i915_gem.c 165.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include "intel_workarounds.h"
M
Matthew Auld 已提交
39
#include "i915_gemfs.h"
40
#include <linux/dma-fence-array.h>
41
#include <linux/kthread.h>
42
#include <linux/reservation.h>
43
#include <linux/shmem_fs.h>
44
#include <linux/slab.h>
45
#include <linux/stop_machine.h>
46
#include <linux/swap.h>
J
Jesse Barnes 已提交
47
#include <linux/pci.h>
48
#include <linux/dma-buf.h>
49

50
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54
	if (obj->cache_dirty)
55 56
		return false;

57
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 59
		return true;

60
	return obj->pin_global; /* currently in use by HW, keep flushed */
61 62
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68
	return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 70 71
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141
static u32 __i915_gem_park(struct drm_i915_private *i915)
{
142 143
	GEM_TRACE("\n");

144 145
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);
146
	GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	if (!i915->gt.awake)
		return I915_EPOCH_INVALID;

	GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);

	/*
	 * Be paranoid and flush a concurrent interrupt to make sure
	 * we don't reactivate any irq tasklets after parking.
	 *
	 * FIXME: Note that even though we have waited for execlists to be idle,
	 * there may still be an in-flight interrupt even though the CSB
	 * is now empty. synchronize_irq() makes sure that a residual interrupt
	 * is completed before we continue, but it doesn't prevent the HW from
	 * raising a spurious interrupt later. To complete the shield we should
	 * coordinate disabling the CS irq with flushing the interrupts.
	 */
	synchronize_irq(i915->drm.irq);

	intel_engines_park(i915);
167
	i915_timelines_park(i915);
168 169

	i915_pmu_gt_parked(i915);
170
	i915_vma_parked(i915);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

	i915->gt.awake = false;

	if (INTEL_GEN(i915) >= 6)
		gen6_rps_idle(i915);

	intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);

	intel_runtime_pm_put(i915);

	return i915->gt.epoch;
}

void i915_gem_park(struct drm_i915_private *i915)
{
186 187
	GEM_TRACE("\n");

188 189 190 191 192 193 194 195 196 197 198 199
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(i915->gt.active_requests);

	if (!i915->gt.awake)
		return;

	/* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
	mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
}

void i915_gem_unpark(struct drm_i915_private *i915)
{
200 201
	GEM_TRACE("\n");

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	lockdep_assert_held(&i915->drm.struct_mutex);
	GEM_BUG_ON(!i915->gt.active_requests);

	if (i915->gt.awake)
		return;

	intel_runtime_pm_get_noresume(i915);

	/*
	 * It seems that the DMC likes to transition between the DC states a lot
	 * when there are no connected displays (no active power domains) during
	 * command submission.
	 *
	 * This activity has negative impact on the performance of the chip with
	 * huge latencies observed in the interrupt handler and elsewhere.
	 *
	 * Work around it by grabbing a GT IRQ power domain whilst there is any
	 * GT activity, preventing any DC state transitions.
	 */
	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);

	i915->gt.awake = true;
	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
		i915->gt.epoch = 1;

	intel_enable_gt_powersave(i915);
	i915_update_gfx_val(i915);
	if (INTEL_GEN(i915) >= 6)
		gen6_rps_busy(i915);
	i915_pmu_gt_unparked(i915);

	intel_engines_unpark(i915);

	i915_queue_hangcheck(i915);

	queue_delayed_work(i915->wq,
			   &i915->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

242 243
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244
			    struct drm_file *file)
245
{
246
	struct drm_i915_private *dev_priv = to_i915(dev);
247
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
248
	struct drm_i915_gem_get_aperture *args = data;
249
	struct i915_vma *vma;
250
	u64 pinned;
251

252
	pinned = ggtt->vm.reserved;
253
	mutex_lock(&dev->struct_mutex);
254
	list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255
		if (i915_vma_is_pinned(vma))
256
			pinned += vma->node.size;
257
	list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258
		if (i915_vma_is_pinned(vma))
259
			pinned += vma->node.size;
260
	mutex_unlock(&dev->struct_mutex);
261

262
	args->aper_size = ggtt->vm.total;
263
	args->aper_available_size = args->aper_size - pinned;
264

265 266 267
	return 0;
}

268
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269
{
270
	struct address_space *mapping = obj->base.filp->f_mapping;
271
	drm_dma_handle_t *phys;
272 273
	struct sg_table *st;
	struct scatterlist *sg;
274
	char *vaddr;
275
	int i;
276
	int err;
277

278
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279
		return -EINVAL;
280

281 282 283 284 285
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
286
			     roundup_pow_of_two(obj->base.size),
287 288
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
289
		return -ENOMEM;
290 291

	vaddr = phys->vaddr;
292 293 294 295 296
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
297
		if (IS_ERR(page)) {
298
			err = PTR_ERR(page);
299 300
			goto err_phys;
		}
301 302 303 304 305 306

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

307
		put_page(page);
308 309 310
		vaddr += PAGE_SIZE;
	}

311
	i915_gem_chipset_flush(to_i915(obj->base.dev));
312 313

	st = kmalloc(sizeof(*st), GFP_KERNEL);
314
	if (!st) {
315
		err = -ENOMEM;
316 317
		goto err_phys;
	}
318 319 320

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
321
		err = -ENOMEM;
322
		goto err_phys;
323 324 325 326 327
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
328

329
	sg_dma_address(sg) = phys->busaddr;
330 331
	sg_dma_len(sg) = obj->base.size;

332
	obj->phys_handle = phys;
333

334
	__i915_gem_object_set_pages(obj, st, sg->length);
335 336

	return 0;
337 338 339

err_phys:
	drm_pci_free(obj->base.dev, phys);
340 341

	return err;
342 343
}

344 345
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
346 347
	obj->read_domains = I915_GEM_DOMAIN_CPU;
	obj->write_domain = I915_GEM_DOMAIN_CPU;
348 349 350 351
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

352
static void
353
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 355
				struct sg_table *pages,
				bool needs_clflush)
356
{
C
Chris Wilson 已提交
357
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358

C
Chris Wilson 已提交
359 360
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
361

362
	if (needs_clflush &&
363
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365
		drm_clflush_sg(pages);
366

367
	__start_cpu_write(obj);
368 369 370 371 372 373
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
374
	__i915_gem_object_release_shmem(obj, pages, false);
375

C
Chris Wilson 已提交
376
	if (obj->mm.dirty) {
377
		struct address_space *mapping = obj->base.filp->f_mapping;
378
		char *vaddr = obj->phys_handle->vaddr;
379 380 381
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 383 384 385 386 387 388 389 390 391 392 393 394
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
395
			if (obj->mm.madv == I915_MADV_WILLNEED)
396
				mark_page_accessed(page);
397
			put_page(page);
398 399
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
400
		obj->mm.dirty = false;
401 402
	}

403 404
	sg_free_table(pages);
	kfree(pages);
405 406

	drm_pci_free(obj->base.dev, obj->phys_handle);
407 408 409 410 411
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
412
	i915_gem_object_unpin_pages(obj);
413 414 415 416 417 418 419 420
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

421 422
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

423
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 425 426
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
427 428 429
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
430

431 432 433 434
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
435
	 */
436
	ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 438 439
	if (ret)
		return ret;

440 441 442 443 444 445 446 447 448 449 450 451 452
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

453 454 455 456
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
457
			   struct intel_rps_client *rps_client)
458
{
459
	struct i915_request *rq;
460

461
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462

463 464 465 466 467 468 469 470 471
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
472
	if (i915_request_completed(rq))
473 474
		goto out;

475 476
	/*
	 * This client is about to stall waiting for the GPU. In many cases
477 478 479 480 481 482 483 484 485 486 487 488 489 490
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
491
	if (rps_client && !i915_request_started(rq)) {
492
		if (INTEL_GEN(rq->i915) >= 6)
493
			gen6_rps_boost(rq, rps_client);
494 495
	}

496
	timeout = i915_request_wait(rq, flags, timeout);
497 498

out:
499 500
	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
		i915_request_retire_upto(rq);
501 502 503 504 505 506 507 508

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
509
				 struct intel_rps_client *rps_client)
510
{
511
	unsigned int seq = __read_seqcount_begin(&resv->seq);
512
	struct dma_fence *excl;
513
	bool prune_fences = false;
514 515 516 517

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
518 519
		int ret;

520 521
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
522 523 524
		if (ret)
			return ret;

525 526 527
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
528
							     rps_client);
529
			if (timeout < 0)
530
				break;
531

532 533 534 535 536 537
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
538

539 540 541 542 543 544 545 546 547
		/*
		 * If both shared fences and an exclusive fence exist,
		 * then by construction the shared fences must be later
		 * than the exclusive fence. If we successfully wait for
		 * all the shared fences, we know that the exclusive fence
		 * must all be signaled. If all the shared fences are
		 * signaled, we can prune the array and recover the
		 * floating references on the fences/requests.
		 */
548
		prune_fences = count && timeout >= 0;
549 550
	} else {
		excl = reservation_object_get_excl_rcu(resv);
551 552
	}

553
	if (excl && timeout >= 0)
554 555
		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
						     rps_client);
556 557 558

	dma_fence_put(excl);

559 560
	/*
	 * Opportunistically prune the fences iff we know they have *all* been
561 562 563
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
564
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 566 567 568 569
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
570 571
	}

572
	return timeout;
573 574
}

575 576
static void __fence_set_priority(struct dma_fence *fence,
				 const struct i915_sched_attr *attr)
577
{
578
	struct i915_request *rq;
579 580
	struct intel_engine_cs *engine;

581
	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 583 584 585 586
		return;

	rq = to_request(fence);
	engine = rq->engine;

587 588
	local_bh_disable();
	rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589
	if (engine->schedule)
590
		engine->schedule(rq, attr);
591
	rcu_read_unlock();
592
	local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 594
}

595 596
static void fence_set_priority(struct dma_fence *fence,
			       const struct i915_sched_attr *attr)
597 598 599 600 601 602 603
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
604
			__fence_set_priority(array->fences[i], attr);
605
	} else {
606
		__fence_set_priority(fence, attr);
607 608 609 610 611 612
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
613
			      const struct i915_sched_attr *attr)
614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
628
			fence_set_priority(shared[i], attr);
629 630 631 632 633 634 635 636 637
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
638
		fence_set_priority(excl, attr);
639 640 641 642 643
		dma_fence_put(excl);
	}
	return 0;
}

644 645 646 647 648
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
649
 * @rps_client: client (user process) to charge for any waitboosting
650
 */
651 652 653 654
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
655
		     struct intel_rps_client *rps_client)
656
{
657 658 659 660 661 662 663
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
664

665 666
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
667
						   rps_client);
668
	return timeout < 0 ? timeout : 0;
669 670 671 672 673 674
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

675
	return &fpriv->rps_client;
676 677
}

678 679 680
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
681
		     struct drm_file *file)
682 683
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
684
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
685 686 687 688

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
689
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 691
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
692

693
	drm_clflush_virt_range(vaddr, args->size);
694
	i915_gem_chipset_flush(to_i915(obj->base.dev));
695

696
	intel_fb_obj_flush(obj, ORIGIN_CPU);
697
	return 0;
698 699
}

700
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701
{
702
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 704 705 706
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
707
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708
	kmem_cache_free(dev_priv->objects, obj);
709 710
}

711 712
static int
i915_gem_create(struct drm_file *file,
713
		struct drm_i915_private *dev_priv,
714 715
		uint64_t size,
		uint32_t *handle_p)
716
{
717
	struct drm_i915_gem_object *obj;
718 719
	int ret;
	u32 handle;
720

721
	size = roundup(size, PAGE_SIZE);
722 723
	if (size == 0)
		return -EINVAL;
724 725

	/* Allocate the new object */
726
	obj = i915_gem_object_create(dev_priv, size);
727 728
	if (IS_ERR(obj))
		return PTR_ERR(obj);
729

730
	ret = drm_gem_handle_create(file, &obj->base, &handle);
731
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
732
	i915_gem_object_put(obj);
733 734
	if (ret)
		return ret;
735

736
	*handle_p = handle;
737 738 739
	return 0;
}

740 741 742 743 744 745
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
746
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747
	args->size = args->pitch * args->height;
748
	return i915_gem_create(file, to_i915(dev),
749
			       args->size, &args->handle);
750 751
}

752 753 754 755 756 757
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

758 759
/**
 * Creates a new mm object and returns a handle to it.
760 761 762
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
763 764 765 766 767
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
768
	struct drm_i915_private *dev_priv = to_i915(dev);
769
	struct drm_i915_gem_create *args = data;
770

771
	i915_gem_flush_free_objects(dev_priv);
772

773
	return i915_gem_create(file, dev_priv,
774
			       args->size, &args->handle);
775 776
}

777 778 779 780 781 782 783
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

784
void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785
{
786 787 788 789 790
	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
791 792 793 794 795 796 797 798 799 800
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 802
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
803
	 */
804

805 806 807 808 809
	wmb();

	if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
		return;

810
	i915_gem_chipset_flush(dev_priv);
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	intel_runtime_pm_get(dev_priv);
	spin_lock_irq(&dev_priv->uncore.lock);

	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));

	spin_unlock_irq(&dev_priv->uncore.lock);
	intel_runtime_pm_put(dev_priv);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_vma *vma;

827
	if (!(obj->write_domain & flush_domains))
828 829
		return;

830
	switch (obj->write_domain) {
831
	case I915_GEM_DOMAIN_GTT:
832
		i915_gem_flush_ggtt_writes(dev_priv);
833 834 835

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836

837
		for_each_ggtt_vma(vma, obj) {
838 839 840 841 842
			if (vma->iomap)
				continue;

			i915_vma_unset_ggtt_write(vma);
		}
843 844
		break;

845 846 847 848
	case I915_GEM_DOMAIN_WC:
		wmb();
		break;

849 850 851
	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
852 853 854 855 856

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
857 858
	}

859
	obj->write_domain = 0;
860 861
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

888
static inline int
889 890
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

914 915 916 917 918 919
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920
				    unsigned int *needs_clflush)
921 922 923
{
	int ret;

924
	lockdep_assert_held(&obj->base.dev->struct_mutex);
925

926
	*needs_clflush = 0;
927 928
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
929

930 931 932 933 934
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
935 936 937
	if (ret)
		return ret;

C
Chris Wilson 已提交
938
	ret = i915_gem_object_pin_pages(obj);
939 940 941
	if (ret)
		return ret;

942 943
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 945 946 947 948 949 950
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

