memcontrol.c 171.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

251 252 253 254 255 256
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

257 258 259 260 261 262 263 264 265 266 267 268 269
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

270
#ifdef CONFIG_MEMCG_KMEM
271
/*
272
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
273 274 275 276 277
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
278
 *
279 280
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
281
 */
282 283
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
284

285 286 287 288 289 290 291 292 293 294 295 296 297
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

298 299 300 301 302 303
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
304
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305 306
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
307
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
308 309 310
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
311
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312

313 314 315 316 317 318
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
319
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320
EXPORT_SYMBOL(memcg_kmem_enabled_key);
321

322 323
struct workqueue_struct *memcg_kmem_cache_wq;

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
431 432 433 434 435 436 437 438

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
439 440
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
441 442 443 444 445
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

446 447 448 449 450 451
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
452
#endif /* CONFIG_MEMCG_KMEM */
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

471 472
	if (!memcg ||
	   (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgwb_v1))
473 474 475 476 477
		memcg = root_mem_cgroup;

	return &memcg->css;
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

506 507
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
508
{
509
	int nid = page_to_nid(page);
510

511
	return memcg->nodeinfo[nid];
512 513
}

514 515
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
516
{
517
	return soft_limit_tree.rb_tree_per_node[nid];
518 519
}

520
static struct mem_cgroup_tree_per_node *
521 522 523 524
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

525
	return soft_limit_tree.rb_tree_per_node[nid];
526 527
}

528 529
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
530
					 unsigned long new_usage_in_excess)
531 532 533
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
534
	struct mem_cgroup_per_node *mz_node;
535
	bool rightmost = true;
536 537 538 539 540 541 542 543 544

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
545
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
546
					tree_node);
547
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
548
			p = &(*p)->rb_left;
549 550 551
			rightmost = false;
		}

552 553 554 555 556 557 558
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
559 560 561 562

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

563 564 565 566 567
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

568 569
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
570 571 572
{
	if (!mz->on_tree)
		return;
573 574 575 576

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

577 578 579 580
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

581 582
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
583
{
584 585 586
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
587
	__mem_cgroup_remove_exceeded(mz, mctz);
588
	spin_unlock_irqrestore(&mctz->lock, flags);
589 590
}

591 592 593
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
594
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
595 596 597 598 599 600 601
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
602 603 604

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
605
	unsigned long excess;
606 607
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
608

609
	mctz = soft_limit_tree_from_page(page);
610 611
	if (!mctz)
		return;
612 613 614 615 616
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
617
		mz = mem_cgroup_page_nodeinfo(memcg, page);
618
		excess = soft_limit_excess(memcg);
619 620 621 622 623
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
624 625 626
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
627 628
			/* if on-tree, remove it */
			if (mz->on_tree)
629
				__mem_cgroup_remove_exceeded(mz, mctz);
630 631 632 633
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
634
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
635
			spin_unlock_irqrestore(&mctz->lock, flags);
636 637 638 639 640 641
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
642 643 644
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
645

646
	for_each_node(nid) {
647 648
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
649 650
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
651 652 653
	}
}

654 655
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
656
{
657
	struct mem_cgroup_per_node *mz;
658 659 660

retry:
	mz = NULL;
661
	if (!mctz->rb_rightmost)
662 663
		goto done;		/* Nothing to reclaim from */

664 665
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
666 667 668 669 670
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
671
	__mem_cgroup_remove_exceeded(mz, mctz);
672
	if (!soft_limit_excess(mz->memcg) ||
673
	    !css_tryget_online(&mz->memcg->css))
674 675 676 677 678
		goto retry;
done:
	return mz;
}

679 680
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
681
{
682
	struct mem_cgroup_per_node *mz;
683

684
	spin_lock_irq(&mctz->lock);
685
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
686
	spin_unlock_irq(&mctz->lock);
687 688 689
	return mz;
}

690
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
691
				      int event)
692
{
693
	return atomic_long_read(&memcg->events[event]);
694 695
}

696
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697
					 struct page *page,
698
					 bool compound, int nr_pages)
699
{
700 701 702 703
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
704
	if (PageAnon(page))
705
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
706
	else {
707
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
708
		if (PageSwapBacked(page))
709
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
710
	}
711

712 713
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
714
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
715
	}
716

717 718
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
719
		__count_memcg_events(memcg, PGPGIN, 1);
720
	else {
721
		__count_memcg_events(memcg, PGPGOUT, 1);
722 723
		nr_pages = -nr_pages; /* for event */
	}
724

725
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
726 727
}

728 729
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
730
{
731
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
732
	unsigned long nr = 0;
733
	enum lru_list lru;
734

735
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
736

737 738 739
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
740
		nr += mem_cgroup_get_lru_size(lruvec, lru);
741 742
	}
	return nr;
743
}
744

745
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
746
			unsigned int lru_mask)
747
{
748
	unsigned long nr = 0;
749
	int nid;
750

751
	for_each_node_state(nid, N_MEMORY)
752 753
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
754 755
}

756 757
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
758 759 760
{
	unsigned long val, next;

761 762
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
763
	/* from time_after() in jiffies.h */
764
	if ((long)(next - val) < 0) {
765 766 767 768
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
769 770 771
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
772 773 774 775 776 777
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
778
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
779
		return true;
780
	}
781
	return false;
782 783 784 785 786 787
}

/*
 * Check events in order.
 *
 */
788
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
789 790
{
	/* threshold event is triggered in finer grain than soft limit */
791 792
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
793
		bool do_softlimit;
794
		bool do_numainfo __maybe_unused;
795

796 797
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
798 799 800 801
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
802
		mem_cgroup_threshold(memcg);
803 804
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
805
#if MAX_NUMNODES > 1
806
		if (unlikely(do_numainfo))
807
			atomic_inc(&memcg->numainfo_events);
808
#endif
809
	}
810 811
}

812
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
813
{
814 815 816 817 818 819 820 821
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

822
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
823
}
M
Michal Hocko 已提交
824
EXPORT_SYMBOL(mem_cgroup_from_task);
825

826 827 828 829 830 831 832 833 834
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
835
{
836 837 838 839
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
840

841 842
	rcu_read_lock();
	do {
843 844 845 846 847 848
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
849
			memcg = root_mem_cgroup;
850 851 852 853 854
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
855
	} while (!css_tryget_online(&memcg->css));
856
	rcu_read_unlock();
857
	return memcg;
858
}
859 860
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
899

900 901 902 903 904 905 906 907 908 909 910 911 912
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
913
 * Reclaimers can specify a node and a priority level in @reclaim to
914
 * divide up the memcgs in the hierarchy among all concurrent
915
 * reclaimers operating on the same node and priority.
916
 */
917
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
918
				   struct mem_cgroup *prev,
919
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
920
{
M
Michal Hocko 已提交
921
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
922
	struct cgroup_subsys_state *css = NULL;
923
	struct mem_cgroup *memcg = NULL;
924
	struct mem_cgroup *pos = NULL;
925

926 927
	if (mem_cgroup_disabled())
		return NULL;
928

929 930
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
931

932
	if (prev && !reclaim)
933
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
934

935 936
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
937
			goto out;
938
		return root;
939
	}
K
KAMEZAWA Hiroyuki 已提交
940

941
	rcu_read_lock();
M
Michal Hocko 已提交
942

943
	if (reclaim) {
944
		struct mem_cgroup_per_node *mz;
945

946
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
947 948 949 950 951
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

952
		while (1) {
953
			pos = READ_ONCE(iter->position);
954 955
			if (!pos || css_tryget(&pos->css))
				break;
956
			/*
957 958 959 960 961 962
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
963
			 */
964 965
			(void)cmpxchg(&iter->position, pos, NULL);
		}
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
983
		}
K
KAMEZAWA Hiroyuki 已提交
984

985 986 987 988 989 990
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
991

992 993
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
994

995 996
		if (css_tryget(css))
			break;
997

998
		memcg = NULL;
999
	}
1000 1001 1002

	if (reclaim) {
		/*
1003 1004 1005
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1006
		 */
1007 1008
		(void)cmpxchg(&iter->position, pos, memcg);

1009 1010 1011 1012 1013 1014 1015
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1016
	}
1017

1018 1019
out_unlock:
	rcu_read_unlock();
1020
out:
1021 1022 1023
	if (prev && prev != root)
		css_put(&prev->css);

1024
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1025
}
K
KAMEZAWA Hiroyuki 已提交
1026

1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1034 1035 1036 1037 1038 1039
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1040

1041 1042 1043 1044
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
1045 1046
	struct mem_cgroup_per_node *mz;
	int nid;
1047 1048
	int i;

1049
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1050
		for_each_node(nid) {
1051 1052 1053 1054 1055
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
1056 1057 1058 1059 1060
			}
		}
	}
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1086
		css_task_iter_start(&iter->css, 0, &it);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1098
/**
1099
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1100
 * @page: the page
1101
 * @pgdat: pgdat of the page
1102 1103 1104 1105
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1106
 */
M
Mel Gorman 已提交
1107
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1108
{
1109
	struct mem_cgroup_per_node *mz;
1110
	struct mem_cgroup *memcg;
1111
	struct lruvec *lruvec;
1112

1113
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1114
		lruvec = &pgdat->lruvec;
1115 1116
		goto out;
	}
1117

1118
	memcg = page->mem_cgroup;
1119
	/*
1120
	 * Swapcache readahead pages are added to the LRU - and
1121
	 * possibly migrated - before they are charged.
1122
	 */
1123 1124
	if (!memcg)
		memcg = root_mem_cgroup;
1125

1126
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1127 1128 1129 1130 1131 1132 1133
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1134 1135
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1136
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1137
}
1138

1139
/**
1140 1141 1142
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1143
 * @zid: zone id of the accounted pages
1144
 * @nr_pages: positive when adding or negative when removing
1145
 *
1146 1147 1148
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1149
 */
1150
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1151
				int zid, int nr_pages)
1152
{
1153
	struct mem_cgroup_per_node *mz;
1154
	unsigned long *lru_size;
1155
	long size;
1156 1157 1158 1159

	if (mem_cgroup_disabled())
		return;

1160
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1161
	lru_size = &mz->lru_zone_size[zid][lru];
1162 1163 1164 1165 1166

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1167 1168 1169
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1170 1171 1172 1173 1174 1175
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1176
}
1177

1178
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1179
{
1180
	struct mem_cgroup *task_memcg;
1181
	struct task_struct *p;
1182
	bool ret;
1183

1184
	p = find_lock_task_mm(task);
1185
	if (p) {
1186
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1187 1188 1189 1190 1191 1192 1193
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1194
		rcu_read_lock();
1195 1196
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1197
		rcu_read_unlock();
1198
	}
1199 1200
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1201 1202 1203
	return ret;
}

1204
/**
1205
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1206
 * @memcg: the memory cgroup
1207
 *
1208
 * Returns the maximum amount of memory @mem can be charged with, in
1209
 * pages.
1210
 */
1211
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1212
{
1213 1214 1215
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1216

1217
	count = page_counter_read(&memcg->memory);
1218
	limit = READ_ONCE(memcg->memory.max);
1219 1220 1221
	if (count < limit)
		margin = limit - count;

