt_powersave(i915);
4359

4360 4361
	flush_workqueue(i915->wq);

C
Chris Wilson 已提交
4362
	mutex_lock(&i915->drm.struct_mutex);
4363

C
Chris Wilson 已提交
4364 4365
	/*
	 * We have to flush all the executing contexts to main memory so
4366 4367
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
4368
	 * leaves the i915->kernel_context still active when
4369 4370 4371 4372
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
4373
	if (!i915_reset_failed(i915)) {
C
Chris Wilson 已提交
4374
		ret = i915_gem_switch_to_kernel_context(i915);
4375 4376
		if (ret)
			goto err_unlock;
4377

C
Chris Wilson 已提交
4378
		ret = i915_gem_wait_for_idle(i915,
4379
					     I915_WAIT_INTERRUPTIBLE |
4380
					     I915_WAIT_LOCKED |
4381 4382
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
4383 4384
		if (ret && ret != -EIO)
			goto err_unlock;
4385

C
Chris Wilson 已提交
4386
		assert_kernel_context_is_current(i915);
4387
	}
4388 4389
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
4390
	mutex_unlock(&i915->drm.struct_mutex);
4391
	i915_reset_flush(i915);
4392

4393
	drain_delayed_work(&i915->gt.retire_work);
4394

C
Chris Wilson 已提交
4395 4396
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
4397 4398
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
4399
	drain_delayed_work(&i915->gt.idle_work);
4400

4401 4402
	intel_uc_suspend(i915);

C
Chris Wilson 已提交
4403 4404
	/*
	 * Assert that we successfully flushed all the work and
4405 4406
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
4407 4408 4409
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
4410

4411
	intel_runtime_pm_put(i915, wakeref);
4412 4413 4414
	return 0;

err_unlock:
C
Chris Wilson 已提交
4415
	mutex_unlock(&i915->drm.struct_mutex);
4416
	intel_runtime_pm_put(i915, wakeref);
4417 4418 4419 4420 4421
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
4422 4423 4424 4425 4426 4427 4428
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

4449 4450 4451 4452 4453 4454 4455
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

4456 4457
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
4458 4459
}

4460
void i915_gem_resume(struct drm_i915_private *i915)
4461
{
4462 4463
	GEM_TRACE("\n");

4464
	WARN_ON(i915->gt.awake);
4465

4466 4467
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4468

4469 4470
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
4471

4472 4473
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
4474 4475 4476
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4477
	i915->gt.resume(i915);
4478

4479 4480 4481
	if (i915_gem_init_hw(i915))
		goto err_wedged;

4482
	intel_uc_resume(i915);
4483

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
4494 4495 4496
	if (!i915_reset_failed(i915)) {
		dev_err(i915->drm.dev,
			"Failed to re-initialize GPU, declaring it wedged!\n");
4497 4498
		i915_gem_set_wedged(i915);
	}
4499
	goto out_unlock;
4500 4501
}

4502
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4503
{
4504
	if (INTEL_GEN(dev_priv) < 5 ||
4505 4506 4507 4508 4509 4510
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4511
	if (IS_GEN(dev_priv, 5))
4512 4513
		return;

4514
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4515
	if (IS_GEN(dev_priv, 6))
4516
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4517
	else if (IS_GEN(dev_priv, 7))
4518
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4519
	else if (IS_GEN(dev_priv, 8))
B
Ben Widawsky 已提交
4520
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4521 4522
	else
		BUG();
4523
}
D
Daniel Vetter 已提交
4524

4525
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4526 4527 4528 4529 4530 4531 4532
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4533
static void init_unused_rings(struct drm_i915_private *dev_priv)
4534
{
4535 4536 4537 4538 4539 4540
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
4541
	} else if (IS_GEN(dev_priv, 2)) {
4542 4543
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
4544
	} else if (IS_GEN(dev_priv, 3)) {
4545 4546
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4547 4548 4549
	}
}

4550
static int __i915_gem_restart_engines(void *data)
4551
{
4552
	struct drm_i915_private *i915 = data;
4553
	struct intel_engine_cs *engine;
4554
	enum intel_engine_id id;
4555 4556 4557 4558
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
4559 4560 4561
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
4562
			return err;
4563
		}
4564 4565
	}