951
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952

953 954 955 956 957
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
958
	if (!obj->cache_dirty &&
959
	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960
		*needs_clflush = CLFLUSH_BEFORE;
961

962
out:
963
	/* return with the pages pinned */
964
	return 0;
965 966 967 968

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
969 970 971 972 973 974 975
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

976 977
	lockdep_assert_held(&obj->base.dev->struct_mutex);

978 979 980 981
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

982 983 984 985 986 987
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
988 989 990
	if (ret)
		return ret;

C
Chris Wilson 已提交
991
	ret = i915_gem_object_pin_pages(obj);
992 993 994
	if (ret)
		return ret;

995 996
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997 998 999 1000 1001 1002 1003
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

1004
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005

1006 1007 1008 1009 1010
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
1011
	if (!obj->cache_dirty) {
1012
		*needs_clflush |= CLFLUSH_AFTER;
1013

1014 1015 1016 1017
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
1018
		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019 1020
			*needs_clflush |= CLFLUSH_BEFORE;
	}
1021

1022
out:
1023
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
1024
	obj->mm.dirty = true;
1025
	/* return with the pages pinned */
1026
	return 0;
1027 1028 1029 1030

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
1031 1032
}

1033 1034 1035 1036
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
1037
	if (unlikely(swizzled)) {
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

1055 1056 1057
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
1058
shmem_pread_slow(struct page *page, int offset, int length,
1059 1060 1061 1062 1063 1064 1065 1066
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
1067
		shmem_clflush_swizzled_range(vaddr + offset, length,
1068
					     page_do_bit17_swizzling);
1069 1070

	if (page_do_bit17_swizzling)
1071
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072
	else
1073
		ret = __copy_to_user(user_data, vaddr + offset, length);
1074 1075
	kunmap(page);

1076
	return ret ? - EFAULT : 0;
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1155
{
1156
	void __iomem *vaddr;
1157
	unsigned long unwritten;
1158 1159

	/* We can use the cpu mem copy function because this is X86. */
1160 1161 1162 1163
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1164 1165
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1166 1167 1168 1169
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1170 1171
		io_mapping_unmap(vaddr);
	}
1172 1173 1174 1175
	return unwritten;
}

static int
1176 1177
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1178
{
1179 1180
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1181
	struct drm_mm_node node;
1182 1183 1184
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1185 1186
	int ret;

1187 1188 1189 1190 1191 1192
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1193 1194 1195
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1196 1197 1198
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1199
		ret = i915_vma_put_fence(vma);
1200 1201 1202 1203 1204
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1205
	if (IS_ERR(vma)) {
1206
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1207
		if (ret)
1208 1209
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1210 1211 1212 1213 1214 1215
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1216
	mutex_unlock(&i915->drm.struct_mutex);
1217

1218 1219 1220
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
1235 1236 1237
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1238 1239 1240 1241
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1242

1243
		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1244
				  user_data, page_length)) {
1245 1246 1247 1248 1249 1250 1251 1252 1253
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1254
	mutex_lock(&i915->drm.struct_mutex);
1255 1256 1257
out_unpin:
	if (node.allocated) {
		wmb();
1258
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1259 1260
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1261
		i915_vma_unpin(vma);
1262
	}
1263 1264 1265
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1266

1267 1268 1269
	return ret;
}

1270 1271
/**
 * Reads data from the object referenced by handle.
1272 1273 1274
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1275 1276 1277 1278 1279
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1280
		     struct drm_file *file)
1281 1282
{
	struct drm_i915_gem_pread *args = data;
1283
	struct drm_i915_gem_object *obj;
1284
	int ret;
1285

1286 1287 1288 1289
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1290
		       u64_to_user_ptr(args->data_ptr),
1291 1292 1293
		       args->size))
		return -EFAULT;

1294
	obj = i915_gem_object_lookup(file, args->handle);
1295 1296
	if (!obj)
		return -ENOENT;
1297

1298
	/* Bounds check source.  */
1299
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1300
		ret = -EINVAL;
1301
		goto out;
C
Chris Wilson 已提交
1302 1303
	}

C
Chris Wilson 已提交
1304 1305
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1306 1307 1308 1309
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1310
	if (ret)
1311
		goto out;
1312

1313
	ret = i915_gem_object_pin_pages(obj);
1314
	if (ret)
1315
		goto out;
1316

1317
	ret = i915_gem_shmem_pread(obj, args);
1318
	if (ret == -EFAULT || ret == -ENODEV)
1319
		ret = i915_gem_gtt_pread(obj, args);
1320

1321 1322
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1323
	i915_gem_object_put(obj);
1324
	return ret;
1325 1326
}

1327 1328
/* This is the fast write path which cannot handle
 * page faults in the source data
1329
 */
1330

1331 1332 1333 1334
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1335
{
1336
	void __iomem *vaddr;
1337
	unsigned long unwritten;
1338

1339
	/* We can use the cpu mem copy function because this is X86. */
1340 1341
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1342
						      user_data, length);
1343 1344
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1345 1346 1347
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1348 1349
		io_mapping_unmap(vaddr);
	}
1350 1351 1352 1353

	return unwritten;
}

1354 1355 1356
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1357
 * @obj: i915 GEM object
1358
 * @args: pwrite arguments structure
1359
 */
1360
static int
1361 1362
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1363
{
1364
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365 1366
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1367 1368 1369
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1370
	int ret;
1371

1372 1373 1374
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	if (i915_gem_object_has_struct_page(obj)) {
		/*
		 * Avoid waking the device up if we can fallback, as
		 * waking/resuming is very slow (worst-case 10-100 ms
		 * depending on PCI sleeps and our own resume time).
		 * This easily dwarfs any performance advantage from
		 * using the cache bypass of indirect GGTT access.
		 */
		if (!intel_runtime_pm_get_if_in_use(i915)) {
			ret = -EFAULT;
			goto out_unlock;
		}
	} else {
		/* No backing pages, no fallback, we must force GGTT access */
		intel_runtime_pm_get(i915);
	}

C
Chris Wilson 已提交
1393
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1394 1395 1396
				       PIN_MAPPABLE |
				       PIN_NONFAULT |
				       PIN_NONBLOCK);
1397 1398 1399
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1400
		ret = i915_vma_put_fence(vma);
1401 1402 1403 1404 1405
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1406
	if (IS_ERR(vma)) {
1407
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1408
		if (ret)
1409
			goto out_rpm;
1410
		GEM_BUG_ON(!node.allocated);
1411
	}
D
Daniel Vetter 已提交
1412 1413 1414 1415 1416

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1417 1418
	mutex_unlock(&i915->drm.struct_mutex);

1419
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1420

1421 1422 1423 1424
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1425 1426
		/* Operation in this page
		 *
1427 1428 1429
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1430
		 */
1431
		u32 page_base = node.start;
1432 1433
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1434 1435 1436
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
1437 1438 1439
			ggtt->vm.insert_page(&ggtt->vm,
					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					     node.start, I915_CACHE_NONE, 0);
1440 1441 1442 1443
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1444
		/* If we get a fault while copying data, then (presumably) our
1445 1446
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1447 1448
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1449
		 */
1450
		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1451 1452 1453
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1454
		}
1455

1456 1457 1458
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1459
	}
1460
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1461 1462

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1463
out_unpin:
1464 1465
	if (node.allocated) {
		wmb();
1466
		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1467 1468
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1469
		i915_vma_unpin(vma);
1470
	}
1471
out_rpm:
1472
	intel_runtime_pm_put(i915);
1473
out_unlock:
1474
	mutex_unlock(&i915->drm.struct_mutex);
1475
	return ret;
1476 1477
}

1478
static int
1479
shmem_pwrite_slow(struct page *page, int offset, int length,
1480 1481 1482 1483
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1484
{
1485 1486
	char *vaddr;
	int ret;
1487

1488
	vaddr = kmap(page);
1489
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1490
		shmem_clflush_swizzled_range(vaddr + offset, length,
1491
					     page_do_bit17_swizzling);
1492
	if (page_do_bit17_swizzling)
1493 1494
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1495
	else
1496
		ret = __copy_from_user(vaddr + offset, user_data, length);
1497
	if (needs_clflush_after)
1498
		shmem_clflush_swizzled_range(vaddr + offset, length,
1499
					     page_do_bit17_swizzling);
1500
	kunmap(page);
1501

1502
	return ret ? -EFAULT : 0;
1503 1504
}

1505 1506 1507 1508 1509
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1510
static int
1511 1512 1513 1514
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1515
{
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1548
	unsigned int needs_clflush;
1549 1550
	unsigned int offset, idx;
	int ret;
1551

1552
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1553 1554 1555
	if (ret)
		return ret;

1556 1557 1558 1559
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1560

1561 1562 1563
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1564

1565 1566 1567 1568 1569 1570 1571
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1572

1573 1574 1575 1576 1577 1578
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1579

1580 1581 1582
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1583

1584 1585 1586 1587
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1588
		if (ret)
1589
			break;
1590

1591 1592 1593
		remain -= length;
		user_data += length;
		offset = 0;
1594
	}
1595

1596
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1597
	i915_gem_obj_finish_shmem_access(obj);
1598
	return ret;
1599 1600 1601 1602
}

/**
 * Writes data to the object referenced by handle.
1603 1604 1605
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1606 1607 1608 1609 1610
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1611
		      struct drm_file *file)
1612 1613
{
	struct drm_i915_gem_pwrite *args = data;
1614
	struct drm_i915_gem_object *obj;
1615 1616 1617 1618 1619 1620
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1621
		       u64_to_user_ptr(args->data_ptr),
1622 1623 1624
		       args->size))
		return -EFAULT;

1625
	obj = i915_gem_object_lookup(file, args->handle);
1626 1627
	if (!obj)
		return -ENOENT;
1628

1629
	/* Bounds check destination. */
1630
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1631
		ret = -EINVAL;
1632
		goto err;
C
Chris Wilson 已提交
1633 1634
	}

1635 1636 1637 1638 1639 1640
	/* Writes not allowed into this read-only object */
	if (i915_gem_object_is_readonly(obj)) {
		ret = -EINVAL;
		goto err;
	}

C
Chris Wilson 已提交
1641 1642
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1643 1644 1645 1646 1647 1648
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1649 1650 1651 1652 1653
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1654 1655 1656
	if (ret)
		goto err;

1657
	ret = i915_gem_object_pin_pages(obj);
1658
	if (ret)
1659
		goto err;
1660

D
Daniel Vetter 已提交
1661
	ret = -EFAULT;
1662 1663 1664 1665 1666 1667
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1668
	if (!i915_gem_object_has_struct_page(obj) ||
1669
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1670 1671
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1672 1673
		 * textures). Fallback to the shmem path in that case.
		 */
1674
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1675

1676
	if (ret == -EFAULT || ret == -ENOSPC) {
1677 1678
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1679
		else
1680
			ret = i915_gem_shmem_pwrite(obj, args);
1681
	}
1682

1683
	i915_gem_object_unpin_pages(obj);
1684
err:
C
Chris Wilson 已提交
1685
	i915_gem_object_put(obj);
1686
	return ret;
1687 1688
}

1689 1690 1691 1692 1693 1694
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

1695 1696
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));

1697
	for_each_ggtt_vma(vma, obj) {
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
1708
	spin_lock(&i915->mm.obj_lock);
1709
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1710 1711
	list_move_tail(&obj->mm.link, list);
	spin_unlock(&i915->mm.obj_lock);
1712 1713
}

1714
/**
1715 1716
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1717 1718 1719
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1720 1721 1722
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1723
			  struct drm_file *file)
1724 1725
{
	struct drm_i915_gem_set_domain *args = data;
1726
	struct drm_i915_gem_object *obj;
1727 1728
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1729
	int err;
1730

1731
	/* Only handle setting domains to types used by the CPU. */
1732
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1733 1734 1735 1736 1737 1738 1739 1740
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1741
	obj = i915_gem_object_lookup(file, args->handle);
1742 1743
	if (!obj)
		return -ENOENT;
1744

1745 1746 1747 1748
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1749
	err = i915_gem_object_wait(obj,
1750 1751 1752 1753
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1754
	if (err)
C
Chris Wilson 已提交
1755
		goto out;
1756

T
Tina Zhang 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	/*
	 * Proxy objects do not control access to the backing storage, ergo
	 * they cannot be used as a means to manipulate the cache domain
	 * tracking for that backing storage. The proxy object is always
	 * considered to be outside of any cache domain.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		err = -ENXIO;
		goto out;
	}

	/*
	 * Flush and acquire obj->pages so that we are coherent through
1770 1771 1772 1773 1774 1775 1776 1777 1778
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1779
		goto out;
1780 1781 1782

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1783
		goto out_unpin;
1784

1785 1786 1787 1788
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1789
	else
1790
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1791

1792 1793
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1794

1795
	mutex_unlock(&dev->struct_mutex);
1796

1797
	if (write_domain != 0)
1798 1799
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1800

C
Chris Wilson 已提交
1801
out_unpin:
1802
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1803 1804
out:
	i915_gem_object_put(obj);
1805
	return err;
1806 1807 1808 1809
}

/**
 * Called when user space has done writes to this buffer
1810 1811 1812
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1813 1814 1815
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1816
			 struct drm_file *file)
1817 1818
{
	struct drm_i915_gem_sw_finish *args = data;
1819
	struct drm_i915_gem_object *obj;
1820

1821
	obj = i915_gem_object_lookup(file, args->handle);
1822 1823
	if (!obj)
		return -ENOENT;
1824

T
Tina Zhang 已提交
1825 1826 1827 1828 1829
	/*
	 * Proxy objects are barred from CPU access, so there is no
	 * need to ban sw_finish as it is a nop.
	 */

1830
	/* Pinned buffers may be scanout, so flush the cache */
1831
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1832
	i915_gem_object_put(obj);
1833 1834

	return 0;
1835 1836 1837
}

/**
1838 1839 1840 1841 1842
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1843 1844 1845
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1856 1857 1858
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1859
		    struct drm_file *file)
1860 1861
{
	struct drm_i915_gem_mmap *args = data;
1862
	struct drm_i915_gem_object *obj;
1863 1864
	unsigned long addr;

1865 1866 1867
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1868
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1869 1870
		return -ENODEV;

1871 1872
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1873
		return -ENOENT;
1874

1875 1876 1877
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1878
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1879
		i915_gem_object_put(obj);
1880
		return -ENXIO;
1881 1882
	}