1222
	if (do_memsw_account()) {
1223
		count = page_counter_read(&memcg->memsw);
1224
		limit = READ_ONCE(memcg->memsw.max);
1225 1226
		if (count <= limit)
			margin = min(margin, limit - count);
1227 1228
		else
			margin = 0;
1229 1230 1231
	}

	return margin;
1232 1233
}

1234
/*
Q
Qiang Huang 已提交
1235
 * A routine for checking "mem" is under move_account() or not.
1236
 *
Q
Qiang Huang 已提交
1237 1238 1239
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1240
 */
1241
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1242
{
1243 1244
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1245
	bool ret = false;
1246 1247 1248 1249 1250 1251 1252 1253 1254
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1255

1256 1257
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1258 1259
unlock:
	spin_unlock(&mc.lock);
1260 1261 1262
	return ret;
}

1263
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1264 1265
{
	if (mc.moving_task && current != mc.moving_task) {
1266
		if (mem_cgroup_under_move(memcg)) {
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1279
static const unsigned int memcg1_stats[] = {
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1301
#define K(x) ((x) << (PAGE_SHIFT-10))
1302
/**
1303
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1304 1305 1306 1307 1308 1309 1310 1311
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1312 1313
	struct mem_cgroup *iter;
	unsigned int i;
1314 1315 1316

	rcu_read_lock();

1317 1318 1319 1320 1321 1322 1323 1324
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1325
	pr_cont_cgroup_path(memcg->css.cgroup);
1326
	pr_cont("\n");
1327 1328 1329

	rcu_read_unlock();

1330 1331
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1332
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1333 1334
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1335
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1336 1337
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1338
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1339 1340

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1341 1342
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1343 1344
		pr_cont(":");

1345 1346
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1347
				continue;
1348
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1349
				K(memcg_page_state(iter, memcg1_stats[i])));
1350 1351 1352 1353 1354 1355 1356 1357
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1358 1359
}

D
David Rientjes 已提交
1360 1361 1362
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1363
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1364
{
1365
	unsigned long max;
1366

1367
	max = memcg->memory.max;
1368
	if (mem_cgroup_swappiness(memcg)) {
1369 1370
		unsigned long memsw_max;
		unsigned long swap_max;
1371

1372 1373 1374 1375
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1376
	}
1377
	return max;
D
David Rientjes 已提交
1378 1379
}

1380
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1381
				     int order)
1382
{
1383 1384 1385
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1386
		.memcg = memcg,
1387 1388 1389
		.gfp_mask = gfp_mask,
		.order = order,
	};
1390
	bool ret;
1391

1392 1393 1394 1395 1396 1397 1398
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1399
	mutex_unlock(&oom_lock);
1400
	return ret;
1401 1402
}

1403 1404
#if MAX_NUMNODES > 1

1405 1406
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1407
 * @memcg: the target memcg
1408 1409 1410 1411 1412 1413 1414
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1415
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1416 1417
		int nid, bool noswap)
{
1418
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1419 1420 1421
		return true;
	if (noswap || !total_swap_pages)
		return false;
1422
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1423 1424 1425 1426
		return true;
	return false;

}
1427 1428 1429 1430 1431 1432 1433

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1434
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1435 1436
{
	int nid;
1437 1438 1439 1440
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1441
	if (!atomic_read(&memcg->numainfo_events))
1442
		return;
1443
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1444 1445 1446
		return;

	/* make a nodemask where this memcg uses memory from */
1447
	memcg->scan_nodes = node_states[N_MEMORY];
1448

1449
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1450

1451 1452
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1453
	}
1454

1455 1456
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1471
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1472 1473 1474
{
	int node;

1475 1476
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1477

1478
	node = next_node_in(node, memcg->scan_nodes);
1479
	/*
1480 1481 1482
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1483 1484 1485 1486
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1487
	memcg->last_scanned_node = node;
1488 1489 1490
	return node;
}
#else
1491
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1492 1493 1494 1495 1496
{
	return 0;
}
#endif

1497
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1498
				   pg_data_t *pgdat,
1499 1500 1501 1502 1503 1504 1505 1506 1507
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1508
		.pgdat = pgdat,
1509 1510 1511
		.priority = 0,
	};

1512
	excess = soft_limit_excess(root_memcg);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1538
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1539
					pgdat, &nr_scanned);
1540
		*total_scanned += nr_scanned;
1541
		if (!soft_limit_excess(root_memcg))
1542
			break;
1543
	}
1544 1545
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1546 1547
}

1548 1549 1550 1551 1552 1553
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1554 1555
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1556 1557 1558 1559
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1560
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1561
{
1562
	struct mem_cgroup *iter, *failed = NULL;
1563

1564 1565
	spin_lock(&memcg_oom_lock);

1566
	for_each_mem_cgroup_tree(iter, memcg) {
1567
		if (iter->oom_lock) {
1568 1569 1570 1571 1572
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1573 1574
			mem_cgroup_iter_break(memcg, iter);
			break;
1575 1576
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1577
	}
K
KAMEZAWA Hiroyuki 已提交
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1590
		}
1591 1592
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1593 1594 1595 1596

	spin_unlock(&memcg_oom_lock);

	return !failed;
1597
}
1598

1599
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1600
{
K
KAMEZAWA Hiroyuki 已提交
1601 1602
	struct mem_cgroup *iter;

1603
	spin_lock(&memcg_oom_lock);
1604
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1605
	for_each_mem_cgroup_tree(iter, memcg)
1606
		iter->oom_lock = false;
1607
	spin_unlock(&memcg_oom_lock);
1608 1609
}

1610
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1611 1612 1613
{
	struct mem_cgroup *iter;

1614
	spin_lock(&memcg_oom_lock);
1615
	for_each_mem_cgroup_tree(iter, memcg)
1616 1617
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1618 1619
}

1620
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1621 1622 1623
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1624 1625
	/*
	 * When a new child is created while the hierarchy is under oom,
1626
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1627
	 */
1628
	spin_lock(&memcg_oom_lock);
1629
	for_each_mem_cgroup_tree(iter, memcg)
1630 1631 1632
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1633 1634
}

K
KAMEZAWA Hiroyuki 已提交
1635 1636
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1637
struct oom_wait_info {
1638
	struct mem_cgroup *memcg;
1639
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1640 1641
};

1642
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1643 1644
	unsigned mode, int sync, void *arg)
{
1645 1646
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1647 1648 1649
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1650
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1651

1652 1653
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1654 1655 1656 1657
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1658
static void memcg_oom_recover(struct mem_cgroup *memcg)
1659
{
1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1669
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1670 1671
}

1672 1673 1674 1675 1676 1677 1678 1679
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1680
{
1681 1682 1683
	enum oom_status ret;
	bool locked;

1684 1685 1686
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

K
KAMEZAWA Hiroyuki 已提交
1687
	/*
1688 1689 1690 1691
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1692 1693 1694 1695
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1696
	 *
1697 1698 1699 1700 1701 1702 1703
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1704
	 */
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1716 1717 1718 1719 1720 1721 1722 1723
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1724
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1725 1726 1727 1728 1729 1730
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1731

1732
	return ret;
1733 1734 1735 1736
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1737
 * @handle: actually kill/wait or just clean up the OOM state
1738
 *
1739 1740
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1741
 *
1742
 * Memcg supports userspace OOM handling where failed allocations must
1743 1744 1745 1746
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1747
 * the end of the page fault to complete the OOM handling.
1748 1749
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1750
 * completed, %false otherwise.
1751
 */
1752
bool mem_cgroup_oom_synchronize(bool handle)
1753
{
T
Tejun Heo 已提交
1754
	struct mem_cgroup *memcg = current->memcg_in_oom;
1755
	struct oom_wait_info owait;
1756
	bool locked;
1757 1758 1759

	/* OOM is global, do not handle */
	if (!memcg)
1760
		return false;
1761

1762
	if (!handle)
1763
		goto cleanup;
1764 1765 1766 1767 1768

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1769
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1770

1771
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1782 1783
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1784
	} else {
1785
		schedule();
1786 1787 1788 1789 1790
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1791 1792 1793 1794 1795 1796 1797 1798
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1799
cleanup:
T
Tejun Heo 已提交
1800
	current->memcg_in_oom = NULL;
1801
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1802
	return true;
1803 1804
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1861
/**
1862 1863
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1864
 *
1865
 * This function protects unlocked LRU pages from being moved to
1866 1867 1868 1869 1870
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1871
 */
1872
struct mem_cgroup *lock_page_memcg(struct page *page)
1873 1874
{
	struct mem_cgroup *memcg;
1875
	unsigned long flags;
1876

1877 1878 1879 1880
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1881 1882 1883 1884 1885 1886 1887
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1888 1889 1890
	rcu_read_lock();

	if (mem_cgroup_disabled())
1891
		return NULL;
1892
again:
1893
	memcg = page->mem_cgroup;
1894
	if (unlikely(!memcg))
1895
		return NULL;
1896

Q
Qiang Huang 已提交
1897
	if (atomic_read(&memcg->moving_account) <= 0)
1898
		return memcg;
1899

1900
	spin_lock_irqsave(&memcg->move_lock, flags);
1901
	if (memcg != page->mem_cgroup) {
1902
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1903 1904
		goto again;
	}
1905 1906 1907 1908

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1909
	 * the task who has the lock for unlock_page_memcg().
1910 1911 1912
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1913

1914
	return memcg;
1915
}
1916
EXPORT_SYMBOL(lock_page_memcg);
1917

1918
/**
1919 1920 1921 1922
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1923
 */
1924
void __unlock_page_memcg(struct mem_cgroup *memcg)
1925
{
1926 1927 1928 1929 1930 1931 1932 1933
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1934

1935
	rcu_read_unlock();
1936
}
1937 1938 1939 1940 1941 1942 1943 1944 1945

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1946
EXPORT_SYMBOL(unlock_page_memcg);
1947

1948 1949
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1950
	unsigned int nr_pages;
1951
	struct work_struct work;
1952
	unsigned long flags;
1953
#define FLUSHING_CACHED_CHARGE	0
1954 1955
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1956
static DEFINE_MUTEX(percpu_charge_mutex);
1957

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1968
 */
1969
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1970 1971
{
	struct memcg_stock_pcp *stock;
1972
	unsigned long flags;
1973
	bool ret = false;
1974

1975
	if (nr_pages > MEMCG_CHARGE_BATCH)
1976
		return ret;
1977

1978 1979 1980
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1981
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1982
		stock->nr_pages -= nr_pages;
1983 1984
		ret = true;
	}
1985 1986 1987

	local_irq_restore(flags);

1988 1989 1990 1991
	return ret;
}

/*
1992
 * Returns stocks cached in percpu and reset cached information.
1993 1994 1995 1996 1997
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1998
	if (stock->nr_pages) {
1999
		page_counter_uncharge(&old->memory, stock->nr_pages);
2000
		if (do_memsw_account())
2001
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2002
		css_put_many(&old->css, stock->nr_pages);
2003
		stock->nr_pages = 0;
2004 2005 2006 2007 2008 2009
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2010 2011 2012
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2013 2014 2015 2016
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2017 2018 2019
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2020
	drain_stock(stock);
2021
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2022 2023

	local_irq_restore(flags);
2024 2025 2026
}

/*
2027
 * Cache charges(val) to local per_cpu area.
2028
 * This will be consumed by consume_stock() function, later.
2029
 */
2030
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2031
{
2032 2033 2034 2035
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2036