4566 4567
	intel_engines_set_scheduler_caps(i915);

4568 4569 4570 4571 4572
	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4573
	int ret;
4574

4575 4576
	dev_priv->gt.last_init_time = ktime_get();

4577 4578 4579
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4580
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4581
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4582

4583
	if (IS_HASWELL(dev_priv))
4584
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4585
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4586

4587
	/* Apply the GT workarounds... */
4588
	intel_gt_apply_workarounds(dev_priv);
4589 4590
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(dev_priv, "init");
4591

4592
	i915_gem_init_swizzling(dev_priv);
4593

4594 4595 4596 4597 4598 4599
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4600
	init_unused_rings(dev_priv);
4601

4602
	BUG_ON(!dev_priv->kernel_context);
4603 4604
	ret = i915_terminally_wedged(dev_priv);
	if (ret)
4605
		goto out;
4606

4607
	ret = i915_ppgtt_init_hw(dev_priv);
4608
	if (ret) {
4609
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
4610 4611 4612
		goto out;
	}

4613 4614 4615 4616 4617 4618
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

4619 4620
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
4621 4622
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
4623
		goto out;
4624
	}
4625

4626
	intel_mocs_init_l3cc_table(dev_priv);
4627

4628 4629
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
4630 4631
	if (ret)
		goto cleanup_uc;
4632

4633
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4634 4635

	return 0;
4636 4637 4638

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
4639 4640 4641 4642
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
4643 4644
}

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
4666
		struct i915_request *rq;
4667

4668
		rq = i915_request_alloc(engine, ctx);
4669 4670 4671 4672 4673
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

4674
		err = 0;
4675 4676 4677
		if (engine->init_context)
			err = engine->init_context(rq);

4678
		i915_request_add(rq);
4679 4680 4681 4682 4683 4684 4685 4686
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

4687 4688 4689
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
4690
		goto err_active;
4691
	}
4692 4693 4694

	assert_kernel_context_is_current(i915);

4695 4696 4697 4698 4699 4700 4701 4702
	/*
	 * Immediately park the GPU so that we enable powersaving and
	 * treat it as idle. The next time we issue a request, we will
	 * unpark and start using the engine->pinned_default_state, otherwise
	 * it is in limbo and an early reset may fail.
	 */
	__i915_gem_park(i915);

4703 4704
	for_each_engine(engine, i915, id) {
		struct i915_vma *state;
4705
		void *vaddr;
4706

4707 4708
		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);

4709
		state = to_intel_context(ctx, engine)->state;
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
4730 4731 4732

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
4733
						I915_MAP_FORCE_WB);
4734 4735 4736 4737 4738 4739
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

4775 4776 4777
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
4778 4779 4780 4781 4782 4783
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
static int
i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
	if (!obj)
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
	if (ret)
		goto err_unref;

	i915->gt.scratch = vma;
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

static void i915_gem_fini_scratch(struct drm_i915_private *i915)
{
	i915_vma_unpin_and_release(&i915->gt.scratch, 0);
}

4822
int i915_gem_init(struct drm_i915_private *dev_priv)
4823 4824 4825
{
	int ret;

4826 4827
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
4828 4829 4830
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

4831
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4832

4833
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
4834
		dev_priv->gt.resume = intel_lr_context_resume;
4835
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4836 4837 4838
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4839 4840
	}

4841 4842
	i915_timelines_init(dev_priv);

4843 4844 4845 4846
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

4847
	ret = intel_uc_init_misc(dev_priv);
4848 4849 4850
	if (ret)
		return ret;

4851
	ret = intel_wopcm_init(&dev_priv->wopcm);
4852
	if (ret)
4853
		goto err_uc_misc;
4854

4855 4856 4857 4858 4859 4860
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
4861
	mutex_lock(&dev_priv->drm.struct_mutex);
4862 4863
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4864
	ret = i915_gem_init_ggtt(dev_priv);
4865 4866 4867 4868
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
4869

4870
	ret = i915_gem_init_scratch(dev_priv,
4871
				    IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
4872 4873 4874 4875
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
4876