1883
	addr = vm_mmap(obj->base.filp, 0, args->size,
1884 1885
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1886 1887 1888 1889
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1890
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1891
			i915_gem_object_put(obj);
1892 1893
			return -EINTR;
		}
1894 1895 1896 1897 1898 1899 1900
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1901 1902

		/* This may race, but that's ok, it only gets set */
1903
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1904
	}
C
Chris Wilson 已提交
1905
	i915_gem_object_put(obj);
1906 1907 1908 1909 1910 1911 1912 1913
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1914
static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1915
{
1916
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1939 1940 1941
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1969
	return 2;
1970 1971
}

1972
static inline struct i915_ggtt_view
1973
compute_partial_view(const struct drm_i915_gem_object *obj,
1974 1975 1976 1977 1978 1979 1980 1981 1982
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1983 1984
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1985
		min_t(unsigned int, chunk,
1986
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1987 1988 1989 1990 1991 1992 1993 1994

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1995 1996
/**
 * i915_gem_fault - fault a page into the GTT
1997
 * @vmf: fault info
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
2009 2010 2011
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2012
 */
2013
vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2014
{
2015
#define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2016
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
2017
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2018
	struct drm_device *dev = obj->base.dev;
2019 2020
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2021
	bool write = area->vm_flags & VM_WRITE;
C
Chris Wilson 已提交
2022
	struct i915_vma *vma;
2023
	pgoff_t page_offset;
2024
	int ret;
2025

2026 2027 2028 2029
	/* Sanity check that we allow writing into this object */
	if (i915_gem_object_is_readonly(obj) && write)
		return VM_FAULT_SIGBUS;

2030
	/* We don't use vmf->pgoff since that has the fake offset */
2031
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2032

C
Chris Wilson 已提交
2033 2034
	trace_i915_gem_object_fault(obj, page_offset, true, write);

2035
	/* Try to flush the object off the GPU first without holding the lock.
2036
	 * Upon acquiring the lock, we will perform our sanity checks and then
2037 2038 2039
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
2040 2041 2042 2043
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
2044
	if (ret)
2045 2046
		goto err;

2047 2048 2049 2050
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

2051 2052 2053 2054 2055
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
2056

2057
	/* Access to snoopable pages through the GTT is incoherent. */
2058
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2059
		ret = -EFAULT;
2060
		goto err_unlock;
2061 2062
	}

2063

2064
	/* Now pin it into the GTT as needed */
2065 2066 2067 2068
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE |
				       PIN_NONBLOCK |
				       PIN_NONFAULT);
2069 2070
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
2071
		struct i915_ggtt_view view =
2072
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2073
		unsigned int flags;
2074

2075 2076 2077 2078 2079 2080
		flags = PIN_MAPPABLE;
		if (view.type == I915_GGTT_VIEW_NORMAL)
			flags |= PIN_NONBLOCK; /* avoid warnings for pinned */

		/*
		 * Userspace is now writing through an untracked VMA, abandon
2081 2082 2083 2084
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

2085 2086 2087 2088 2089 2090
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		if (IS_ERR(vma) && !view.type) {
			flags = PIN_MAPPABLE;
			view.type = I915_GGTT_VIEW_PARTIAL;
			vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
		}
2091
	}
C
Chris Wilson 已提交
2092 2093
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
2094
		goto err_unlock;
C
Chris Wilson 已提交
2095
	}
2096

2097 2098
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
2099
		goto err_unpin;
2100

2101
	ret = i915_vma_pin_fence(vma);
2102
	if (ret)
2103
		goto err_unpin;
2104

2105
	/* Finally, remap it using the new GTT offset */
2106
	ret = remap_io_mapping(area,
2107
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2108
			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2109
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
2110
			       &ggtt->iomap);
2111 2112
	if (ret)
		goto err_fence;
2113

2114 2115 2116 2117 2118 2119
	/* Mark as being mmapped into userspace for later revocation */
	assert_rpm_wakelock_held(dev_priv);
	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
	GEM_BUG_ON(!obj->userfault_count);

2120 2121
	i915_vma_set_ggtt_write(vma);

2122
err_fence:
2123
	i915_vma_unpin_fence(vma);
2124
err_unpin:
C
Chris Wilson 已提交
2125
	__i915_vma_unpin(vma);
2126
err_unlock:
2127
	mutex_unlock(&dev->struct_mutex);
2128 2129
err_rpm:
	intel_runtime_pm_put(dev_priv);
2130
	i915_gem_object_unpin_pages(obj);
2131
err:
2132
	switch (ret) {
2133
	case -EIO:
2134 2135 2136 2137 2138 2139
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
2140 2141
		if (!i915_terminally_wedged(&dev_priv->gpu_error))
			return VM_FAULT_SIGBUS;
2142
		/* else: fall through */
2143
	case -EAGAIN:
D
Daniel Vetter 已提交
2144 2145 2146 2147
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2148
		 */
2149 2150
	case 0:
	case -ERESTARTSYS:
2151
	case -EINTR:
2152 2153 2154 2155 2156
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2157
		return VM_FAULT_NOPAGE;
2158
	case -ENOMEM:
2159
		return VM_FAULT_OOM;
2160
	case -ENOSPC:
2161
	case -EFAULT:
2162
		return VM_FAULT_SIGBUS;
2163
	default:
2164
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2165
		return VM_FAULT_SIGBUS;
2166 2167 2168
	}
}

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	GEM_BUG_ON(!obj->userfault_count);

	obj->userfault_count = 0;
	list_del(&obj->userfault_link);
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);

2180
	for_each_ggtt_vma(vma, obj)
2181 2182 2183
		i915_vma_unset_userfault(vma);
}

2184 2185 2186 2187
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2188
 * Preserve the reservation of the mmapping with the DRM core code, but
2189 2190 2191 2192 2193 2194 2195 2196 2197
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2198
void
2199
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2200
{
2201 2202
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2203 2204 2205
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2206 2207 2208 2209
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2210
	 */
2211
	lockdep_assert_held(&i915->drm.struct_mutex);
2212
	intel_runtime_pm_get(i915);
2213

2214
	if (!obj->userfault_count)
2215
		goto out;
2216

2217
	__i915_gem_object_release_mmap(obj);
2218 2219 2220 2221 2222 2223 2224 2225 2226

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2227 2228 2229

out:
	intel_runtime_pm_put(i915);
2230 2231
}

2232
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2233
{
2234
	struct drm_i915_gem_object *obj, *on;
2235
	int i;
2236

2237 2238 2239 2240 2241 2242
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2243

2244
	list_for_each_entry_safe(obj, on,
2245 2246
				 &dev_priv->mm.userfault_list, userfault_link)
		__i915_gem_object_release_mmap(obj);
2247 2248 2249 2250 2251 2252 2253 2254

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2265 2266 2267 2268

		if (!reg->vma)
			continue;

2269
		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2270 2271
		reg->dirty = true;
	}
2272 2273
}

2274 2275
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2276
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2277
	int err;
2278

2279
	err = drm_gem_create_mmap_offset(&obj->base);
2280
	if (likely(!err))
2281
		return 0;
2282

2283 2284
	/* Attempt to reap some mmap space from dead objects */
	do {
2285 2286 2287
		err = i915_gem_wait_for_idle(dev_priv,
					     I915_WAIT_INTERRUPTIBLE,
					     MAX_SCHEDULE_TIMEOUT);
2288 2289
		if (err)
			break;
2290

2291
		i915_gem_drain_freed_objects(dev_priv);
2292
		err = drm_gem_create_mmap_offset(&obj->base);
2293 2294 2295 2296
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2297

2298
	return err;
2299 2300 2301 2302 2303 2304 2305
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2306
int
2307 2308
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2309
		  uint32_t handle,
2310
		  uint64_t *offset)
2311
{
2312
	struct drm_i915_gem_object *obj;
2313 2314
	int ret;

2315
	obj = i915_gem_object_lookup(file, handle);
2316 2317
	if (!obj)
		return -ENOENT;
2318

2319
	ret = i915_gem_object_create_mmap_offset(obj);
2320 2321
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2322

C
Chris Wilson 已提交
2323
	i915_gem_object_put(obj);
2324
	return ret;
2325 2326
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2348
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2349 2350
}

D
Daniel Vetter 已提交
2351 2352 2353
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2354
{
2355
	i915_gem_object_free_mmap_offset(obj);
2356

2357 2358
	if (obj->base.filp == NULL)
		return;
2359

D
Daniel Vetter 已提交
2360 2361 2362 2363 2364
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2365
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2366
	obj->mm.madv = __I915_MADV_PURGED;
2367
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2368
}
2369

2370
/* Try to discard unwanted pages */
2371
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2372
{
2373 2374
	struct address_space *mapping;

2375
	lockdep_assert_held(&obj->mm.lock);
2376
	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2377

C
Chris Wilson 已提交
2378
	switch (obj->mm.madv) {
2379 2380 2381 2382 2383 2384 2385 2386 2387
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2388
	mapping = obj->base.filp->f_mapping,
2389
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2390 2391
}

2392
static void
2393 2394
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2395
{
2396 2397
	struct sgt_iter sgt_iter;
	struct page *page;
2398

2399
	__i915_gem_object_release_shmem(obj, pages, true);
2400

2401
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2402

2403
	if (i915_gem_object_needs_bit17_swizzle(obj))
2404
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2405

2406
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2407
		if (obj->mm.dirty)
2408
			set_page_dirty(page);
2409

C
Chris Wilson 已提交
2410
		if (obj->mm.madv == I915_MADV_WILLNEED)
2411
			mark_page_accessed(page);
2412

2413
		put_page(page);
2414
	}
C
Chris Wilson 已提交
2415
	obj->mm.dirty = false;
2416

2417 2418
	sg_free_table(pages);
	kfree(pages);
2419
}
C
Chris Wilson 已提交
2420

2421 2422 2423
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2424
	void __rcu **slot;
2425

2426
	rcu_read_lock();
C
Chris Wilson 已提交
2427 2428
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2429
	rcu_read_unlock();
2430 2431
}

2432 2433
static struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2434
{
2435
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2436
	struct sg_table *pages;
2437

2438
	pages = fetch_and_zero(&obj->mm.pages);
2439 2440
	if (!pages)
		return NULL;
2441

2442 2443 2444 2445
	spin_lock(&i915->mm.obj_lock);
	list_del(&obj->mm.link);
	spin_unlock(&i915->mm.obj_lock);

C
Chris Wilson 已提交
2446
	if (obj->mm.mapping) {
2447 2448
		void *ptr;

2449
		ptr = page_mask_bits(obj->mm.mapping);
2450 2451
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2452
		else
2453 2454
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2455
		obj->mm.mapping = NULL;
2456 2457
	}

2458
	__i915_gem_object_reset_page_iter(obj);
2459 2460 2461 2462
	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;

	return pages;
}
2463

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
{
	struct sg_table *pages;

	if (i915_gem_object_has_pinned_pages(obj))
		return;

	GEM_BUG_ON(obj->bind_count);
	if (!i915_gem_object_has_pages(obj))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
	mutex_lock_nested(&obj->mm.lock, subclass);
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;

	/*
	 * ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early.
	 */
	pages = __i915_gem_object_unset_pages(obj);
2487 2488 2489
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2490 2491
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2492 2493
}

2494
static bool i915_sg_trim(struct sg_table *orig_st)
2495 2496 2497 2498 2499 2500
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2501
		return false;
2502

2503
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2504
		return false;
2505 2506 2507 2508

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2509 2510 2511
		sg_dma_address(new_sg) = sg_dma_address(sg);
		sg_dma_len(new_sg) = sg_dma_len(sg);

2512 2513
		new_sg = sg_next(new_sg);
	}
2514
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2515 2516 2517 2518

	sg_free_table(orig_st);

	*orig_st = new_st;
2519
	return true;
2520 2521
}

2522
static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2523
{
2524
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2525 2526
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2527
	struct address_space *mapping;
2528 2529
	struct sg_table *st;
	struct scatterlist *sg;
2530
	struct sgt_iter sgt_iter;
2531
	struct page *page;
2532
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2533
	unsigned int max_segment = i915_sg_segment_size();
M
Matthew Auld 已提交
2534
	unsigned int sg_page_sizes;
2535
	gfp_t noreclaim;
I
Imre Deak 已提交
2536
	int ret;
2537

2538 2539
	/*
	 * Assert that the object is not currently in any GPU domain. As it
C
Chris Wilson 已提交
2540 2541 2542
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2543 2544
	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2545

2546 2547 2548 2549 2550 2551 2552
	/*
	 * If there's no chance of allocating enough pages for the whole
	 * object, bail early.
	 */
	if (page_count > totalram_pages)
		return -ENOMEM;

2553 2554
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2555
		return -ENOMEM;
2556

2557
rebuild_st:
2558 2559
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2560
		return -ENOMEM;
2561
	}
2562

2563 2564
	/*
	 * Get the list of pages out of our struct file.  They'll be pinned
2565 2566 2567 2568
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2569
	mapping = obj->base.filp->f_mapping;
2570
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2571 2572
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2573 2574
	sg = st->sgl;
	st->nents = 0;
M
Matthew Auld 已提交
2575
	sg_page_sizes = 0;
2576
	for (i = 0; i < page_count; i++) {
2577 2578 2579 2580 2581 2582 2583
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2584
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2585 2586 2587 2588 2589 2590 2591 2592
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

2593
			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2594
			cond_resched();
2595

2596 2597
			/*
			 * We've tried hard to allocate the memory by reaping
C
Chris Wilson 已提交
2598 2599
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2600 2601 2602 2603
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2604
			 */
2605 2606 2607
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2608

2609 2610
				/*
				 * Our bo are always dirty and so we require
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2621
				 * this we want __GFP_RETRY_MAYFAIL.
2622
				 */
M
Michal Hocko 已提交
2623
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2624
			}
2625 2626
		} while (1);

2627 2628 2629
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2630
			if (i) {
M
Matthew Auld 已提交
2631
				sg_page_sizes |= sg->length;
2632
				sg = sg_next(sg);
2633
			}
2634 2635 2636 2637 2638 2639
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2640 2641 2642

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2643
	}
2644
	if (sg) { /* loop terminated early; short sg table */
M
Matthew Auld 已提交
2645
		sg_page_sizes |= sg->length;
2646
		sg_mark_end(sg);
2647
	}
2648

2649 2650 2651
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2652
	ret = i915_gem_gtt_prepare_pages(obj, st);
2653
	if (ret) {
2654 2655
		/*
		 * DMA remapping failed? One possible cause is that
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2673