2037
	stock = this_cpu_ptr(&memcg_stock);
2038
	if (stock->cached != memcg) { /* reset if necessary */
2039
		drain_stock(stock);
2040
		stock->cached = memcg;
2041
	}
2042
	stock->nr_pages += nr_pages;
2043

2044
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2045 2046
		drain_stock(stock);

2047
	local_irq_restore(flags);
2048 2049 2050
}

/*
2051
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2052
 * of the hierarchy under it.
2053
 */
2054
static void drain_all_stock(struct mem_cgroup *root_memcg)
2055
{
2056
	int cpu, curcpu;
2057

2058 2059 2060
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2061 2062 2063 2064 2065 2066
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2067
	curcpu = get_cpu();
2068 2069
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2070
		struct mem_cgroup *memcg;
2071

2072
		memcg = stock->cached;
2073
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2074
			continue;
2075 2076
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2077
			continue;
2078
		}
2079 2080 2081 2082 2083 2084
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2085
		css_put(&memcg->css);
2086
	}
2087
	put_cpu();
2088
	mutex_unlock(&percpu_charge_mutex);
2089 2090
}

2091
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2092 2093
{
	struct memcg_stock_pcp *stock;
2094
	struct mem_cgroup *memcg;
2095 2096 2097

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

2123
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2124 2125 2126 2127 2128 2129 2130 2131
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

2132
	return 0;
2133 2134
}

2135 2136 2137 2138 2139 2140 2141
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2142
		memcg_memory_event(memcg, MEMCG_HIGH);
2143 2144 2145 2146 2147 2148 2149 2150 2151
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2152
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2153 2154
}

2155 2156 2157 2158 2159 2160 2161
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2162
	struct mem_cgroup *memcg;
2163 2164 2165 2166

	if (likely(!nr_pages))
		return;

2167 2168
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2169 2170 2171 2172
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2173 2174
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2175
{
2176
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2177
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2178
	struct mem_cgroup *mem_over_limit;
2179
	struct page_counter *counter;
2180
	unsigned long nr_reclaimed;
2181 2182
	bool may_swap = true;
	bool drained = false;
2183 2184
	bool oomed = false;
	enum oom_status oom_status;
2185

2186
	if (mem_cgroup_is_root(memcg))
2187
		return 0;
2188
retry:
2189
	if (consume_stock(memcg, nr_pages))
2190
		return 0;
2191

2192
	if (!do_memsw_account() ||
2193 2194
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2195
			goto done_restock;
2196
		if (do_memsw_account())
2197 2198
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2199
	} else {
2200
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2201
		may_swap = false;
2202
	}
2203

2204 2205 2206 2207
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2208

2209 2210 2211 2212 2213 2214
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2215
	if (unlikely(should_force_charge()))
2216
		goto force;
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2227 2228 2229
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2230
	if (!gfpflags_allow_blocking(gfp_mask))
2231
		goto nomem;
2232

2233
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2234

2235 2236
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2237

2238
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2239
		goto retry;
2240

2241
	if (!drained) {
2242
		drain_all_stock(mem_over_limit);
2243 2244 2245 2246
		drained = true;
		goto retry;
	}

2247 2248
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2249 2250 2251 2252 2253 2254 2255 2256 2257
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2258
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2259 2260 2261 2262 2263 2264 2265 2266
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2267 2268 2269
	if (nr_retries--)
		goto retry;

2270 2271 2272
	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
		goto nomem;

2273
	if (gfp_mask & __GFP_NOFAIL)
2274
		goto force;
2275

2276
	if (fatal_signal_pending(current))
2277
		goto force;
2278

2279
	memcg_memory_event(mem_over_limit, MEMCG_OOM);
2280

2281 2282 2283 2284 2285 2286
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2287
		       get_order(nr_pages * PAGE_SIZE));
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		oomed = true;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2298
nomem:
2299
	if (!(gfp_mask & __GFP_NOFAIL))
2300
		return -ENOMEM;
2301 2302 2303 2304 2305 2306 2307
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2308
	if (do_memsw_account())
2309 2310 2311 2312
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2313 2314

done_restock:
2315
	css_get_many(&memcg->css, batch);
2316 2317
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2318

2319
	/*
2320 2321
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2322
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2323 2324 2325 2326
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2327 2328
	 */
	do {
2329
		if (page_counter_read(&memcg->memory) > memcg->high) {
2330 2331 2332 2333 2334
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2335
			current->memcg_nr_pages_over_high += batch;
2336 2337 2338
			set_notify_resume(current);
			break;
		}
2339
	} while ((memcg = parent_mem_cgroup(memcg)));
2340 2341

	return 0;
2342
}
2343

2344
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2345
{
2346 2347 2348
	if (mem_cgroup_is_root(memcg))
		return;

2349
	page_counter_uncharge(&memcg->memory, nr_pages);
2350
	if (do_memsw_account())
2351
		page_counter_uncharge(&memcg->memsw, nr_pages);
2352

2353
	css_put_many(&memcg->css, nr_pages);
2354 2355
}

2356 2357 2358 2359
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2360
	spin_lock_irq(zone_lru_lock(zone));
2361 2362 2363
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2364
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2379
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2380 2381 2382 2383
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2384
	spin_unlock_irq(zone_lru_lock(zone));
2385 2386
}

2387
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2388
			  bool lrucare)
2389
{
2390
	int isolated;
2391

2392
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2393 2394 2395 2396 2397

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2398 2399
	if (lrucare)
		lock_page_lru(page, &isolated);
2400

2401 2402
	/*
	 * Nobody should be changing or seriously looking at
2403
	 * page->mem_cgroup at this point:
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2415
	page->mem_cgroup = memcg;
2416

2417 2418
	if (lrucare)
		unlock_page_lru(page, isolated);
2419
}
2420

2421
#ifdef CONFIG_MEMCG_KMEM
2422
static int memcg_alloc_cache_id(void)
2423
{
2424 2425 2426
	int id, size;
	int err;

2427
	id = ida_simple_get(&memcg_cache_ida,
2428 2429 2430
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2431

2432
	if (id < memcg_nr_cache_ids)
2433 2434 2435 2436 2437 2438
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2439
	down_write(&memcg_cache_ids_sem);
2440 2441

	size = 2 * (id + 1);
2442 2443 2444 2445 2446
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2447
	err = memcg_update_all_caches(size);
2448 2449
	if (!err)
		err = memcg_update_all_list_lrus(size);
2450 2451 2452 2453 2454
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2455
	if (err) {
2456
		ida_simple_remove(&memcg_cache_ida, id);
2457 2458 2459 2460 2461 2462 2463
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2464
	ida_simple_remove(&memcg_cache_ida, id);
2465 2466
}

2467
struct memcg_kmem_cache_create_work {
2468 2469 2470 2471 2472
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2473
static void memcg_kmem_cache_create_func(struct work_struct *w)
2474
{
2475 2476
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2477 2478
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2479

2480
	memcg_create_kmem_cache(memcg, cachep);
2481

2482
	css_put(&memcg->css);
2483 2484 2485 2486 2487 2488
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2489 2490
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2491
{
2492
	struct memcg_kmem_cache_create_work *cw;
2493

2494
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2495
	if (!cw)
2496
		return;
2497 2498

	css_get(&memcg->css);
2499 2500 2501

	cw->memcg = memcg;
	cw->cachep = cachep;
2502
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2503

2504
	queue_work(memcg_kmem_cache_wq, &cw->work);
2505 2506
}

2507 2508
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2509 2510 2511 2512
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2513
	 * in __memcg_schedule_kmem_cache_create will recurse.
2514 2515 2516 2517 2518 2519 2520
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2521
	current->memcg_kmem_skip_account = 1;
2522
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2523
	current->memcg_kmem_skip_account = 0;
2524
}
2525

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2537 2538 2539
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2540 2541 2542
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2543
 *
2544 2545 2546 2547
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2548
 */
2549
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2550 2551
{
	struct mem_cgroup *memcg;
2552
	struct kmem_cache *memcg_cachep;
2553
	int kmemcg_id;
2554

2555
	VM_BUG_ON(!is_root_cache(cachep));
2556

2557
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2558 2559
		return cachep;

2560
	if (current->memcg_kmem_skip_account)
2561 2562
		return cachep;

2563
	memcg = get_mem_cgroup_from_current();
2564
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2565
	if (kmemcg_id < 0)
2566
		goto out;
2567

2568
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2569 2570
	if (likely(memcg_cachep))
		return memcg_cachep;
2571 2572 2573 2574 2575 2576 2577 2578 2579

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2580 2581 2582
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2583
	 */
2584
	memcg_schedule_kmem_cache_create(memcg, cachep);
2585
out:
2586
	css_put(&memcg->css);
2587
	return cachep;
2588 2589
}

2590 2591 2592 2593 2594
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2595 2596
{
	if (!is_root_cache(cachep))
2597
		css_put(&cachep->memcg_params.memcg->css);
2598 2599
}

2600
/**
2601
 * memcg_kmem_charge_memcg: charge a kmem page
2602 2603 2604 2605 2606 2607 2608 2609 2610
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2611
{
2612 2613
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2614 2615
	int ret;

2616
	ret = try_charge(memcg, gfp, nr_pages);
2617
	if (ret)
2618
		return ret;
2619 2620 2621 2622 2623

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2624 2625
	}

2626
	page->mem_cgroup = memcg;
2627

2628
	return 0;
2629 2630
}

2631 2632 2633 2634 2635 2636 2637 2638 2639
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2640
{
2641
	struct mem_cgroup *memcg;
2642
	int ret = 0;
2643

2644 2645 2646
	if (memcg_kmem_bypass())
		return 0;

2647
	memcg = get_mem_cgroup_from_current();
2648
	if (!mem_cgroup_is_root(memcg)) {
2649
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2650 2651 2652
		if (!ret)
			__SetPageKmemcg(page);
	}
2653
	css_put(&memcg->css);
2654
	return ret;
2655
}
2656 2657 2658 2659 2660 2661
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2662
{
2663
	struct mem_cgroup *memcg = page->mem_cgroup;
2664
	unsigned int nr_pages = 1 << order;
2665 2666 2667 2668

	if (!memcg)
		return;

2669
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2670

2671 2672 2673
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2674
	page_counter_uncharge(&memcg->memory, nr_pages);
2675
	if (do_memsw_account())
2676
		page_counter_uncharge(&memcg->memsw, nr_pages);
2677

2678
	page->mem_cgroup = NULL;
2679 2680 2681 2682 2683

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2684
	css_put_many(&memcg->css, nr_pages);
2685
}
2686
#endif /* CONFIG_MEMCG_KMEM */
2687

2688 2689 2690 2691
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2692
 * zone_lru_lock and migration entries setup in all page mappings.
2693
 */
2694
void mem_cgroup_split_huge_fixup(struct page *head)
2695
{
2696
	int i;
2697

2698 2699
	if (mem_cgroup_disabled())
		return;
2700

2701
	for (i = 1; i < HPAGE_PMD_NR; i++)
2702
		head[i].mem_cgroup = head->mem_cgroup;
2703

2704
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2705
}
2706
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2707

A
Andrew Morton 已提交
2708
#ifdef CONFIG_MEMCG_SWAP
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2720
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2721 2722 2723
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2724
				struct mem_cgroup *from, struct mem_cgroup *to)
2725 2726 2727
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2728 2729
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2730 2731