4877 4878 4879 4880 4881 4882
	ret = i915_gem_contexts_init(dev_priv);
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_scratch;
	}

4883
	ret = intel_engines_init(dev_priv);
4884 4885 4886 4887
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
4888

4889 4890
	intel_init_gt_powersave(dev_priv);

4891
	ret = intel_uc_init(dev_priv);
4892
	if (ret)
4893
		goto err_pm;
4894

4895 4896 4897 4898
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

4910
	ret = __intel_engines_record_defaults(dev_priv);
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
4936 4937 4938 4939 4940
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

4941 4942
	i915_gem_drain_workqueue(dev_priv);

4943
	mutex_lock(&dev_priv->drm.struct_mutex);
4944
	intel_uc_fini_hw(dev_priv);
4945 4946
err_uc_init:
	intel_uc_fini(dev_priv);
4947 4948 4949 4950 4951 4952 4953 4954
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
4955 4956
err_scratch:
	i915_gem_fini_scratch(dev_priv);
4957 4958 4959 4960 4961
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

4962
err_uc_misc:
4963
	intel_uc_fini_misc(dev_priv);
4964

4965
	if (ret != -EIO) {
4966
		i915_gem_cleanup_userptr(dev_priv);
4967 4968
		i915_timelines_fini(dev_priv);
	}
4969

4970
	if (ret == -EIO) {
4971 4972
		mutex_lock(&dev_priv->drm.struct_mutex);

4973 4974
		/*
		 * Allow engine initialisation to fail by marking the GPU as
4975 4976 4977
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
4978
		if (!i915_reset_failed(dev_priv)) {
4979 4980
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
4981 4982
			i915_gem_set_wedged(dev_priv);
		}
4983 4984 4985 4986 4987 4988 4989 4990

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
4991 4992
	}

4993
	i915_gem_drain_freed_objects(dev_priv);
4994
	return ret;
4995 4996
}

4997 4998 4999
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5000
	intel_disable_gt_powersave(dev_priv);
5001 5002 5003 5004 5005 5006 5007 5008 5009

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
5010
	i915_gem_fini_scratch(dev_priv);
5011 5012
	mutex_unlock(&dev_priv->drm.struct_mutex);

5013 5014
	intel_wa_list_free(&dev_priv->gt_wa_list);

5015 5016
	intel_cleanup_gt_powersave(dev_priv);

5017 5018
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);
5019
	i915_timelines_fini(dev_priv);
5020 5021 5022 5023 5024 5025

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5026 5027 5028 5029 5030
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5031
void
5032
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5033
{
5034
	struct intel_engine_cs *engine;
5035
	enum intel_engine_id id;
5036

5037
	for_each_engine(engine, dev_priv, id)
5038
		dev_priv->gt.cleanup_engine(engine);
5039 5040
}

5041 5042 5043
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5044
	int i;
5045

5046
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5047 5048
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5049
	else if (INTEL_GEN(dev_priv) >= 4 ||
5050 5051
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5052 5053 5054 5055
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5056
	if (intel_vgpu_active(dev_priv))
5057 5058 5059 5060
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5061 5062 5063 5064 5065 5066 5067
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5068
	i915_gem_restore_fences(dev_priv);
5069

5070
	i915_gem_detect_bit_6_swizzle(dev_priv);
5071 5072
}

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5089
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5090
{
5091
	int err;
5092

5093
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5094
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5095

5096
	i915_gem_init__mm(dev_priv);
5097

5098
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5099
			  i915_gem_retire_work_handler);
5100
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5101
			  i915_gem_idle_work_handler);
5102
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5103
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5104
	mutex_init(&dev_priv->gpu_error.wedge_mutex);
5105
	init_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);
5106

5107 5108
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5109
	spin_lock_init(&dev_priv->fb_tracking.lock);
5110

M
Matthew Auld 已提交
5111 5112 5113 5114
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5115
	return 0;
5116
}
5117

5118
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5119
{
5120
	i915_gem_drain_freed_objects(dev_priv);
5121 5122
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5123
	WARN_ON(dev_priv->mm.object_count);
5124

