intel_pm.c 228.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/module.h>
29
#include <linux/pm_runtime.h>
30 31 32

#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
33
#include <drm/drm_plane_helper.h>
34

35
#include "display/intel_atomic.h"
36
#include "display/intel_display_types.h"
37 38 39
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"

A
Andi Shyti 已提交
40 41
#include "gt/intel_llc.h"

42
#include "i915_drv.h"
43
#include "i915_fixed.h"
44
#include "i915_irq.h"
45
#include "i915_trace.h"
46
#include "display/intel_bw.h"
47
#include "intel_pm.h"
48
#include "intel_sideband.h"
49
#include "../../../platform/x86/intel_ips.h"
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
/* Stores plane specific WM parameters */
struct skl_wm_params {
	bool x_tiled, y_tiled;
	bool rc_surface;
	bool is_planar;
	u32 width;
	u8 cpp;
	u32 plane_pixel_rate;
	u32 y_min_scanlines;
	u32 plane_bytes_per_line;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t y_tile_minimum;
	u32 linetime_us;
	u32 dbuf_block_size;
};

/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

74
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
75
{
76 77 78
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
79
		 * Display WA #0390: skl,kbl
80 81 82 83 84 85 86 87 88
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

89
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
90 91 92
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

93
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
94 95
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
96

97 98
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
99 100 101
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
102

103
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
104 105
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
106 107 108 109 110 111

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
112 113
}

114
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
115
{
116
	gen9_init_clock_gating(dev_priv);
117

118 119 120 121
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

122 123
	/*
	 * FIXME:
124
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
125 126
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
127
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
128 129 130 131 132

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
133 134
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
135 136 137 138 139 140 141 142

	/*
	 * Lower the display internal timeout.
	 * This is needed to avoid any hard hangs when DSI port PLL
	 * is off and a MMIO access is attempted by any privilege
	 * application, using batch buffers or any other means.
	 */
	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
143 144
}

145 146 147 148 149 150 151 152 153 154 155 156 157
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
}

158
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

196
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
197 198 199
{
	u16 ddrpll, csipll;

200 201
	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
217 218
		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
			ddrpll & 0xff);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
		dev_priv->mem_freq = 0;
		break;
	}

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
246 247
		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
			csipll & 0x3ff);
248 249 250 251 252
		dev_priv->fsb_freq = 0;
		break;
	}
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

291 292
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

315 316 317 318
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

319
	vlv_punit_get(dev_priv);
320 321 322 323 324 325 326 327 328 329 330 331

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
332 333
		drm_err(&dev_priv->drm,
			"timed out waiting for Punit DDR DVFS request\n");
334

335
	vlv_punit_put(dev_priv);
336 337
}

338 339 340 341
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

342
	vlv_punit_get(dev_priv);
343

344
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
345 346 347 348
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
349
	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
350

351
	vlv_punit_put(dev_priv);
352 353
}

354 355 356
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

357
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
358
{
359
	bool was_enabled;
360
	u32 val;
361

362
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
363
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
364
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
365
		POSTING_READ(FW_BLC_SELF_VLV);
366
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
367
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
368
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
369
		POSTING_READ(FW_BLC_SELF);
370
	} else if (IS_PINEVIEW(dev_priv)) {
371 372 373 374 375 376
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
377
		I915_WRITE(DSPFW3, val);
378
		POSTING_READ(DSPFW3);
379
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
380
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381 382 383
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
384
		POSTING_READ(FW_BLC_SELF);
385
	} else if (IS_I915GM(dev_priv)) {
386 387 388 389 390
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
391
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
392 393 394
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
395
		POSTING_READ(INSTPM);
396
	} else {
397
		return false;
398
	}
399

400 401
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

402 403 404
	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
		    enableddisabled(enable),
		    enableddisabled(was_enabled));
405 406

	return was_enabled;
407 408
}

V
Ville Syrjälä 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
446
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
447
{
448 449
	bool ret;

450
	mutex_lock(&dev_priv->wm.wm_mutex);
451
	ret = _intel_set_memory_cxsr(dev_priv, enable);
452 453 454 455
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
456
	mutex_unlock(&dev_priv->wm.wm_mutex);
457 458

	return ret;
459
}
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
475
static const int pessimal_latency_ns = 5000;
476

477 478 479
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

480
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
481
{
482
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
483
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
484
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
485 486
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
487
	u32 dsparb, dsparb2, dsparb3;
488

489
	switch (pipe) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
509 510
		MISSING_CASE(pipe);
		return;
511 512
	}

513 514 515 516
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
517 518
}

519 520
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
521
{
522
	u32 dsparb = I915_READ(DSPARB);
523 524 525
	int size;

	size = dsparb & 0x7f;
526
	if (i9xx_plane == PLANE_B)
527 528
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

529 530
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
531 532 533 534

	return size;
}

535 536
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
537
{
538
	u32 dsparb = I915_READ(DSPARB);
539 540 541
	int size;

	size = dsparb & 0x1ff;
542
	if (i9xx_plane == PLANE_B)
543 544 545
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

546 547
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
548 549 550 551

	return size;
}

552 553
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
554
{
555
	u32 dsparb = I915_READ(DSPARB);
556 557 558 559 560
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

561 562
	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
		    dsparb, plane_name(i9xx_plane), size);
563 564 565 566 567

	return size;
}

/* Pineview has different values for various configs */
568
static const struct intel_watermark_params pnv_display_wm = {
569 570 571 572 573
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574
};
575 576

static const struct intel_watermark_params pnv_display_hplloff_wm = {
577 578 579 580 581
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582
};
583 584

static const struct intel_watermark_params pnv_cursor_wm = {
585 586 587 588 589
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
590
};
591 592

static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
593 594 595 596 597
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598
};
599

600
static const struct intel_watermark_params i965_cursor_wm_info = {
601 602 603 604 605
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
606
};
607

608
static const struct intel_watermark_params i945_wm_info = {
609 610 611 612 613
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
614
};
615

616
static const struct intel_watermark_params i915_wm_info = {
617 618 619 620 621
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
622
};
623

624
static const struct intel_watermark_params i830_a_wm_info = {
625 626 627 628 629
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
630
};
631

632 633 634 635 636 637 638
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
639

640
static const struct intel_watermark_params i845_wm_info = {
641 642 643 644 645
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
646 647
};

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
685
	u64 ret;
686

687
	ret = mul_u32_u32(pixel_rate, cpp * latency);
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

744 745
/**
 * intel_calculate_wm - calculate watermark level
746
 * @pixel_rate: pixel clock
747
 * @wm: chip FIFO params
748
 * @fifo_size: size of the FIFO buffer
749
 * @cpp: bytes per pixel
750 751 752 753 754 755 756 757 758 759 760 761 762
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
763 764 765 766
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
767
{
768
	int entries, wm_size;
769 770 771 772 773 774 775

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
776 777 778 779 780
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
781

782 783
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
784 785

	/* Don't promote wm_size to unsigned... */
786
	if (wm_size > wm->max_wm)
787 788 789
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
790 791 792 793 794 795 796 797 798 799 800

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

801 802 803
	return wm_size;
}

804 805 806 807 808 809 810 811 812 813
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

814 815 816 817 818
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

819 820 821
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
822
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
823 824

	/* FIXME check the 'enable' instead */
825
	if (!crtc_state->hw.active)
826 827 828 829 830 831 832 833 834 835 836
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
837
		return plane_state->hw.fb != NULL;
838
	else
839
		return plane_state->uapi.visible;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static bool intel_crtc_active(struct intel_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 *
	 * We can ditch the adjusted_mode.crtc_clock check as soon
	 * as Haswell has gained clock readout/fastboot support.
	 *
	 * We can ditch the crtc->primary->state->fb check as soon as we can
	 * properly reconstruct framebuffers.
	 *
	 * FIXME: The intel_crtc->active here should be switched to
	 * crtc->state->active once we have proper CRTC states wired up
	 * for atomic.
	 */
	return crtc->active && crtc->base.primary->state->fb &&
		crtc->config->hw.adjusted_mode.crtc_clock;
}

861
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
862
{
863
	struct intel_crtc *crtc, *enabled = NULL;
864

865
	for_each_intel_crtc(&dev_priv->drm, crtc) {
866
		if (intel_crtc_active(crtc)) {
867 868 869 870 871 872 873 874 875
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

876
static void pnv_update_wm(struct intel_crtc *unused_crtc)
877
{
878
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
879
	struct intel_crtc *crtc;
880 881
	const struct cxsr_latency *latency;
	u32 reg;
882
	unsigned int wm;
883

884
	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
885 886 887
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
888
	if (!latency) {
889 890
		drm_dbg_kms(&dev_priv->drm,
			    "Unknown FSB/MEM found, disable CxSR\n");
891
		intel_set_memory_cxsr(dev_priv, false);
892 893 894
		return;
	}

895
	crtc = single_enabled_crtc(dev_priv);
896
	if (crtc) {
897
		const struct drm_display_mode *adjusted_mode =
898
			&crtc->config->hw.adjusted_mode;
899 900
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
901
		int cpp = fb->format->cpp[0];
902
		int clock = adjusted_mode->crtc_clock;
903 904

		/* Display SR */
905 906
		wm = intel_calculate_wm(clock, &pnv_display_wm,
					pnv_display_wm.fifo_size,
907
					cpp, latency->display_sr);
908 909
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
910
		reg |= FW_WM(wm, SR);
911
		I915_WRITE(DSPFW1, reg);
912
		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
913 914

		/* cursor SR */
915 916
		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
					pnv_display_wm.fifo_size,
917
					4, latency->cursor_sr);
918 919
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
920
		reg |= FW_WM(wm, CURSOR_SR);
921 922 923
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
924 925
		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
926
					cpp, latency->display_hpll_disable);
927 928
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
929
		reg |= FW_WM(wm, HPLL_SR);
930 931 932
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
933 934
		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
					pnv_display_hplloff_wm.fifo_size,
935
					4, latency->cursor_hpll_disable);
936 937
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
938
		reg |= FW_WM(wm, HPLL_CURSOR);
939
		I915_WRITE(DSPFW3, reg);
940
		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
941

942
		intel_set_memory_cxsr(dev_priv, true);
943
	} else {
944
		intel_set_memory_cxsr(dev_priv, false);
945 946 947
	}
}

948 949 950 951 952 953 954 955 956 957
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
958
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
959 960 961 962 963 964
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

965 966
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
967
{
968 969 970 971 972
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
990

991
	POSTING_READ(DSPFW1);
992 993
}

994 995 996
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

997
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
998 999
				const struct vlv_wm_values *wm)
{
1000 1001 1002
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
1003 1004
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

1005 1006 1007 1008 1009 1010
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

1023
	I915_WRITE(DSPFW1,
1024
		   FW_WM(wm->sr.plane, SR) |
1025 1026 1027
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1028
	I915_WRITE(DSPFW2,
1029 1030 1031
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1032
	I915_WRITE(DSPFW3,
1033
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1034 1035 1036

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1037 1038
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1039
		I915_WRITE(DSPFW8_CHV,
1040 1041
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1042
		I915_WRITE(DSPFW9_CHV,
1043 1044
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1045
		I915_WRITE(DSPHOWM,
1046
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1047 1048 1049 1050 1051 1052 1053 1054 1055
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1056 1057
	} else {
		I915_WRITE(DSPFW7,
1058 1059
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1060
		I915_WRITE(DSPHOWM,
1061
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1062 1063 1064 1065 1066 1067
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1068 1069 1070
	}

	POSTING_READ(DSPFW1);
1071 1072
}

1073 1074
#undef FW_WM_VLV

1075 1076 1077 1078 1079
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1080
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1081

1082
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

1127 1128 1129
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			  const struct intel_plane_state *plane_state,
			  int level)
1130
{
1131
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1132 1133
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
1134
		&crtc_state->hw.adjusted_mode;
1135 1136
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1137 1138 1139 1140 1141 1142 1143

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

1144
	cpp = plane_state->hw.fb->format->cpp[0];
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
1159
		cpp = max(cpp, 4u);
1160 1161 1162 1163

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

1164
	width = drm_rect_width(&plane_state->uapi.dst);
1165 1166 1167 1168 1169 1170 1171

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1172
		unsigned int small, large;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1185
	return min_t(unsigned int, wm, USHRT_MAX);
1186 1187 1188 1189 1190
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
1191
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
1207
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

1223 1224
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
1225
			      u32 pri_val);
1226 1227 1228 1229

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
1230
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1231
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
1284 1285 1286 1287 1288 1289
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			    plane->base.name,
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1290 1291

		if (plane_id == PLANE_PRIMARY)
1292 1293 1294 1295
			drm_dbg_kms(&dev_priv->drm,
				    "FBC watermarks: SR=%d, HPLL=%d\n",
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
1312
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1350
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1351
	struct intel_atomic_state *state =
1352
		to_intel_atomic_state(crtc_state->uapi.state);
1353
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1354 1355
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1356
	const struct g4x_pipe_wm *raw;
1357 1358
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1359 1360 1361 1362 1363
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1364 1365 1366
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1367 1368
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1369 1370
			continue;

1371
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

1437
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1438
{
1439
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1440 1441 1442
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
1443
		to_intel_atomic_state(new_crtc_state->uapi.state);
1444 1445 1446
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1447 1448
	enum plane_id plane_id;

1449
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1450 1451 1452 1453 1454 1455 1456
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1457
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1458
		!new_crtc_state->disable_cxsr;
1459
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1460
		!new_crtc_state->disable_cxsr;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1502
out:
1503 1504 1505 1506 1507
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1508
		new_crtc_state->wm.need_postvbl_update = true;
1509 1510 1511 1512 1513 1514 1515 1516

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
1517
	int num_active_pipes = 0;
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

1536
		num_active_pipes++;
1537 1538
	}

1539
	if (num_active_pipes != 1) {
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
1579
				   struct intel_crtc *crtc)
1580
{
1581 1582 1583
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1584 1585 1586 1587 1588 1589 1590 1591

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1592
				    struct intel_crtc *crtc)
1593
{
1594 1595 1596
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1597 1598 1599 1600 1601

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
1602
	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1603 1604 1605 1606
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1607 1608
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1609 1610
				   unsigned int htotal,
				   unsigned int width,
1611
				   unsigned int cpp,
1612 1613 1614 1615
				   unsigned int latency)
{
	unsigned int ret;

1616 1617
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1618 1619 1620 1621 1622
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1623
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1624 1625 1626 1627
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1628 1629
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1630 1631 1632
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1633 1634

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1635 1636 1637
	}
}

1638 1639 1640
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				const struct intel_plane_state *plane_state,
				int level)
1641
{
1642
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1643
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1644
	const struct drm_display_mode *adjusted_mode =
1645
		&crtc_state->hw.adjusted_mode;
1646
	unsigned int clock, htotal, cpp, width, wm;
1647 1648 1649 1650

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1651
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1652 1653
		return 0;

1654
	cpp = plane_state->hw.fb->format->cpp[0];
1655 1656 1657
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1658

1659
	if (plane->id == PLANE_CURSOR) {
1660 1661 1662 1663 1664 1665 1666 1667
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1668
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1669 1670 1671
				    dev_priv->wm.pri_latency[level] * 10);
	}

1672
	return min_t(unsigned int, wm, USHRT_MAX);
1673 1674
}

1675 1676 1677 1678 1679 1680
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1681
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1682
{
1683
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1684
	const struct g4x_pipe_wm *raw =
1685
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1686
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1687
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1688
	int num_active_planes = hweight8(active_planes);
1689
	const int fifo_size = 511;
1690
	int fifo_extra, fifo_left = fifo_size;
1691
	int sprite0_fifo_extra = 0;
1692 1693
	unsigned int total_rate;
	enum plane_id plane_id;
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1706 1707
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1708 1709
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1710

1711 1712
	if (total_rate > fifo_size)
		return -EINVAL;
1713

1714 1715
	if (total_rate == 0)
		total_rate = 1;
1716

1717
	for_each_plane_id_on_crtc(crtc, plane_id) {
1718 1719
		unsigned int rate;

1720 1721
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1722 1723 1724
			continue;
		}

1725 1726 1727
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1728 1729
	}

1730 1731 1732
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1733 1734 1735
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1736 1737

	/* spread the remainder evenly */
1738
	for_each_plane_id_on_crtc(crtc, plane_id) {
1739 1740 1741 1742 1743
		int plane_extra;

		if (fifo_left == 0)
			break;