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2732 2733
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2734 2735 2736 2737 2738 2739
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2740
				struct mem_cgroup *from, struct mem_cgroup *to)
2741 2742 2743
{
	return -EINVAL;
}
2744
#endif
K
KAMEZAWA Hiroyuki 已提交
2745

2746
static DEFINE_MUTEX(memcg_max_mutex);
2747

2748 2749
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2750
{
2751
	bool enlarge = false;
2752
	bool drained = false;
2753
	int ret;
2754 2755
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2756

2757
	do {
2758 2759 2760 2761
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2762

2763
		mutex_lock(&memcg_max_mutex);
2764 2765
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2766
		 * break our basic invariant rule memory.max <= memsw.max.
2767
		 */
2768 2769
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2770
		if (!limits_invariant) {
2771
			mutex_unlock(&memcg_max_mutex);
2772 2773 2774
			ret = -EINVAL;
			break;
		}
2775
		if (max > counter->max)
2776
			enlarge = true;
2777 2778
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2779 2780 2781 2782

		if (!ret)
			break;

2783 2784 2785 2786 2787 2788
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2789 2790 2791 2792 2793 2794
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2795

2796 2797
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2798

2799 2800 2801
	return ret;
}

2802
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2803 2804 2805 2806
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2807
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2808 2809
	unsigned long reclaimed;
	int loop = 0;
2810
	struct mem_cgroup_tree_per_node *mctz;
2811
	unsigned long excess;
2812 2813 2814 2815 2816
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2817
	mctz = soft_limit_tree_node(pgdat->node_id);
2818 2819 2820 2821 2822 2823

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2824
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2825 2826
		return 0;

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2841
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2842 2843 2844
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2845
		spin_lock_irq(&mctz->lock);
2846
		__mem_cgroup_remove_exceeded(mz, mctz);
2847 2848 2849 2850 2851 2852

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2853 2854 2855
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2856
		excess = soft_limit_excess(mz->memcg);
2857 2858 2859 2860 2861 2862 2863 2864 2865
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2866
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2867
		spin_unlock_irq(&mctz->lock);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2885 2886 2887 2888 2889 2890
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2891 2892
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2893 2894 2895 2896 2897 2898
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2899 2900
}

2901
/*
2902
 * Reclaims as many pages from the given memcg as possible.
2903 2904 2905 2906 2907 2908 2909
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2910 2911
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2912 2913 2914

	drain_all_stock(memcg);

2915
	/* try to free all pages in this cgroup */
2916
	while (nr_retries && page_counter_read(&memcg->memory)) {
2917
		int progress;
2918

2919 2920 2921
		if (signal_pending(current))
			return -EINTR;

2922 2923
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2924
		if (!progress) {
2925
			nr_retries--;
2926
			/* maybe some writeback is necessary */
2927
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2928
		}
2929 2930

	}
2931 2932

	return 0;
2933 2934
}

2935 2936 2937
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2938
{
2939
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2940

2941 2942
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2943
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2944 2945
}

2946 2947
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2948
{
2949
	return mem_cgroup_from_css(css)->use_hierarchy;
2950 2951
}

2952 2953
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2954 2955
{
	int retval = 0;
2956
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2957
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2958

2959
	if (memcg->use_hierarchy == val)
2960
		return 0;
2961

2962
	/*
2963
	 * If parent's use_hierarchy is set, we can't make any modifications
2964 2965 2966 2967 2968 2969
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2970
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2971
				(val == 1 || val == 0)) {
2972
		if (!memcg_has_children(memcg))
2973
			memcg->use_hierarchy = val;
2974 2975 2976 2977
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2978

2979 2980 2981
	return retval;
}

2982 2983 2984 2985 2986 2987 2988 2989 2990
struct accumulated_stats {
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[NR_VM_EVENT_ITEMS];
	unsigned long lru_pages[NR_LRU_LISTS];
	const unsigned int *stats_array;
	const unsigned int *events_array;
	int stats_size;
	int events_size;
};
2991

2992 2993
static void accumulate_memcg_tree(struct mem_cgroup *memcg,
				  struct accumulated_stats *acc)
2994
{
2995
	struct mem_cgroup *mi;
2996
	int i;
2997

2998 2999 3000 3001
	for_each_mem_cgroup_tree(mi, memcg) {
		for (i = 0; i < acc->stats_size; i++)
			acc->stat[i] += memcg_page_state(mi,
				acc->stats_array ? acc->stats_array[i] : i);
3002

3003 3004 3005 3006 3007 3008 3009
		for (i = 0; i < acc->events_size; i++)
			acc->events[i] += memcg_sum_events(mi,
				acc->events_array ? acc->events_array[i] : i);

		for (i = 0; i < NR_LRU_LISTS; i++)
			acc->lru_pages[i] +=
				mem_cgroup_nr_lru_pages(mi, BIT(i));
3010
	}
3011 3012
}

3013
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3014
{
3015
	unsigned long val = 0;
3016

3017
	if (mem_cgroup_is_root(memcg)) {
3018 3019 3020
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
3021 3022
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
3023
			if (swap)
3024
				val += memcg_page_state(iter, MEMCG_SWAP);
3025
		}
3026
	} else {
3027
		if (!swap)
3028
			val = page_counter_read(&memcg->memory);
3029
		else
3030
			val = page_counter_read(&memcg->memsw);
3031
	}
3032
	return val;
3033 3034
}

3035 3036 3037 3038 3039 3040 3041
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3042

3043
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3044
			       struct cftype *cft)
B
Balbir Singh 已提交
3045
{
3046
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3047
	struct page_counter *counter;
3048

3049
	switch (MEMFILE_TYPE(cft->private)) {
3050
	case _MEM:
3051 3052
		counter = &memcg->memory;
		break;
3053
	case _MEMSWAP:
3054 3055
		counter = &memcg->memsw;
		break;
3056
	case _KMEM:
3057
		counter = &memcg->kmem;
3058
		break;
V
Vladimir Davydov 已提交
3059
	case _TCP:
3060
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3061
		break;
3062 3063 3064
	default:
		BUG();
	}
3065 3066 3067 3068

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3069
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3070
		if (counter == &memcg->memsw)
3071
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3072 3073
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3074
		return (u64)counter->max * PAGE_SIZE;
3075 3076 3077 3078 3079 3080 3081 3082 3083
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3084
}
3085

3086
#ifdef CONFIG_MEMCG_KMEM
3087
static int memcg_online_kmem(struct mem_cgroup *memcg)
3088 3089 3090
{
	int memcg_id;

3091 3092 3093
	if (cgroup_memory_nokmem)
		return 0;

3094
	BUG_ON(memcg->kmemcg_id >= 0);
3095
	BUG_ON(memcg->kmem_state);
3096

3097
	memcg_id = memcg_alloc_cache_id();
3098 3099
	if (memcg_id < 0)
		return memcg_id;
3100

3101
	static_branch_inc(&memcg_kmem_enabled_key);
3102
	/*
3103
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3104
	 * kmemcg_id. Setting the id after enabling static branching will
3105 3106 3107
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3108
	memcg->kmemcg_id = memcg_id;
3109
	memcg->kmem_state = KMEM_ONLINE;
3110
	INIT_LIST_HEAD(&memcg->kmem_caches);
3111 3112

	return 0;
3113 3114
}

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3148
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3149 3150 3151 3152 3153 3154 3155
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3156 3157
	rcu_read_unlock();

3158
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3159 3160 3161 3162 3163 3164

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3165 3166 3167 3168
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3169 3170 3171 3172 3173 3174
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
3175
#else
3176
static int memcg_online_kmem(struct mem_cgroup *memcg)
3177 3178 3179 3180 3181 3182 3183 3184 3185
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3186
#endif /* CONFIG_MEMCG_KMEM */
3187

3188 3189
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3190
{
3191
	int ret;
3192

3193 3194 3195
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3196
	return ret;
3197
}
3198

3199
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3200 3201 3202
{
	int ret;

3203
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3204

3205
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3206 3207 3208
	if (ret)
		goto out;

3209
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3210 3211 3212
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3213 3214 3215
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3216 3217 3218 3219 3220 3221
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3222
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3223 3224 3225 3226
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3227
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3228 3229
	}
out:
3230
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3231 3232 3233
	return ret;
}

3234 3235 3236 3237
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3238 3239
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3240
{
3241
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3242
	unsigned long nr_pages;
3243 3244
	int ret;

3245
	buf = strstrip(buf);
3246
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3247 3248
	if (ret)
		return ret;
3249

3250
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3251
	case RES_LIMIT:
3252 3253 3254 3255
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3256 3257
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3258
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3259
			break;
3260
		case _MEMSWAP:
3261
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3262
			break;
3263
		case _KMEM:
3264
			ret = memcg_update_kmem_max(memcg, nr_pages);
3265
			break;
V
Vladimir Davydov 已提交
3266
		case _TCP:
3267
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3268
			break;
3269
		}
3270
		break;
3271 3272 3273
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3274 3275
		break;
	}
3276
	return ret ?: nbytes;
B
Balbir Singh 已提交
3277 3278
}

3279 3280
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3281
{
3282
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3283
	struct page_counter *counter;
3284

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3295
	case _TCP:
3296
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3297
		break;
3298 3299 3300
	default:
		BUG();
	}
3301

3302
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3303
	case RES_MAX_USAGE:
3304
		page_counter_reset_watermark(counter);
3305 3306
		break;
	case RES_FAILCNT:
3307
		counter->failcnt = 0;
3308
		break;
3309 3310
	default:
		BUG();
3311
	}
3312

3313
	return nbytes;
3314 3315
}

3316
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3317 3318
					struct cftype *cft)
{
3319
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3320 3321
}

3322
#ifdef CONFIG_MMU
3323
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3324 3325
					struct cftype *cft, u64 val)
{
3326
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3327

3328
	if (val & ~MOVE_MASK)
3329
		return -EINVAL;
3330

3331
	/*
3332 3333 3334 3335
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3336
	 */
3337
	memcg->move_charge_at_immigrate = val;
3338 3339
	return 0;
}
3340
#else
3341
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3342 3343 3344 3345 3346
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3347

3348
#ifdef CONFIG_NUMA
3349
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3350
{
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3363
	int nid;
3364
	unsigned long nr;
3365
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3366

3367 3368 3369 3370 3371 3372 3373 3374 3375
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3376 3377
	}

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3393 3394 3395 3396 3397 3398
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3399
/* Universal VM events cgroup1 shows, original sort order */
3400
static const unsigned int memcg1_events[] = {
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3414
static int memcg_stat_show(struct seq_file *m, void *v)
3415
{
3416
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3417
	unsigned long memory, memsw;
3418 3419
	struct mem_cgroup *mi;
	unsigned int i;
3420
	struct accumulated_stats acc;
3421

3422
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3423 3424
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3425 3426
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3427
			continue;
3428
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3429
			   memcg_page_state(memcg, memcg1_stats[i]) *
3430
			   PAGE_SIZE);
3431
	}
L
Lee Schermerhorn 已提交
3432

3433 3434
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3435
			   memcg_sum_events(memcg, memcg1_events[i]));
3436 3437 3438 3439 3440

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3441
	/* Hierarchical information */
3442 3443
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3444 3445
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3446
	}
3447 3448
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3449
	if (do_memsw_account())
3450 3451
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3452