2674
	if (i915_gem_object_needs_bit17_swizzle(obj))
2675
		i915_gem_object_do_bit_17_swizzle(obj, st);
2676

M
Matthew Auld 已提交
2677
	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
2678 2679

	return 0;
2680

2681
err_sg:
2682
	sg_mark_end(sg);
2683
err_pages:
2684 2685
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2686 2687
	sg_free_table(st);
	kfree(st);
2688

2689 2690
	/*
	 * shmemfs first checks if there is enough memory to allocate the page
2691 2692 2693 2694 2695 2696 2697
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2698 2699 2700
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2701
	return ret;
2702 2703 2704
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2705
				 struct sg_table *pages,
M
Matthew Auld 已提交
2706
				 unsigned int sg_page_sizes)
2707
{
2708 2709 2710 2711
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	unsigned long supported = INTEL_INFO(i915)->page_sizes;
	int i;

2712
	lockdep_assert_held(&obj->mm.lock);
2713 2714 2715 2716 2717

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2718 2719

	if (i915_gem_object_is_tiled(obj) &&
2720
	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2721 2722 2723 2724
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2725

M
Matthew Auld 已提交
2726 2727
	GEM_BUG_ON(!sg_page_sizes);
	obj->mm.page_sizes.phys = sg_page_sizes;
2728 2729

	/*
M
Matthew Auld 已提交
2730 2731 2732 2733 2734 2735
	 * Calculate the supported page-sizes which fit into the given
	 * sg_page_sizes. This will give us the page-sizes which we may be able
	 * to use opportunistically when later inserting into the GTT. For
	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
	 * 64K or 4K pages, although in practice this will depend on a number of
	 * other factors.
2736 2737 2738 2739 2740 2741 2742
	 */
	obj->mm.page_sizes.sg = 0;
	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
		if (obj->mm.page_sizes.phys & ~0u << i)
			obj->mm.page_sizes.sg |= BIT(i);
	}
	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2743 2744 2745 2746

	spin_lock(&i915->mm.obj_lock);
	list_add(&obj->mm.link, &i915->mm.unbound_list);
	spin_unlock(&i915->mm.obj_lock);
2747 2748 2749 2750
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2751
	int err;
2752 2753 2754 2755 2756 2757

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

2758
	err = obj->ops->get_pages(obj);
2759
	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2760

2761
	return err;
2762 2763
}

2764
/* Ensure that the associated pages are gathered from the backing storage
2765
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2766
 * multiple times before they are released by a single call to
2767
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2768 2769 2770
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2771
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2772
{
2773
	int err;
2774

2775 2776 2777
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2778

2779
	if (unlikely(!i915_gem_object_has_pages(obj))) {
2780 2781
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2782 2783 2784
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2785

2786 2787 2788
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2789

2790 2791
unlock:
	mutex_unlock(&obj->mm.lock);
2792
	return err;
2793 2794
}

2795
/* The 'mapping' part of i915_gem_object_pin_map() below */
2796 2797
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2798 2799
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2800
	struct sg_table *sgt = obj->mm.pages;
2801 2802
	struct sgt_iter sgt_iter;
	struct page *page;
2803 2804
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2805
	unsigned long i = 0;
2806
	pgprot_t pgprot;
2807 2808 2809
	void *addr;

	/* A single page can always be kmapped */
2810
	if (n_pages == 1 && type == I915_MAP_WB)
2811 2812
		return kmap(sg_page(sgt->sgl));

2813 2814
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
2815
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2816 2817 2818
		if (!pages)
			return NULL;
	}
2819

2820 2821
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2822 2823 2824 2825

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2826
	switch (type) {
2827 2828 2829
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2830 2831 2832 2833 2834 2835 2836 2837
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2838

2839
	if (pages != stack_pages)
M
Michal Hocko 已提交
2840
		kvfree(pages);
2841 2842 2843 2844 2845

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2846 2847
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2848
{
2849 2850 2851
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2852 2853
	int ret;

T
Tina Zhang 已提交
2854 2855
	if (unlikely(!i915_gem_object_has_struct_page(obj)))
		return ERR_PTR(-ENXIO);
2856

2857
	ret = mutex_lock_interruptible(&obj->mm.lock);
2858 2859 2860
	if (ret)
		return ERR_PTR(ret);

2861 2862 2863
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2864
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2865
		if (unlikely(!i915_gem_object_has_pages(obj))) {
2866 2867
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2868 2869 2870
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2871

2872 2873 2874
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2875 2876
		pinned = false;
	}
2877
	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2878

2879
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2880 2881 2882
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2883
			goto err_unpin;
2884
		}
2885 2886 2887 2888 2889 2890

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2891
		ptr = obj->mm.mapping = NULL;
2892 2893
	}

2894 2895 2896 2897
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2898
			goto err_unpin;
2899 2900
		}

2901
		obj->mm.mapping = page_pack_bits(ptr, type);
2902 2903
	}

2904 2905
out_unlock:
	mutex_unlock(&obj->mm.lock);
2906 2907
	return ptr;

2908 2909 2910 2911 2912
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2913 2914
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
2932
	if (i915_gem_object_has_pages(obj))
2933 2934
		return -ENODEV;

2935 2936 2937
	if (obj->mm.madv != I915_MADV_WILLNEED)
		return -EFAULT;

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
					const struct i915_gem_context *ctx)
{
	unsigned int score;
	unsigned long prev_hang;

	if (i915_gem_context_is_banned(ctx))
		score = I915_CLIENT_SCORE_CONTEXT_BAN;
	else
		score = 0;

	prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
	if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
		score += I915_CLIENT_SCORE_HANG_FAST;

	if (score) {
		atomic_add(score, &file_priv->ban_score);

		DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
				 ctx->name, score,
				 atomic_read(&file_priv->ban_score));
	}
}

3011
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3012
{
3013 3014
	unsigned int score;
	bool banned, bannable;
3015

3016
	atomic_inc(&ctx->guilty_count);
3017

3018 3019 3020
	bannable = i915_gem_context_is_bannable(ctx);
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3021

3022 3023
	/* Cool contexts don't accumulate client ban score */
	if (!bannable)
3024 3025
		return;

3026 3027 3028 3029
	if (banned) {
		DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
				 ctx->name, atomic_read(&ctx->guilty_count),
				 score);
3030
		i915_gem_context_set_banned(ctx);
3031
	}
3032 3033 3034

	if (!IS_ERR_OR_NULL(ctx->file_priv))
		i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3035 3036 3037 3038
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
3039
	atomic_inc(&ctx->active_count);
3040 3041
}

3042
struct i915_request *
3043
i915_gem_find_active_request(struct intel_engine_cs *engine)
3044
{
3045
	struct i915_request *request, *active = NULL;
3046
	unsigned long flags;
3047

3048 3049 3050 3051 3052 3053
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
3054 3055
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
3056 3057
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
3058
	 */
3059 3060
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
3061
		if (__i915_request_completed(request, request->global_seqno))
3062
			continue;
3063

3064 3065
		active = request;
		break;
3066
	}
3067
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3068

3069
	return active;
3070 3071
}

3072 3073 3074 3075
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
3076
struct i915_request *
3077 3078
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
3079
	struct i915_request *request;
3080

3081 3082 3083 3084 3085 3086 3087 3088 3089
	/*
	 * During the reset sequence, we must prevent the engine from
	 * entering RC6. As the context state is undefined until we restart
	 * the engine, if it does enter RC6 during the reset, the state
	 * written to the powercontext is undefined and so we may lose
	 * GPU state upon resume, i.e. fail to restart after a reset.
	 */
	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);

3090
	request = engine->reset.prepare(engine);
3091 3092
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
3093 3094 3095 3096

	return request;
}

3097
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3098 3099
{
	struct intel_engine_cs *engine;
3100
	struct i915_request *request;
3101
	enum intel_engine_id id;
3102
	int err = 0;
3103

3104
	for_each_engine(engine, dev_priv, id) {
3105 3106 3107 3108
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
3109
		}
3110 3111

		engine->hangcheck.active_request = request;
3112 3113
	}

3114
	i915_gem_revoke_fences(dev_priv);
3115
	intel_uc_sanitize(dev_priv);
3116 3117

	return err;
3118 3119
}

3120
static void engine_skip_context(struct i915_request *request)
3121 3122
{
	struct intel_engine_cs *engine = request->engine;
C
Chris Wilson 已提交
3123
	struct i915_gem_context *hung_ctx = request->gem_context;
3124
	struct i915_timeline *timeline = request->timeline;
3125 3126
	unsigned long flags;

3127
	GEM_BUG_ON(timeline == &engine->timeline);
3128

3129
	spin_lock_irqsave(&engine->timeline.lock, flags);
3130
	spin_lock(&timeline->lock);
3131

3132
	list_for_each_entry_continue(request, &engine->timeline.requests, link)
C
Chris Wilson 已提交
3133
		if (request->gem_context == hung_ctx)
3134
			i915_request_skip(request, -EIO);
3135 3136

	list_for_each_entry(request, &timeline->requests, link)
3137
		i915_request_skip(request, -EIO);
3138 3139

	spin_unlock(&timeline->lock);
3140
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
3141 3142
}

3143
/* Returns the request if it was guilty of the hang */
3144
static struct i915_request *
3145
i915_gem_reset_request(struct intel_engine_cs *engine,
3146 3147
		       struct i915_request *request,
		       bool stalled)
3148
{
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

3170 3171 3172 3173 3174 3175 3176 3177 3178
	if (i915_request_completed(request)) {
		GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
			  engine->name, request->global_seqno,
			  request->fence.context, request->fence.seqno,
			  intel_engine_get_seqno(engine));
		stalled = false;
	}

	if (stalled) {
C
Chris Wilson 已提交
3179
		i915_gem_context_mark_guilty(request->gem_context);
3180
		i915_request_skip(request, -EIO);
3181 3182

		/* If this context is now banned, skip all pending requests. */
C
Chris Wilson 已提交
3183
		if (i915_gem_context_is_banned(request->gem_context))
3184
			engine_skip_context(request);
3185
	} else {
3186 3187 3188 3189 3190 3191 3192
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
C
Chris Wilson 已提交
3193 3194
			unsigned long flags;

C
Chris Wilson 已提交
3195
			i915_gem_context_mark_innocent(request->gem_context);
3196 3197 3198
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
C
Chris Wilson 已提交
3199
			spin_lock_irqsave(&engine->timeline.lock, flags);
3200
			request = list_prev_entry(request, link);
3201
			if (&request->link == &engine->timeline.requests)
3202
				request = NULL;
C
Chris Wilson 已提交
3203
			spin_unlock_irqrestore(&engine->timeline.lock, flags);
3204
		}
3205 3206
	}

3207
	return request;
3208 3209
}

3210
void i915_gem_reset_engine(struct intel_engine_cs *engine,
3211 3212
			   struct i915_request *request,
			   bool stalled)
3213
{
3214 3215 3216 3217 3218 3219
	/*
	 * Make sure this write is visible before we re-enable the interrupt
	 * handlers on another CPU, as tasklet_enable() resolves to just
	 * a compiler barrier which is insufficient for our purpose here.
	 */
	smp_store_mb(engine->irq_posted, 0);
3220

3221
	if (request)
3222
		request = i915_gem_reset_request(engine, request, stalled);
3223

3224
	/* Setup the CS to resume from the breadcrumb of the hung request */
3225
	engine->reset.reset(engine, request);
3226
}
3227

3228 3229
void i915_gem_reset(struct drm_i915_private *dev_priv,
		    unsigned int stalled_mask)
3230
{
3231
	struct intel_engine_cs *engine;
3232
	enum intel_engine_id id;
3233

3234 3235
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

3236
	i915_retire_requests(dev_priv);
3237

3238
	for_each_engine(engine, dev_priv, id) {
3239
		struct intel_context *ce;
3240

3241 3242
		i915_gem_reset_engine(engine,
				      engine->hangcheck.active_request,
3243
				      stalled_mask & ENGINE_MASK(id));
3244 3245 3246
		ce = fetch_and_zero(&engine->last_retired_context);
		if (ce)
			intel_context_unpin(ce);
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257

		/*
		 * Ostensibily, we always want a context loaded for powersaving,
		 * so if the engine is idle after the reset, send a request
		 * to load our scratch kernel_context.
		 *
		 * More mysteriously, if we leave the engine idle after a reset,
		 * the next userspace batch may hang, with what appears to be
		 * an incoherent read by the CS (presumably stale TLB). An
		 * empty request appears sufficient to paper over the glitch.
		 */
3258
		if (intel_engine_is_idle(engine)) {
3259
			struct i915_request *rq;
3260

3261 3262
			rq = i915_request_alloc(engine,
						dev_priv->kernel_context);
3263
			if (!IS_ERR(rq))
3264
				i915_request_add(rq);
3265
		}
3266
	}
3267

3268
	i915_gem_restore_fences(dev_priv);
3269 3270
}

3271 3272
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
3273 3274
	engine->reset.finish(engine);

3275
	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3276 3277
}

3278 3279
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3280 3281 3282
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3283
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3284

3285
	for_each_engine(engine, dev_priv, id) {
3286
		engine->hangcheck.active_request = NULL;
3287
		i915_gem_reset_finish_engine(engine);
3288
	}
3289 3290
}

3291
static void nop_submit_request(struct i915_request *request)
3292
{
3293 3294 3295
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3296 3297
	dma_fence_set_error(&request->fence, -EIO);

3298
	i915_request_submit(request);
3299 3300
}

3301
static void nop_complete_submit_request(struct i915_request *request)
3302
{
3303 3304
	unsigned long flags;

3305 3306 3307
	GEM_TRACE("%s fence %llx:%d -> -EIO\n",
		  request->engine->name,
		  request->fence.context, request->fence.seqno);
3308
	dma_fence_set_error(&request->fence, -EIO);
3309

3310
	spin_lock_irqsave(&request->engine->timeline.lock, flags);
3311
	__i915_request_submit(request);
3312
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3313
	spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3314 3315
}

3316
void i915_gem_set_wedged(struct drm_i915_private *i915)
3317
{
3318 3319 3320
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3321 3322
	GEM_TRACE("start\n");

3323
	if (GEM_SHOW_DEBUG()) {
3324 3325 3326 3327 3328 3329
		struct drm_printer p = drm_debug_printer(__func__);

		for_each_engine(engine, i915, id)
			intel_engine_dump(engine, &p, "%s\n", engine->name);
	}

3330 3331
	if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
		goto out;
3332