5125 5126
	cleanup_srcu_struct(&dev_priv->gpu_error.reset_backoff_srcu);

M
Matthew Auld 已提交
5127
	i915_gemfs_fini(dev_priv);
5128 5129
}

5130 5131
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5132 5133 5134
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5135 5136 5137 5138 5139
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5140
int i915_gem_freeze_late(struct drm_i915_private *i915)
5141 5142
{
	struct drm_i915_gem_object *obj;
5143
	struct list_head *phases[] = {
5144 5145
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5146
		NULL
5147
	}, **phase;
5148

5149 5150
	/*
	 * Called just before we write the hibernation image.
5151 5152 5153 5154 5155 5156 5157 5158
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5159 5160
	 *
	 * To try and reduce the hibernation image, we manually shrink
5161
	 * the objects as well, see i915_gem_freeze()
5162 5163
	 */

5164 5165
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5166

5167 5168 5169 5170
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5171
	}
5172
	mutex_unlock(&i915->drm.struct_mutex);
5173 5174 5175 5176

	return 0;
}

5177
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5178
{
5179
	struct drm_i915_file_private *file_priv = file->driver_priv;
5180
	struct i915_request *request;
5181 5182 5183 5184 5185

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5186
	spin_lock(&file_priv->mm.lock);
5187
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5188
		request->file_priv = NULL;
5189
	spin_unlock(&file_priv->mm.lock);
5190 5191
}

5192
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5193 5194
{
	struct drm_i915_file_private *file_priv;
5195
	int ret;
5196

5197
	DRM_DEBUG("\n");
5198 5199 5200 5201 5202 5203

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5204
	file_priv->dev_priv = i915;
5205
	file_priv->file = file;
5206 5207 5208 5209

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5210
	file_priv->bsd_engine = -1;
5211
	file_priv->hang_timestamp = jiffies;
5212

5213
	ret = i915_gem_context_open(i915, file);
5214 5215
	if (ret)
		kfree(file_priv);
5216

5217
	return ret;
5218 5219
}

5220 5221
/**
 * i915_gem_track_fb - update frontbuffer tracking
5222 5223 5224
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5225 5226 5227 5228
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5229 5230 5231 5232
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5233 5234 5235 5236 5237 5238 5239
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5240
		     BITS_PER_TYPE(atomic_t));
5241

5242
	if (old) {
5243 5244
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5245 5246 5247
	}

	if (new) {
5248 5249
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5250 5251 5252
	}
}

5253 5254
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5255
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5256 5257 5258
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5259 5260 5261
	struct file *file;
	size_t offset;
	int err;
5262

5263
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5264
	if (IS_ERR(obj))
5265 5266
		return obj;

5267
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5268

5269 5270 5271 5272 5273 5274
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5275

5276 5277 5278 5279 5280
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5281

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5296 5297 5298 5299

	return obj;

fail:
5300
	i915_gem_object_put(obj);
5301
	return ERR_PTR(err);
5302
}
5303 5304 5305 5306 5307 5308

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5309
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5310 5311 5312 5313 5314
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5315
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
5341 5342
		void *entry;
		unsigned long i;
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

5357
		entry = xa_mk_value(idx);
5358
		for (i = 1; i < count; i++) {
5359
			ret = radix_tree_insert(&iter->radix, idx + i, entry);
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
5397
	 * the radix tree will contain a value entry that points
5398 5399 5400 5401 5402
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
5403 5404
	if (unlikely(xa_is_value(sg))) {
		unsigned long base = xa_to_value(sg);
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5437
	if (!obj->mm.dirty)
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5453

5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

5489
	pages = __i915_gem_object_unset_pages(obj);
5490

5491 5492
	obj->ops = &i915_gem_phys_ops;

5493
	err = ____i915_gem_object_get_pages(obj);
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
5507 5508 5509 5510 5511
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
5512 5513 5514 5515 5516
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5517 5518
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5519
#include "selftests/mock_gem_device.c"
5520
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
5521
#include "selftests/huge_pages.c"
5522
#include "selftests/i915_gem_object.c"
5523
#include "selftests/i915_gem_coherency.c"
5524
#include "selftests/i915_gem.c"
5525
#endif