3453 3454 3455 3456 3457 3458
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = ARRAY_SIZE(memcg1_stats);
	acc.stats_array = memcg1_stats;
	acc.events_size = ARRAY_SIZE(memcg1_events);
	acc.events_array = memcg1_events;
	accumulate_memcg_tree(memcg, &acc);
3459

3460
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3461
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3462
			continue;
3463 3464
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
			   (u64)acc.stat[i] * PAGE_SIZE);
3465 3466
	}

3467 3468 3469
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
			   (u64)acc.events[i]);
3470

3471 3472 3473
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3474

K
KOSAKI Motohiro 已提交
3475 3476
#ifdef CONFIG_DEBUG_VM
	{
3477 3478
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3479
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3480 3481 3482
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3483 3484 3485
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3486

3487 3488 3489 3490 3491
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3492 3493 3494 3495
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3496 3497 3498
	}
#endif

3499 3500 3501
	return 0;
}

3502 3503
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3504
{
3505
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3506

3507
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3508 3509
}

3510 3511
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3512
{
3513
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3514

3515
	if (val > 100)
K
KOSAKI Motohiro 已提交
3516 3517
		return -EINVAL;

3518
	if (css->parent)
3519 3520 3521
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3522

K
KOSAKI Motohiro 已提交
3523 3524 3525
	return 0;
}

3526 3527 3528
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3529
	unsigned long usage;
3530 3531 3532 3533
	int i;

	rcu_read_lock();
	if (!swap)
3534
		t = rcu_dereference(memcg->thresholds.primary);
3535
	else
3536
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3537 3538 3539 3540

	if (!t)
		goto unlock;

3541
	usage = mem_cgroup_usage(memcg, swap);
3542 3543

	/*
3544
	 * current_threshold points to threshold just below or equal to usage.
3545 3546 3547
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3548
	i = t->current_threshold;
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3572
	t->current_threshold = i - 1;
3573 3574 3575 3576 3577 3578
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3579 3580
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3581
		if (do_memsw_account())
3582 3583 3584 3585
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3586 3587 3588 3589 3590 3591 3592
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3593 3594 3595 3596 3597 3598 3599
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3600 3601
}

3602
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3603 3604 3605
{
	struct mem_cgroup_eventfd_list *ev;

3606 3607
	spin_lock(&memcg_oom_lock);

3608
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3609
		eventfd_signal(ev->eventfd, 1);
3610 3611

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3612 3613 3614
	return 0;
}

3615
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3616
{
K
KAMEZAWA Hiroyuki 已提交
3617 3618
	struct mem_cgroup *iter;

3619
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3620
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3621 3622
}

3623
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3624
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3625
{
3626 3627
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3628 3629
	unsigned long threshold;
	unsigned long usage;
3630
	int i, size, ret;
3631

3632
	ret = page_counter_memparse(args, "-1", &threshold);
3633 3634 3635 3636
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3637

3638
	if (type == _MEM) {
3639
		thresholds = &memcg->thresholds;
3640
		usage = mem_cgroup_usage(memcg, false);
3641
	} else if (type == _MEMSWAP) {
3642
		thresholds = &memcg->memsw_thresholds;
3643
		usage = mem_cgroup_usage(memcg, true);
3644
	} else
3645 3646 3647
		BUG();

	/* Check if a threshold crossed before adding a new one */
3648
	if (thresholds->primary)
3649 3650
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3651
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3652 3653

	/* Allocate memory for new array of thresholds */
3654
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3655
			GFP_KERNEL);
3656
	if (!new) {
3657 3658 3659
		ret = -ENOMEM;
		goto unlock;
	}
3660
	new->size = size;
3661 3662

	/* Copy thresholds (if any) to new array */
3663 3664
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3665
				sizeof(struct mem_cgroup_threshold));
3666 3667
	}

3668
	/* Add new threshold */
3669 3670
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3671 3672

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3673
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3674 3675 3676
			compare_thresholds, NULL);

	/* Find current threshold */
3677
	new->current_threshold = -1;
3678
	for (i = 0; i < size; i++) {
3679
		if (new->entries[i].threshold <= usage) {
3680
			/*
3681 3682
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3683 3684
			 * it here.
			 */
3685
			++new->current_threshold;
3686 3687
		} else
			break;
3688 3689
	}

3690 3691 3692 3693 3694
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3695

3696
	/* To be sure that nobody uses thresholds */
3697 3698 3699 3700 3701 3702 3703 3704
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3705
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3706 3707
	struct eventfd_ctx *eventfd, const char *args)
{
3708
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3709 3710
}

3711
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3712 3713
	struct eventfd_ctx *eventfd, const char *args)
{
3714
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3715 3716
}

3717
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3718
	struct eventfd_ctx *eventfd, enum res_type type)
3719
{
3720 3721
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3722
	unsigned long usage;
3723
	int i, j, size;
3724 3725

	mutex_lock(&memcg->thresholds_lock);
3726 3727

	if (type == _MEM) {
3728
		thresholds = &memcg->thresholds;
3729
		usage = mem_cgroup_usage(memcg, false);
3730
	} else if (type == _MEMSWAP) {
3731
		thresholds = &memcg->memsw_thresholds;
3732
		usage = mem_cgroup_usage(memcg, true);
3733
	} else
3734 3735
		BUG();

3736 3737 3738
	if (!thresholds->primary)
		goto unlock;

3739 3740 3741 3742
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3743 3744 3745
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3746 3747 3748
			size++;
	}

3749
	new = thresholds->spare;
3750

3751 3752
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3753 3754
		kfree(new);
		new = NULL;
3755
		goto swap_buffers;
3756 3757
	}

3758
	new->size = size;
3759 3760

	/* Copy thresholds and find current threshold */
3761 3762 3763
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3764 3765
			continue;

3766
		new->entries[j] = thresholds->primary->entries[i];
3767
		if (new->entries[j].threshold <= usage) {
3768
			/*
3769
			 * new->current_threshold will not be used
3770 3771 3772
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3773
			++new->current_threshold;
3774 3775 3776 3777
		}
		j++;
	}

3778
swap_buffers:
3779 3780
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3781

3782
	rcu_assign_pointer(thresholds->primary, new);
3783

3784
	/* To be sure that nobody uses thresholds */
3785
	synchronize_rcu();
3786 3787 3788 3789 3790 3791

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3792
unlock:
3793 3794
	mutex_unlock(&memcg->thresholds_lock);
}
3795

3796
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3797 3798
	struct eventfd_ctx *eventfd)
{
3799
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3800 3801
}

3802
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3803 3804
	struct eventfd_ctx *eventfd)
{
3805
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3806 3807
}

3808
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3809
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3810 3811 3812 3813 3814 3815 3816
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3817
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3818 3819 3820 3821 3822

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3823
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3824
		eventfd_signal(eventfd, 1);
3825
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3826 3827 3828 3829

	return 0;
}

3830
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3831
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3832 3833 3834
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3835
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3836

3837
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3838 3839 3840 3841 3842 3843
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3844
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3845 3846
}

3847
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3848
{
3849
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3850

3851
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3852
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3853 3854
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3855 3856 3857
	return 0;
}

3858
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3859 3860
	struct cftype *cft, u64 val)
{
3861
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3862 3863

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3864
	if (!css->parent || !((val == 0) || (val == 1)))
3865 3866
		return -EINVAL;

3867
	memcg->oom_kill_disable = val;
3868
	if (!val)
3869
		memcg_oom_recover(memcg);
3870

3871 3872 3873
	return 0;
}

3874 3875
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3886 3887 3888 3889 3890
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
	long x = atomic_long_read(&memcg->stat[idx]);
	int cpu;

	for_each_online_cpu(cpu)
		x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx];
	if (x < 0)
		x = 0;
	return x;
}

3917 3918 3919
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3920 3921
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3922 3923 3924
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3925 3926 3927
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3928
 *
3929 3930 3931 3932 3933
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3934
 */
3935 3936 3937
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3938 3939 3940 3941
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3942
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
3943 3944

	/* this should eventually include NR_UNSTABLE_NFS */
3945
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
3946 3947 3948
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3949 3950

	while ((parent = parent_mem_cgroup(memcg))) {
3951
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3952 3953
		unsigned long used = page_counter_read(&memcg->memory);

3954
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3955 3956 3957 3958
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3970 3971 3972 3973
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3974 3975
#endif	/* CONFIG_CGROUP_WRITEBACK */

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3989 3990 3991 3992 3993
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3994
static void memcg_event_remove(struct work_struct *work)
3995
{
3996 3997
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3998
	struct mem_cgroup *memcg = event->memcg;
3999 4000 4001

	remove_wait_queue(event->wqh, &event->wait);

4002
	event->unregister_event(memcg, event->eventfd);
4003 4004 4005 4006 4007 4008

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4009
	css_put(&memcg->css);
4010 4011 4012
}

/*
4013
 * Gets called on EPOLLHUP on eventfd when user closes it.
4014 4015 4016
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4017
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4018
			    int sync, void *key)
4019
{
4020 4021
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4022
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4023
	__poll_t flags = key_to_poll(key);
4024

4025
	if (flags & EPOLLHUP) {
4026 4027 4028 4029 4030 4031 4032 4033 4034
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4035
		spin_lock(&memcg->event_list_lock);
4036 4037 4038 4039 4040 4041 4042 4043
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4044
		spin_unlock(&memcg->event_list_lock);
4045 4046 4047 4048 4049
	}

	return 0;
}

4050
static void memcg_event_ptable_queue_proc(struct file *file,
4051 4052
		wait_queue_head_t *wqh, poll_table *pt)
{
4053 4054
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4055 4056 4057 4058 4059 4060

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4061 4062
 * DO NOT USE IN NEW FILES.
 *
4063 4064 4065 4066 4067
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4068 4069
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4070
{
4071
	struct cgroup_subsys_state *css = of_css(of);
4072
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4073
	struct mem_cgroup_event *event;
4074 4075 4076 4077
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4078
	const char *name;
4079 4080 4081
	char *endp;
	int ret;

4082 4083 4084
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4085 4086
	if (*endp != ' ')
		return -EINVAL;
4087
	buf = endp + 1;
4088

4089
	cfd = simple_strtoul(buf, &endp, 10);
4090 4091
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4092
	buf = endp + 1;
4093 4094 4095 4096 4097

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4098
	event->memcg = memcg;
4099
	INIT_LIST_HEAD(&event->list);
4100 4101 4102
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4128 4129 4130 4131 4132
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4133 4134
	 *
	 * DO NOT ADD NEW FILES.
4135
	 */
A
Al Viro 已提交
4136
	name = cfile.file->f_path.dentry->d_name.name;
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4148 4149
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4150 4151 4152 4153 4154
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4155
	/*
4156 4157 4158
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4159
	 */
A
Al Viro 已提交
4160
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4161
					       &memory_cgrp_subsys);
4162
	ret = -EINVAL;
4163
	if (IS_ERR(cfile_css))
4164
		goto out_put_cfile;
4165 4166
	if (cfile_css != css) {
		css_put(cfile_css);
4167
		goto out_put_cfile;
4168
	}
4169

4170
	ret = event->register_event(memcg, event->eventfd, buf);
4171 4172 4173
	if (ret)
		goto out_put_css;

4174
	vfs_poll(efile.file, &event->pt);
4175

4176 4177 4178
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4179 4180 4181 4182

	fdput(cfile);
	fdput(efile);