1744
		if ((active_planes & BIT(plane_id)) == 0)
1745 1746 1747
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1748
		fifo_state->plane[plane_id] += plane_extra;
1749 1750 1751
		fifo_left -= plane_extra;
	}

1752 1753 1754 1755 1756 1757 1758 1759 1760
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1761 1762
}

1763 1764 1765 1766 1767 1768
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1769
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1780 1781 1782 1783 1784 1785 1786 1787
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1788 1789 1790 1791
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1792
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1793
				 int level, enum plane_id plane_id, u16 value)
1794
{
1795
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1796
	int num_levels = intel_wm_num_levels(dev_priv);
1797
	bool dirty = false;
1798

1799
	for (; level < num_levels; level++) {
1800
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1801

1802
		dirty |= raw->plane[plane_id] != value;
1803
		raw->plane[plane_id] = value;
1804
	}
1805 1806

	return dirty;
1807 1808
}

1809 1810
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1811
{
1812
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1813
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1814
	enum plane_id plane_id = plane->id;
1815
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1816
	int level;
1817
	bool dirty = false;
1818

1819
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1820 1821
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1822
	}
1823

1824
	for (level = 0; level < num_levels; level++) {
1825
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1826 1827
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1828

1829 1830
		if (wm > max_wm)
			break;
1831

1832
		dirty |= raw->plane[plane_id] != wm;
1833 1834
		raw->plane[plane_id] = wm;
	}
1835

1836
	/* mark all higher levels as invalid */
1837
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1838

1839 1840
out:
	if (dirty)
1841 1842 1843 1844 1845 1846
		drm_dbg_kms(&dev_priv->drm,
			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
			    plane->base.name,
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1847 1848

	return dirty;
1849
}
1850

1851 1852
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1853
{
1854
	const struct g4x_pipe_wm *raw =
1855 1856 1857
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1858

1859 1860
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1861

1862
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1863
{
1864 1865 1866 1867
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1868 1869 1870 1871
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
1872
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1873 1874
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
1875
		to_intel_atomic_state(crtc_state->uapi.state);
1876 1877 1878
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1879 1880
	int num_active_planes = hweight8(crtc_state->active_planes &
					 ~BIT(PLANE_CURSOR));
1881
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1882 1883
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1884 1885 1886
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1887
	unsigned int dirty = 0;
1888

1889 1890 1891
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
1892 1893
		if (new_plane_state->hw.crtc != &crtc->base &&
		    old_plane_state->hw.crtc != &crtc->base)
1894
			continue;
1895

1896
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1915
			intel_atomic_get_old_crtc_state(state, crtc);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1927
	}
1928

1929
	/* initially allow all levels */
1930
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1931 1932 1933 1934 1935
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1936
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1937

1938
	for (level = 0; level < wm_state->num_levels; level++) {
1939
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1940
		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1941

1942
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1943
			break;
1944

1945 1946 1947 1948 1949 1950 1951 1952
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1953
						 raw->plane[PLANE_SPRITE0],
1954 1955
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1956

1957 1958 1959
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1960 1961
	}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1972 1973
}

1974 1975 1976
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1977
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1978
				   struct intel_crtc *crtc)
1979
{
1980
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1981
	struct intel_uncore *uncore = &dev_priv->uncore;
1982 1983
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
1984 1985
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1986
	int sprite0_start, sprite1_start, fifo_size;
1987
	u32 dsparb, dsparb2, dsparb3;
1988

1989 1990 1991
	if (!crtc_state->fifo_changed)
		return;

1992 1993 1994
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1995

1996 1997
	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
1998

1999 2000
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

2001 2002 2003 2004 2005 2006 2007 2008 2009
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
2010
	spin_lock(&uncore->lock);
2011

2012 2013
	switch (crtc->pipe) {
	case PIPE_A:
2014 2015
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

2027 2028
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2029 2030
		break;
	case PIPE_B:
2031 2032
		dsparb = intel_uncore_read_fw(uncore, DSPARB);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2044 2045
		intel_uncore_write_fw(uncore, DSPARB, dsparb);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2046 2047
		break;
	case PIPE_C:
2048 2049
		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2061 2062
		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2063 2064 2065 2066
		break;
	default:
		break;
	}
2067

2068
	intel_uncore_posting_read_fw(uncore, DSPARB);
2069

2070
	spin_unlock(&uncore->lock);
2071 2072 2073 2074
}

#undef VLV_FIFO

2075
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2076
{
2077
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2078 2079 2080
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
2081
		to_intel_atomic_state(new_crtc_state->uapi.state);
2082 2083 2084
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2085 2086
	int level;

2087
	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2088 2089 2090 2091 2092 2093
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2094
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2095
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2096
		!new_crtc_state->disable_cxsr;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2115
out:
2116 2117 2118 2119
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2120
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2121
		new_crtc_state->wm.need_postvbl_update = true;
2122 2123 2124 2125

	return 0;
}

2126
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2127 2128 2129
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
2130
	int num_active_pipes = 0;
2131

2132
	wm->level = dev_priv->wm.max_level;
2133 2134
	wm->cxsr = true;

2135
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2136
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2137 2138 2139 2140 2141 2142 2143

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

2144
		num_active_pipes++;
2145 2146 2147
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

2148
	if (num_active_pipes != 1)
2149 2150
		wm->cxsr = false;

2151
	if (num_active_pipes > 1)
2152 2153
		wm->level = VLV_WM_LEVEL_PM2;

2154
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2155
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2156 2157 2158
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2159
		if (crtc->active && wm->cxsr)
2160 2161
			wm->sr = wm_state->sr[wm->level];

2162 2163 2164 2165
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2166 2167 2168
	}
}

2169
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2170
{
2171 2172
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2173

2174
	vlv_merge_wm(dev_priv, &new_wm);
2175

2176
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2177 2178
		return;

2179
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2180 2181
		chv_set_memory_dvfs(dev_priv, false);

2182
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2183 2184
		chv_set_memory_pm5(dev_priv, false);

2185
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2186
		_intel_set_memory_cxsr(dev_priv, false);
2187

2188
	vlv_write_wm_values(dev_priv, &new_wm);
2189

2190
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2191
		_intel_set_memory_cxsr(dev_priv, true);
2192

2193
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2194 2195
		chv_set_memory_pm5(dev_priv, true);

2196
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2197 2198
		chv_set_memory_dvfs(dev_priv, true);

2199
	*old_wm = new_wm;
2200 2201
}

2202
static void vlv_initial_watermarks(struct intel_atomic_state *state,
2203
				   struct intel_crtc *crtc)
2204
{
2205 2206 2207
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2208 2209

	mutex_lock(&dev_priv->wm.wm_mutex);
2210 2211 2212 2213 2214 2215
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2216
				    struct intel_crtc *crtc)
2217
{
2218 2219 2220
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
2221 2222 2223 2224 2225

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
2226
	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2227 2228 2229 2230
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2231
static void i965_update_wm(struct intel_crtc *unused_crtc)
2232
{
2233
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2234
	struct intel_crtc *crtc;
2235 2236
	int srwm = 1;
	int cursor_sr = 16;
2237
	bool cxsr_enabled;
2238 2239

	/* Calc sr entries for one plane configs */
2240
	crtc = single_enabled_crtc(dev_priv);
2241 2242 2243
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2244
		const struct drm_display_mode *adjusted_mode =
2245
			&crtc->config->hw.adjusted_mode;
2246 2247
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2248
		int clock = adjusted_mode->crtc_clock;
2249
		int htotal = adjusted_mode->crtc_htotal;
2250
		int hdisplay = crtc->config->pipe_src_w;
2251
		int cpp = fb->format->cpp[0];
2252 2253
		int entries;

2254 2255
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2256 2257 2258 2259 2260
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
2261 2262 2263
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d, wm: %d\n",
			    entries, srwm);
2264

2265 2266 2267
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2268
		entries = DIV_ROUND_UP(entries,
2269 2270
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2271

2272
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2273 2274 2275
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

2276 2277 2278
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh watermark: display plane %d "
			    "cursor %d\n", srwm, cursor_sr);
2279

2280
		cxsr_enabled = true;
2281
	} else {
2282
		cxsr_enabled = false;
2283
		/* Turn off self refresh if both pipes are enabled */
2284
		intel_set_memory_cxsr(dev_priv, false);
2285 2286
	}

2287 2288 2289
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		    srwm);
2290 2291

	/* 965 has limitations... */
2292 2293 2294 2295 2296 2297
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2298
	/* update cursor SR watermark */
2299
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2300 2301 2302

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2303 2304
}

2305 2306
#undef FW_WM

2307
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2308
{
2309
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2310
	const struct intel_watermark_params *wm_info;
2311 2312
	u32 fwater_lo;
	u32 fwater_hi;
2313 2314 2315
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2316
	struct intel_crtc *crtc, *enabled = NULL;
2317

2318
	if (IS_I945GM(dev_priv))
2319
		wm_info = &i945_wm_info;
2320
	else if (!IS_GEN(dev_priv, 2))
2321 2322
		wm_info = &i915_wm_info;
	else
2323
		wm_info = &i830_a_wm_info;
2324

2325 2326
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2327 2328
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2329
			&crtc->config->hw.adjusted_mode;
2330 2331 2332 2333
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2334
		if (IS_GEN(dev_priv, 2))
2335
			cpp = 4;
2336
		else
2337
			cpp = fb->format->cpp[0];
2338

2339
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2340
					       wm_info, fifo_size, cpp,
2341
					       pessimal_latency_ns);
2342
		enabled = crtc;
2343
	} else {
2344
		planea_wm = fifo_size - wm_info->guard_size;
2345 2346 2347 2348
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2349
	if (IS_GEN(dev_priv, 2))
2350
		wm_info = &i830_bc_wm_info;
2351

2352 2353
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2354 2355
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
2356
			&crtc->config->hw.adjusted_mode;
2357 2358 2359 2360
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2361
		if (IS_GEN(dev_priv, 2))
2362
			cpp = 4;
2363
		else
2364
			cpp = fb->format->cpp[0];
2365

2366
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2367
					       wm_info, fifo_size, cpp,
2368
					       pessimal_latency_ns);
2369 2370 2371 2372
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2373
	} else {
2374
		planeb_wm = fifo_size - wm_info->guard_size;
2375 2376 2377
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2378

2379 2380
	drm_dbg_kms(&dev_priv->drm,
		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2381

2382
	if (IS_I915GM(dev_priv) && enabled) {
2383
		struct drm_i915_gem_object *obj;
2384

2385
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2386 2387

		/* self-refresh seems busted with untiled */
2388
		if (!i915_gem_object_is_tiled(obj))
2389 2390 2391
			enabled = NULL;
	}

2392 2393 2394 2395 2396 2397
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2398
	intel_set_memory_cxsr(dev_priv, false);
2399 2400

	/* Calc sr entries for one plane configs */
2401
	if (HAS_FW_BLC(dev_priv) && enabled) {
2402 2403
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2404
		const struct drm_display_mode *adjusted_mode =
2405
			&enabled->config->hw.adjusted_mode;
2406 2407
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2408
		int clock = adjusted_mode->crtc_clock;
2409
		int htotal = adjusted_mode->crtc_htotal;
2410 2411
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2412 2413
		int entries;

2414
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2415
			cpp = 4;
2416
		else
2417
			cpp = fb->format->cpp[0];
2418

2419 2420
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2421
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2422 2423
		drm_dbg_kms(&dev_priv->drm,
			    "self-refresh entries: %d\n", entries);
2424 2425 2426 2427
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2428
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2429 2430
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2431
		else
2432 2433 2434
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

2435 2436 2437
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		     planea_wm, planeb_wm, cwm, srwm);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2449 2450
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2451 2452
}

2453
static void i845_update_wm(struct intel_crtc *unused_crtc)
2454
{
2455
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2456
	struct intel_crtc *crtc;
2457
	const struct drm_display_mode *adjusted_mode;
2458
	u32 fwater_lo;
2459 2460
	int planea_wm;

2461
	crtc = single_enabled_crtc(dev_priv);
2462 2463 2464
	if (crtc == NULL)
		return;

2465
	adjusted_mode = &crtc->config->hw.adjusted_mode;
2466
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2467
				       &i845_wm_info,
2468
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2469
				       4, pessimal_latency_ns);
2470 2471 2472
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

2473 2474
	drm_dbg_kms(&dev_priv->drm,
		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2475 2476 2477 2478

	I915_WRITE(FW_BLC, fwater_lo);
}

2479
/* latency must be in 0.1us units. */
2480 2481 2482
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2483
{
2484
	unsigned int ret;
2485

2486 2487
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2488 2489 2490 2491

	return ret;
}

2492
/* latency must be in 0.1us units. */
2493 2494 2495 2496 2497
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2498
{
2499
	unsigned int ret;
2500

2501 2502
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2503
	ret = DIV_ROUND_UP(ret, 64) + 2;
2504

2505 2506 2507
	return ret;
}

2508
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2509
{
2510 2511 2512 2513 2514 2515
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2516
	if (WARN_ON(!cpp))
2517 2518 2519 2520
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2521
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2522 2523
}

2524
struct ilk_wm_maximums {
2525 2526 2527 2528
	u16 pri;
	u16 spr;
	u16 cur;
	u16 fbc;
2529 2530
};

2531 2532 2533 2534
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2535 2536
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2537
			      u32 mem_value, bool is_lp)
2538
{
2539
	u32 method1, method2;
2540
	int cpp;
2541

2542 2543 2544
	if (mem_value == 0)
		return U32_MAX;

2545
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2546 2547
		return 0;

2548
	cpp = plane_state->hw.fb->format->cpp[0];
2549

2550
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2551 2552 2553 2554

	if (!is_lp)
		return method1;

2555
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2556
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2557
				 drm_rect_width(&plane_state->uapi.dst),
2558
				 cpp, mem_value);
2559 2560

	return min(method1, method2);
2561 2562
}

2563 2564 2565 2566
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2567 2568
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2569
			      u32 mem_value)
2570
{
2571
	u32 method1, method2;
2572
	int cpp;
2573

2574 2575 2576
	if (mem_value == 0)
		return U32_MAX;

2577
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2578 2579
		return 0;

2580
	cpp = plane_state->hw.fb->format->cpp[0];
2581

2582 2583
	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2584
				 crtc_state->hw.adjusted_mode.crtc_htotal,
2585
				 drm_rect_width(&plane_state->uapi.dst),
2586
				 cpp, mem_value);
2587 2588 2589
	return min(method1, method2);
}

2590 2591 2592 2593
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2594 2595
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2596
			      u32 mem_value)
2597
{
2598 2599
	int cpp;

2600 2601 2602
	if (mem_value == 0)
		return U32_MAX;

2603
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2604 2605
		return 0;

2606
	cpp = plane_state->hw.fb->format->cpp[0];
2607

2608
	return ilk_wm_method2(crtc_state->pixel_rate,
2609
			      crtc_state->hw.adjusted_mode.crtc_htotal,
2610
			      drm_rect_width(&plane_state->uapi.dst),
2611
			      cpp, mem_value);
2612 2613
}

2614
/* Only for WM_LP. */
2615 2616
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state,
2617
			      u32 pri_val)
2618
{
2619
	int cpp;
2620

2621
	if (!intel_wm_plane_visible(crtc_state, plane_state))
2622 2623
		return 0;

2624
	cpp = plane_state->hw.fb->format->cpp[0];
2625

2626 2627
	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
			  cpp);
2628 2629
}

2630 2631
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2632
{
2633
	if (INTEL_GEN(dev_priv) >= 8)
2634
		return 3072;
2635
	else if (INTEL_GEN(dev_priv) >= 7)
2636 2637 2638 2639 2640
		return 768;
	else
		return 512;
}

2641 2642 2643
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2644
{
2645
	if (INTEL_GEN(dev_priv) >= 8)
2646 2647
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2648
	else if (INTEL_GEN(dev_priv) >= 7)
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2659 2660
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2661
{
2662
	if (INTEL_GEN(dev_priv) >= 7)
2663 2664 2665 2666 2667
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2668
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2669
{
2670
	if (INTEL_GEN(dev_priv) >= 8)
2671 2672 2673 2674 2675
		return 31;
	else
		return 15;
}

2676
/* Calculate the maximum primary/sprite plane watermark */
2677
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2678
				     int level,
2679
				     const struct intel_wm_config *config,
2680 2681 2682
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2683
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2684 2685

	/* if sprites aren't enabled, sprites get nothing */
2686
	if (is_sprite && !config->sprites_enabled)
2687 2688 2689
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2690
	if (level == 0 || config->num_pipes_active > 1) {
2691
		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2692 2693 2694 2695 2696 2697