3333 3334 3335 3336 3337
	/*
	 * First, stop submission to hw, but do not yet complete requests by
	 * rolling the global seqno forward (since this would complete requests
	 * for which we haven't set the fence error to EIO yet).
	 */
3338 3339
	for_each_engine(engine, i915, id) {
		i915_gem_reset_prepare_engine(engine);
3340

3341
		engine->submit_request = nop_submit_request;
3342
		engine->schedule = NULL;
3343
	}
3344
	i915->caps.scheduler = 0;
3345

3346
	/* Even if the GPU reset fails, it should still stop the engines */
3347 3348
	if (INTEL_GEN(i915) >= 5)
		intel_gpu_reset(i915, ALL_ENGINES);
3349

3350 3351 3352 3353
	/*
	 * Make sure no one is running the old callback before we proceed with
	 * cancelling requests and resetting the completion tracking. Otherwise
	 * we might submit a request to the hardware which never completes.
3354
	 */
3355
	synchronize_rcu();
3356

3357 3358 3359
	for_each_engine(engine, i915, id) {
		/* Mark all executing requests as skipped */
		engine->cancel_requests(engine);
3360

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
		/*
		 * Only once we've force-cancelled all in-flight requests can we
		 * start to complete all requests.
		 */
		engine->submit_request = nop_complete_submit_request;
	}

	/*
	 * Make sure no request can slip through without getting completed by
	 * either this call here to intel_engine_init_global_seqno, or the one
	 * in nop_complete_submit_request.
3372
	 */
3373
	synchronize_rcu();
3374

3375 3376
	for_each_engine(engine, i915, id) {
		unsigned long flags;
3377

3378 3379
		/*
		 * Mark all pending requests as complete so that any concurrent
3380 3381 3382
		 * (lockless) lookup doesn't try and wait upon the request as we
		 * reset it.
		 */
3383
		spin_lock_irqsave(&engine->timeline.lock, flags);
3384 3385
		intel_engine_init_global_seqno(engine,
					       intel_engine_last_submit(engine));
3386
		spin_unlock_irqrestore(&engine->timeline.lock, flags);
3387 3388

		i915_gem_reset_finish_engine(engine);
3389
	}
3390

3391
out:
3392 3393
	GEM_TRACE("end\n");

3394
	wake_up_all(&i915->gpu_error.reset_queue);
3395 3396
}

3397 3398
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
3399
	struct i915_timeline *tl;
3400 3401 3402 3403 3404

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

3405 3406
	GEM_TRACE("start\n");

3407 3408
	/*
	 * Before unwedging, make sure that all pending operations
3409 3410 3411 3412 3413 3414 3415 3416 3417
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
3418
		struct i915_request *rq;
3419

3420 3421 3422 3423
		rq = i915_gem_active_peek(&tl->last_request,
					  &i915->drm.struct_mutex);
		if (!rq)
			continue;
3424

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		/*
		 * We can't use our normal waiter as we want to
		 * avoid recursively trying to handle the current
		 * reset. The basic dma_fence_default_wait() installs
		 * a callback for dma_fence_signal(), which is
		 * triggered by our nop handler (indirectly, the
		 * callback enables the signaler thread which is
		 * woken by the nop_submit_request() advancing the seqno
		 * and when the seqno passes the fence, the signaler
		 * then signals the fence waking us up).
		 */
		if (dma_fence_default_wait(&rq->fence, true,
					   MAX_SCHEDULE_TIMEOUT) < 0)
			return false;
3439
	}
3440 3441
	i915_retire_requests(i915);
	GEM_BUG_ON(i915->gt.active_requests);
3442

3443 3444 3445
	if (!intel_gpu_reset(i915, ALL_ENGINES))
		intel_engines_sanitize(i915);

3446 3447
	/*
	 * Undo nop_submit_request. We prevent all new i915 requests from
3448 3449 3450 3451 3452 3453 3454 3455
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3456
	i915_gem_contexts_lost(i915);
3457

3458 3459
	GEM_TRACE("end\n");

3460 3461 3462 3463 3464 3465
	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3466
static void
3467 3468
i915_gem_retire_work_handler(struct work_struct *work)
{
3469
	struct drm_i915_private *dev_priv =
3470
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3471
	struct drm_device *dev = &dev_priv->drm;
3472

3473
	/* Come back later if the device is busy... */
3474
	if (mutex_trylock(&dev->struct_mutex)) {
3475
		i915_retire_requests(dev_priv);
3476
		mutex_unlock(&dev->struct_mutex);
3477
	}
3478

3479 3480
	/*
	 * Keep the retire handler running until we are finally idle.
3481 3482 3483
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3484
	if (READ_ONCE(dev_priv->gt.awake))
3485 3486
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3487
				   round_jiffies_up_relative(HZ));
3488
}
3489

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
static void shrink_caches(struct drm_i915_private *i915)
{
	/*
	 * kmem_cache_shrink() discards empty slabs and reorders partially
	 * filled slabs to prioritise allocating from the mostly full slabs,
	 * with the aim of reducing fragmentation.
	 */
	kmem_cache_shrink(i915->priorities);
	kmem_cache_shrink(i915->dependencies);
	kmem_cache_shrink(i915->requests);
	kmem_cache_shrink(i915->luts);
	kmem_cache_shrink(i915->vmas);
	kmem_cache_shrink(i915->objects);
}

struct sleep_rcu_work {
	union {
		struct rcu_head rcu;
		struct work_struct work;
	};
	struct drm_i915_private *i915;
	unsigned int epoch;
};

static inline bool
same_epoch(struct drm_i915_private *i915, unsigned int epoch)
{
	/*
	 * There is a small chance that the epoch wrapped since we started
	 * sleeping. If we assume that epoch is at least a u32, then it will
	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
	 */
	return epoch == READ_ONCE(i915->gt.epoch);
}

static void __sleep_work(struct work_struct *work)
{
	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
	struct drm_i915_private *i915 = s->i915;
	unsigned int epoch = s->epoch;

	kfree(s);
	if (same_epoch(i915, epoch))
		shrink_caches(i915);
}

static void __sleep_rcu(struct rcu_head *rcu)
{
	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
	struct drm_i915_private *i915 = s->i915;

	if (same_epoch(i915, s->epoch)) {
		INIT_WORK(&s->work, __sleep_work);
		queue_work(i915->wq, &s->work);
	} else {
		kfree(s);
	}
}

3549 3550 3551 3552 3553 3554 3555
static inline bool
new_requests_since_last_retire(const struct drm_i915_private *i915)
{
	return (READ_ONCE(i915->gt.active_requests) ||
		work_pending(&i915->gt.idle_work.work));
}

3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
static void assert_kernel_context_is_current(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (i915_terminally_wedged(&i915->gpu_error))
		return;

	GEM_BUG_ON(i915->gt.active_requests);
	for_each_engine(engine, i915, id) {
		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
		GEM_BUG_ON(engine->last_retired_context !=
			   to_intel_context(i915->kernel_context, engine));
	}
}

3572 3573 3574 3575
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3576
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3577
	unsigned int epoch = I915_EPOCH_INVALID;
3578 3579 3580 3581 3582
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	if (READ_ONCE(dev_priv->gt.active_requests))
		return;

	/*
	 * Flush out the last user context, leaving only the pinned
	 * kernel context resident. When we are idling on the kernel_context,
	 * no more new requests (with a context switch) are emitted and we
	 * can finally rest. A consequence is that the idle work handler is
	 * always called at least twice before idling (and if the system is
	 * idle that implies a round trip through the retire worker).
	 */
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_switch_to_kernel_context(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
		  READ_ONCE(dev_priv->gt.active_requests));

3601 3602
	/*
	 * Wait for last execlists context complete, but bail out in case a
3603 3604 3605 3606 3607
	 * new request is submitted. As we don't trust the hardware, we
	 * continue on if the wait times out. This is necessary to allow
	 * the machine to suspend even if the hardware dies, and we will
	 * try to recover in resume (after depriving the hardware of power,
	 * it may be in a better mmod).
3608
	 */
3609 3610 3611 3612
	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
		   intel_engines_are_idle(dev_priv),
		   I915_IDLE_ENGINES_TIMEOUT * 1000,
		   10, 500);
3613 3614 3615 3616

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

3617
	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3618 3619 3620 3621 3622 3623 3624
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3625 3626 3627 3628
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
3629
	if (new_requests_since_last_retire(dev_priv))
3630
		goto out_unlock;
3631

3632
	epoch = __i915_gem_park(dev_priv);
3633

3634 3635
	assert_kernel_context_is_current(dev_priv);

3636 3637
	rearm_hangcheck = false;
out_unlock:
3638
	mutex_unlock(&dev_priv->drm.struct_mutex);
3639

3640 3641 3642 3643
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3644
	}
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661

	/*
	 * When we are idle, it is an opportune time to reap our caches.
	 * However, we have many objects that utilise RCU and the ordered
	 * i915->wq that this work is executing on. To try and flush any
	 * pending frees now we are idle, we first wait for an RCU grace
	 * period, and then queue a task (that will run last on the wq) to
	 * shrink and re-optimize the caches.
	 */
	if (same_epoch(dev_priv, epoch)) {
		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
		if (s) {
			s->i915 = dev_priv;
			s->epoch = epoch;
			call_rcu(&s->rcu, __sleep_rcu);
		}
	}
3662 3663
}

3664 3665
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3666
	struct drm_i915_private *i915 = to_i915(gem->dev);
3667 3668
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3669
	struct i915_lut_handle *lut, *ln;
3670

3671 3672 3673 3674 3675 3676
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3677
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3678 3679 3680 3681
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3682 3683 3684 3685 3686 3687 3688
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3689
			i915_vma_close(vma);
3690

3691 3692
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3693

3694 3695
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3696
	}
3697 3698

	mutex_unlock(&i915->drm.struct_mutex);
3699 3700
}

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3712 3713
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3714 3715 3716
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3717 3718 3719 3720 3721 3722 3723
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3724
 *  -EAGAIN: incomplete, restart syscall
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3741 3742
	ktime_t start;
	long ret;
3743

3744 3745 3746
	if (args->flags != 0)
		return -EINVAL;

3747
	obj = i915_gem_object_lookup(file, args->bo_handle);
3748
	if (!obj)
3749 3750
		return -ENOENT;

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3772 3773 3774 3775

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3776 3777
	}

C
Chris Wilson 已提交
3778
	i915_gem_object_put(obj);
3779
	return ret;
3780 3781
}

3782 3783
static long wait_for_timeline(struct i915_timeline *tl,
			      unsigned int flags, long timeout)
3784
{
3785 3786 3787 3788
	struct i915_request *rq;

	rq = i915_gem_active_get_unlocked(&tl->last_request);
	if (!rq)
3789
		return timeout;
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802

	/*
	 * "Race-to-idle".
	 *
	 * Switching to the kernel context is often used a synchronous
	 * step prior to idling, e.g. in suspend for flushing all
	 * current operations to memory before sleeping. These we
	 * want to complete as quickly as possible to avoid prolonged
	 * stalls, so allow the gpu to boost to maximum clocks.
	 */
	if (flags & I915_WAIT_FOR_IDLE_BOOST)
		gen6_rps_boost(rq, NULL);

3803
	timeout = i915_request_wait(rq, flags, timeout);
3804 3805
	i915_request_put(rq);

3806
	return timeout;
3807 3808
}

3809 3810
static int wait_for_engines(struct drm_i915_private *i915)
{
3811
	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3812 3813
		dev_err(i915->drm.dev,
			"Failed to idle engines, declaring wedged!\n");
3814
		GEM_TRACE_DUMP();
3815 3816
		i915_gem_set_wedged(i915);
		return -EIO;
3817 3818 3819 3820 3821
	}

	return 0;
}

3822 3823
int i915_gem_wait_for_idle(struct drm_i915_private *i915,
			   unsigned int flags, long timeout)
3824
{
3825 3826 3827
	GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
		  flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
		  timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3828

3829 3830 3831 3832
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3833
	if (flags & I915_WAIT_LOCKED) {
3834 3835
		struct i915_timeline *tl;
		int err;
3836 3837 3838 3839

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
3840 3841 3842
			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3843
		}
3844 3845 3846 3847 3848 3849
		if (GEM_SHOW_DEBUG() && !timeout) {
			/* Presume that timeout was non-zero to begin with! */
			dev_warn(&i915->drm.pdev->dev,
				 "Missed idle-completion interrupt!\n");
			GEM_TRACE_DUMP();
		}
3850 3851 3852 3853 3854

		err = wait_for_engines(i915);
		if (err)
			return err;

3855
		i915_retire_requests(i915);
3856
		GEM_BUG_ON(i915->gt.active_requests);
3857
	} else {
3858 3859
		struct intel_engine_cs *engine;
		enum intel_engine_id id;
3860

3861
		for_each_engine(engine, i915, id) {
3862 3863 3864 3865 3866
			struct i915_timeline *tl = &engine->timeline;

			timeout = wait_for_timeline(tl, flags, timeout);
			if (timeout < 0)
				return timeout;
3867 3868
		}
	}
3869 3870

	return 0;
3871 3872
}

3873 3874
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3875 3876 3877 3878 3879 3880 3881
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3882
	obj->write_domain = 0;
3883 3884 3885 3886
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
3887
	if (!READ_ONCE(obj->pin_global))
3888 3889 3890 3891 3892 3893 3894
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

3919
	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
3940
	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3941 3942 3943 3944 3945
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3946 3947
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_WC;
3948
	if (write) {
3949 3950
		obj->read_domains = I915_GEM_DOMAIN_WC;
		obj->write_domain = I915_GEM_DOMAIN_WC;
3951 3952 3953 3954 3955 3956 3957
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3958 3959
/**
 * Moves a single object to the GTT read, and possibly write domain.
3960 3961
 * @obj: object to act on
 * @write: ask for write access or read only
3962 3963 3964 3965
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3966
int
3967
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3968
{
3969
	int ret;
3970

3971
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3972

3973 3974 3975 3976 3977 3978
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3979 3980 3981
	if (ret)
		return ret;

3982
	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3983 3984
		return 0;

3985 3986 3987 3988 3989 3990 3991 3992
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3993
	ret = i915_gem_object_pin_pages(obj);
3994 3995 3996
	if (ret)
		return ret;

3997
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3998

3999 4000 4001 4002
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
4003
	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
4004 4005
		mb();

4006 4007 4008
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4009 4010
	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4011
	if (write) {
4012 4013
		obj->read_domains = I915_GEM_DOMAIN_GTT;
		obj->write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
4014
		obj->mm.dirty = true;
4015 4016
	}