4183
	return nbytes;
4184 4185

out_put_css:
4186
	css_put(css);
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4199
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4200
	{
4201
		.name = "usage_in_bytes",
4202
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4203
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4204
	},
4205 4206
	{
		.name = "max_usage_in_bytes",
4207
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4208
		.write = mem_cgroup_reset,
4209
		.read_u64 = mem_cgroup_read_u64,
4210
	},
B
Balbir Singh 已提交
4211
	{
4212
		.name = "limit_in_bytes",
4213
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4214
		.write = mem_cgroup_write,
4215
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4216
	},
4217 4218 4219
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4220
		.write = mem_cgroup_write,
4221
		.read_u64 = mem_cgroup_read_u64,
4222
	},
B
Balbir Singh 已提交
4223 4224
	{
		.name = "failcnt",
4225
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4226
		.write = mem_cgroup_reset,
4227
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4228
	},
4229 4230
	{
		.name = "stat",
4231
		.seq_show = memcg_stat_show,
4232
	},
4233 4234
	{
		.name = "force_empty",
4235
		.write = mem_cgroup_force_empty_write,
4236
	},
4237 4238 4239 4240 4241
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4242
	{
4243
		.name = "cgroup.event_control",		/* XXX: for compat */
4244
		.write = memcg_write_event_control,
4245
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4246
	},
K
KOSAKI Motohiro 已提交
4247 4248 4249 4250 4251
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4252 4253 4254 4255 4256
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4257 4258
	{
		.name = "oom_control",
4259
		.seq_show = mem_cgroup_oom_control_read,
4260
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4261 4262
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4263 4264 4265
	{
		.name = "pressure_level",
	},
4266 4267 4268
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4269
		.seq_show = memcg_numa_stat_show,
4270 4271
	},
#endif
4272 4273 4274
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4275
		.write = mem_cgroup_write,
4276
		.read_u64 = mem_cgroup_read_u64,
4277 4278 4279 4280
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4281
		.read_u64 = mem_cgroup_read_u64,
4282 4283 4284 4285
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4286
		.write = mem_cgroup_reset,
4287
		.read_u64 = mem_cgroup_read_u64,
4288 4289 4290 4291
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4292
		.write = mem_cgroup_reset,
4293
		.read_u64 = mem_cgroup_read_u64,
4294
	},
Y
Yang Shi 已提交
4295
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4296 4297
	{
		.name = "kmem.slabinfo",
4298 4299 4300
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4301
		.seq_show = memcg_slab_show,
4302 4303
	},
#endif
V
Vladimir Davydov 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4327
	{ },	/* terminate */
4328
};
4329

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4356 4357 4358 4359 4360 4361 4362 4363
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4364
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4365
{
4366
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4367
	atomic_add(n, &memcg->id.ref);
4368 4369
}

4370
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4371
{
4372
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4373
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4374
		mem_cgroup_id_remove(memcg);
4375 4376 4377 4378 4379 4380

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4403
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4404 4405
{
	struct mem_cgroup_per_node *pn;
4406
	int tmp = node;
4407 4408 4409 4410 4411 4412 4413 4414
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4415 4416
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4417
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4418 4419
	if (!pn)
		return 1;
4420

4421 4422
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4423 4424 4425 4426
		kfree(pn);
		return 1;
	}

4427 4428 4429 4430 4431
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4432
	memcg->nodeinfo[node] = pn;
4433 4434 4435
	return 0;
}

4436
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4437
{
4438 4439
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4440 4441 4442
	if (!pn)
		return;

4443
	free_percpu(pn->lruvec_stat_cpu);
4444
	kfree(pn);
4445 4446
}

4447
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4448
{
4449
	int node;
4450

4451
	for_each_node(node)
4452
		free_mem_cgroup_per_node_info(memcg, node);
4453
	free_percpu(memcg->stat_cpu);
4454
	kfree(memcg);
4455
}
4456

4457 4458 4459 4460 4461 4462
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4463
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4464
{
4465
	struct mem_cgroup *memcg;
4466
	size_t size;
4467
	int node;
B
Balbir Singh 已提交
4468

4469 4470 4471 4472
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4473
	if (!memcg)
4474 4475
		return NULL;

4476 4477 4478 4479 4480 4481
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4482 4483
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4484
		goto fail;
4485

B
Bob Liu 已提交
4486
	for_each_node(node)
4487
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4488
			goto fail;
4489

4490 4491
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4492

4493
	INIT_WORK(&memcg->high_work, high_work_func);
4494 4495 4496 4497
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4498
	vmpressure_init(&memcg->vmpressure);
4499 4500
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4501
	memcg->socket_pressure = jiffies;
4502
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4503 4504
	memcg->kmemcg_id = -1;
#endif
4505 4506 4507
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4508
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4509 4510
	return memcg;
fail:
4511
	mem_cgroup_id_remove(memcg);
4512
	__mem_cgroup_free(memcg);
4513
	return NULL;
4514 4515
}

4516 4517
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4518
{
4519 4520 4521
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4522

4523 4524 4525
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4526

4527 4528 4529 4530 4531 4532 4533 4534
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4535
		page_counter_init(&memcg->memory, &parent->memory);
4536
		page_counter_init(&memcg->swap, &parent->swap);
4537 4538
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4539
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4540
	} else {
4541
		page_counter_init(&memcg->memory, NULL);
4542
		page_counter_init(&memcg->swap, NULL);
4543 4544
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4545
		page_counter_init(&memcg->tcpmem, NULL);
4546 4547 4548 4549 4550
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4551
		if (parent != root_mem_cgroup)
4552
			memory_cgrp_subsys.broken_hierarchy = true;
4553
	}
4554

4555 4556 4557 4558 4559 4560
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4561
	error = memcg_online_kmem(memcg);
4562 4563
	if (error)
		goto fail;
4564

4565
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4566
		static_branch_inc(&memcg_sockets_enabled_key);
4567

4568 4569
	return &memcg->css;
fail:
4570
	mem_cgroup_id_remove(memcg);
4571
	mem_cgroup_free(memcg);
4572
	return ERR_PTR(-ENOMEM);
4573 4574
}

4575
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4576
{
4577 4578
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4589
	/* Online state pins memcg ID, memcg ID pins CSS */
4590
	atomic_set(&memcg->id.ref, 1);
4591
	css_get(css);
4592
	return 0;
B
Balbir Singh 已提交
4593 4594
}

4595
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4596
{
4597
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4598
	struct mem_cgroup_event *event, *tmp;
4599 4600 4601 4602 4603 4604

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4605 4606
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4607 4608 4609
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4610
	spin_unlock(&memcg->event_list_lock);
4611

R
Roman Gushchin 已提交
4612
	page_counter_set_min(&memcg->memory, 0);
4613
	page_counter_set_low(&memcg->memory, 0);
4614

4615
	memcg_offline_kmem(memcg);
4616
	wb_memcg_offline(memcg);
4617 4618

	mem_cgroup_id_put(memcg);
4619 4620
}

4621 4622 4623 4624 4625 4626 4627
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4628
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4629
{
4630
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4631

4632
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4633
		static_branch_dec(&memcg_sockets_enabled_key);
4634

4635
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4636
		static_branch_dec(&memcg_sockets_enabled_key);
4637

4638 4639 4640
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4641
	memcg_free_shrinker_maps(memcg);
4642
	memcg_free_kmem(memcg);
4643
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4644 4645
}

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4663 4664 4665 4666 4667
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4668
	page_counter_set_min(&memcg->memory, 0);
4669
	page_counter_set_low(&memcg->memory, 0);
4670
	memcg->high = PAGE_COUNTER_MAX;
4671
	memcg->soft_limit = PAGE_COUNTER_MAX;
4672
	memcg_wb_domain_size_changed(memcg);
4673 4674
}

4675
#ifdef CONFIG_MMU
4676
/* Handlers for move charge at task migration. */
4677
static int mem_cgroup_do_precharge(unsigned long count)
4678
{
4679
	int ret;
4680

4681 4682
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4683
	if (!ret) {
4684 4685 4686
		mc.precharge += count;
		return ret;
	}
4687

4688
	/* Try charges one by one with reclaim, but do not retry */
4689
	while (count--) {
4690
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4691 4692
		if (ret)
			return ret;
4693
		mc.precharge++;
4694
		cond_resched();
4695
	}
4696
	return 0;
4697 4698 4699 4700
}

union mc_target {
	struct page	*page;
4701
	swp_entry_t	ent;
4702 4703 4704
};

enum mc_target_type {
4705
	MC_TARGET_NONE = 0,
4706
	MC_TARGET_PAGE,
4707
	MC_TARGET_SWAP,
4708
	MC_TARGET_DEVICE,
4709 4710
};

D
Daisuke Nishimura 已提交
4711 4712
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4713
{
4714
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4715

D
Daisuke Nishimura 已提交
4716 4717 4718
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4719
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4720
			return NULL;
4721 4722 4723 4724
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4725 4726 4727 4728 4729 4730
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4731
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4732
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4733
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4734 4735 4736 4737
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4738
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4739
		return NULL;
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4757 4758 4759 4760
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4761
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4762
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4763 4764 4765 4766
		entry->val = ent.val;

	return page;
}
4767 4768
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4769
			pte_t ptent, swp_entry_t *entry)
4770 4771 4772 4773
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4774

4775 4776 4777 4778 4779 4780 4781 4782 4783
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4784
	if (!(mc.flags & MOVE_FILE))
4785 4786 4787
		return NULL;

	mapping = vma->vm_file->f_mapping;
4788
	pgoff = linear_page_index(vma, addr);
4789 4790

	/* page is moved even if it's not RSS of this task(page-faulted). */
4791 4792
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4793 4794 4795 4796
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4797
			if (do_memsw_account())
4798
				*entry = swp;
4799 4800
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4801 4802 4803 4804 4805
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4806
#endif
4807 4808 4809
	return page;
}

4810 4811 4812
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4813
 * @compound: charge the page as compound or small page
4814 4815 4816
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4817
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4818 4819 4820 4821 4822
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4823
				   bool compound,
4824 4825 4826 4827
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4828
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4829
	int ret;
4830
	bool anon;
4831 4832 4833

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4834
	VM_BUG_ON(compound && !PageTransHuge(page));
4835 4836

	/*
4837
	 * Prevent mem_cgroup_migrate() from looking at
4838
	 * page->mem_cgroup of its source page while we change it.
4839
	 */
4840
	ret = -EBUSY;
4841 4842 4843 4844 4845 4846 4847
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4848 4849
	anon = PageAnon(page);

4850 4851
	spin_lock_irqsave(&from->move_lock, flags);

4852
	if (!anon && page_mapped(page)) {
4853 4854
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4855 4856
	}

4857 4858
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4859
	 * mod_memcg_page_state will serialize updates to PageDirty.
4860 4861 4862 4863 4864 4865
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4866 4867
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4868 4869 4870
		}
	}

4871
	if (PageWriteback(page)) {
4872 4873
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4889
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4890
	memcg_check_events(to, page);
4891
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4892 4893 4894 4895 4896 4897 4898 4899
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4915 4916 4917 4918 4919
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4920 4921
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4922 4923 4924 4925
 *
 * Called with pte lock held.
 */