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2698
		if (INTEL_GEN(dev_priv) <= 6)
2699 2700 2701
			fifo_size /= 2;
	}

2702
	if (config->sprites_enabled) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2714
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2715 2716 2717
}

/* Calculate the maximum cursor plane watermark */
2718
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2719 2720
				      int level,
				      const struct intel_wm_config *config)
2721 2722
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2723
	if (level > 0 && config->num_pipes_active > 1)
2724 2725 2726
		return 64;

	/* otherwise just report max that registers can hold */
2727
	return ilk_cursor_wm_reg_max(dev_priv, level);
2728 2729
}

2730
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2731 2732 2733
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2734
				    struct ilk_wm_maximums *max)
2735
{
2736 2737 2738 2739
	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2740 2741
}

2742
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2743 2744 2745
					int level,
					struct ilk_wm_maximums *max)
{
2746 2747 2748 2749
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2750 2751
}

2752
static bool ilk_validate_wm_level(int level,
2753
				  const struct ilk_wm_maximums *max,
2754
				  struct intel_wm_level *result)
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

2784 2785 2786
		result->pri_val = min_t(u32, result->pri_val, max->pri);
		result->spr_val = min_t(u32, result->spr_val, max->spr);
		result->cur_val = min_t(u32, result->cur_val, max->cur);
2787 2788 2789 2790 2791 2792
		result->enable = true;
	}

	return ret;
}

2793
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2794
				 const struct intel_crtc *crtc,
2795
				 int level,
2796
				 struct intel_crtc_state *crtc_state,
2797 2798 2799
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2800
				 struct intel_wm_level *result)
2801
{
2802 2803 2804
	u16 pri_latency = dev_priv->wm.pri_latency[level];
	u16 spr_latency = dev_priv->wm.spr_latency[level];
	u16 cur_latency = dev_priv->wm.cur_latency[level];
2805 2806 2807 2808 2809 2810 2811 2812

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2813
	if (pristate) {
2814
		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2815
						     pri_latency, level);
2816
		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2817 2818 2819
	}

	if (sprstate)
2820
		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2821 2822

	if (curstate)
2823
		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2824

2825 2826 2827
	result->enable = true;
}

2828
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2829
				  u16 wm[8])
2830
{
2831 2832
	struct intel_uncore *uncore = &dev_priv->uncore;

2833
	if (INTEL_GEN(dev_priv) >= 9) {
2834
		u32 val;
2835
		int ret, i;
2836
		int level, max_level = ilk_wm_max_level(dev_priv);
2837 2838 2839 2840 2841

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2842
					     &val, NULL);
2843 2844

		if (ret) {
2845 2846
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
2862
					     &val, NULL);
2863
		if (ret) {
2864 2865
			drm_err(&dev_priv->drm,
				"SKL Mailbox read error = %d\n", ret);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2890
		/*
2891
		 * WaWmMemoryReadLatency:skl+,glk
2892
		 *
2893
		 * punit doesn't take into account the read latency so we need
2894 2895
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2896
		 */
2897 2898 2899 2900 2901
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2902
				wm[level] += 2;
2903
			}
2904 2905
		}

2906 2907 2908 2909 2910 2911
		/*
		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
		 * If we could not get dimm info enable this WA to prevent from
		 * any underrun. If not able to get Dimm info assume 16GB dimm
		 * to avoid any underrun.
		 */
2912
		if (dev_priv->dram_info.is_16gb_dimm)
2913 2914
			wm[0] += 1;

2915
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2916
		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2917 2918 2919 2920

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2921 2922 2923 2924
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2925
	} else if (INTEL_GEN(dev_priv) >= 6) {
2926
		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2927 2928 2929 2930 2931

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2932
	} else if (INTEL_GEN(dev_priv) >= 5) {
2933
		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2934 2935 2936 2937 2938

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2939 2940
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2941 2942 2943
	}
}

2944
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2945
				       u16 wm[5])
2946 2947
{
	/* ILK sprite LP0 latency is 1300 ns */
2948
	if (IS_GEN(dev_priv, 5))
2949 2950 2951
		wm[0] = 13;
}

2952
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2953
				       u16 wm[5])
2954 2955
{
	/* ILK cursor LP0 latency is 1300 ns */
2956
	if (IS_GEN(dev_priv, 5))
2957 2958 2959
		wm[0] = 13;
}

2960
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2961 2962
{
	/* how many WM levels are we expecting */
2963
	if (INTEL_GEN(dev_priv) >= 9)
2964
		return 7;
2965
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2966
		return 4;
2967
	else if (INTEL_GEN(dev_priv) >= 6)
2968
		return 3;
2969
	else
2970 2971
		return 2;
}
2972

2973
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2974
				   const char *name,
2975
				   const u16 wm[8])
2976
{
2977
	int level, max_level = ilk_wm_max_level(dev_priv);
2978 2979 2980 2981 2982

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
2983 2984 2985
			drm_dbg_kms(&dev_priv->drm,
				    "%s WM%d latency not provided\n",
				    name, level);
2986 2987 2988
			continue;
		}

2989 2990 2991 2992
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2993
		if (INTEL_GEN(dev_priv) >= 9)
2994 2995
			latency *= 10;
		else if (level > 0)
2996 2997
			latency *= 5;

2998 2999 3000
		drm_dbg_kms(&dev_priv->drm,
			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
			    wm[level], latency / 10, latency % 10);
3001 3002 3003
	}
}

3004
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3005
				    u16 wm[5], u16 min)
3006
{
3007
	int level, max_level = ilk_wm_max_level(dev_priv);
3008 3009 3010 3011 3012 3013

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
3014
		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3015 3016 3017 3018

	return true;
}

3019
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

3034 3035
	drm_dbg_kms(&dev_priv->drm,
		    "WM latency values increased to avoid potential underruns\n");
3036 3037 3038
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3039 3040
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
	/*
	 * On some SNB machines (Thinkpad X220 Tablet at least)
	 * LP3 usage can cause vblank interrupts to be lost.
	 * The DEIIR bit will go high but it looks like the CPU
	 * never gets interrupted.
	 *
	 * It's not clear whether other interrupt source could
	 * be affected or if this is somehow limited to vblank
	 * interrupts only. To play it safe we disable LP3
	 * watermarks entirely.
	 */
	if (dev_priv->wm.pri_latency[3] == 0 &&
	    dev_priv->wm.spr_latency[3] == 0 &&
	    dev_priv->wm.cur_latency[3] == 0)
		return;

	dev_priv->wm.pri_latency[3] = 0;
	dev_priv->wm.spr_latency[3] = 0;
	dev_priv->wm.cur_latency[3] = 0;

3063 3064
	drm_dbg_kms(&dev_priv->drm,
		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3065 3066 3067 3068 3069
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}

3070
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3071
{
3072
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3073 3074 3075 3076 3077 3078

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3079
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3080
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3081

3082 3083 3084
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3085

3086
	if (IS_GEN(dev_priv, 6)) {
3087
		snb_wm_latency_quirk(dev_priv);
3088 3089
		snb_wm_lp3_irq_quirk(dev_priv);
	}
3090 3091
}

3092
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3093
{
3094
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3095
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3096 3097
}

3098
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
3110
	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3111 3112 3113

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3114
		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3115 3116 3117 3118 3119 3120
		return false;
	}

	return true;
}

3121
/* Compute new watermarks for the pipe */
3122
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3123
{
3124
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3125
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3126
	struct intel_pipe_wm *pipe_wm;
3127 3128
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
3129 3130 3131
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3132
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3133
	struct ilk_wm_maximums max;
3134

3135
	pipe_wm = &crtc_state->wm.ilk.optimal;
3136

3137 3138 3139 3140 3141 3142 3143
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = plane_state;
		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = plane_state;
3144 3145
	}

3146
	pipe_wm->pipe_enabled = crtc_state->hw.active;
3147
	if (sprstate) {
3148 3149 3150 3151
		pipe_wm->sprites_enabled = sprstate->uapi.visible;
		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3152 3153
	}

3154 3155
	usable_level = max_level;

3156
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3157
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3158
		usable_level = 1;
3159 3160

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3161
	if (pipe_wm->sprites_scaled)
3162
		usable_level = 0;
3163

3164
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3165
	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3166
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3167

3168
	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3169
		return -EINVAL;
3170

3171
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3172

3173 3174
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3175

3176
		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3177
				     pristate, sprstate, curstate, wm);
3178 3179 3180 3181 3182 3183

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3184 3185 3186 3187
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3188 3189
	}

3190
	return 0;
3191 3192
}

3193 3194 3195 3196 3197
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
3198
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3199
{
3200
	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3201
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3202
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3203
	struct intel_atomic_state *intel_state =
3204
		to_intel_atomic_state(newstate->uapi.state);
3205 3206 3207
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3208
	int level, max_level = ilk_wm_max_level(dev_priv);
3209 3210 3211 3212 3213 3214

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3215
	*a = newstate->wm.ilk.optimal;
3216
	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3217
	    intel_state->skip_intermediate_wm)
3218 3219
		return 0;

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
3241
	if (!ilk_validate_pipe_wm(dev_priv, a))
3242 3243 3244 3245 3246 3247
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3248 3249
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3250 3251 3252 3253

	return 0;
}

3254 3255 3256
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
3257
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3258 3259 3260 3261 3262
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3263 3264
	ret_wm->enable = true;

3265
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3266
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3267 3268 3269 3270
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3271

3272 3273 3274 3275 3276
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3277
		if (!wm->enable)
3278
			ret_wm->enable = false;
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
3290
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3291
			 const struct intel_wm_config *config,
3292
			 const struct ilk_wm_maximums *max,
3293 3294
			 struct intel_pipe_wm *merged)
{
3295
	int level, max_level = ilk_wm_max_level(dev_priv);
3296
	int last_enabled_level = max_level;
3297

3298
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3299
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3300
	    config->num_pipes_active > 1)
3301
		last_enabled_level = 0;
3302

3303
	/* ILK: FBC WM must be disabled always */
3304
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3305 3306 3307 3308 3309

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

3310
		ilk_merge_wm_level(dev_priv, level, wm);
3311

3312 3313 3314 3315 3316
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3317 3318 3319 3320 3321 3322

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3323 3324
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3325 3326 3327
			wm->fbc_val = 0;
		}
	}
3328 3329 3330 3331 3332 3333 3334

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3335
	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3336
	    intel_fbc_is_active(dev_priv)) {
3337 3338 3339 3340 3341 3342
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3343 3344
}

3345 3346 3347 3348 3349 3350
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3351
/* The value we need to program into the WM_LPx latency field */
3352 3353
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
				      int level)
3354
{
3355
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3356 3357 3358 3359 3360
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3361
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3362
				   const struct intel_pipe_wm *merged,
3363
				   enum intel_ddb_partitioning partitioning,
3364
				   struct ilk_wm_values *results)
3365
{
3366 3367
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3368

3369
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3370
	results->partitioning = partitioning;
3371

3372
	/* LP1+ register values */
3373
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3374
		const struct intel_wm_level *r;
3375

3376
		level = ilk_wm_lp_to_level(wm_lp, merged);
3377

3378
		r = &merged->wm[level];
3379

3380 3381 3382 3383 3384
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3385
			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3386 3387 3388
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3389 3390 3391
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3392
		if (INTEL_GEN(dev_priv) >= 8)
3393 3394 3395 3396 3397 3398
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3399 3400 3401 3402
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3403
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3404
			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3405 3406 3407
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3408
	}
3409

3410
	/* LP0 register values */
3411
	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3412
		enum pipe pipe = intel_crtc->pipe;
3413 3414
		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
		const struct intel_wm_level *r = &pipe_wm->wm[0];
3415

3416
		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3417
			continue;
3418

3419 3420 3421 3422
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3423 3424 3425
	}
}

3426 3427
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3428 3429 3430 3431
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
		     struct intel_pipe_wm *r1,
		     struct intel_pipe_wm *r2)
3432
{
3433
	int level, max_level = ilk_wm_max_level(dev_priv);
3434
	int level1 = 0, level2 = 0;
3435

3436 3437 3438 3439 3440
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3441 3442
	}

3443 3444
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3445 3446 3447
			return r2;
		else
			return r1;
3448
	} else if (level1 > level2) {
3449 3450 3451 3452 3453 3454
		return r1;
	} else {
		return r2;
	}
}

3455 3456 3457 3458 3459 3460 3461
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3462
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3463 3464
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3465 3466 3467 3468 3469
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3470
	for_each_pipe(dev_priv, pipe) {
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3508 3509
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3510
{
3511
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3512
	bool changed = false;
3513

3514 3515 3516
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3517
		changed = true;
3518 3519 3520 3521
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3522
		changed = true;
3523 3524 3525 3526
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3527
		changed = true;
3528
	}
3529

3530 3531 3532 3533
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3534

3535 3536 3537 3538 3539 3540 3541
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3542 3543
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3544
{
3545
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3546
	unsigned int dirty;
3547
	u32 val;
3548

3549
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3550 3551 3552 3553 3554
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3555
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3556
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3557
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3558
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3559
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3560 3561
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3562
	if (dirty & WM_DIRTY_DDB) {
3563
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3578 3579
	}

3580
	if (dirty & WM_DIRTY_FBC) {
3581 3582 3583 3584 3585 3586 3587 3588
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3589 3590 3591 3592
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3593
	if (INTEL_GEN(dev_priv) >= 7) {
3594 3595 3596 3597 3598
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3599

3600
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3601
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3602
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3603
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3604
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3605
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3606 3607

	dev_priv->wm.hw = *results;
3608 3609
}

3610
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3611 3612 3613 3614
{
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3615
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3616
{
3617 3618 3619
	int i;
	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
	u8 enabled_slices_mask = 0;
3620

3621 3622 3623 3624
	for (i = 0; i < max_slices; i++) {
		if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
			enabled_slices_mask |= BIT(i);
	}
3625

3626
	return enabled_slices_mask;
3627 3628
}

3629 3630 3631 3632
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
3633
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3634
{
3635
	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3636 3637
}

3638 3639 3640
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3641 3642
	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3643 3644
}

3645 3646 3647
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	if (INTEL_GEN(dev_priv) >= 12) {
		u32 val = 0;
		int ret;

		ret = sandybridge_pcode_read(dev_priv,
					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
					     &val, NULL);
		if (!ret) {
			dev_priv->sagv_block_time_us = val;
			return;
		}

3660
		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3661
	} else if (IS_GEN(dev_priv, 11)) {
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
		dev_priv->sagv_block_time_us = 10;
		return;
	} else if (IS_GEN(dev_priv, 10)) {
		dev_priv->sagv_block_time_us = 20;
		return;
	} else if (IS_GEN(dev_priv, 9)) {
		dev_priv->sagv_block_time_us = 30;
		return;
	} else {
		MISSING_CASE(INTEL_GEN(dev_priv));
	}

	/* Default to an unusable block time */
	dev_priv->sagv_block_time_us = -1;
}

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3690
intel_enable_sagv(struct drm_i915_private *dev_priv)
3691 3692 3693
{
	int ret;

3694 3695 3696 3697
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3698 3699
		return 0;

3700
	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3701 3702 3703
	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

3704
	/* We don't need to wait for SAGV when enabling */
3705 3706 3707

	/*
	 * Some skl systems, pre-release machines in particular,
3708
	 * don't actually have SAGV.
3709
	 */
3710
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3711
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3712
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3713 3714
		return 0;
	} else if (ret < 0) {
3715
		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3716 3717 3718
		return ret;
	}

3719
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3720 3721 3722 3723
	return 0;
}

int
3724
intel_disable_sagv(struct drm_i915_private *dev_priv)
3725
{
3726
	int ret;
3727

3728 3729 3730 3731
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3732 3733
		return 0;

3734
	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3735
	/* bspec says to keep retrying for at least 1 ms */
3736 3737 3738 3739
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3740 3741
	/*
	 * Some skl systems, pre-release machines in particular,
3742
	 * don't actually have SAGV.
3743
	 */
3744
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3745
		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3746
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3747
		return 0;
3748
	} else if (ret < 0) {
3749
		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3750
		return ret;
3751 3752
	}

3753
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3754 3755 3756
	return 0;
}

3757 3758 3759
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3760
	const struct intel_bw_state *new_bw_state;
3761 3762
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3763

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;

	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3778
	if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3779
		intel_disable_sagv(dev_priv);
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to mask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;