C
Chris Wilson 已提交
4017
	i915_gem_object_unpin_pages(obj);
4018 4019 4020
	return 0;
}

4021 4022
/**
 * Changes the cache-level of an object across all VMA.
4023 4024
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
4036 4037 4038
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4039
	struct i915_vma *vma;
4040
	int ret;
4041

4042 4043
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4044
	if (obj->cache_level == cache_level)
4045
		return 0;
4046

4047 4048 4049 4050 4051
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
4052 4053
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4054 4055 4056
		if (!drm_mm_node_allocated(&vma->node))
			continue;

4057
		if (i915_vma_is_pinned(vma)) {
4058 4059 4060 4061
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

4062 4063
		if (!i915_vma_is_closed(vma) &&
		    i915_gem_valid_gtt_space(vma, cache_level))
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
4075 4076
	}

4077 4078 4079 4080 4081 4082 4083
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
4084
	if (obj->bind_count) {
4085 4086 4087 4088
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
4089 4090 4091 4092 4093 4094
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
4095 4096 4097
		if (ret)
			return ret;

4098 4099
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
4116
			for_each_ggtt_vma(vma, obj) {
4117 4118 4119 4120
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
4121 4122 4123 4124 4125 4126 4127 4128
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
4129 4130
		}

4131
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
4132 4133 4134 4135 4136 4137 4138
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
4139 4140
	}

4141
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4142
		vma->node.color = cache_level;
4143
	i915_gem_object_set_cache_coherency(obj, cache_level);
4144
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
4145

4146 4147 4148
	return 0;
}

B
Ben Widawsky 已提交
4149 4150
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4151
{
B
Ben Widawsky 已提交
4152
	struct drm_i915_gem_caching *args = data;
4153
	struct drm_i915_gem_object *obj;
4154
	int err = 0;
4155

4156 4157 4158 4159 4160 4161
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
4162

4163 4164 4165 4166 4167 4168
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4169 4170 4171 4172
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4173 4174 4175 4176
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4177 4178 4179
out:
	rcu_read_unlock();
	return err;
4180 4181
}

B
Ben Widawsky 已提交
4182 4183
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4184
{
4185
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
4186
	struct drm_i915_gem_caching *args = data;
4187 4188
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
4189
	int ret = 0;
4190

B
Ben Widawsky 已提交
4191 4192
	switch (args->caching) {
	case I915_CACHING_NONE:
4193 4194
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4195
	case I915_CACHING_CACHED:
4196 4197 4198 4199 4200 4201
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
4202
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4203 4204
			return -ENODEV;

4205 4206
		level = I915_CACHE_LLC;
		break;
4207
	case I915_CACHING_DISPLAY:
4208
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4209
		break;
4210 4211 4212 4213
	default:
		return -EINVAL;
	}

4214 4215 4216 4217
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

T
Tina Zhang 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226
	/*
	 * The caching mode of proxy object is handled by its generator, and
	 * not allowed to be changed by userspace.
	 */
	if (i915_gem_object_is_proxy(obj)) {
		ret = -ENXIO;
		goto out;
	}

4227 4228 4229 4230 4231 4232 4233
	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
4234
	if (ret)
4235
		goto out;
B
Ben Widawsky 已提交
4236

4237 4238 4239
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
4240 4241 4242

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
4243 4244 4245

out:
	i915_gem_object_put(obj);
4246 4247 4248
	return ret;
}

4249
/*
4250 4251 4252 4253
 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
 * (for pageflips). We only flush the caches while preparing the buffer for
 * display, the callers are responsible for frontbuffer flush.
4254
 */
C
Chris Wilson 已提交
4255
struct i915_vma *
4256 4257
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4258 4259
				     const struct i915_ggtt_view *view,
				     unsigned int flags)
4260
{
C
Chris Wilson 已提交
4261
	struct i915_vma *vma;
4262 4263
	int ret;

4264 4265
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4266
	/* Mark the global pin early so that we account for the
4267 4268
	 * display coherency whilst setting up the cache domains.
	 */
4269
	obj->pin_global++;
4270

4271 4272 4273 4274 4275 4276 4277 4278 4279
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4280
	ret = i915_gem_object_set_cache_level(obj,
4281 4282
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
4283 4284
	if (ret) {
		vma = ERR_PTR(ret);
4285
		goto err_unpin_global;
C
Chris Wilson 已提交
4286
	}
4287

4288 4289
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
4290 4291 4292 4293
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
4294
	 */
4295
	vma = ERR_PTR(-ENOSPC);
4296 4297
	if ((flags & PIN_MAPPABLE) == 0 &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4298
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4299 4300 4301 4302
					       flags |
					       PIN_MAPPABLE |
					       PIN_NONBLOCK);
	if (IS_ERR(vma))
4303
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
C
Chris Wilson 已提交
4304
	if (IS_ERR(vma))
4305
		goto err_unpin_global;
4306

4307 4308
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

4309
	__i915_gem_object_flush_for_display(obj);
4310

4311 4312 4313
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4314
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
4315

C
Chris Wilson 已提交
4316
	return vma;
4317

4318 4319
err_unpin_global:
	obj->pin_global--;
C
Chris Wilson 已提交
4320
	return vma;
4321 4322 4323
}

void
C
Chris Wilson 已提交
4324
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4325
{
4326
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4327

4328
	if (WARN_ON(vma->obj->pin_global == 0))
4329 4330
		return;

4331
	if (--vma->obj->pin_global == 0)
4332
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4333

4334
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4335
	i915_gem_object_bump_inactive_ggtt(vma->obj);
4336

C
Chris Wilson 已提交
4337
	i915_vma_unpin(vma);
4338 4339
}

4340 4341
/**
 * Moves a single object to the CPU read, and possibly write domain.
4342 4343
 * @obj: object to act on
 * @write: requesting write or read-only access
4344 4345 4346 4347
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4348
int
4349
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4350 4351 4352
{
	int ret;

4353
	lockdep_assert_held(&obj->base.dev->struct_mutex);
4354

4355 4356 4357 4358 4359 4360
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
4361 4362 4363
	if (ret)
		return ret;

4364
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4365

4366
	/* Flush the CPU cache if it's still invalid. */
4367
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4368
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4369
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
4370 4371 4372 4373 4374
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4375
	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4376 4377 4378 4379

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
4380 4381
	if (write)
		__start_cpu_write(obj);
4382 4383 4384 4385

	return 0;
}

4386 4387 4388
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4389 4390 4391 4392
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4393 4394 4395
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4396
static int
4397
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4398
{
4399
	struct drm_i915_private *dev_priv = to_i915(dev);
4400
	struct drm_i915_file_private *file_priv = file->driver_priv;
4401
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4402
	struct i915_request *request, *target = NULL;
4403
	long ret;
4404

4405 4406 4407
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4408

4409
	spin_lock(&file_priv->mm.lock);
4410
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4411 4412
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4413

4414 4415 4416 4417
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
4418

4419
		target = request;
4420
	}
4421
	if (target)
4422
		i915_request_get(target);
4423
	spin_unlock(&file_priv->mm.lock);
4424

4425
	if (target == NULL)
4426
		return 0;
4427

4428
	ret = i915_request_wait(target,
4429 4430
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
4431
	i915_request_put(target);
4432

4433
	return ret < 0 ? ret : 0;
4434 4435
}

C
Chris Wilson 已提交
4436
struct i915_vma *
4437 4438
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
4439
			 u64 size,
4440 4441
			 u64 alignment,
			 u64 flags)
4442
{
4443
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4444
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
4445 4446
	struct i915_vma *vma;
	int ret;
4447

4448 4449
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4450 4451
	if (flags & PIN_MAPPABLE &&
	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
		/* If the required space is larger than the available
		 * aperture, we will not able to find a slot for the
		 * object and unbinding the object now will be in
		 * vain. Worse, doing so may cause us to ping-pong
		 * the object in and out of the Global GTT and
		 * waste a lot of cycles under the mutex.
		 */
		if (obj->base.size > dev_priv->ggtt.mappable_end)
			return ERR_PTR(-E2BIG);

		/* If NONBLOCK is set the caller is optimistically
		 * trying to cache the full object within the mappable
		 * aperture, and *must* have a fallback in place for
		 * situations where we cannot bind the object. We
		 * can be a little more lax here and use the fallback
		 * more often to avoid costly migrations of ourselves
		 * and other objects within the aperture.
		 *
		 * Half-the-aperture is used as a simple heuristic.
		 * More interesting would to do search for a free
		 * block prior to making the commitment to unbind.
		 * That caters for the self-harm case, and with a
		 * little more heuristics (e.g. NOFAULT, NOEVICT)
		 * we could try to minimise harm to others.
		 */
		if (flags & PIN_NONBLOCK &&
		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
			return ERR_PTR(-ENOSPC);
	}

4482
	vma = i915_vma_instance(obj, vm, view);
4483
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4484
		return vma;
4485 4486

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4487 4488 4489
		if (flags & PIN_NONBLOCK) {
			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
				return ERR_PTR(-ENOSPC);
4490

4491
			if (flags & PIN_MAPPABLE &&
4492
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4493 4494 4495
				return ERR_PTR(-ENOSPC);
		}

4496 4497
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4498 4499 4500
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4501
		     !!(flags & PIN_MAPPABLE),
4502
		     i915_vma_is_map_and_fenceable(vma));
4503 4504
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4505
			return ERR_PTR(ret);
4506 4507
	}

C
Chris Wilson 已提交
4508 4509 4510
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4511

C
Chris Wilson 已提交
4512
	return vma;
4513 4514
}

4515
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4530 4531 4532 4533 4534 4535 4536 4537 4538
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4539 4540
}

4541
static __always_inline unsigned int
4542
__busy_set_if_active(const struct dma_fence *fence,
4543 4544
		     unsigned int (*flag)(unsigned int id))
{
4545
	struct i915_request *rq;
4546

4547 4548 4549 4550
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4551
	 *
4552
	 * Note we only report on the status of native fences.
4553
	 */
4554 4555 4556 4557
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
4558 4559
	rq = container_of(fence, struct i915_request, fence);
	if (i915_request_completed(rq))
4560 4561
		return 0;

4562
	return flag(rq->engine->uabi_id);
4563 4564
}

4565
static __always_inline unsigned int
4566
busy_check_reader(const struct dma_fence *fence)
4567
{
4568
	return __busy_set_if_active(fence, __busy_read_flag);
4569 4570
}

4571
static __always_inline unsigned int
4572
busy_check_writer(const struct dma_fence *fence)
4573
{
4574 4575 4576 4577
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4578 4579
}

4580 4581
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4582
		    struct drm_file *file)
4583 4584
{
	struct drm_i915_gem_busy *args = data;
4585
	struct drm_i915_gem_object *obj;
4586 4587
	struct reservation_object_list *list;
	unsigned int seq;
4588
	int err;
4589

4590
	err = -ENOENT;
4591 4592
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4593
	if (!obj)
4594
		goto out;
4595

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4614

4615 4616
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4617

4618 4619 4620 4621
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4622

4623 4624 4625 4626 4627 4628
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4629
	}
4630

4631 4632 4633 4634
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4635 4636 4637
out:
	rcu_read_unlock();
	return err;
4638 4639 4640 4641 4642 4643
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4644
	return i915_gem_ring_throttle(dev, file_priv);
4645 4646
}

4647 4648 4649 4650
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4651
	struct drm_i915_private *dev_priv = to_i915(dev);
4652
	struct drm_i915_gem_madvise *args = data;
4653
	struct drm_i915_gem_object *obj;
4654
	int err;
4655 4656 4657 4658 4659 4660 4661 4662 4663

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4664
	obj = i915_gem_object_lookup(file_priv, args->handle);
4665 4666 4667 4668 4669 4670
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4671

4672
	if (i915_gem_object_has_pages(obj) &&
4673
	    i915_gem_object_is_tiled(obj) &&
4674
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4675 4676
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4677
			__i915_gem_object_unpin_pages(obj);
4678 4679 4680
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4681
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4682
			__i915_gem_object_pin_pages(obj);
4683 4684
			obj->mm.quirked = true;
		}
4685 4686
	}

C
Chris Wilson 已提交
4687 4688
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4689

C
Chris Wilson 已提交
4690
	/* if the object is no longer attached, discard its backing storage */
4691 4692
	if (obj->mm.madv == I915_MADV_DONTNEED &&
	    !i915_gem_object_has_pages(obj))
4693 4694
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4695
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4696
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4697

4698
out:
4699
	i915_gem_object_put(obj);
4700
	return err;
4701 4702
}

4703
static void
4704
frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4705 4706 4707 4708
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4709
	intel_fb_obj_flush(obj, ORIGIN_CS);
4710 4711
}

4712 4713
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4714
{
4715 4716
	mutex_init(&obj->mm.lock);

B
Ben Widawsky 已提交
4717
	INIT_LIST_HEAD(&obj->vma_list);
4718
	INIT_LIST_HEAD(&obj->lut_list);
4719
	INIT_LIST_HEAD(&obj->batch_pool_link);
4720

4721 4722
	obj->ops = ops;

4723 4724 4725
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4726
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4727
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4728 4729 4730 4731

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4732

4733
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4734 4735
}

4736
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4737 4738
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4739

4740 4741
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4742 4743

	.pwrite = i915_gem_object_pwrite_gtt,
4744 4745
};

M
Matthew Auld 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
static int i915_gem_object_create_shmem(struct drm_device *dev,
					struct drm_gem_object *obj,
					size_t size)
{
	struct drm_i915_private *i915 = to_i915(dev);
	unsigned long flags = VM_NORESERVE;
	struct file *filp;

	drm_gem_private_object_init(dev, obj, size);

	if (i915->mm.gemfs)
		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
						 flags);
	else
		filp = shmem_file_setup("i915", size, flags);

	if (IS_ERR(filp))
		return PTR_ERR(filp);

	obj->filp = filp;

	return 0;
}

4770
struct drm_i915_gem_object *
4771
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4772
{
4773
	struct drm_i915_gem_object *obj;
4774
	struct address_space *mapping;
4775
	unsigned int cache_level;
D
Daniel Vetter 已提交
4776
	gfp_t mask;
4777
	int ret;
4778

4779 4780 4781 4782 4783
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4784
	if (size >> PAGE_SHIFT > INT_MAX)
4785 4786 4787 4788 4789
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4790
	obj = i915_gem_object_alloc(dev_priv);
4791
	if (obj == NULL)
4792
		return ERR_PTR(-ENOMEM);
4793

M
Matthew Auld 已提交
4794
	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4795 4796
	if (ret)
		goto fail;
4797

4798
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4799
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4800 4801 4802 4803 4804
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4805
	mapping = obj->base.filp->f_mapping;
4806
	mapping_set_gfp_mask(mapping, mask);
4807
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4808

4809
	i915_gem_object_init(obj, &i915_gem_object_ops);
4810

4811 4812
	obj->write_domain = I915_GEM_DOMAIN_CPU;
	obj->read_domains = I915_GEM_DOMAIN_CPU;
4813

4814
	if (HAS_LLC(dev_priv))
4815
		/* On some devices, we can have the GPU use the LLC (the CPU
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4827 4828 4829
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4830

4831
	i915_gem_object_set_cache_coherency(obj, cache_level);
4832

4833 4834
	trace_i915_gem_object_create(obj);

4835
	return obj;
4836 4837 4838 4839

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4840 4841
}

4842 4843 4844 4845 4846 4847 4848 4849
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4850
	if (obj->mm.madv != I915_MADV_WILLNEED)
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4866 4867
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4868
{
4869
	struct drm_i915_gem_object *obj, *on;
4870

4871
	intel_runtime_pm_get(i915);
4872
	llist_for_each_entry_safe(obj, on, freed, freed) {
4873 4874 4875 4876
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

4877 4878
		mutex_lock(&i915->drm.struct_mutex);

4879 4880 4881 4882 4883
		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
4884
			i915_vma_destroy(vma);
4885
		}
4886 4887
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4888

4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
		/* This serializes freeing with the shrinker. Since the free
		 * is delayed, first by RCU then by the workqueue, we want the
		 * shrinker to be able to free pages of unreferenced objects,
		 * or else we may oom whilst there are plenty of deferred
		 * freed objects.
		 */
		if (i915_gem_object_has_pages(obj)) {
			spin_lock(&i915->mm.obj_lock);
			list_del_init(&obj->mm.link);
			spin_unlock(&i915->mm.obj_lock);
		}

4901
		mutex_unlock(&i915->drm.struct_mutex);
4902 4903

		GEM_BUG_ON(obj->bind_count);
4904
		GEM_BUG_ON(obj->userfault_count);
4905
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4906
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4907 4908 4909

		if (obj->ops->release)
			obj->ops->release(obj);
4910

4911 4912
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4913
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4914
		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4915 4916 4917 4918

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4919
		reservation_object_fini(&obj->__builtin_resv);
4920 4921 4922 4923 4924
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
4925

4926 4927 4928
		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
		atomic_dec(&i915->mm.free_count);

4929 4930
		if (on)
			cond_resched();
4931
	}
4932
	intel_runtime_pm_put(i915);
4933 4934 4935 4936 4937 4938
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
	/* Free the oldest, most stale object to keep the free_list short */
	freed = NULL;
	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
		/* Only one consumer of llist_del_first() allowed */
		spin_lock(&i915->mm.free_lock);
		freed = llist_del_first(&i915->mm.free_list);
		spin_unlock(&i915->mm.free_lock);
	}
	if (unlikely(freed)) {
		freed->next = NULL;
4949
		__i915_gem_free_objects(i915, freed);
4950
	}
4951 4952 4953 4954 4955 4956 4957
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4958

4959 4960
	/*
	 * All file-owned VMA should have been released by this point through
4961 4962 4963 4964 4965 4966
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4967

4968
	spin_lock(&i915->mm.free_lock);
4969
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4970 4971
		spin_unlock(&i915->mm.free_lock);

4972
		__i915_gem_free_objects(i915, freed);
4973
		if (need_resched())
4974 4975 4976
			return;

		spin_lock(&i915->mm.free_lock);
4977
	}
4978
	spin_unlock(&i915->mm.free_lock);
4979
}
4980

4981 4982 4983 4984 4985 4986
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

4987 4988 4989 4990 4991 4992 4993 4994 4995
	/*
	 * Since we require blocking on struct_mutex to unbind the freed
	 * object from the GPU before releasing resources back to the
	 * system, we can not do that directly from the RCU callback (which may
	 * be a softirq context), but must instead then defer that work onto a
	 * kthread. We use the RCU callback rather than move the freed object
	 * directly onto the work queue so that we can mix between using the
	 * worker and performing frees directly from subsequent allocations for
	 * crude but effective memory throttling.
4996 4997
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
4998
		queue_work(i915->wq, &i915->mm.free_work);
4999
}
5000

5001 5002 5003
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
5004

5005 5006 5007
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

5008
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
5009
		obj->mm.madv = I915_MADV_DONTNEED;
5010

5011 5012
	/*
	 * Before we free the object, make sure any pure RCU-only
5013 5014 5015 5016
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
5017
	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5018
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5019 5020
}

5021 5022 5023 5024
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

5025 5026
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
5027 5028 5029 5030 5031
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

5032 5033
void i915_gem_sanitize(struct drm_i915_private *i915)
{
5034
	int err;
5035 5036 5037

	GEM_TRACE("\n");

5038
	mutex_lock(&i915->drm.struct_mutex);
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048

	intel_runtime_pm_get(i915);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);

	/*
	 * As we have just resumed the machine and woken the device up from
	 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
	 * back to defaults, recovering from whatever wedged state we left it
	 * in and so worth trying to use the device once more.
	 */
5049
	if (i915_terminally_wedged(&i915->gpu_error))
5050 5051
		i915_gem_unset_wedged(i915);

5052 5053 5054 5055 5056 5057
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
5058
	 * of the reset, so this could be applied to even earlier gen.
5059
	 */
5060
	err = -ENODEV;
5061
	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5062 5063 5064
		err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
	if (!err)
		intel_engines_sanitize(i915);
5065 5066 5067 5068

	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	intel_runtime_pm_put(i915);

5069 5070
	i915_gem_contexts_lost(i915);
	mutex_unlock(&i915->drm.struct_mutex);
5071 5072
}

C
Chris Wilson 已提交
5073
int i915_gem_suspend(struct drm_i915_private *i915)
5074
{
5075
	int ret;
5076

5077 5078
	GEM_TRACE("\n");

C
Chris Wilson 已提交
5079 5080
	intel_runtime_pm_get(i915);
	intel_suspend_gt_powersave(i915);
5081

C
Chris Wilson 已提交
5082
	mutex_lock(&i915->drm.struct_mutex);
5083

C
Chris Wilson 已提交
5084 5085
	/*
	 * We have to flush all the executing contexts to main memory so
5086 5087
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
C
Chris Wilson 已提交
5088
	 * leaves the i915->kernel_context still active when
5089 5090 5091 5092
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
C
Chris Wilson 已提交
5093 5094
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		ret = i915_gem_switch_to_kernel_context(i915);
5095 5096
		if (ret)
			goto err_unlock;
5097

C
Chris Wilson 已提交
5098
		ret = i915_gem_wait_for_idle(i915,
5099
					     I915_WAIT_INTERRUPTIBLE |
5100
					     I915_WAIT_LOCKED |
5101 5102
					     I915_WAIT_FOR_IDLE_BOOST,
					     MAX_SCHEDULE_TIMEOUT);
5103 5104
		if (ret && ret != -EIO)
			goto err_unlock;
5105

C
Chris Wilson 已提交
5106
		assert_kernel_context_is_current(i915);
5107
	}
5108 5109
	i915_retire_requests(i915); /* ensure we flush after wedging */

C
Chris Wilson 已提交
5110
	mutex_unlock(&i915->drm.struct_mutex);
5111

C
Chris Wilson 已提交
5112
	intel_uc_suspend(i915);
5113

C
Chris Wilson 已提交
5114 5115
	cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
	cancel_delayed_work_sync(&i915->gt.retire_work);
5116

C
Chris Wilson 已提交
5117 5118
	/*
	 * As the idle_work is rearming if it detects a race, play safe and
5119 5120
	 * repeat the flush until it is definitely idle.
	 */
C
Chris Wilson 已提交
5121
	drain_delayed_work(&i915->gt.idle_work);
5122

C
Chris Wilson 已提交
5123 5124
	/*
	 * Assert that we successfully flushed all the work and
5125 5126
	 * reset the GPU back to its idle, low power state.
	 */
C
Chris Wilson 已提交
5127 5128 5129
	WARN_ON(i915->gt.awake);
	if (WARN_ON(!intel_engines_are_idle(i915)))
		i915_gem_set_wedged(i915); /* no hope, discard everything */
5130

C
Chris Wilson 已提交
5131
	intel_runtime_pm_put(i915);
5132 5133 5134
	return 0;

err_unlock:
C
Chris Wilson 已提交
5135 5136
	mutex_unlock(&i915->drm.struct_mutex);
	intel_runtime_pm_put(i915);
5137 5138 5139 5140 5141
	return ret;
}

void i915_gem_suspend_late(struct drm_i915_private *i915)
{
5142 5143 5144 5145 5146 5147 5148
	struct drm_i915_gem_object *obj;
	struct list_head *phases[] = {
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
		NULL
	}, **phase;

5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */

5169 5170 5171 5172 5173 5174 5175
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
	}
	mutex_unlock(&i915->drm.struct_mutex);

5176 5177
	intel_uc_sanitize(i915);
	i915_gem_sanitize(i915);
5178 5179
}

5180
void i915_gem_resume(struct drm_i915_private *i915)
5181
{
5182 5183
	GEM_TRACE("\n");

5184
	WARN_ON(i915->gt.awake);
5185

5186 5187
	mutex_lock(&i915->drm.struct_mutex);
	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5188

5189 5190
	i915_gem_restore_gtt_mappings(i915);
	i915_gem_restore_fences(i915);
5191

5192 5193
	/*
	 * As we didn't flush the kernel context before suspend, we cannot
5194 5195 5196
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
5197
	i915->gt.resume(i915);
5198

5199 5200 5201
	if (i915_gem_init_hw(i915))
		goto err_wedged;

5202
	intel_uc_resume(i915);
5203

5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
	/* Always reload a context for powersaving. */
	if (i915_gem_switch_to_kernel_context(i915))
		goto err_wedged;

out_unlock:
	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
	mutex_unlock(&i915->drm.struct_mutex);
	return;

err_wedged:
5214 5215 5216 5217
	if (!i915_terminally_wedged(&i915->gpu_error)) {
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
		i915_gem_set_wedged(i915);
	}
5218
	goto out_unlock;
5219 5220
}

5221
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5222
{
5223
	if (INTEL_GEN(dev_priv) < 5 ||
5224 5225 5226 5227 5228 5229
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

5230
	if (IS_GEN5(dev_priv))
5231 5232
		return;

5233
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5234
	if (IS_GEN6(dev_priv))
5235
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5236
	else if (IS_GEN7(dev_priv))
5237
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5238
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
5239
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5240 5241
	else
		BUG();
5242
}
D
Daniel Vetter 已提交
5243

5244
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5245 5246 5247 5248 5249 5250 5251
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

5252
static void init_unused_rings(struct drm_i915_private *dev_priv)
5253
{
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
5266 5267 5268
	}
}

5269
static int __i915_gem_restart_engines(void *data)
5270
{
5271
	struct drm_i915_private *i915 = data;
5272
	struct intel_engine_cs *engine;
5273
	enum intel_engine_id id;
5274 5275 5276 5277
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
5278 5279 5280
		if (err) {
			DRM_ERROR("Failed to restart %s (%d)\n",
				  engine->name, err);
5281
			return err;
5282
		}
5283 5284 5285 5286 5287 5288 5289
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
5290
	int ret;
5291

5292 5293
	dev_priv->gt.last_init_time = ktime_get();

5294 5295 5296
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5297
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5298
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5299

5300
	if (IS_HASWELL(dev_priv))
5301
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5302
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5303

5304
	if (HAS_PCH_NOP(dev_priv)) {
5305
		if (IS_IVYBRIDGE(dev_priv)) {
5306 5307 5308
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
5309
		} else if (INTEL_GEN(dev_priv) >= 7) {
5310 5311 5312 5313
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5314 5315
	}

5316 5317
	intel_gt_workarounds_apply(dev_priv);

5318
	i915_gem_init_swizzling(dev_priv);
5319

5320 5321 5322 5323 5324 5325
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
5326
	init_unused_rings(dev_priv);
5327

5328
	BUG_ON(!dev_priv->kernel_context);
5329 5330 5331 5332
	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
		ret = -EIO;
		goto out;
	}
5333

5334
	ret = i915_ppgtt_init_hw(dev_priv);
5335
	if (ret) {
5336
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5337 5338 5339
		goto out;
	}

5340 5341 5342 5343 5344 5345
	ret = intel_wopcm_init_hw(&dev_priv->wopcm);
	if (ret) {
		DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
		goto out;
	}

5346 5347
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
5348 5349
	if (ret) {
		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5350
		goto out;
5351
	}
5352

5353
	intel_mocs_init_l3cc_table(dev_priv);
5354

5355 5356
	/* Only when the HW is re-initialised, can we replay the requests */
	ret = __i915_gem_restart_engines(dev_priv);
5357 5358
	if (ret)
		goto cleanup_uc;
5359

5360
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5361 5362

	return 0;
5363 5364 5365

cleanup_uc:
	intel_uc_fini_hw(dev_priv);
5366 5367 5368 5369
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);

	return ret;
5370 5371
}

5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
static int __intel_engines_record_defaults(struct drm_i915_private *i915)
{
	struct i915_gem_context *ctx;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	ctx = i915_gem_context_create_kernel(i915, 0);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	for_each_engine(engine, i915, id) {
5393
		struct i915_request *rq;
5394

5395
		rq = i915_request_alloc(engine, ctx);
5396 5397 5398 5399 5400
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			goto out_ctx;
		}

5401
		err = 0;
5402 5403 5404
		if (engine->init_context)
			err = engine->init_context(rq);

5405
		i915_request_add(rq);
5406 5407 5408 5409 5410 5411 5412 5413
		if (err)
			goto err_active;
	}

	err = i915_gem_switch_to_kernel_context(i915);
	if (err)
		goto err_active;

5414 5415 5416
	if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
		i915_gem_set_wedged(i915);
		err = -EIO; /* Caller will declare us wedged */
5417
		goto err_active;
5418
	}
5419 5420 5421 5422 5423

	assert_kernel_context_is_current(i915);

	for_each_engine(engine, i915, id) {
		struct i915_vma *state;
5424
		void *vaddr;
5425

5426 5427
		GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);

5428
		state = to_intel_context(ctx, engine)->state;
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
		if (!state)
			continue;

		/*
		 * As we will hold a reference to the logical state, it will
		 * not be torn down with the context, and importantly the
		 * object will hold onto its vma (making it possible for a
		 * stray GTT write to corrupt our defaults). Unmap the vma
		 * from the GTT to prevent such accidents and reclaim the
		 * space.
		 */
		err = i915_vma_unbind(state);
		if (err)
			goto err_active;

		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
		if (err)
			goto err_active;

		engine->default_state = i915_gem_object_get(state->obj);
5449 5450 5451

		/* Check we can acquire the image of the context state */
		vaddr = i915_gem_object_pin_map(engine->default_state,
5452
						I915_MAP_FORCE_WB);
5453 5454 5455 5456 5457 5458
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_active;
		}

		i915_gem_object_unpin_map(engine->default_state);
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	}

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
		unsigned int found = intel_engines_has_context_isolation(i915);

		/*
		 * Make sure that classes with multiple engine instances all
		 * share the same basic configuration.
		 */
		for_each_engine(engine, i915, id) {
			unsigned int bit = BIT(engine->uabi_class);
			unsigned int expected = engine->default_state ? bit : 0;

			if ((found & bit) != expected) {
				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
					  engine->uabi_class, engine->name);
			}
		}
	}

out_ctx:
	i915_gem_context_set_closed(ctx);
	i915_gem_context_put(ctx);
	return err;

err_active:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. First try to flush any remaining
	 * request, ensure we are pointing at the kernel context and
	 * then remove it.
	 */
	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
		goto out_ctx;

5494 5495 5496
	if (WARN_ON(i915_gem_wait_for_idle(i915,
					   I915_WAIT_LOCKED,
					   MAX_SCHEDULE_TIMEOUT)))
5497 5498 5499 5500 5501 5502
		goto out_ctx;

	i915_gem_contexts_lost(i915);
	goto out_ctx;
}

5503
int i915_gem_init(struct drm_i915_private *dev_priv)
5504 5505 5506
{
	int ret;

5507 5508
	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5509 5510 5511
		mkwrite_device_info(dev_priv)->page_sizes =
			I915_GTT_PAGE_SIZE_4K;

5512
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5513

5514
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5515
		dev_priv->gt.resume = intel_lr_context_resume;
5516
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5517 5518 5519
	} else {
		dev_priv->gt.resume = intel_legacy_submission_resume;
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5520 5521
	}

5522 5523 5524 5525
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		return ret;

5526
	ret = intel_uc_init_misc(dev_priv);
5527 5528 5529
	if (ret)
		return ret;

5530
	ret = intel_wopcm_init(&dev_priv->wopcm);
5531
	if (ret)
5532
		goto err_uc_misc;
5533

5534 5535 5536 5537 5538 5539
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
5540
	mutex_lock(&dev_priv->drm.struct_mutex);
5541 5542
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5543
	ret = i915_gem_init_ggtt(dev_priv);
5544 5545 5546 5547
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_unlock;
	}
5548

5549
	ret = i915_gem_contexts_init(dev_priv);
5550 5551 5552 5553
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_ggtt;
	}
5554

5555
	ret = intel_engines_init(dev_priv);
5556 5557 5558 5559
	if (ret) {
		GEM_BUG_ON(ret == -EIO);
		goto err_context;
	}
5560

5561 5562
	intel_init_gt_powersave(dev_priv);

5563
	ret = intel_uc_init(dev_priv);
5564
	if (ret)
5565
		goto err_pm;
5566

5567 5568 5569 5570
	ret = i915_gem_init_hw(dev_priv);
	if (ret)
		goto err_uc_init;

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	/*
	 * Despite its name intel_init_clock_gating applies both display
	 * clock gating workarounds; GT mmio workarounds and the occasional
	 * GT power context workaround. Worse, sometimes it includes a context
	 * register workaround which we need to apply before we record the
	 * default HW state for all contexts.
	 *
	 * FIXME: break up the workarounds and apply them at the right time!
	 */
	intel_init_clock_gating(dev_priv);

5582
	ret = __intel_engines_record_defaults(dev_priv);
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
	if (ret)
		goto err_init_hw;

	if (i915_inject_load_failure()) {
		ret = -ENODEV;
		goto err_init_hw;
	}

	if (i915_inject_load_failure()) {
		ret = -EIO;
		goto err_init_hw;
	}

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;

	/*
	 * Unwinding is complicated by that we want to handle -EIO to mean
	 * disable GPU submission but keep KMS alive. We want to mark the
	 * HW as irrevisibly wedged, but keep enough state around that the
	 * driver doesn't explode during runtime.
	 */
err_init_hw:
5608 5609 5610 5611 5612
	mutex_unlock(&dev_priv->drm.struct_mutex);

	WARN_ON(i915_gem_suspend(dev_priv));
	i915_gem_suspend_late(dev_priv);

5613 5614
	i915_gem_drain_workqueue(dev_priv);

5615
	mutex_lock(&dev_priv->drm.struct_mutex);
5616
	intel_uc_fini_hw(dev_priv);
5617 5618
err_uc_init:
	intel_uc_fini(dev_priv);
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
err_pm:
	if (ret != -EIO) {
		intel_cleanup_gt_powersave(dev_priv);
		i915_gem_cleanup_engines(dev_priv);
	}
err_context:
	if (ret != -EIO)
		i915_gem_contexts_fini(dev_priv);
err_ggtt:
err_unlock:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5632
err_uc_misc:
5633
	intel_uc_fini_misc(dev_priv);
5634

5635 5636 5637
	if (ret != -EIO)
		i915_gem_cleanup_userptr(dev_priv);

5638
	if (ret == -EIO) {
5639 5640
		mutex_lock(&dev_priv->drm.struct_mutex);

5641 5642
		/*
		 * Allow engine initialisation to fail by marking the GPU as
5643 5644 5645
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
5646
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5647 5648
			i915_load_error(dev_priv,
					"Failed to initialize GPU, declaring it wedged!\n");
5649 5650
			i915_gem_set_wedged(dev_priv);
		}
5651 5652 5653 5654 5655 5656 5657 5658

		/* Minimal basic recovery for KMS */
		ret = i915_ggtt_enable_hw(dev_priv);
		i915_gem_restore_gtt_mappings(dev_priv);
		i915_gem_restore_fences(dev_priv);
		intel_init_clock_gating(dev_priv);

		mutex_unlock(&dev_priv->drm.struct_mutex);
5659 5660
	}

5661
	i915_gem_drain_freed_objects(dev_priv);
5662
	return ret;
5663 5664
}

5665 5666 5667
void i915_gem_fini(struct drm_i915_private *dev_priv)
{
	i915_gem_suspend_late(dev_priv);
5668
	intel_disable_gt_powersave(dev_priv);
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679

	/* Flush any outstanding unpin_work. */
	i915_gem_drain_workqueue(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	intel_uc_fini_hw(dev_priv);
	intel_uc_fini(dev_priv);
	i915_gem_cleanup_engines(dev_priv);
	i915_gem_contexts_fini(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

5680 5681
	intel_cleanup_gt_powersave(dev_priv);

5682 5683 5684 5685 5686 5687 5688 5689
	intel_uc_fini_misc(dev_priv);
	i915_gem_cleanup_userptr(dev_priv);

	i915_gem_drain_freed_objects(dev_priv);

	WARN_ON(!list_empty(&dev_priv->contexts.list));
}

5690 5691 5692 5693 5694
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

5695
void
5696
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5697
{
5698
	struct intel_engine_cs *engine;
5699
	enum intel_engine_id id;
5700

5701
	for_each_engine(engine, dev_priv, id)
5702
		dev_priv->gt.cleanup_engine(engine);
5703 5704
}

5705 5706 5707
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
5708
	int i;
5709

5710
	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5711 5712
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
5713
	else if (INTEL_GEN(dev_priv) >= 4 ||
5714 5715
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5716 5717 5718 5719
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5720
	if (intel_vgpu_active(dev_priv))
5721 5722 5723 5724
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
5725 5726 5727 5728 5729 5730 5731
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
5732
	i915_gem_restore_fences(dev_priv);
5733

5734
	i915_gem_detect_bit_6_swizzle(dev_priv);
5735 5736
}

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static void i915_gem_init__mm(struct drm_i915_private *i915)
{
	spin_lock_init(&i915->mm.object_stat_lock);
	spin_lock_init(&i915->mm.obj_lock);
	spin_lock_init(&i915->mm.free_lock);

	init_llist_head(&i915->mm.free_list);

	INIT_LIST_HEAD(&i915->mm.unbound_list);
	INIT_LIST_HEAD(&i915->mm.bound_list);
	INIT_LIST_HEAD(&i915->mm.fence_list);
	INIT_LIST_HEAD(&i915->mm.userfault_list);

	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
}

5753
int i915_gem_init_early(struct drm_i915_private *dev_priv)
5754
{
5755
	int err = -ENOMEM;
5756

5757 5758
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
5759 5760
		goto err_out;

5761 5762
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
5763 5764
		goto err_objects;

5765 5766 5767 5768
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

5769
	dev_priv->requests = KMEM_CACHE(i915_request,
5770 5771
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
5772
					SLAB_TYPESAFE_BY_RCU);
5773
	if (!dev_priv->requests)
5774
		goto err_luts;
5775

5776 5777 5778 5779 5780 5781
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

5782 5783 5784 5785
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

5786
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5787
	INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5788
	INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5789

5790
	i915_gem_init__mm(dev_priv);
5791

5792
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5793
			  i915_gem_retire_work_handler);
5794
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5795
			  i915_gem_idle_work_handler);
5796
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5797
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5798

5799 5800
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

5801
	spin_lock_init(&dev_priv->fb_tracking.lock);
5802

M
Matthew Auld 已提交
5803 5804 5805 5806
	err = i915_gemfs_init(dev_priv);
	if (err)
		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);

5807 5808
	return 0;

5809 5810
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
5811 5812
err_requests:
	kmem_cache_destroy(dev_priv->requests);
5813 5814
err_luts:
	kmem_cache_destroy(dev_priv->luts);
5815 5816 5817 5818 5819 5820
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
5821
}
5822

5823
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5824
{
5825
	i915_gem_drain_freed_objects(dev_priv);
5826 5827
	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5828
	WARN_ON(dev_priv->mm.object_count);
5829 5830
	WARN_ON(!list_empty(&dev_priv->gt.timelines));

5831
	kmem_cache_destroy(dev_priv->priorities);
5832
	kmem_cache_destroy(dev_priv->dependencies);
5833
	kmem_cache_destroy(dev_priv->requests);
5834
	kmem_cache_destroy(dev_priv->luts);
5835 5836
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
5837 5838 5839

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
M
Matthew Auld 已提交
5840 5841

	i915_gemfs_fini(dev_priv);
5842 5843
}

5844 5845
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
5846 5847 5848
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5849 5850 5851 5852 5853
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5854
int i915_gem_freeze_late(struct drm_i915_private *i915)
5855 5856
{
	struct drm_i915_gem_object *obj;
5857
	struct list_head *phases[] = {
5858 5859
		&i915->mm.unbound_list,
		&i915->mm.bound_list,
5860
		NULL
5861
	}, **phase;
5862

5863 5864
	/*
	 * Called just before we write the hibernation image.
5865 5866 5867 5868 5869 5870 5871 5872
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5873 5874
	 *
	 * To try and reduce the hibernation image, we manually shrink
5875
	 * the objects as well, see i915_gem_freeze()
5876 5877
	 */

5878 5879
	i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
	i915_gem_drain_freed_objects(i915);
5880

5881 5882 5883 5884
	mutex_lock(&i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		list_for_each_entry(obj, *phase, mm.link)
			WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5885
	}
5886
	mutex_unlock(&i915->drm.struct_mutex);
5887 5888 5889 5890

	return 0;
}

5891
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5892
{
5893
	struct drm_i915_file_private *file_priv = file->driver_priv;
5894
	struct i915_request *request;
5895 5896 5897 5898 5899

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5900
	spin_lock(&file_priv->mm.lock);
5901
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5902
		request->file_priv = NULL;
5903
	spin_unlock(&file_priv->mm.lock);
5904 5905
}

5906
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5907 5908
{
	struct drm_i915_file_private *file_priv;
5909
	int ret;
5910

5911
	DRM_DEBUG("\n");
5912 5913 5914 5915 5916 5917

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5918
	file_priv->dev_priv = i915;
5919
	file_priv->file = file;
5920 5921 5922 5923

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5924
	file_priv->bsd_engine = -1;
5925
	file_priv->hang_timestamp = jiffies;
5926

5927
	ret = i915_gem_context_open(i915, file);
5928 5929
	if (ret)
		kfree(file_priv);
5930

5931
	return ret;
5932 5933
}

5934 5935
/**
 * i915_gem_track_fb - update frontbuffer tracking
5936 5937 5938
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5939 5940 5941 5942
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5943 5944 5945 5946
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5947 5948 5949 5950 5951 5952 5953 5954 5955
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5956
	if (old) {
5957 5958
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5959 5960 5961
	}

	if (new) {
5962 5963
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5964 5965 5966
	}
}

5967 5968
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5969
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5970 5971 5972
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5973 5974 5975
	struct file *file;
	size_t offset;
	int err;
5976

5977
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5978
	if (IS_ERR(obj))
5979 5980
		return obj;

5981
	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5982

5983 5984 5985 5986 5987 5988
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5989

5990 5991 5992 5993 5994
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5995

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
6010 6011 6012 6013

	return obj;

fail:
6014
	i915_gem_object_put(obj);
6015
	return ERR_PTR(err);
6016
}
6017 6018 6019 6020 6021 6022

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
6023
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6024 6025 6026 6027 6028
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
6029
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
6154
	if (!obj->mm.dirty)
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
6170

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

6206
	pages = __i915_gem_object_unset_pages(obj);
6207

6208 6209
	obj->ops = &i915_gem_phys_ops;

6210
	err = ____i915_gem_object_get_pages(obj);
6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
6224 6225 6226 6227 6228
	if (!IS_ERR_OR_NULL(pages)) {
		unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);

		__i915_gem_object_set_pages(obj, pages, sg_page_sizes);
	}
6229 6230 6231 6232 6233
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

6234 6235
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
6236
#include "selftests/mock_gem_device.c"
6237
#include "selftests/huge_gem_object.c"
M
Matthew Auld 已提交
6238
#include "selftests/huge_pages.c"
6239
#include "selftests/i915_gem_object.c"
6240
#include "selftests/i915_gem_coherency.c"
6241
#include "selftests/i915_gem.c"
6242
#endif