4926
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4927 4928 4929
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4930
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4931 4932 4933 4934 4935
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4936
		page = mc_handle_swap_pte(vma, ptent, &ent);
4937
	else if (pte_none(ptent))
4938
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4939 4940

	if (!page && !ent.val)
4941
		return ret;
4942 4943
	if (page) {
		/*
4944
		 * Do only loose check w/o serialization.
4945
		 * mem_cgroup_move_account() checks the page is valid or
4946
		 * not under LRU exclusion.
4947
		 */
4948
		if (page->mem_cgroup == mc.from) {
4949
			ret = MC_TARGET_PAGE;
4950 4951
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4952
				ret = MC_TARGET_DEVICE;
4953 4954 4955 4956 4957 4958
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4959 4960 4961 4962 4963
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4964
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4965 4966 4967
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4968 4969 4970 4971
	}
	return ret;
}

4972 4973
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4974 4975
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4976 4977 4978 4979 4980 4981 4982 4983
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4984 4985 4986 4987 4988
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4989
	page = pmd_page(pmd);
4990
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4991
	if (!(mc.flags & MOVE_ANON))
4992
		return ret;
4993
	if (page->mem_cgroup == mc.from) {
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5010 5011 5012 5013
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5014
	struct vm_area_struct *vma = walk->vma;
5015 5016 5017
	pte_t *pte;
	spinlock_t *ptl;

5018 5019
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5020 5021 5022 5023 5024
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
5025 5026
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5027
		spin_unlock(ptl);
5028
		return 0;
5029
	}
5030

5031 5032
	if (pmd_trans_unstable(pmd))
		return 0;
5033 5034
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5035
		if (get_mctgt_type(vma, addr, *pte, NULL))
5036 5037 5038 5039
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5040 5041 5042
	return 0;
}

5043 5044 5045 5046
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5047 5048 5049 5050
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5051
	down_read(&mm->mmap_sem);
5052 5053
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5054
	up_read(&mm->mmap_sem);
5055 5056 5057 5058 5059 5060 5061 5062 5063

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5064 5065 5066 5067 5068
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5069 5070
}

5071 5072
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5073
{
5074 5075 5076
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5077
	/* we must uncharge all the leftover precharges from mc.to */
5078
	if (mc.precharge) {
5079
		cancel_charge(mc.to, mc.precharge);
5080 5081 5082 5083 5084 5085 5086
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5087
		cancel_charge(mc.from, mc.moved_charge);
5088
		mc.moved_charge = 0;
5089
	}
5090 5091 5092
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5093
		if (!mem_cgroup_is_root(mc.from))
5094
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5095

5096 5097
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5098
		/*
5099 5100
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5101
		 */
5102
		if (!mem_cgroup_is_root(mc.to))
5103 5104
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5105 5106
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5107

5108 5109
		mc.moved_swap = 0;
	}
5110 5111 5112 5113 5114 5115 5116
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5117 5118
	struct mm_struct *mm = mc.mm;

5119 5120 5121 5122 5123 5124
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5125
	spin_lock(&mc.lock);
5126 5127
	mc.from = NULL;
	mc.to = NULL;
5128
	mc.mm = NULL;
5129
	spin_unlock(&mc.lock);
5130 5131

	mmput(mm);
5132 5133
}

5134
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5135
{
5136
	struct cgroup_subsys_state *css;
5137
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5138
	struct mem_cgroup *from;
5139
	struct task_struct *leader, *p;
5140
	struct mm_struct *mm;
5141
	unsigned long move_flags;
5142
	int ret = 0;
5143

5144 5145
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5146 5147
		return 0;

5148 5149 5150 5151 5152 5153 5154
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5155
	cgroup_taskset_for_each_leader(leader, css, tset) {
5156 5157
		WARN_ON_ONCE(p);
		p = leader;
5158
		memcg = mem_cgroup_from_css(css);
5159 5160 5161 5162
	}
	if (!p)
		return 0;

5163 5164 5165 5166 5167 5168 5169 5170 5171
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5188
		mc.mm = mm;
5189 5190 5191 5192 5193 5194 5195 5196 5197
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5198 5199
	} else {
		mmput(mm);
5200 5201 5202 5203
	}
	return ret;
}

5204
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5205
{
5206 5207
	if (mc.to)
		mem_cgroup_clear_mc();
5208 5209
}

5210 5211 5212
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5213
{
5214
	int ret = 0;
5215
	struct vm_area_struct *vma = walk->vma;
5216 5217
	pte_t *pte;
	spinlock_t *ptl;
5218 5219 5220
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5221

5222 5223
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5224
		if (mc.precharge < HPAGE_PMD_NR) {
5225
			spin_unlock(ptl);
5226 5227 5228 5229 5230 5231
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5232
				if (!mem_cgroup_move_account(page, true,
5233
							     mc.from, mc.to)) {
5234 5235 5236 5237 5238 5239
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5240 5241 5242 5243 5244 5245 5246 5247
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5248
		}
5249
		spin_unlock(ptl);
5250
		return 0;
5251 5252
	}

5253 5254
	if (pmd_trans_unstable(pmd))
		return 0;
5255 5256 5257 5258
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5259
		bool device = false;
5260
		swp_entry_t ent;
5261 5262 5263 5264

		if (!mc.precharge)
			break;

5265
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5266 5267 5268
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5269 5270
		case MC_TARGET_PAGE:
			page = target.page;
5271 5272 5273 5274 5275 5276 5277 5278
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5279
			if (!device && isolate_lru_page(page))
5280
				goto put;
5281 5282
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5283
				mc.precharge--;
5284 5285
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5286
			}
5287 5288
			if (!device)
				putback_lru_page(page);
5289
put:			/* get_mctgt_type() gets the page */
5290 5291
			put_page(page);
			break;
5292 5293
		case MC_TARGET_SWAP:
			ent = target.ent;
5294
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5295
				mc.precharge--;
5296 5297 5298
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5299
			break;
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5314
		ret = mem_cgroup_do_precharge(1);
5315 5316 5317 5318 5319 5320 5321
		if (!ret)
			goto retry;
	}

	return ret;
}

5322
static void mem_cgroup_move_charge(void)
5323
{
5324 5325
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5326
		.mm = mc.mm,
5327
	};
5328 5329

	lru_add_drain_all();
5330
	/*
5331 5332 5333
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5334 5335 5336
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5337
retry:
5338
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5350 5351 5352 5353
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5354 5355
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5356
	up_read(&mc.mm->mmap_sem);
5357
	atomic_dec(&mc.from->moving_account);
5358 5359
}

5360
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5361
{
5362 5363
	if (mc.to) {
		mem_cgroup_move_charge();
5364
		mem_cgroup_clear_mc();
5365
	}
B
Balbir Singh 已提交
5366
}
5367
#else	/* !CONFIG_MMU */
5368
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5369 5370 5371
{
	return 0;
}
5372
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5373 5374
{
}
5375
static void mem_cgroup_move_task(void)
5376 5377 5378
{
}
#endif
B
Balbir Singh 已提交
5379

5380 5381
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5382 5383
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5384
 */
5385
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5386 5387
{
	/*
5388
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5389 5390 5391
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5392
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5393 5394 5395
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5396 5397
}

5398 5399 5400
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5401 5402 5403
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5404 5405
}

R
Roman Gushchin 已提交
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
static int memory_min_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long min = READ_ONCE(memcg->memory.min);

	if (min == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);

	return 0;
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5436 5437 5438
static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5439
	unsigned long low = READ_ONCE(memcg->memory.low);
5440 5441

	if (low == PAGE_COUNTER_MAX)
5442
		seq_puts(m, "max\n");
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5457
	err = page_counter_memparse(buf, "max", &low);
5458 5459 5460
	if (err)
		return err;

5461
	page_counter_set_low(&memcg->memory, low);
5462 5463 5464 5465 5466 5467 5468

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5469
	unsigned long high = READ_ONCE(memcg->high);
5470 5471

	if (high == PAGE_COUNTER_MAX)
5472
		seq_puts(m, "max\n");
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5483
	unsigned long nr_pages;
5484 5485 5486 5487
	unsigned long high;
	int err;

	buf = strstrip(buf);
5488
	err = page_counter_memparse(buf, "max", &high);
5489 5490 5491 5492 5493
	if (err)
		return err;

	memcg->high = high;

5494 5495 5496 5497 5498
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5499
	memcg_wb_domain_size_changed(memcg);
5500 5501 5502 5503 5504 5505
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5506
	unsigned long max = READ_ONCE(memcg->memory.max);
5507 5508

	if (max == PAGE_COUNTER_MAX)
5509
		seq_puts(m, "max\n");
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5520 5521
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5522 5523 5524 5525
	unsigned long max;
	int err;

	buf = strstrip(buf);
5526
	err = page_counter_memparse(buf, "max", &max);
5527 5528 5529
	if (err)
		return err;

5530
	xchg(&memcg->memory.max, max);
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5556
		memcg_memory_event(memcg, MEMCG_OOM);
5557 5558 5559
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5560

5561
	memcg_wb_domain_size_changed(memcg);
5562 5563 5564 5565 5566 5567 5568
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5569 5570 5571 5572 5573 5574 5575 5576
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5577 5578
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5579 5580 5581 5582

	return 0;
}

5583 5584 5585
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5586
	struct accumulated_stats acc;
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5600 5601 5602 5603
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = MEMCG_NR_STAT;
	acc.events_size = NR_VM_EVENT_ITEMS;
	accumulate_memcg_tree(memcg, &acc);
5604

5605
	seq_printf(m, "anon %llu\n",
5606
		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5607
	seq_printf(m, "file %llu\n",
5608
		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5609
	seq_printf(m, "kernel_stack %llu\n",
5610
		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5611
	seq_printf(m, "slab %llu\n",
5612 5613
		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5614
	seq_printf(m, "sock %llu\n",
5615
		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5616

5617
	seq_printf(m, "shmem %llu\n",
5618
		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5619
	seq_printf(m, "file_mapped %llu\n",
5620
		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5621
	seq_printf(m, "file_dirty %llu\n",
5622
		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5623
	seq_printf(m, "file_writeback %llu\n",
5624
		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5625

5626 5627 5628
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5629

5630
	seq_printf(m, "slab_reclaimable %llu\n",
5631
		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5632
	seq_printf(m, "slab_unreclaimable %llu\n",
5633
		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5634

5635 5636
	/* Accumulated memory events */

5637 5638
	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5639

5640 5641 5642 5643 5644 5645 5646 5647 5648
	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
		   acc.events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
		   acc.events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5649

5650
	seq_printf(m, "workingset_refault %lu\n",
5651
		   acc.stat[WORKINGSET_REFAULT]);
5652
	seq_printf(m, "workingset_activate %lu\n",
5653
		   acc.stat[WORKINGSET_ACTIVATE]);
5654
	seq_printf(m, "workingset_nodereclaim %lu\n",
5655
		   acc.stat[WORKINGSET_NODERECLAIM]);
5656

5657 5658 5659
	return 0;
}

5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
static int memory_oom_group_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5691 5692 5693
static struct cftype memory_files[] = {
	{
		.name = "current",
5694
		.flags = CFTYPE_NOT_ON_ROOT,
5695 5696
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5697 5698 5699 5700 5701 5702
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5724
		.file_offset = offsetof(struct mem_cgroup, events_file),
5725 5726
		.seq_show = memory_events_show,
	},
5727 5728 5729 5730 5731
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5732 5733 5734 5735 5736 5737
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5738 5739 5740
	{ }	/* terminate */
};