	/*
	 * If new mask is zero - means there is nothing to mask,
	 * we can only unmask, which should be done in unmask.
	 */
	if (!new_mask)
		return;

	/*
	 * Restrict required qgv points before updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3806 3807 3808 3809 3810
}

void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3811
	const struct intel_bw_state *new_bw_state;
3812 3813
	const struct intel_bw_state *old_bw_state;
	u32 new_mask = 0;
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

	/*
	 * Just return if we can't control SAGV or don't have it.
	 * This is different from situation when we have SAGV but just can't
	 * afford it due to DBuf limitation - in case if SAGV is completely
	 * disabled in a BIOS, we are not even allowed to send a PCode request,
	 * as it will throw an error. So have to check it here.
	 */
	if (!intel_has_sagv(dev_priv))
		return;
3824

3825 3826 3827 3828
	new_bw_state = intel_atomic_get_new_bw_state(state);
	if (!new_bw_state)
		return;

3829
	if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3830
		intel_enable_sagv(dev_priv);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
		return;
	}

	old_bw_state = intel_atomic_get_old_bw_state(state);
	/*
	 * Nothing to unmask
	 */
	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
		return;

	new_mask = new_bw_state->qgv_points_mask;

	/*
	 * Allow required qgv points after updating the configuration.
	 * According to BSpec we can't mask and unmask qgv points at the same
	 * time. Also masking should be done before updating the configuration
	 * and unmasking afterwards.
	 */
	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3850 3851
}

3852
static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3853
{
3854
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3855
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3856
	struct intel_plane *plane;
3857
	const struct intel_plane_state *plane_state;
3858
	int level, latency;
3859

3860 3861 3862
	if (!intel_has_sagv(dev_priv))
		return false;

3863
	if (!crtc_state->hw.active)
3864
		return true;
3865

3866
	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3867 3868
		return false;

3869
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3870
		const struct skl_plane_wm *wm =
3871
			&crtc_state->wm.skl.optimal.planes[plane->id];
3872

3873
		/* Skip this plane if it's not enabled */
3874
		if (!wm->wm[0].plane_en)
3875 3876 3877
			continue;

		/* Find the highest enabled wm level for this plane */
3878
		for (level = ilk_wm_max_level(dev_priv);
3879
		     !wm->wm[level].plane_en; --level)
3880 3881
		     { }

3882 3883
		latency = dev_priv->wm.skl_latency[level];

3884
		if (skl_needs_memory_bw_wa(dev_priv) &&
3885
		    plane_state->uapi.fb->modifier ==
3886 3887 3888
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3889
		/*
3890 3891
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
3892
		 * can't enable SAGV.
3893
		 */
3894
		if (latency < dev_priv->sagv_block_time_us)
3895 3896 3897 3898 3899 3900
			return false;
	}

	return true;
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	enum plane_id plane_id;

	if (!crtc_state->hw.active)
		return true;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		const struct skl_ddb_entry *plane_alloc =
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
		const struct skl_plane_wm *wm =
			&crtc_state->wm.skl.optimal.planes[plane_id];

		if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc)
			return false;
	}

	return true;
}

3922 3923
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
3924 3925 3926 3927 3928 3929 3930
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	if (INTEL_GEN(dev_priv) >= 12)
		return tgl_crtc_can_enable_sagv(crtc_state);
	else
		return skl_crtc_can_enable_sagv(crtc_state);
3931 3932
}

3933 3934
bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
			   const struct intel_bw_state *bw_state)
3935
{
3936 3937
	if (INTEL_GEN(dev_priv) < 11 &&
	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3938 3939
		return false;

3940 3941 3942 3943 3944
	return bw_state->pipe_sagv_reject == 0;
}

static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
3945
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3946
	int ret;
3947
	struct intel_crtc *crtc;
3948
	struct intel_crtc_state *new_crtc_state;
3949 3950 3951
	struct intel_bw_state *new_bw_state = NULL;
	const struct intel_bw_state *old_bw_state = NULL;
	int i;
3952

3953 3954 3955 3956 3957
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		new_bw_state = intel_atomic_get_bw_state(state);
		if (IS_ERR(new_bw_state))
			return PTR_ERR(new_bw_state);
3958

3959
		old_bw_state = intel_atomic_get_old_bw_state(state);
3960

3961 3962 3963 3964 3965
		if (intel_crtc_can_enable_sagv(new_crtc_state))
			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
		else
			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
	}
3966

3967 3968
	if (!new_bw_state)
		return 0;
3969

3970 3971
	new_bw_state->active_pipes =
		intel_calc_active_pipes(state, old_bw_state->active_pipes);
3972

3973 3974 3975 3976 3977 3978
	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	for_each_new_intel_crtc_in_state(state, crtc,
					 new_crtc_state, i) {
		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;

		/*
		 * We store use_sagv_wm in the crtc state rather than relying on
		 * that bw state since we have no convenient way to get at the
		 * latter from the plane commit hooks (especially in the legacy
		 * cursor case)
		 */
		pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
				       intel_can_enable_sagv(dev_priv, new_bw_state);
	}

3993 3994
	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
		ret = intel_atomic_lock_global_state(&new_bw_state->base);
		if (ret)
			return ret;
	}

	return 0;
4005 4006
}

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
/*
 * Calculate initial DBuf slice offset, based on slice size
 * and mask(i.e if slice size is 1024 and second slice is enabled
 * offset would be 1024)
 */
static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
				u32 slice_size,
				u32 ddb_size)
{
	unsigned int offset = 0;

	if (!dbuf_slice_mask)
		return 0;

	offset = (ffs(dbuf_slice_mask) - 1) * slice_size;

	WARN_ON(offset >= ddb_size);
	return offset;
}

static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
4029 4030 4031
{
	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;

4032
	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
4033 4034 4035 4036 4037 4038 4039

	if (INTEL_GEN(dev_priv) < 11)
		return ddb_size - 4; /* 4 blocks for bypass path allocation */

	return ddb_size;
}

4040
static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4041
				  u8 active_pipes);
4042

4043
static int
4044
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
4045
				   const struct intel_crtc_state *crtc_state,
4046
				   const u64 total_data_rate,
4047 4048
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
4049
{
4050
	struct drm_atomic_state *state = crtc_state->uapi.state;
4051
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4052
	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
4053
	const struct intel_crtc *crtc;
4054
	u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
4055
	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
4056 4057 4058 4059 4060
	struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(intel_state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(intel_state);
	u8 active_pipes = new_dbuf_state->active_pipes;
4061
	u16 ddb_size;
4062
	u32 ddb_range_size;
4063
	u32 i;
4064 4065 4066 4067 4068
	u32 dbuf_slice_mask;
	u32 offset;
	u32 slice_size;
	u32 total_slice_mask;
	u32 start, end;
4069 4070 4071
	int ret;

	*num_active = hweight8(active_pipes);
4072

4073
	if (!crtc_state->hw.active) {
4074 4075
		alloc->start = 0;
		alloc->end = 0;
4076
		return 0;
4077 4078
	}

4079
	ddb_size = intel_get_ddb_size(dev_priv);
4080

4081
	slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4082

4083
	/*
4084 4085 4086 4087 4088 4089
	 * If the state doesn't change the active CRTC's or there is no
	 * modeset request, then there's no need to recalculate;
	 * the existing pipe allocation limits should remain unchanged.
	 * Note that we're safe from racing commits since any racing commit
	 * that changes the active CRTC list or do modeset would need to
	 * grab _all_ crtc locks, including the one we currently hold.
4090
	 */
4091 4092
	if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes &&
	    !dev_priv->wm.distrust_bios_wm) {
4093 4094 4095
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
4096 4097
		 *
		 * FIXME get rid of this mess
4098 4099
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
4100
		return 0;
4101
	}
4102

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
	/*
	 * Get allowed DBuf slices for correspondent pipe and platform.
	 */
	dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);

	/*
	 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
	 * and slice size is 1024, the offset would be 1024
	 */
	offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
						 slice_size, ddb_size);

	/*
	 * Figure out total size of allowed DBuf slices, which is basically
	 * a number of allowed slices for that pipe multiplied by slice size.
	 * Inside of this
	 * range ddb entries are still allocated in proportion to display width.
	 */
	ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;

4123 4124 4125 4126 4127
	/*
	 * Watermark/ddb requirement highly depends upon width of the
	 * framebuffer, So instead of allocating DDB equally among pipes
	 * distribute DDB based on resolution/width of the display.
	 */
4128
	total_slice_mask = dbuf_slice_mask;
4129 4130
	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
		const struct drm_display_mode *adjusted_mode =
4131
			&crtc_state->hw.adjusted_mode;
4132
		enum pipe pipe = crtc->pipe;
4133
		int hdisplay, vdisplay;
4134
		u32 pipe_dbuf_slice_mask;
4135

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
		if (!crtc_state->hw.active)
			continue;

		pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
							       active_pipes);

		/*
		 * According to BSpec pipe can share one dbuf slice with another
		 * pipes or pipe can use multiple dbufs, in both cases we
		 * account for other pipes only if they have exactly same mask.
		 * However we need to account how many slices we should enable
		 * in total.
		 */
		total_slice_mask |= pipe_dbuf_slice_mask;

		/*
		 * Do not account pipes using other slice sets
		 * luckily as of current BSpec slice sets do not partially
		 * intersect(pipes share either same one slice or same slice set
		 * i.e no partial intersection), so it is enough to check for
		 * equality for now.
		 */
		if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4159 4160 4161
			continue;

		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
4162 4163

		total_width_in_range += hdisplay;
4164 4165

		if (pipe < for_pipe)
4166
			width_before_pipe_in_range += hdisplay;
4167 4168 4169 4170
		else if (pipe == for_pipe)
			pipe_width = hdisplay;
	}

4171 4172 4173 4174
	/*
	 * FIXME: For now we always enable slice S1 as per
	 * the Bspec display initialization sequence.
	 */
4175 4176 4177 4178 4179 4180 4181
	new_dbuf_state->enabled_slices = total_slice_mask | BIT(DBUF_S1);

	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
	}
4182 4183 4184 4185 4186 4187 4188 4189

	start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
	end = ddb_range_size *
		(width_before_pipe_in_range + pipe_width) / total_width_in_range;

	alloc->start = offset + start;
	alloc->end = offset + end;

4190 4191 4192 4193
	drm_dbg_kms(&dev_priv->drm,
		    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
		    for_crtc->base.id, for_crtc->name,
		    dbuf_slice_mask, alloc->start, alloc->end, active_pipes);
4194 4195

	return 0;
4196 4197
}

4198 4199 4200 4201 4202
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
				 int width, const struct drm_format_info *format,
				 u64 modifier, unsigned int rotation,
				 u32 plane_pixel_rate, struct skl_wm_params *wp,
				 int color_plane);
4203
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4204
				 int level,
4205
				 unsigned int latency,
4206 4207 4208 4209 4210 4211 4212
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */);

static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
		      int num_active)
4213
{
4214
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	int level, max_level = ilk_wm_max_level(dev_priv);
	struct skl_wm_level wm = {};
	int ret, min_ddb_alloc = 0;
	struct skl_wm_params wp;

	ret = skl_compute_wm_params(crtc_state, 256,
				    drm_format_info(DRM_FORMAT_ARGB8888),
				    DRM_FORMAT_MOD_LINEAR,
				    DRM_MODE_ROTATE_0,
				    crtc_state->pixel_rate, &wp, 0);
4225
	drm_WARN_ON(&dev_priv->drm, ret);
4226 4227

	for (level = 0; level <= max_level; level++) {
4228 4229 4230
		unsigned int latency = dev_priv->wm.skl_latency[level];

		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4231 4232 4233 4234 4235
		if (wm.min_ddb_alloc == U16_MAX)
			break;

		min_ddb_alloc = wm.min_ddb_alloc;
	}
4236

4237
	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4238 4239
}

4240 4241
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
				       struct skl_ddb_entry *entry, u32 reg)
4242
{
4243

4244 4245
	entry->start = reg & DDB_ENTRY_MASK;
	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4246

4247 4248
	if (entry->end)
		entry->end += 1;
4249 4250
}

4251 4252 4253 4254
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
			   const enum pipe pipe,
			   const enum plane_id plane_id,
4255 4256
			   struct skl_ddb_entry *ddb_y,
			   struct skl_ddb_entry *ddb_uv)
4257
{
4258 4259
	u32 val, val2;
	u32 fourcc = 0;
4260 4261 4262 4263

	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
	if (plane_id == PLANE_CURSOR) {
		val = I915_READ(CUR_BUF_CFG(pipe));
4264
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4265 4266 4267 4268 4269 4270
		return;
	}

	val = I915_READ(PLANE_CTL(pipe, plane_id));

	/* No DDB allocated for disabled planes */
4271 4272 4273 4274
	if (val & PLANE_CTL_ENABLE)
		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
					      val & PLANE_CTL_ORDER_RGBX,
					      val & PLANE_CTL_ALPHA_MASK);
4275

4276 4277 4278 4279 4280
	if (INTEL_GEN(dev_priv) >= 11) {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
	} else {
		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4281
		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4282

4283 4284
		if (fourcc &&
		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4285 4286 4287 4288
			swap(val, val2);

		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4289 4290 4291
	}
}

4292 4293 4294
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
			       struct skl_ddb_entry *ddb_y,
			       struct skl_ddb_entry *ddb_uv)
4295
{
4296 4297 4298
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum intel_display_power_domain power_domain;
	enum pipe pipe = crtc->pipe;
4299
	intel_wakeref_t wakeref;
4300
	enum plane_id plane_id;
4301

4302
	power_domain = POWER_DOMAIN_PIPE(pipe);
4303 4304
	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
	if (!wakeref)
4305
		return;
4306

4307 4308 4309 4310 4311
	for_each_plane_id_on_crtc(crtc, plane_id)
		skl_ddb_get_hw_plane_state(dev_priv, pipe,
					   plane_id,
					   &ddb_y[plane_id],
					   &ddb_uv[plane_id]);
4312

4313
	intel_display_power_put(dev_priv, power_domain, wakeref);
4314
}
4315

4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
4332
static uint_fixed_16_16_t
4333 4334
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
			   const struct intel_plane_state *plane_state)
4335
{
4336
	u32 src_w, src_h, dst_w, dst_h;
4337 4338
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
4339

4340
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4341
		return u32_to_fixed16(0);
4342

4343 4344 4345 4346 4347 4348 4349
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 *
	 * n.b., src is 16.16 fixed point, dst is whole integer.
	 */
4350 4351 4352 4353
	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
	dst_w = drm_rect_width(&plane_state->uapi.dst);
	dst_h = drm_rect_height(&plane_state->uapi.dst);
4354

4355 4356 4357 4358
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4359

4360
	return mul_fixed16(downscale_w, downscale_h);
4361 4362
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
struct dbuf_slice_conf_entry {
	u8 active_pipes;
	u8 dbuf_mask[I915_MAX_PIPES];
};

/*
 * Table taken from Bspec 12716
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4378
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4379 4380 4381 4382 4383
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4384 4385
			[PIPE_A] = BIT(DBUF_S1),
		},
4386 4387 4388 4389
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4390 4391
			[PIPE_B] = BIT(DBUF_S1),
		},
4392 4393 4394 4395 4396
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4397 4398
			[PIPE_B] = BIT(DBUF_S2),
		},
4399 4400 4401 4402
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4403 4404
			[PIPE_C] = BIT(DBUF_S2),
		},
4405 4406 4407 4408 4409
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4410 4411
			[PIPE_C] = BIT(DBUF_S2),
		},
4412 4413 4414 4415 4416
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4417 4418
			[PIPE_C] = BIT(DBUF_S2),
		},
4419 4420 4421 4422 4423 4424
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4425 4426
			[PIPE_C] = BIT(DBUF_S2),
		},
4427
	},
4428
	{}
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
};

/*
 * Table taken from Bspec 49255
 * Pipes do have some preferred DBuf slice affinity,
 * plus there are some hardcoded requirements on how
 * those should be distributed for multipipe scenarios.
 * For more DBuf slices algorithm can get even more messy
 * and less readable, so decided to use a table almost
 * as is from BSpec itself - that way it is at least easier
 * to compare, change and check.
 */
4441
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4442 4443 4444 4445 4446
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
	{
		.active_pipes = BIT(PIPE_A),
		.dbuf_mask = {
4447 4448
			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4449 4450 4451 4452
	},
	{
		.active_pipes = BIT(PIPE_B),
		.dbuf_mask = {
4453 4454
			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
		},
4455 4456 4457 4458 4459
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S2),
4460 4461
			[PIPE_B] = BIT(DBUF_S1),
		},
4462 4463 4464 4465
	},
	{
		.active_pipes = BIT(PIPE_C),
		.dbuf_mask = {
4466 4467
			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4468 4469 4470 4471 4472
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4473 4474
			[PIPE_C] = BIT(DBUF_S2),
		},
4475 4476 4477 4478 4479
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4480 4481
			[PIPE_C] = BIT(DBUF_S2),
		},
4482 4483 4484 4485 4486 4487
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4488 4489
			[PIPE_C] = BIT(DBUF_S2),
		},
4490 4491 4492 4493
	},
	{
		.active_pipes = BIT(PIPE_D),
		.dbuf_mask = {
4494 4495
			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
		},
4496 4497 4498 4499 4500
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
4501 4502
			[PIPE_D] = BIT(DBUF_S2),
		},
4503 4504 4505 4506 4507
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
4508 4509
			[PIPE_D] = BIT(DBUF_S2),
		},
4510 4511 4512 4513 4514 4515
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
4516 4517
			[PIPE_D] = BIT(DBUF_S2),
		},
4518 4519 4520 4521 4522
	},
	{
		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_C] = BIT(DBUF_S1),
4523 4524
			[PIPE_D] = BIT(DBUF_S2),
		},
4525 4526 4527 4528 4529 4530
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4531 4532
			[PIPE_D] = BIT(DBUF_S2),
		},
4533 4534 4535 4536 4537 4538
	},
	{
		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4539 4540
			[PIPE_D] = BIT(DBUF_S2),
		},
4541 4542 4543 4544 4545 4546 4547
	},
	{
		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
		.dbuf_mask = {
			[PIPE_A] = BIT(DBUF_S1),
			[PIPE_B] = BIT(DBUF_S1),
			[PIPE_C] = BIT(DBUF_S2),
4548 4549
			[PIPE_D] = BIT(DBUF_S2),
		},
4550
	},
4551
	{}
4552 4553
};

4554 4555
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
			      const struct dbuf_slice_conf_entry *dbuf_slices)
4556 4557 4558
{
	int i;

4559
	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
		if (dbuf_slices[i].active_pipes == active_pipes)
			return dbuf_slices[i].dbuf_mask[pipe];
	}
	return 0;
}

/*
 * This function finds an entry with same enabled pipe configuration and
 * returns correspondent DBuf slice mask as stated in BSpec for particular
 * platform.
 */
4571
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
{
	/*
	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
	 * required calculating "pipe ratio" in order to determine
	 * if one or two slices can be used for single pipe configurations
	 * as additional constraint to the existing table.
	 * However based on recent info, it should be not "pipe ratio"
	 * but rather ratio between pixel_rate and cdclk with additional
	 * constants, so for now we are using only table until this is
	 * clarified. Also this is the reason why crtc_state param is
	 * still here - we will need it once those additional constraints
	 * pop up.
	 */
4585
	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4586 4587
}

4588
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4589
{
4590
	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4591 4592 4593
}

static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4594
				  u8 active_pipes)
4595 4596 4597 4598 4599 4600
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	if (IS_GEN(dev_priv, 12))
4601
		return tgl_compute_dbuf_slices(pipe, active_pipes);
4602
	else if (IS_GEN(dev_priv, 11))
4603
		return icl_compute_dbuf_slices(pipe, active_pipes);
4604 4605 4606 4607
	/*
	 * For anything else just return one slice yet.
	 * Should be extended for other platforms.
	 */
4608
	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4609 4610
}

4611
static u64
4612 4613
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
			     const struct intel_plane_state *plane_state,
4614
			     int color_plane)
4615
{
4616
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4617
	const struct drm_framebuffer *fb = plane_state->hw.fb;
4618 4619
	u32 data_rate;
	u32 width = 0, height = 0;
4620
	uint_fixed_16_16_t down_scale_amount;
4621
	u64 rate;
4622

4623
	if (!plane_state->uapi.visible)
4624
		return 0;
4625

4626
	if (plane->id == PLANE_CURSOR)
4627
		return 0;
4628 4629

	if (color_plane == 1 &&
4630
	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4631
		return 0;
4632

4633 4634 4635 4636 4637
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4638 4639
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4640

4641
	/* UV plane does 1/2 pixel sub-sampling */
4642
	if (color_plane == 1) {
4643 4644
		width /= 2;
		height /= 2;
4645 4646
	}

4647
	data_rate = width * height;
4648

4649
	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4650

4651 4652
	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);

4653
	rate *= fb->format->cpp[color_plane];
4654
	return rate;
4655 4656
}

4657
static u64
4658
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4659 4660
				 u64 *plane_data_rate,
				 u64 *uv_plane_data_rate)
4661
{
4662 4663
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4664
	u64 total_data_rate = 0;
4665

4666
	/* Calculate and cache data rate for each plane */
4667 4668
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4669
		u64 rate;
4670

4671
		/* packed/y */
4672
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4673
		plane_data_rate[plane_id] = rate;
4674
		total_data_rate += rate;
4675

4676
		/* uv-plane */
4677
		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4678
		uv_plane_data_rate[plane_id] = rate;
4679
		total_data_rate += rate;
4680 4681 4682 4683 4684
	}

	return total_data_rate;
}

4685
static u64
4686
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4687 4688
				 u64 *plane_data_rate)
{
4689 4690
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
4691 4692 4693
	u64 total_data_rate = 0;

	/* Calculate and cache data rate for each plane */
4694 4695
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
		enum plane_id plane_id = plane->id;
4696 4697
		u64 rate;

4698
		if (!plane_state->planar_linked_plane) {
4699
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4700 4701 4702 4703 4704 4705 4706
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		} else {
			enum plane_id y_plane_id;

			/*
			 * The slave plane might not iterate in
4707
			 * intel_atomic_crtc_state_for_each_plane_state(),
4708 4709 4710 4711
			 * and needs the master plane state which may be
			 * NULL if we try get_new_plane_state(), so we
			 * always calculate from the master.
			 */
4712
			if (plane_state->planar_slave)
4713 4714 4715
				continue;

			/* Y plane rate is calculated on the slave */
4716
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4717
			y_plane_id = plane_state->planar_linked_plane->id;
4718 4719 4720
			plane_data_rate[y_plane_id] = rate;
			total_data_rate += rate;

4721
			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4722 4723 4724 4725 4726 4727 4728 4729
			plane_data_rate[plane_id] = rate;
			total_data_rate += rate;
		}
	}

	return total_data_rate;
}

4730 4731 4732 4733 4734
static const struct skl_wm_level *
skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
		   enum plane_id plane_id,
		   int level)
{
4735 4736 4737 4738 4739
	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];

	if (level == 0 && pipe_wm->use_sagv_wm)
		return &wm->sagv_wm0;
4740 4741 4742 4743

	return &wm->wm[level];
}

4744
static int
4745
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4746
{
4747 4748
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4749
	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4750 4751 4752
	u16 alloc_size, start = 0;
	u16 total[I915_MAX_PLANES] = {};
	u16 uv_total[I915_MAX_PLANES] = {};
4753
	u64 total_data_rate;
4754
	enum plane_id plane_id;
4755
	int num_active;
4756 4757
	u64 plane_data_rate[I915_MAX_PLANES] = {};
	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4758
	u32 blocks;
4759
	int level;
4760
	int ret;
4761

4762
	/* Clear the partitioning for disabled planes. */
4763 4764
	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4765

4766
	if (!crtc_state->hw.active) {
4767
		alloc->start = alloc->end = 0;
4768 4769 4770
		return 0;
	}

4771 4772
	if (INTEL_GEN(dev_priv) >= 11)
		total_data_rate =
4773
			icl_get_total_relative_data_rate(crtc_state,
4774 4775
							 plane_data_rate);
	else
4776
		total_data_rate =
4777
			skl_get_total_relative_data_rate(crtc_state,
4778 4779
							 plane_data_rate,
							 uv_plane_data_rate);
4780

4781 4782 4783 4784 4785 4786
	ret = skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state,
						 total_data_rate,
						 alloc, &num_active);
	if (ret)
		return ret;

4787
	alloc_size = skl_ddb_entry_size(alloc);
4788
	if (alloc_size == 0)
4789
		return 0;
4790

4791
	/* Allocate fixed number of blocks for cursor. */
4792
	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4793
	alloc_size -= total[PLANE_CURSOR];
4794
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4795
		alloc->end - total[PLANE_CURSOR];
4796
	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4797 4798 4799

	if (total_data_rate == 0)
		return 0;
4800

4801
	/*
4802 4803
	 * Find the highest watermark level for which we can satisfy the block
	 * requirement of active planes.
4804
	 */
4805
	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4806
		blocks = 0;
4807
		for_each_plane_id_on_crtc(crtc, plane_id) {
4808
			const struct skl_plane_wm *wm =
4809
				&crtc_state->wm.skl.optimal.planes[plane_id];
4810 4811

			if (plane_id == PLANE_CURSOR) {
4812
				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4813 4814
					drm_WARN_ON(&dev_priv->drm,
						    wm->wm[level].min_ddb_alloc != U16_MAX);
4815 4816 4817
					blocks = U32_MAX;
					break;
				}
4818
				continue;
4819
			}
4820

4821 4822
			blocks += wm->wm[level].min_ddb_alloc;
			blocks += wm->uv_wm[level].min_ddb_alloc;
4823 4824
		}

4825
		if (blocks <= alloc_size) {
4826 4827 4828
			alloc_size -= blocks;
			break;
		}
4829 4830
	}

4831
	if (level < 0) {
4832 4833 4834 4835
		drm_dbg_kms(&dev_priv->drm,
			    "Requested display configuration exceeds system DDB limitations");
		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
			    blocks, alloc_size);
4836 4837 4838
		return -EINVAL;
	}

4839
	/*
4840 4841 4842
	 * Grant each plane the blocks it requires at the highest achievable
	 * watermark level, plus an extra share of the leftover blocks
	 * proportional to its relative data rate.
4843
	 */
4844
	for_each_plane_id_on_crtc(crtc, plane_id) {
4845
		const struct skl_plane_wm *wm =
4846
			&crtc_state->wm.skl.optimal.planes[plane_id];
4847 4848
		u64 rate;
		u16 extra;
4849

4850
		if (plane_id == PLANE_CURSOR)
4851 4852
			continue;

4853
		/*
4854 4855
		 * We've accounted for all active planes; remaining planes are
		 * all disabled.
4856
		 */
4857 4858
		if (total_data_rate == 0)
			break;
4859

4860 4861 4862 4863
		rate = plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4864
		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4865 4866
		alloc_size -= extra;
		total_data_rate -= rate;
4867

4868 4869
		if (total_data_rate == 0)
			break;
4870

4871 4872 4873 4874
		rate = uv_plane_data_rate[plane_id];
		extra = min_t(u16, alloc_size,
			      DIV64_U64_ROUND_UP(alloc_size * rate,
						 total_data_rate));
4875
		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4876 4877 4878
		alloc_size -= extra;
		total_data_rate -= rate;
	}
4879
	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4880 4881 4882

	/* Set the actual DDB start/end points for each plane */
	start = alloc->start;
4883
	for_each_plane_id_on_crtc(crtc, plane_id) {
4884
		struct skl_ddb_entry *plane_alloc =
4885
			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4886
		struct skl_ddb_entry *uv_plane_alloc =
4887
			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4888 4889 4890 4891

		if (plane_id == PLANE_CURSOR)
			continue;

4892
		/* Gen11+ uses a separate plane for UV watermarks */
4893 4894
		drm_WARN_ON(&dev_priv->drm,
			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4895 4896 4897 4898 4899 4900 4901

		/* Leave disabled planes at (0,0) */
		if (total[plane_id]) {
			plane_alloc->start = start;
			start += total[plane_id];
			plane_alloc->end = start;
		}
4902

4903 4904 4905 4906
		if (uv_total[plane_id]) {
			uv_plane_alloc->start = start;
			start += uv_total[plane_id];
			uv_plane_alloc->end = start;
4907
		}
4908
	}
4909

4910 4911 4912 4913 4914 4915 4916
	/*
	 * When we calculated watermark values we didn't know how high
	 * of a level we'd actually be able to hit, so we just marked
	 * all levels as "enabled."  Go back now and disable the ones
	 * that aren't actually possible.
	 */
	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4917
		for_each_plane_id_on_crtc(crtc, plane_id) {
4918
			struct skl_plane_wm *wm =
4919
				&crtc_state->wm.skl.optimal.planes[plane_id];
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935

			/*
			 * We only disable the watermarks for each plane if
			 * they exceed the ddb allocation of said plane. This
			 * is done so that we don't end up touching cursor
			 * watermarks needlessly when some other plane reduces
			 * our max possible watermark level.
			 *
			 * Bspec has this to say about the PLANE_WM enable bit:
			 * "All the watermarks at this level for all enabled
			 *  planes must be enabled before the level will be used."
			 * So this is actually safe to do.
			 */
			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4936

4937
			/*
4938
			 * Wa_1408961008:icl, ehl
4939 4940
			 * Underruns with WM1+ disabled
			 */
4941
			if (IS_GEN(dev_priv, 11) &&
4942 4943
			    level == 1 && wm->wm[0].plane_en) {
				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4944 4945
				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4946
			}
4947 4948 4949 4950 4951 4952 4953
		}
	}

	/*
	 * Go back and disable the transition watermark if it turns out we
	 * don't have enough DDB blocks for it.
	 */
4954
	for_each_plane_id_on_crtc(crtc, plane_id) {
4955
		struct skl_plane_wm *wm =
4956
			&crtc_state->wm.skl.optimal.planes[plane_id];
4957

4958
		if (wm->trans_wm.plane_res_b >= total[plane_id])
4959
			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4960 4961
	}

4962
	return 0;
4963 4964
}

4965 4966
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4967
 * for the read latency) and cpp should always be <= 8, so that
4968 4969 4970
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4971
static uint_fixed_16_16_t
4972 4973
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
	       u8 cpp, u32 latency, u32 dbuf_block_size)
4974
{
4975
	u32 wm_intermediate_val;
4976
	uint_fixed_16_16_t ret;
4977 4978

	if (latency == 0)
4979
		return FP_16_16_MAX;
4980

4981
	wm_intermediate_val = latency * pixel_rate * cpp;
4982
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4983

4984
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4985 4986
		ret = add_fixed16_u32(ret, 1);

4987 4988 4989
	return ret;
}

4990 4991 4992
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
	       uint_fixed_16_16_t plane_blocks_per_line)
4993
{
4994
	u32 wm_intermediate_val;
4995
	uint_fixed_16_16_t ret;
4996 4997

	if (latency == 0)
4998
		return FP_16_16_MAX;
4999 5000

	wm_intermediate_val = latency * pixel_rate;
5001 5002
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
5003
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5004 5005 5006
	return ret;
}

5007
static uint_fixed_16_16_t
5008
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5009
{
5010 5011
	u32 pixel_rate;
	u32 crtc_htotal;
5012 5013
	uint_fixed_16_16_t linetime_us;

5014
	if (!crtc_state->hw.active)
5015
		return u32_to_fixed16(0);
5016

5017
	pixel_rate = crtc_state->pixel_rate;
5018 5019

	if (WARN_ON(pixel_rate == 0))
5020
		return u32_to_fixed16(0);
5021

5022
	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
5023
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5024 5025 5026 5027

	return linetime_us;
}

5028
static u32
5029 5030
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
			      const struct intel_plane_state *plane_state)
5031
{
5032
	u64 adjusted_pixel_rate;
5033
	uint_fixed_16_16_t downscale_amount;
5034 5035

	/* Shouldn't reach here on disabled planes... */
5036
	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
5037 5038 5039 5040 5041 5042
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
5043 5044
	adjusted_pixel_rate = crtc_state->pixel_rate;
	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
5045

5046 5047
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
5048 5049
}

5050
static int
5051 5052 5053 5054 5055
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
		      int width, const struct drm_format_info *format,
		      u64 modifier, unsigned int rotation,
		      u32 plane_pixel_rate, struct skl_wm_params *wp,
		      int color_plane)
5056
{
5057
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5058
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5059
	u32 interm_pbpl;
5060

5061
	/* only planar format has two planes */
5062 5063
	if (color_plane == 1 &&
	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5064 5065
		drm_dbg_kms(&dev_priv->drm,
			    "Non planar format have single plane\n");
5066 5067 5068
		return -EINVAL;
	}

5069 5070 5071 5072 5073 5074 5075
	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
		      modifier == I915_FORMAT_MOD_Yf_TILED ||
		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5076
	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5077

5078
	wp->width = width;
5079
	if (color_plane == 1 && wp->is_planar)
5080 5081
		wp->width /= 2;

5082 5083
	wp->cpp = format->cpp[color_plane];
	wp->plane_pixel_rate = plane_pixel_rate;
5084

5085
	if (INTEL_GEN(dev_priv) >= 11 &&
5086
	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5087 5088 5089 5090
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

5091
	if (drm_rotation_90_or_270(rotation)) {
5092
		switch (wp->cpp) {
5093
		case 1:
5094
			wp->y_min_scanlines = 16;
5095 5096
			break;
		case 2:
5097
			wp->y_min_scanlines = 8;
5098 5099
			break;
		case 4:
5100
			wp->y_min_scanlines = 4;
5101
			break;
5102
		default:
5103
			MISSING_CASE(wp->cpp);
5104
			return -EINVAL;
5105 5106
		}
	} else {
5107
		wp->y_min_scanlines = 4;
5108 5109
	}

5110
	if (skl_needs_memory_bw_wa(dev_priv))
5111
		wp->y_min_scanlines *= 2;
5112

5113 5114 5115
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5116 5117
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
5118

5119
		if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5120 5121
			interm_pbpl++;

5122 5123
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
5124
	} else {
5125
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5126 5127 5128 5129 5130 5131
					   wp->dbuf_block_size);

		if (!wp->x_tiled ||
		    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
			interm_pbpl++;

5132
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5133 5134
	}

5135 5136
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
5137

5138
	wp->linetime_us = fixed16_to_u32_round_up(
5139
					intel_get_linetime_us(crtc_state));
5140 5141 5142 5143

	return 0;
}

5144 5145 5146 5147 5148
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
			    const struct intel_plane_state *plane_state,
			    struct skl_wm_params *wp, int color_plane)
{
5149
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5150 5151
	int width;

5152 5153 5154 5155 5156
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
5157
	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5158 5159 5160

	return skl_compute_wm_params(crtc_state, width,
				     fb->format, fb->modifier,
5161
				     plane_state->hw.rotation,
5162 5163 5164 5165
				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
				     wp, color_plane);
}

5166 5167 5168 5169 5170 5171 5172 5173 5174
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		return true;

	/* The number of lines are ignored for the level 0 watermark. */
	return level > 0;
}

5175
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5176
				 int level,
5177
				 unsigned int latency,
5178 5179 5180
				 const struct skl_wm_params *wp,
				 const struct skl_wm_level *result_prev,
				 struct skl_wm_level *result /* out */)
5181
{
5182
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5183 5184
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
5185
	u32 res_blocks, res_lines, min_ddb_alloc = 0;
5186

5187 5188 5189
	if (latency == 0) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5190
		return;
5191
	}
5192

5193 5194 5195 5196
	/*
	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
	 * Display WA #1141: kbl,cfl
	 */
5197
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
5198 5199 5200
	    dev_priv->ipc_enabled)
		latency += 4;

5201
	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5202 5203 5204
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5205
				 wp->cpp, latency, wp->dbuf_block_size);
5206
	method2 = skl_wm_method2(wp->plane_pixel_rate,
5207
				 crtc_state->hw.adjusted_mode.crtc_htotal,
5208
				 latency,
5209
				 wp->plane_blocks_per_line);
5210

5211 5212
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5213
	} else {
5214
		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5215
		     wp->dbuf_block_size < 1) &&
5216
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5217
			selected_result = method2;
5218
		} else if (latency >= wp->linetime_us) {
5219
			if (IS_GEN(dev_priv, 9) &&
5220 5221 5222 5223 5224
			    !IS_GEMINILAKE(dev_priv))
				selected_result = min_fixed16(method1, method2);
			else
				selected_result = method2;
		} else {
5225
			selected_result = method1;
5226
		}
5227
	}
5228

5229
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5230
	res_lines = div_round_up_fixed16(selected_result,
5231
					 wp->plane_blocks_per_line);
5232

5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
		/* Display WA #1125: skl,bxt,kbl */
		if (level == 0 && wp->rc_surface)
			res_blocks +=
				fixed16_to_u32_round_up(wp->y_tile_minimum);

		/* Display WA #1126: skl,bxt,kbl */
		if (level >= 1 && level <= 7) {
			if (wp->y_tiled) {
				res_blocks +=
				    fixed16_to_u32_round_up(wp->y_tile_minimum);
				res_lines += wp->y_min_scanlines;
			} else {
				res_blocks++;
			}
5248

5249 5250 5251 5252 5253 5254 5255 5256 5257
			/*
			 * Make sure result blocks for higher latency levels are
			 * atleast as high as level below the current level.
			 * Assumption in DDB algorithm optimization for special
			 * cases. Also covers Display WA #1125 for RC.
			 */
			if (result_prev->plane_res_b > res_blocks)
				res_blocks = result_prev->plane_res_b;
		}
5258
	}
5259

5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			int extra_lines;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					res_lines % wp->y_min_scanlines;

			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
								 wp->plane_blocks_per_line);
		} else {
			min_ddb_alloc = res_blocks +
				DIV_ROUND_UP(res_blocks, 10);
		}
	}

5278 5279 5280
	if (!skl_wm_has_lines(dev_priv, level))
		res_lines = 0;

5281 5282 5283
	if (res_lines > 31) {
		/* reject it */
		result->min_ddb_alloc = U16_MAX;
5284
		return;
5285
	}
5286 5287 5288 5289 5290 5291 5292

	/*
	 * If res_lines is valid, assume we can use this watermark level
	 * for now.  We'll come back and disable it after we calculate the
	 * DDB allocation if it turns out we don't actually have enough
	 * blocks to satisfy it.
	 */
5293 5294
	result->plane_res_b = res_blocks;
	result->plane_res_l = res_lines;
5295 5296
	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5297
	result->plane_en = true;
5298 5299
}

5300
static void
5301
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5302
		      const struct skl_wm_params *wm_params,
5303
		      struct skl_wm_level *levels)
5304
{
5305
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5306
	int level, max_level = ilk_wm_max_level(dev_priv);
5307
	struct skl_wm_level *result_prev = &levels[0];
L
Lyude 已提交
5308

5309
	for (level = 0; level <= max_level; level++) {
5310
		struct skl_wm_level *result = &levels[level];
5311
		unsigned int latency = dev_priv->wm.skl_latency[level];
5312

5313 5314
		skl_compute_plane_wm(crtc_state, level, latency,
				     wm_params, result_prev, result);
5315 5316

		result_prev = result;
5317
	}
5318 5319
}

5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
				const struct skl_wm_params *wm_params,
				struct skl_plane_wm *plane_wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
	struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0;
	struct skl_wm_level *levels = plane_wm->wm;
	unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;

	skl_compute_plane_wm(crtc_state, 0, latency,
			     wm_params, &levels[0],
			     sagv_wm);
}

5334
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5335
				      const struct skl_wm_params *wp,
5336
				      struct skl_plane_wm *wm)
5337
{
5338
	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5339
	const struct drm_i915_private *dev_priv = to_i915(dev);
5340
	u16 trans_min, trans_amount, trans_y_tile_min;
5341
	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5342 5343 5344

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
5345
		return;
5346

5347 5348 5349 5350 5351 5352 5353
	/*
	 * WaDisableTWM:skl,kbl,cfl,bxt
	 * Transition WM are not recommended by HW team for GEN9
	 */
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
		return;

5354
	if (INTEL_GEN(dev_priv) >= 11)
5355
		trans_min = 4;
5356 5357 5358 5359 5360 5361 5362 5363
	else
		trans_min = 14;

	/* Display WA #1140: glk,cnl */
	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
		trans_amount = 0;
	else
		trans_amount = 10; /* This is configurable amount */
5364 5365 5366

	trans_offset_b = trans_min + trans_amount;

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
	/*
	 * The spec asks for Selected Result Blocks for wm0 (the real value),
	 * not Result Blocks (the integer value). Pay attention to the capital
	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
	 * and since we later will have to get the ceiling of the sum in the
	 * transition watermarks calculation, we can just pretend Selected
	 * Result Blocks is Result Blocks minus 1 and it should work for the
	 * current platforms.
	 */
5377
	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5378

5379
	if (wp->y_tiled) {
5380 5381
		trans_y_tile_min =
			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5382
		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5383 5384
				trans_offset_b;
	} else {
5385
		res_blocks = wm0_sel_res_b + trans_offset_b;
5386 5387
	}

5388 5389 5390 5391 5392 5393 5394
	/*
	 * Just assume we can enable the transition watermark.  After
	 * computing the DDB we'll come back and disable it if that
	 * assumption turns out to be false.
	 */
	wm->trans_wm.plane_res_b = res_blocks + 1;
	wm->trans_wm.plane_en = true;
5395 5396
}

5397
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5398 5399
				     const struct intel_plane_state *plane_state,
				     enum plane_id plane_id, int color_plane)
5400
{
5401 5402
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5403
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5404 5405 5406
	struct skl_wm_params wm_params;
	int ret;

5407
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5408 5409 5410 5411
					  &wm_params, color_plane);
	if (ret)
		return ret;

5412
	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5413 5414 5415 5416

	if (INTEL_GEN(dev_priv) >= 12)
		tgl_compute_sagv_wm(crtc_state, &wm_params, wm);

5417
	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5418 5419 5420 5421

	return 0;
}

5422
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5423 5424
				 const struct intel_plane_state *plane_state,
				 enum plane_id plane_id)
5425
{
5426
	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5427 5428 5429
	struct skl_wm_params wm_params;
	int ret;

5430
	wm->is_planar = true;
5431 5432

	/* uv plane watermarks must also be validated for NV12/Planar */
5433
	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5434 5435 5436
					  &wm_params, 1);
	if (ret)
		return ret;
5437

5438
	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5439

5440
	return 0;
5441 5442
}

5443
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5444
			      const struct intel_plane_state *plane_state)
5445
{
5446
	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5447
	const struct drm_framebuffer *fb = plane_state->hw.fb;
5448
	enum plane_id plane_id = plane->id;
5449 5450
	int ret;

5451 5452 5453
	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

5454
	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5455
					plane_id, 0);
5456 5457 5458
	if (ret)
		return ret;

5459
	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5460
		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5461 5462 5463 5464 5465 5466 5467 5468
					    plane_id);
		if (ret)
			return ret;
	}

	return 0;
}

5469
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5470 5471
			      const struct intel_plane_state *plane_state)
{
5472
	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5473 5474 5475
	int ret;

	/* Watermarks calculated in master */
5476
	if (plane_state->planar_slave)
5477 5478
		return 0;

5479
	if (plane_state->planar_linked_plane) {
5480
		const struct drm_framebuffer *fb = plane_state->hw.fb;
5481
		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5482 5483 5484 5485 5486

		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
		WARN_ON(!fb->format->is_yuv ||
			fb->format->num_planes == 1);

5487
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5488 5489 5490 5491
						y_plane_id, 0);
		if (ret)
			return ret;

5492
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5493 5494 5495 5496
						plane_id, 1);
		if (ret)
			return ret;
	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5497
		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5498 5499 5500 5501 5502 5503
						plane_id, 0);
		if (ret)
			return ret;
	}

	return 0;
5504 5505
}

5506
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5507
{
5508
	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5509
	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5510 5511
	struct intel_plane *plane;
	const struct intel_plane_state *plane_state;
5512
	int ret;
5513

L
Lyude 已提交
5514 5515 5516 5517 5518 5519
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

5520 5521
	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
						     crtc_state) {
5522

5523
		if (INTEL_GEN(dev_priv) >= 11)
5524
			ret = icl_build_plane_wm(crtc_state, plane_state);
5525
		else
5526
			ret = skl_build_plane_wm(crtc_state, plane_state);
5527 5528
		if (ret)
			return ret;
5529
	}
5530

5531
	return 0;
5532 5533
}

5534 5535
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
5536 5537 5538
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
5539 5540
		intel_de_write_fw(dev_priv, reg,
				  (entry->end - 1) << 16 | entry->start);
5541
	else
5542
		intel_de_write_fw(dev_priv, reg, 0);
5543 5544
}

5545 5546 5547 5548
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
5549
	u32 val = 0;
5550

5551
	if (level->plane_en)
5552
		val |= PLANE_WM_EN;
5553 5554 5555 5556
	if (level->ignore_lines)
		val |= PLANE_WM_IGNORE_LINES;
	val |= level->plane_res_b;
	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5557

5558
	intel_de_write_fw(dev_priv, reg, val);
5559 5560
}

5561 5562
void skl_write_plane_wm(struct intel_plane *plane,
			const struct intel_crtc_state *crtc_state)
5563
{
5564
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5565
	int level, max_level = ilk_wm_max_level(dev_priv);
5566 5567 5568 5569 5570 5571 5572 5573
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb_y =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
	const struct skl_ddb_entry *ddb_uv =
		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5574 5575

	for (level = 0; level <= max_level; level++) {
5576 5577 5578 5579
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5580
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5581
				   wm_level);
5582
	}
5583
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5584
			   &wm->trans_wm);
5585

5586
	if (INTEL_GEN(dev_priv) >= 11) {
5587
		skl_ddb_entry_write(dev_priv,
5588 5589
				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
		return;
5590
	}
5591 5592 5593 5594 5595 5596 5597 5598

	if (wm->is_planar)
		swap(ddb_y, ddb_uv);

	skl_ddb_entry_write(dev_priv,
			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
	skl_ddb_entry_write(dev_priv,
			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5599 5600
}

5601 5602
void skl_write_cursor_wm(struct intel_plane *plane,
			 const struct intel_crtc_state *crtc_state)
5603
{
5604
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5605
	int level, max_level = ilk_wm_max_level(dev_priv);
5606 5607 5608 5609 5610 5611
	enum plane_id plane_id = plane->id;
	enum pipe pipe = plane->pipe;
	const struct skl_plane_wm *wm =
		&crtc_state->wm.skl.optimal.planes[plane_id];
	const struct skl_ddb_entry *ddb =
		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5612 5613

	for (level = 0; level <= max_level; level++) {
5614 5615 5616 5617
		const struct skl_wm_level *wm_level;

		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);

5618
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5619
				   wm_level);
5620
	}
5621
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5622

5623
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5624 5625
}

5626 5627 5628
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
5629
	return l1->plane_en == l2->plane_en &&
5630
		l1->ignore_lines == l2->ignore_lines &&
5631 5632 5633
		l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b;
}
5634

5635 5636 5637 5638 5639
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
				const struct skl_plane_wm *wm1,
				const struct skl_plane_wm *wm2)
{
	int level, max_level = ilk_wm_max_level(dev_priv);
5640

5641
	for (level = 0; level <= max_level; level++) {
5642 5643 5644 5645 5646 5647
		/*
		 * We don't check uv_wm as the hardware doesn't actually
		 * use it. It only gets used for calculating the required
		 * ddb allocation.
		 */
		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5648 5649 5650 5651
			return false;
	}

	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5652 5653
}

5654 5655
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
				    const struct skl_ddb_entry *b)
5656
{
5657
	return a->start < b->end && b->start < a->end;
5658 5659
}

5660
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5661
				 const struct skl_ddb_entry *entries,
5662
				 int num_entries, int ignore_idx)
5663
{
5664
	int i;
5665

5666 5667 5668
	for (i = 0; i < num_entries; i++) {
		if (i != ignore_idx &&
		    skl_ddb_entries_overlap(ddb, &entries[i]))
5669
			return true;
5670
	}
5671

5672
	return false;
5673 5674
}

5675
static int
5676 5677
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
			    struct intel_crtc_state *new_crtc_state)
5678
{
5679 5680
	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5681 5682
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_plane *plane;
5683

5684 5685 5686
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;
5687

5688 5689 5690 5691
		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5692 5693
			continue;

5694
		plane_state = intel_atomic_get_plane_state(state, plane);
5695 5696
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
5697

5698
		new_crtc_state->update_planes |= BIT(plane_id);
5699 5700 5701 5702 5703 5704
	}

	return 0;
}

static int
5705
skl_compute_ddb(struct intel_atomic_state *state)
5706
{
5707 5708 5709 5710
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *old_dbuf_state;
	const struct intel_dbuf_state *new_dbuf_state;
	const struct intel_crtc_state *old_crtc_state;
5711
	struct intel_crtc_state *new_crtc_state;
5712 5713
	struct intel_crtc *crtc;
	int ret, i;
5714

5715
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5716
					    new_crtc_state, i) {
5717
		ret = skl_allocate_pipe_ddb(new_crtc_state);
5718 5719 5720
		if (ret)
			return ret;

5721 5722
		ret = skl_ddb_add_affected_planes(old_crtc_state,
						  new_crtc_state);
5723 5724
		if (ret)
			return ret;
5725 5726
	}

5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
	new_dbuf_state = intel_atomic_get_new_dbuf_state(state);

	if (new_dbuf_state &&
	    new_dbuf_state->enabled_slices != old_dbuf_state->enabled_slices)
		drm_dbg_kms(&dev_priv->drm,
			    "Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
			    old_dbuf_state->enabled_slices,
			    new_dbuf_state->enabled_slices,
			    INTEL_INFO(dev_priv)->num_supported_dbuf_slices);

5738 5739 5740
	return 0;
}

5741 5742 5743 5744 5745
static char enast(bool enable)
{
	return enable ? '*' : ' ';
}

5746
static void
5747
skl_print_wm_changes(struct intel_atomic_state *state)
5748
{
5749 5750 5751 5752 5753
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_crtc_state *old_crtc_state;
	const struct intel_crtc_state *new_crtc_state;
	struct intel_plane *plane;
	struct intel_crtc *crtc;
5754
	int i;
5755

5756
	if (!drm_debug_enabled(DRM_UT_KMS))
5757 5758
		return;

5759 5760
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
5761 5762 5763 5764 5765
		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;

		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
		new_pipe_wm = &new_crtc_state->wm.skl.optimal;

5766 5767
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
5768 5769
			const struct skl_ddb_entry *old, *new;

5770 5771
			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5772 5773 5774 5775

			if (skl_ddb_entry_equal(old, new))
				continue;

5776 5777 5778 5779 5780
			drm_dbg_kms(&dev_priv->drm,
				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
				    plane->base.base.id, plane->base.name,
				    old->start, old->end, new->start, new->end,
				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
		}

		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
			enum plane_id plane_id = plane->id;
			const struct skl_plane_wm *old_wm, *new_wm;

			old_wm = &old_pipe_wm->planes[plane_id];
			new_wm = &new_pipe_wm->planes[plane_id];

			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
				continue;

5793
			drm_dbg_kms(&dev_priv->drm,
5794 5795
				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
5796 5797 5798 5799 5800 5801
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
				    enast(old_wm->trans_wm.plane_en),
5802
				    enast(old_wm->sagv_wm0.plane_en),
5803 5804 5805 5806
				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5807 5808
				    enast(new_wm->trans_wm.plane_en),
				    enast(new_wm->sagv_wm0.plane_en));
5809 5810

			drm_dbg_kms(&dev_priv->drm,
5811 5812
				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
				    plane->base.base.id, plane->base.name,
				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5823
				    enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l,
5824 5825 5826 5827 5828 5829 5830 5831 5832

				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5833 5834
				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
				    enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l);
5835 5836

			drm_dbg_kms(&dev_priv->drm,
5837 5838
				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5839 5840 5841 5842 5843 5844
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
				    old_wm->trans_wm.plane_res_b,
5845
				    old_wm->sagv_wm0.plane_res_b,
5846 5847 5848 5849
				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5850 5851
				    new_wm->trans_wm.plane_res_b,
				    new_wm->sagv_wm0.plane_res_b);
5852 5853

			drm_dbg_kms(&dev_priv->drm,
5854 5855
				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5856 5857 5858 5859 5860 5861
				    plane->base.base.id, plane->base.name,
				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
				    old_wm->trans_wm.min_ddb_alloc,
5862
				    old_wm->sagv_wm0.min_ddb_alloc,
5863 5864 5865 5866
				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5867 5868
				    new_wm->trans_wm.min_ddb_alloc,
				    new_wm->sagv_wm0.min_ddb_alloc);
5869 5870 5871 5872
		}
	}
}

5873 5874
static int intel_add_affected_pipes(struct intel_atomic_state *state,
				    u8 pipe_mask)
V
Ville Syrjälä 已提交
5875 5876 5877 5878 5879 5880 5881
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;

5882 5883 5884
		if ((pipe_mask & BIT(crtc->pipe)) == 0)
			continue;

V
Ville Syrjälä 已提交
5885 5886 5887 5888 5889 5890 5891 5892
		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);
	}

	return 0;
}

5893
static int
5894
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5895
{
V
Ville Syrjälä 已提交
5896
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5897 5898 5899
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int i, ret;
5900

5901
	if (dev_priv->wm.distrust_bios_wm) {
5902 5903 5904 5905 5906 5907 5908 5909
		/*
		 * skl_ddb_get_pipe_allocation_limits() currently requires
		 * all active pipes to be included in the state so that
		 * it can redistribute the dbuf among them, and it really
		 * wants to recompute things when distrust_bios_wm is set
		 * so we add all the pipes to the state.
		 */
		ret = intel_add_affected_pipes(state, ~0);
5910 5911
		if (ret)
			return ret;
5912
	}
5913

5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
		struct intel_dbuf_state *new_dbuf_state;
		const struct intel_dbuf_state *old_dbuf_state;

		new_dbuf_state = intel_atomic_get_dbuf_state(state);
		if (IS_ERR(new_dbuf_state))
			return ret;

		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);

		new_dbuf_state->active_pipes =
			intel_calc_active_pipes(state, old_dbuf_state->active_pipes);

		if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes)
			break;

		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
		if (ret)
			return ret;
5933 5934

		/*
5935 5936 5937
		 * skl_ddb_get_pipe_allocation_limits() currently requires
		 * all active pipes to be included in the state so that
		 * it can redistribute the dbuf among them.
5938
		 */
5939 5940
		ret = intel_add_affected_pipes(state,
					       new_dbuf_state->active_pipes);
V
Ville Syrjälä 已提交
5941 5942
		if (ret)
			return ret;
5943 5944

		break;
5945 5946 5947 5948 5949
	}

	return 0;
}

5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
/*
 * To make sure the cursor watermark registers are always consistent
 * with our computed state the following scenario needs special
 * treatment:
 *
 * 1. enable cursor
 * 2. move cursor entirely offscreen
 * 3. disable cursor
 *
 * Step 2. does call .disable_plane() but does not zero the watermarks
 * (since we consider an offscreen cursor still active for the purposes
 * of watermarks). Step 3. would not normally call .disable_plane()
 * because the actual plane visibility isn't changing, and we don't
 * deallocate the cursor ddb until the pipe gets disabled. So we must
 * force step 3. to call .disable_plane() to update the watermark
 * registers properly.
 *
 * Other planes do not suffer from this issues as their watermarks are
 * calculated based on the actual plane visibility. The only time this
 * can trigger for the other planes is during the initial readout as the
 * default value of the watermarks registers is not zero.
 */
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
				      struct intel_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(state, crtc);
	struct intel_crtc_state *new_crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
	struct intel_plane *plane;

	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
		struct intel_plane_state *plane_state;
		enum plane_id plane_id = plane->id;

		/*
		 * Force a full wm update for every plane on modeset.
		 * Required because the reset value of the wm registers
		 * is non-zero, whereas we want all disabled planes to
		 * have zero watermarks. So if we turn off the relevant
		 * power well the hardware state will go out of sync
		 * with the software state.
		 */
5994
		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
		    skl_plane_wm_equals(dev_priv,
					&old_crtc_state->wm.skl.optimal.planes[plane_id],
					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
			continue;

		plane_state = intel_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);

		new_crtc_state->update_planes |= BIT(plane_id);
	}

	return 0;
}

6010
static int
6011
skl_compute_wm(struct intel_atomic_state *state)
6012
{
6013
	struct intel_crtc *crtc;
6014
	struct intel_crtc_state *new_crtc_state;
6015
	struct intel_crtc_state *old_crtc_state;
6016 6017
	int ret, i;

6018 6019
	ret = skl_ddb_add_affected_pipes(state);
	if (ret)
6020 6021
		return ret;

6022 6023
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
6024
	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
6025
	 * weren't otherwise being modified if pipe allocations had to change.
6026
	 */
6027
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6028 6029
					    new_crtc_state, i) {
		ret = skl_build_pipe_wm(new_crtc_state);
6030 6031
		if (ret)
			return ret;
6032 6033
	}

6034 6035 6036 6037
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

6038 6039 6040
	ret = intel_compute_sagv_mask(state);
	if (ret)
		return ret;
6041

6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
	/*
	 * skl_compute_ddb() will have adjusted the final watermarks
	 * based on how much ddb is available. Now we can actually
	 * check if the final watermarks changed.
	 */
	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
					    new_crtc_state, i) {
		ret = skl_wm_add_affected_planes(state, crtc);
		if (ret)
			return ret;
	}

6054
	skl_print_wm_changes(state);
6055

6056 6057 6058
	return 0;
}

6059
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6060 6061 6062 6063 6064
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
6065
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

6077
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6078
{
6079
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6080
	struct ilk_wm_maximums max;
6081
	struct intel_wm_config config = {};
6082
	struct ilk_wm_values results = {};
6083
	enum intel_ddb_partitioning partitioning;
6084

6085
	ilk_compute_wm_config(dev_priv, &config);
6086

6087 6088
	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6089 6090

	/* 5/6 split only in single pipe config on IVB+ */
6091
	if (INTEL_GEN(dev_priv) >= 7 &&
6092
	    config.num_pipes_active == 1 && config.sprites_enabled) {
6093 6094
		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6095

6096
		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6097
	} else {
6098
		best_lp_wm = &lp_wm_1_2;
6099 6100
	}

6101
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
6102
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6103

6104
	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6105

6106
	ilk_write_wm_values(dev_priv, &results);
6107 6108
}

6109
static void ilk_initial_watermarks(struct intel_atomic_state *state,
6110
				   struct intel_crtc *crtc)
6111
{
6112 6113 6114
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6115

6116
	mutex_lock(&dev_priv->wm.wm_mutex);
6117
	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6118 6119 6120
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
6121

6122
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6123
				    struct intel_crtc *crtc)
6124
{
6125 6126 6127
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_crtc_state *crtc_state =
		intel_atomic_get_new_crtc_state(state, crtc);
6128 6129 6130

	if (!crtc_state->wm.need_postvbl_update)
		return;
6131

6132
	mutex_lock(&dev_priv->wm.wm_mutex);
6133 6134
	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
	ilk_program_watermarks(dev_priv);
6135
	mutex_unlock(&dev_priv->wm.wm_mutex);
6136 6137
}

6138
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6139
{
6140
	level->plane_en = val & PLANE_WM_EN;
6141
	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6142 6143 6144
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
6145 6146
}

6147
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6148
			      struct skl_pipe_wm *out)
6149
{
6150 6151
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;
6152 6153
	int level, max_level;
	enum plane_id plane_id;
6154
	u32 val;
6155

6156
	max_level = ilk_wm_max_level(dev_priv);
6157

6158
	for_each_plane_id_on_crtc(crtc, plane_id) {
6159
		struct skl_plane_wm *wm = &out->planes[plane_id];
6160

6161
		for (level = 0; level <= max_level; level++) {
6162 6163
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
6164 6165
			else
				val = I915_READ(CUR_WM(pipe, level));
6166

6167
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6168 6169
		}

6170 6171 6172
		if (INTEL_GEN(dev_priv) >= 12)
			wm->sagv_wm0 = wm->wm[0];

6173 6174
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
6175 6176 6177 6178
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6179 6180
	}

6181
	if (!crtc->active)
6182
		return;
6183 6184
}

6185
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6186
{
6187
	struct intel_crtc *crtc;
6188
	struct intel_crtc_state *crtc_state;
6189

6190
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6191
		crtc_state = to_intel_crtc_state(crtc->base.state);
6192

6193
		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6194
	}
6195

6196
	if (dev_priv->active_pipes) {
6197 6198 6199
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	}
6200 6201
}

6202
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6203
{
6204
	struct drm_device *dev = crtc->base.dev;
6205
	struct drm_i915_private *dev_priv = to_i915(dev);
6206
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6207 6208
	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6209
	enum pipe pipe = crtc->pipe;
6210
	static const i915_reg_t wm0_pipe_reg[] = {
6211 6212 6213 6214 6215 6216 6217
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);

6218 6219
	memset(active, 0, sizeof(*active));

6220
	active->pipe_enabled = crtc->active;
6221 6222

	if (active->pipe_enabled) {
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
	} else {
6236
		int level, max_level = ilk_wm_max_level(dev_priv);
6237 6238 6239 6240 6241 6242 6243 6244 6245

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
6246

6247
	crtc->wm.active.ilk = *active;
6248 6249
}

6250 6251 6252 6253 6254
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

6255 6256 6257
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
6258
	u32 tmp;
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

6281 6282 6283 6284
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
6285
	u32 tmp;
6286 6287 6288 6289

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

6290
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6291
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6292
		wm->ddl[pipe].plane[PLANE_CURSOR] =
6293
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6294
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6295
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6296
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6297 6298 6299 6300 6301
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
6302 6303 6304
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6305 6306

	tmp = I915_READ(DSPFW2);
6307 6308 6309
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6310 6311 6312 6313 6314 6315

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
6316 6317
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6318 6319

		tmp = I915_READ(DSPFW8_CHV);
6320 6321
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6322 6323

		tmp = I915_READ(DSPFW9_CHV);
6324 6325
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6326 6327 6328

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6329 6330 6331 6332 6333 6334 6335 6336 6337
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6338 6339
	} else {
		tmp = I915_READ(DSPFW7);
6340 6341
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6342 6343 6344

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6345 6346 6347 6348 6349 6350
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6351 6352 6353 6354 6355 6356
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

6357
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6358 6359 6360 6361 6362 6363 6364 6365
{
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

6366
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

6426 6427 6428 6429 6430 6431
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6432 6433
	}

6434 6435 6436 6437 6438 6439 6440 6441
	drm_dbg_kms(&dev_priv->drm,
		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	drm_dbg_kms(&dev_priv->drm,
		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

6462
		if (plane_state->uapi.visible)
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6500
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6501 6502
{
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6503
	struct intel_crtc *crtc;
6504 6505 6506 6507 6508 6509 6510 6511
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
6512
		vlv_punit_get(dev_priv);
6513

6514
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6515 6516 6517
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

6518 6519 6520 6521 6522 6523 6524 6525 6526
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
6527
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6528 6529 6530 6531 6532
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6533 6534 6535
			drm_dbg_kms(&dev_priv->drm,
				    "Punit not acking DDR DVFS request, "
				    "assuming DDR DVFS is disabled\n");
6536 6537 6538 6539 6540 6541
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
6542

6543
		vlv_punit_put(dev_priv);
6544 6545
	}

6546
	for_each_intel_crtc(&dev_priv->drm, crtc) {
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
6562
			struct g4x_pipe_wm *raw =
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
6584
		crtc_state->wm.vlv.intermediate = *active;
6585

6586 6587 6588 6589 6590 6591 6592
		drm_dbg_kms(&dev_priv->drm,
			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			    pipe_name(pipe),
			    wm->pipe[pipe].plane[PLANE_PRIMARY],
			    wm->pipe[pipe].plane[PLANE_CURSOR],
			    wm->pipe[pipe].plane[PLANE_SPRITE0],
			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6593
	}
6594

6595 6596 6597
	drm_dbg_kms(&dev_priv->drm,
		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6598 6599
}

6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

6620
		if (plane_state->uapi.visible)
6621 6622 6623
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
6624
			struct g4x_pipe_wm *raw =
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6665
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6666
{
6667
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6668
	struct intel_crtc *crtc;
6669

6670 6671
	ilk_init_lp_watermarks(dev_priv);

6672
	for_each_intel_crtc(&dev_priv->drm, crtc)
6673 6674 6675 6676 6677 6678 6679
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6680
	if (INTEL_GEN(dev_priv) >= 7) {
6681 6682 6683
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
6684

6685
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6686 6687
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6688
	else if (IS_IVYBRIDGE(dev_priv))
6689 6690
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6691 6692 6693 6694 6695

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

6696 6697
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
6698
 * @crtc: the #intel_crtc on which to compute the WM
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
6729
void intel_update_watermarks(struct intel_crtc *crtc)
6730
{
6731
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6732 6733

	if (dev_priv->display.update_wm)
6734
		dev_priv->display.update_wm(crtc);
6735 6736
}

6737 6738 6739 6740
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

6741 6742 6743
	if (!HAS_IPC(dev_priv))
		return;

6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv))
		return false;

	/* Display WA #1141: SKL:all KBL:all CFL */
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
		return dev_priv->dram_info.symmetric_memory;

	return true;
}

6767 6768 6769 6770 6771
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	if (!HAS_IPC(dev_priv))
		return;

6772
	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6773

6774 6775 6776
	intel_enable_ipc(dev_priv);
}

6777 6778 6779 6780 6781 6782 6783 6784 6785
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
6786

6787
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6788
{
6789
	enum pipe pipe;
6790

6791 6792 6793 6794
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6795

6796 6797
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6798 6799 6800
	}
}

6801
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6802
{
6803
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6804

6805 6806 6807 6808 6809 6810 6811
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6812

6813 6814 6815 6816 6817
	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);
6818

6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6833 6834

	/*
6835 6836 6837 6838 6839
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
6840
	 */
6841 6842 6843 6844 6845 6846 6847 6848 6849
	if (IS_IRONLAKE_M(dev_priv)) {
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}
6850

6851
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6852

6853 6854 6855 6856 6857 6858
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6859

6860 6861 6862
	/* WaDisableRenderCachePipelinedFlush:ilk */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6863

6864 6865
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6866

6867
	g4x_disable_trickle_feed(dev_priv);
6868

6869
	ibx_init_clock_gating(dev_priv);
6870 6871
}

6872
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6873
{
6874 6875
	enum pipe pipe;
	u32 val;
6876

6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
	for_each_pipe(dev_priv, pipe) {
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
	/* WADP0ClockGatingDisable */
	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6905 6906
}

6907
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6908
{
6909
	u32 tmp;
6910

6911 6912
	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6913 6914 6915
		drm_dbg_kms(&dev_priv->drm,
			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			    tmp);
6916 6917
}

6918
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6919
{
6920
	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6921

6922
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6923

6924 6925 6926
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
6927

6928 6929 6930
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6931

6932 6933
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6934

6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN6_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6945

6946 6947
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6948

6949 6950 6951 6952
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6953

6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6966
	 */
6967 6968 6969
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
C
Chris Wilson 已提交
6970

6971 6972 6973
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
C
Chris Wilson 已提交
6974

6975 6976 6977 6978 6979 6980 6981
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
C
Chris Wilson 已提交
6982

6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7004

7005
	g4x_disable_trickle_feed(dev_priv);
C
Chris Wilson 已提交
7006

7007
	cpt_init_clock_gating(dev_priv);
C
Chris Wilson 已提交
7008

7009
	gen6_check_mch_setup(dev_priv);
C
Chris Wilson 已提交
7010 7011
}

7012
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7013
{
7014
	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
7015

7016 7017 7018 7019 7020 7021 7022 7023 7024 7025
	/*
	 * WaVSThreadDispatchOverride:ivb,vlv
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;
7026

7027
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7028 7029
}

7030
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7031
{
7032 7033 7034
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
7035
	 */
7036
	if (HAS_PCH_LPT_LP(dev_priv))
7037 7038 7039
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7040 7041

	/* WADPOClockGatingDisable:hsw */
7042 7043
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7044
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7045 7046
}

7047
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7048
{
7049
	if (HAS_PCH_LPT_LP(dev_priv)) {
7050
		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7051 7052 7053 7054 7055 7056

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7057 7058 7059 7060 7061
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
7062
	u32 val;
7063 7064 7065 7066 7067

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

7068 7069 7070 7071 7072
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

O
Oscar Mateo 已提交
7083 7084 7085 7086 7087
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	/* This is not an Wa. Enable to reduce Sampler power */
	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7088

7089 7090 7091
	/*Wa_14010594013:icl, ehl */
	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
			 0, CNL_DELAY_PMRSP);
O
Oscar Mateo 已提交
7092 7093
}

7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	u32 vd_pg_enable = 0;
	unsigned int i;

	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (HAS_ENGINE(dev_priv, _VCS(i)))
			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
					VDN_MFX_POWERGATE_ENABLE(i);
	}

	I915_WRITE(POWERGATE_ENABLE,
		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
7108 7109 7110 7111 7112

	/* Wa_1409825376:tgl (pre-prod)*/
	if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
		I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
			   TGL_VRH_GATING_DIS);
M
Matt Atwood 已提交
7113 7114 7115 7116

	/* Wa_14011059788:tgl */
	intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
			 0, DFR_DISABLE);
7117 7118
}

7119 7120 7121 7122 7123
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

7124
	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7125 7126
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
7127 7128
}

7129
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7130
{
7131
	u32 val;
7132 7133
	cnp_init_clock_gating(dev_priv);

7134 7135 7136 7137
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

7138 7139 7140 7141 7142 7143 7144 7145
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

7146 7147 7148 7149
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
7150

R
Rodrigo Vivi 已提交
7151 7152 7153 7154 7155
	/* Wa_2201832410:cnl */
	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
	val |= GWUNIT_CLKGATE_DIS;
	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);

7156
	/* WaDisableVFclkgate:cnl */
7157
	/* WaVFUnitClockGatingDisable:cnl */
7158 7159 7160
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
7161 7162
}

7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

7173
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7174
{
7175
	gen9_init_clock_gating(dev_priv);
7176 7177 7178 7179 7180

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7181 7182 7183 7184 7185

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7186

7187
	/* WaFbcNukeOnHostModify:kbl */
7188 7189
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7190 7191
}

7192
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7193
{
7194
	gen9_init_clock_gating(dev_priv);
7195 7196 7197 7198

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7199 7200 7201 7202

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7203 7204
}

7205
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7206
{
7207
	enum pipe pipe;
B
Ben Widawsky 已提交
7208

7209
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7210
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7211

7212
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7213 7214 7215
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7216
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7217
	for_each_pipe(dev_priv, pipe) {
7218
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7219
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7220
			   BDW_DPRS_MASK_VBLANK_SRD);
7221
	}
7222

7223 7224 7225 7226 7227
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7228

7229 7230
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7231 7232 7233 7234

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7235

7236 7237
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7238

7239 7240 7241 7242
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7243
	lpt_init_clock_gating(dev_priv);
7244 7245 7246 7247 7248 7249 7250 7251

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7252 7253
}

7254
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7255
{
7256 7257 7258 7259 7260
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7261
	/* This is required by WaCatErrorRejectionIssue:hsw */
7262 7263 7264 7265
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7266 7267 7268
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7269

7270 7271 7272
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7273 7274 7275 7276
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7277
	/* WaDisable4x2SubspanOptimization:hsw */
7278 7279
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7280

7281 7282 7283
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7284 7285 7286 7287
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7288 7289
	 */
	I915_WRITE(GEN7_GT_MODE,
7290
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7291

7292 7293 7294 7295
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7296
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7297 7298
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7299
	lpt_init_clock_gating(dev_priv);
7300 7301
}

7302
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7303
{
7304
	u32 snpcr;
7305

7306
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7307

7308
	/* WaDisableEarlyCull:ivb */
7309 7310 7311
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7312
	/* WaDisableBackToBackFlipFix:ivb */
7313 7314 7315 7316
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7317
	/* WaDisablePSDDualDispatchEnable:ivb */
7318
	if (IS_IVB_GT1(dev_priv))
7319 7320 7321
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7322 7323 7324
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7325
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7326 7327 7328
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7329
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7330 7331 7332
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7333
		   GEN7_WA_L3_CHICKEN_MODE);
7334
	if (IS_IVB_GT1(dev_priv))
7335 7336
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7337 7338 7339 7340
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7341 7342
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7343
	}
7344

7345
	/* WaForceL3Serialization:ivb */
7346 7347 7348
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7349
	/*
7350
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7351
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7352 7353
	 */
	I915_WRITE(GEN6_UCGCTL2,
7354
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7355

7356
	/* This is required by WaCatErrorRejectionIssue:ivb */
7357 7358 7359 7360
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7361
	g4x_disable_trickle_feed(dev_priv);
7362 7363

	gen7_setup_fixed_func_scheduler(dev_priv);
7364

7365 7366 7367 7368 7369
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7370

7371
	/* WaDisable4x2SubspanOptimization:ivb */
7372 7373
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7374

7375 7376 7377
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7378 7379 7380 7381
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7382 7383
	 */
	I915_WRITE(GEN7_GT_MODE,
7384
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7385

7386 7387 7388 7389
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7390

7391
	if (!HAS_PCH_NOP(dev_priv))
7392
		cpt_init_clock_gating(dev_priv);
7393

7394
	gen6_check_mch_setup(dev_priv);
7395 7396
}

7397
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7398
{
7399
	/* WaDisableEarlyCull:vlv */
7400 7401 7402
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7403
	/* WaDisableBackToBackFlipFix:vlv */
7404 7405 7406 7407
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7408
	/* WaPsdDispatchEnable:vlv */
7409
	/* WaDisablePSDDualDispatchEnable:vlv */
7410
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7411 7412
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7413

7414 7415 7416
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7417
	/* WaForceL3Serialization:vlv */
7418 7419 7420
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7421
	/* WaDisableDopClockGating:vlv */
7422 7423 7424
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7425
	/* This is required by WaCatErrorRejectionIssue:vlv */
7426 7427 7428 7429
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7430 7431
	gen7_setup_fixed_func_scheduler(dev_priv);

7432
	/*
7433
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7434
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7435 7436
	 */
	I915_WRITE(GEN6_UCGCTL2,
7437
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7438

7439 7440 7441 7442 7443
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7444

7445 7446 7447 7448
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7449 7450
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7451

7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7463 7464 7465 7466 7467 7468
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7469
	/*
7470
	 * WaDisableVLVClockGating_VBIIssue:vlv
7471 7472 7473
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7474
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7475 7476
}

7477
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7478
{
7479 7480 7481 7482 7483
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7484 7485 7486 7487

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7488 7489 7490 7491

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7492 7493 7494 7495

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7496

7497 7498 7499 7500 7501 7502
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7503 7504
}

7505
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7506
{
7507
	u32 dspclk_gate;
7508 7509 7510 7511 7512 7513 7514 7515 7516

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7517
	if (IS_GM45(dev_priv))
7518 7519
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7520 7521 7522 7523

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7524

7525 7526 7527
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7528
	g4x_disable_trickle_feed(dev_priv);
7529 7530
}

7531
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7532
{
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
	struct intel_uncore *uncore = &dev_priv->uncore;

	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
	intel_uncore_write16(uncore, DEUC, 0);
	intel_uncore_write(uncore,
			   MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7543 7544

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7545 7546 7547
	intel_uncore_write(uncore,
			   CACHE_MODE_0,
			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7548 7549
}

7550
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7551 7552 7553 7554 7555 7556 7557
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7558 7559
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7560 7561 7562

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7563 7564
}

7565
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7566 7567 7568 7569 7570 7571
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7572

7573
	if (IS_PINEVIEW(dev_priv))
7574
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7575 7576 7577

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7578 7579

	/* interrupts should cause a wake up from C3 */
7580
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7581 7582 7583

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7584 7585 7586

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7587 7588
}

7589
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7590 7591
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7592 7593 7594 7595

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7596 7597 7598

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7599 7600
}

7601
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7602
{
7603 7604 7605
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7606 7607
}

7608
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7609
{
7610
	dev_priv->display.init_clock_gating(dev_priv);
7611 7612
}

7613
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7614
{
7615 7616
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7617 7618
}

7619
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7620
{
7621 7622
	drm_dbg_kms(&dev_priv->drm,
		    "No clock gating settings or workarounds applied.\n");
7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
7636
	if (IS_GEN(dev_priv, 12))
7637
		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7638
	else if (IS_GEN(dev_priv, 11))
O
Oscar Mateo 已提交
7639
		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7640
	else if (IS_CANNONLAKE(dev_priv))
7641
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7642 7643
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7644
	else if (IS_SKYLAKE(dev_priv))
7645
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7646
	else if (IS_KABYLAKE(dev_priv))
7647
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7648
	else if (IS_BROXTON(dev_priv))
7649
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7650 7651
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7652
	else if (IS_BROADWELL(dev_priv))
7653
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7654
	else if (IS_CHERRYVIEW(dev_priv))
7655
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7656
	else if (IS_HASWELL(dev_priv))
7657
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7658
	else if (IS_IVYBRIDGE(dev_priv))
7659
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7660
	else if (IS_VALLEYVIEW(dev_priv))
7661
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7662
	else if (IS_GEN(dev_priv, 6))
7663
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7664
	else if (IS_GEN(dev_priv, 5))
7665
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7666 7667
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7668
	else if (IS_I965GM(dev_priv))
7669
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7670
	else if (IS_I965G(dev_priv))
7671
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7672
	else if (IS_GEN(dev_priv, 3))
7673 7674 7675
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7676
	else if (IS_GEN(dev_priv, 2))
7677 7678 7679 7680 7681 7682 7683
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7684
/* Set up chip specific power management-related functions */
7685
void intel_init_pm(struct drm_i915_private *dev_priv)
7686
{
7687
	/* For cxsr */
7688
	if (IS_PINEVIEW(dev_priv))
7689
		pnv_get_mem_freq(dev_priv);
7690
	else if (IS_GEN(dev_priv, 5))
7691
		ilk_get_mem_freq(dev_priv);
7692

7693 7694 7695
	if (intel_has_sagv(dev_priv))
		skl_setup_sagv_block_time(dev_priv);

7696
	/* For FIFO watermark updates */
7697
	if (INTEL_GEN(dev_priv) >= 9) {
7698
		skl_setup_wm_latency(dev_priv);
7699
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7700
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7701
		ilk_setup_wm_latency(dev_priv);
7702

7703
		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7704
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7705
		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7706
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7707
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7708 7709 7710 7711 7712 7713
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7714
		} else {
7715 7716 7717
			drm_dbg_kms(&dev_priv->drm,
				    "Failed to read display plane latency. "
				    "Disable CxSR\n");
7718
		}
7719
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7720
		vlv_setup_wm_latency(dev_priv);
7721
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7722
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7723
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7724
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7725
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7726 7727 7728 7729 7730 7731
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7732
	} else if (IS_PINEVIEW(dev_priv)) {
7733
		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7734 7735 7736
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
7737 7738
			drm_info(&dev_priv->drm,
				 "failed to find known CxSR latency "
7739 7740 7741 7742 7743
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7744
			intel_set_memory_cxsr(dev_priv, false);
7745 7746
			dev_priv->display.update_wm = NULL;
		} else
7747
			dev_priv->display.update_wm = pnv_update_wm;
7748
	} else if (IS_GEN(dev_priv, 4)) {
7749
		dev_priv->display.update_wm = i965_update_wm;
7750
	} else if (IS_GEN(dev_priv, 3)) {
7751 7752
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7753
	} else if (IS_GEN(dev_priv, 2)) {
7754
		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7755
			dev_priv->display.update_wm = i845_update_wm;
7756
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7757 7758
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7759
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7760 7761
		}
	} else {
7762 7763
		drm_err(&dev_priv->drm,
			"unexpected fall-through in %s\n", __func__);
7764 7765 7766
	}
}

7767
void intel_pm_setup(struct drm_i915_private *dev_priv)
7768
{
7769 7770
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7771
}
7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820

static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return NULL;

	return &dbuf_state->base;
}

static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
				     struct intel_global_state *state)
{
	kfree(state);
}

static const struct intel_global_state_funcs intel_dbuf_funcs = {
	.atomic_duplicate_state = intel_dbuf_duplicate_state,
	.atomic_destroy_state = intel_dbuf_destroy_state,
};

struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_global_state *dbuf_state;

	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
	if (IS_ERR(dbuf_state))
		return ERR_CAST(dbuf_state);

	return to_intel_dbuf_state(dbuf_state);
}

int intel_dbuf_init(struct drm_i915_private *dev_priv)
{
	struct intel_dbuf_state *dbuf_state;

	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
	if (!dbuf_state)
		return -ENOMEM;

	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
				     &dbuf_state->base, &intel_dbuf_funcs);

	return 0;
}
7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857

void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				old_dbuf_state->enabled_slices |
				new_dbuf_state->enabled_slices);
}

void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	const struct intel_dbuf_state *new_dbuf_state =
		intel_atomic_get_new_dbuf_state(state);
	const struct intel_dbuf_state *old_dbuf_state =
		intel_atomic_get_old_dbuf_state(state);

	if (!new_dbuf_state ||
	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
		return;

	WARN_ON(!new_dbuf_state->base.changed);

	gen9_dbuf_slices_update(dev_priv,
				new_dbuf_state->enabled_slices);
}