5741
struct cgroup_subsys memory_cgrp_subsys = {
5742
	.css_alloc = mem_cgroup_css_alloc,
5743
	.css_online = mem_cgroup_css_online,
5744
	.css_offline = mem_cgroup_css_offline,
5745
	.css_released = mem_cgroup_css_released,
5746
	.css_free = mem_cgroup_css_free,
5747
	.css_reset = mem_cgroup_css_reset,
5748 5749
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5750
	.post_attach = mem_cgroup_move_task,
5751
	.bind = mem_cgroup_bind,
5752 5753
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5754
	.early_init = 0,
B
Balbir Singh 已提交
5755
};
5756

5757
/**
R
Roman Gushchin 已提交
5758
 * mem_cgroup_protected - check if memory consumption is in the normal range
5759
 * @root: the top ancestor of the sub-tree being checked
5760 5761
 * @memcg: the memory cgroup to check
 *
5762 5763
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5764
 *
R
Roman Gushchin 已提交
5765 5766 5767 5768 5769
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5770
 *
R
Roman Gushchin 已提交
5771
 * @root is exclusive; it is never protected when looked at directly
5772
 *
R
Roman Gushchin 已提交
5773 5774 5775
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5776
 *
5777 5778 5779 5780 5781 5782 5783
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5784
 *
5785 5786 5787
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5788
 *
5789 5790 5791
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
	       | 0, otherwise.
5792
 *
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5820 5821
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5822 5823 5824 5825
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5826
 */
R
Roman Gushchin 已提交
5827 5828
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5829
{
5830
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5831 5832 5833
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5834

5835
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5836
		return MEMCG_PROT_NONE;
5837

5838 5839 5840
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5841
		return MEMCG_PROT_NONE;
5842

5843
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5844 5845 5846 5847 5848
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5849

R
Roman Gushchin 已提交
5850
	parent = parent_mem_cgroup(memcg);
5851 5852 5853 5854
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5855 5856 5857
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5872 5873
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5874 5875
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5876

R
Roman Gushchin 已提交
5877 5878 5879
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5880

R
Roman Gushchin 已提交
5881 5882 5883 5884
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5885 5886

exit:
R
Roman Gushchin 已提交
5887
	memcg->memory.emin = emin;
5888
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5889 5890 5891 5892 5893 5894 5895

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5896 5897
}

5898 5899 5900 5901 5902 5903
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5904
 * @compound: charge the page as compound or small page
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5917 5918
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5919 5920
{
	struct mem_cgroup *memcg = NULL;
5921
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5935
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5936
		if (compound_head(page)->mem_cgroup)
5937
			goto out;
5938

5939
		if (do_swap_account) {
5940 5941 5942 5943 5944 5945 5946 5947 5948
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

5975 5976 5977 5978 5979
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5980
 * @compound: charge the page as compound or small page
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5993
			      bool lrucare, bool compound)
5994
{
5995
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6010 6011 6012
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6013
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6014 6015
	memcg_check_events(memcg, page);
	local_irq_enable();
6016

6017
	if (do_memsw_account() && PageSwapCache(page)) {
6018 6019 6020 6021 6022 6023
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6024
		mem_cgroup_uncharge_swap(entry, nr_pages);
6025 6026 6027 6028 6029 6030 6031
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6032
 * @compound: charge the page as compound or small page
6033 6034 6035
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6036 6037
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6038
{
6039
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6066
{
6067 6068 6069 6070 6071 6072
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6073 6074
	unsigned long flags;

6075 6076
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6077
		if (do_memsw_account())
6078 6079 6080 6081
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6082
	}
6083 6084

	local_irq_save(flags);
6085 6086 6087 6088 6089
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6090
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6091
	memcg_check_events(ug->memcg, ug->dummy_page);
6092
	local_irq_restore(flags);
6093

6094 6095 6096 6097 6098 6099 6100
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6101 6102
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6143 6144 6145 6146
}

static void uncharge_list(struct list_head *page_list)
{
6147
	struct uncharge_gather ug;
6148
	struct list_head *next;
6149 6150

	uncharge_gather_clear(&ug);
6151

6152 6153 6154 6155
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6156 6157
	next = page_list->next;
	do {
6158 6159
		struct page *page;

6160 6161 6162
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6163
		uncharge_page(page, &ug);
6164 6165
	} while (next != page_list);

6166 6167
	if (ug.memcg)
		uncharge_batch(&ug);
6168 6169
}

6170 6171 6172 6173 6174 6175 6176 6177 6178
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6179 6180
	struct uncharge_gather ug;

6181 6182 6183
	if (mem_cgroup_disabled())
		return;

6184
	/* Don't touch page->lru of any random page, pre-check: */
6185
	if (!page->mem_cgroup)
6186 6187
		return;

6188 6189 6190
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6191
}
6192

6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6204

6205 6206
	if (!list_empty(page_list))
		uncharge_list(page_list);
6207 6208 6209
}

/**
6210 6211 6212
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6213
 *
6214 6215
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6216 6217 6218
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6219
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6220
{
6221
	struct mem_cgroup *memcg;
6222 6223
	unsigned int nr_pages;
	bool compound;
6224
	unsigned long flags;
6225 6226 6227 6228

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6229 6230
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6231 6232 6233 6234 6235

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6236
	if (newpage->mem_cgroup)
6237 6238
		return;

6239
	/* Swapcache readahead pages can get replaced before being charged */
6240
	memcg = oldpage->mem_cgroup;
6241
	if (!memcg)
6242 6243
		return;

6244 6245 6246 6247 6248 6249 6250 6251
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6252

6253
	commit_charge(newpage, memcg, false);
6254

6255
	local_irq_save(flags);
6256 6257
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6258
	local_irq_restore(flags);
6259 6260
}

6261
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6262 6263
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6264
void mem_cgroup_sk_alloc(struct sock *sk)
6265 6266 6267
{
	struct mem_cgroup *memcg;

6268 6269 6270
	if (!mem_cgroup_sockets_enabled)
		return;

6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6285 6286
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6287 6288
	if (memcg == root_mem_cgroup)
		goto out;
6289
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6290 6291
		goto out;
	if (css_tryget_online(&memcg->css))
6292
		sk->sk_memcg = memcg;
6293
out:
6294 6295 6296
	rcu_read_unlock();
}

6297
void mem_cgroup_sk_free(struct sock *sk)
6298
{
6299 6300
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6313
	gfp_t gfp_mask = GFP_KERNEL;
6314

6315
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6316
		struct page_counter *fail;
6317

6318 6319
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6320 6321
			return true;
		}
6322 6323
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6324
		return false;
6325
	}
6326

6327 6328 6329 6330
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6331
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6332

6333 6334 6335 6336
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6337 6338 6339 6340 6341
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6342 6343
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6344 6345 6346
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6347
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6348
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6349 6350
		return;
	}
6351

6352
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6353

6354
	refill_stock(memcg, nr_pages);
6355 6356
}

6357 6358 6359 6360 6361 6362 6363 6364 6365
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6366 6367
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6368 6369 6370 6371
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6372

6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
bool cgwb_v1 = false;

static int __init enable_cgroup_writeback_v1(char *s)
{
	cgwb_v1 = true;

	return 0;
}
__setup("cgwb_v1", enable_cgroup_writeback_v1);

6383
/*
6384 6385
 * subsys_initcall() for memory controller.
 *
6386 6387 6388 6389
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6390 6391 6392
 */
static int __init mem_cgroup_init(void)
{
6393 6394
	int cpu, node;

6395
#ifdef CONFIG_MEMCG_KMEM
6396 6397
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6398 6399 6400
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6401
	 */
6402 6403
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6404 6405
#endif

6406 6407
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6419
		rtpn->rb_root = RB_ROOT;
6420
		rtpn->rb_rightmost = NULL;
6421
		spin_lock_init(&rtpn->lock);
6422 6423 6424
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6425 6426 6427
	return 0;
}
subsys_initcall(mem_cgroup_init);
6428 6429

#ifdef CONFIG_MEMCG_SWAP
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6448 6449 6450 6451 6452 6453 6454 6455 6456
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6457
	struct mem_cgroup *memcg, *swap_memcg;
6458
	unsigned int nr_entries;
6459 6460 6461 6462 6463
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6464
	if (!do_memsw_account())
6465 6466 6467 6468 6469 6470 6471 6472
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6473 6474 6475 6476 6477 6478
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6479 6480 6481 6482 6483 6484
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6485
	VM_BUG_ON_PAGE(oldid, page);
6486
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6487 6488 6489 6490

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6491
		page_counter_uncharge(&memcg->memory, nr_entries);
6492

6493 6494
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6495 6496
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6497 6498
	}

6499 6500
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6501
	 * i_pages lock which is taken with interrupts-off. It is
6502
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6503
	 * only synchronisation we have for updating the per-CPU variables.
6504 6505
	 */
	VM_BUG_ON(!irqs_disabled());
6506 6507
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6508
	memcg_check_events(memcg, page);
6509 6510

	if (!mem_cgroup_is_root(memcg))
6511
		css_put_many(&memcg->css, nr_entries);
6512 6513
}

6514 6515
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6516 6517 6518
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6519
 * Try to charge @page's memcg for the swap space at @entry.
6520 6521 6522 6523 6524
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6525
	unsigned int nr_pages = hpage_nr_pages(page);
6526
	struct page_counter *counter;
6527
	struct mem_cgroup *memcg;
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6539 6540
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6541
		return 0;
6542
	}
6543

6544 6545
	memcg = mem_cgroup_id_get_online(memcg);

6546
	if (!mem_cgroup_is_root(memcg) &&
6547
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6548 6549
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6550
		mem_cgroup_id_put(memcg);
6551
		return -ENOMEM;
6552
	}
6553

6554 6555 6556 6557
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6558
	VM_BUG_ON_PAGE(oldid, page);
6559
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6560 6561 6562 6563

	return 0;
}

6564
/**
6565
 * mem_cgroup_uncharge_swap - uncharge swap space
6566
 * @entry: swap entry to uncharge
6567
 * @nr_pages: the amount of swap space to uncharge
6568
 */
6569
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6570 6571 6572 6573
{
	struct mem_cgroup *memcg;
	unsigned short id;

6574
	if (!do_swap_account)
6575 6576
		return;

6577
	id = swap_cgroup_record(entry, 0, nr_pages);
6578
	rcu_read_lock();
6579
	memcg = mem_cgroup_from_id(id);
6580
	if (memcg) {
6581 6582
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6583
				page_counter_uncharge(&memcg->swap, nr_pages);
6584
			else
6585
				page_counter_uncharge(&memcg->memsw, nr_pages);
6586
		}
6587
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6588
		mem_cgroup_id_put_many(memcg, nr_pages);
6589 6590 6591 6592
	}
	rcu_read_unlock();
}

6593 6594 6595 6596 6597 6598 6599 6600
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6601
				      READ_ONCE(memcg->swap.max) -
6602 6603 6604 6605
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6622
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6623 6624 6625 6626 6627
			return true;

	return false;
}

6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6656
	unsigned long max = READ_ONCE(memcg->swap.max);
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6678
	xchg(&memcg->swap.max, max);
6679 6680 6681 6682

	return nbytes;
}

6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
static int swap_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6707 6708 6709 6710 6711 6712
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6713 6714 6715
	{ }	/* terminate */
};

6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6747 6748
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6749 6750 6751 6752 6753 6754 6755 6756
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */