memcontrol.c 154.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107
	"mapped_file",
108
	"dirty",
109
	"writeback",
110 111 112 113 114 115 116 117 118 119
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

120 121 122 123 124 125 126 127
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

128 129 130
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
131

132 133 134 135 136
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

137
struct mem_cgroup_tree_per_node {
138 139 140 141 142 143 144 145 146 147
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
148 149 150 151 152
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
153

154 155 156
/*
 * cgroup_event represents events which userspace want to receive.
 */
157
struct mem_cgroup_event {
158
	/*
159
	 * memcg which the event belongs to.
160
	 */
161
	struct mem_cgroup *memcg;
162 163 164 165 166 167 168 169
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
170 171 172 173 174
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
175
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
176
			      struct eventfd_ctx *eventfd, const char *args);
177 178 179 180 181
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
182
	void (*unregister_event)(struct mem_cgroup *memcg,
183
				 struct eventfd_ctx *eventfd);
184 185 186 187 188 189 190 191 192 193
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

194 195
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196

197 198
/* Stuffs for move charges at task migration. */
/*
199
 * Types of charges to be moved.
200
 */
201 202 203
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
204

205 206
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
207
	spinlock_t	  lock; /* for from, to */
208
	struct mm_struct  *mm;
209 210
	struct mem_cgroup *from;
	struct mem_cgroup *to;
211
	unsigned long flags;
212
	unsigned long precharge;
213
	unsigned long moved_charge;
214
	unsigned long moved_swap;
215 216 217
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
218
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
219 220
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
221

222 223 224 225
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
226
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
227
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
228

229 230
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
231
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
232
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
234 235 236
	NR_CHARGE_TYPE,
};

237
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
238 239 240 241
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
242
	_KMEM,
V
Vladimir Davydov 已提交
243
	_TCP,
G
Glauber Costa 已提交
244 245
};

246 247
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
248
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
249 250
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
251

252 253 254 255 256 257 258 259 260 261 262 263 264
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

265 266 267 268 269
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

270
#ifndef CONFIG_SLOB
271
/*
272
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
273 274 275 276 277
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
278
 *
279 280
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
281
 */
282 283
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
284

285 286 287 288 289 290 291 292 293 294 295 296 297
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

298 299 300 301 302 303
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
304
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305 306
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
307
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
308 309 310
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
311
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312

313 314 315 316 317 318
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
319
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320
EXPORT_SYMBOL(memcg_kmem_enabled_key);
321

322 323
struct workqueue_struct *memcg_kmem_cache_wq;

324
#endif /* !CONFIG_SLOB */
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

343
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
344 345 346 347 348
		memcg = root_mem_cgroup;

	return &memcg->css;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

377 378
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
379
{
380
	int nid = page_to_nid(page);
381

382
	return memcg->nodeinfo[nid];
383 384
}

385 386
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
387
{
388
	return soft_limit_tree.rb_tree_per_node[nid];
389 390
}

391
static struct mem_cgroup_tree_per_node *
392 393 394 395
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

396
	return soft_limit_tree.rb_tree_per_node[nid];
397 398
}

399 400
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
401
					 unsigned long new_usage_in_excess)
402 403 404
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
405
	struct mem_cgroup_per_node *mz_node;
406 407 408 409 410 411 412 413 414

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
415
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

431 432
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
433 434 435 436 437 438 439
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

440 441
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
442
{
443 444 445
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
446
	__mem_cgroup_remove_exceeded(mz, mctz);
447
	spin_unlock_irqrestore(&mctz->lock, flags);
448 449
}

450 451 452
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
453
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
454 455 456 457 458 459 460
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
461 462 463

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
464
	unsigned long excess;
465 466
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
467

468
	mctz = soft_limit_tree_from_page(page);
469 470 471 472 473
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
474
		mz = mem_cgroup_page_nodeinfo(memcg, page);
475
		excess = soft_limit_excess(memcg);
476 477 478 479 480
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
481 482 483
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
484 485
			/* if on-tree, remove it */
			if (mz->on_tree)
486
				__mem_cgroup_remove_exceeded(mz, mctz);
487 488 489 490
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
491
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
492
			spin_unlock_irqrestore(&mctz->lock, flags);
493 494 495 496 497 498
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
499 500 501
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
502

503
	for_each_node(nid) {
504 505 506
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
		mem_cgroup_remove_exceeded(mz, mctz);
507 508 509
	}
}

510 511
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
512 513
{
	struct rb_node *rightmost = NULL;
514
	struct mem_cgroup_per_node *mz;
515 516 517 518 519 520 521

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

522
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
523 524 525 526 527
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
528
	__mem_cgroup_remove_exceeded(mz, mctz);
529
	if (!soft_limit_excess(mz->memcg) ||
530
	    !css_tryget_online(&mz->memcg->css))
531 532 533 534 535
		goto retry;
done:
	return mz;
}

536 537
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
538
{
539
	struct mem_cgroup_per_node *mz;
540

541
	spin_lock_irq(&mctz->lock);
542
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
543
	spin_unlock_irq(&mctz->lock);
544 545 546
	return mz;
}

547
/*
548 549
 * Return page count for single (non recursive) @memcg.
 *
550 551 552 553 554
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
555
 * a periodic synchronization of counter in memcg's counter.
556 557 558 559 560 561 562 563 564
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
565
 * common workload, threshold and synchronization as vmstat[] should be
566 567
 * implemented.
 */
568 569
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
570
{
571
	long val = 0;
572 573
	int cpu;

574
	/* Per-cpu values can be negative, use a signed accumulator */
575
	for_each_possible_cpu(cpu)
576
		val += per_cpu(memcg->stat->count[idx], cpu);
577 578 579 580 581 582
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
583 584 585
	return val;
}

586
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
587 588 589 590 591
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

592
	for_each_possible_cpu(cpu)
593
		val += per_cpu(memcg->stat->events[idx], cpu);
594 595 596
	return val;
}

597
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
598
					 struct page *page,
599
					 bool compound, int nr_pages)
600
{
601 602 603 604
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
605
	if (PageAnon(page))
606
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
607
				nr_pages);
608
	else
609
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
610
				nr_pages);
611

612 613
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
614 615
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
616
	}
617

618 619
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
620
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
621
	else {
622
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
623 624
		nr_pages = -nr_pages; /* for event */
	}
625

626
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
627 628
}

629 630
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
631
{
632
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
633
	unsigned long nr = 0;
634
	enum lru_list lru;
635

636
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
637

638 639 640
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
641
		nr += mem_cgroup_get_lru_size(lruvec, lru);
642 643
	}
	return nr;
644
}
645

646
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
647
			unsigned int lru_mask)
648
{
649
	unsigned long nr = 0;
650
	int nid;
651

652
	for_each_node_state(nid, N_MEMORY)
653 654
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
655 656
}

657 658
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
659 660 661
{
	unsigned long val, next;

662
	val = __this_cpu_read(memcg->stat->nr_page_events);
663
	next = __this_cpu_read(memcg->stat->targets[target]);
664
	/* from time_after() in jiffies.h */
665 666 667 668 669
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
670 671 672
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
673 674 675 676 677 678 679 680
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
681
	}
682
	return false;
683 684 685 686 687 688
}

/*
 * Check events in order.
 *
 */
689
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
690 691
{
	/* threshold event is triggered in finer grain than soft limit */
692 693
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
694
		bool do_softlimit;
695
		bool do_numainfo __maybe_unused;
696

697 698
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
699 700 701 702
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
703
		mem_cgroup_threshold(memcg);
704 705
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
706
#if MAX_NUMNODES > 1
707
		if (unlikely(do_numainfo))
708
			atomic_inc(&memcg->numainfo_events);
709
#endif
710
	}
711 712
}

713
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
714
{
715 716 717 718 719 720 721 722
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

723
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
724
}
M
Michal Hocko 已提交
725
EXPORT_SYMBOL(mem_cgroup_from_task);
726

727
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
728
{
729
	struct mem_cgroup *memcg = NULL;
730

731 732
	rcu_read_lock();
	do {
733 734 735 736 737 738
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
739
			memcg = root_mem_cgroup;
740 741 742 743 744
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
745
	} while (!css_tryget_online(&memcg->css));
746
	rcu_read_unlock();
747
	return memcg;
748 749
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
767
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
768
				   struct mem_cgroup *prev,
769
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
770
{
M
Michal Hocko 已提交
771
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
772
	struct cgroup_subsys_state *css = NULL;
773
	struct mem_cgroup *memcg = NULL;
774
	struct mem_cgroup *pos = NULL;
775

776 777
	if (mem_cgroup_disabled())
		return NULL;
778

779 780
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
781

782
	if (prev && !reclaim)
783
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
784

785 786
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
787
			goto out;
788
		return root;
789
	}
K
KAMEZAWA Hiroyuki 已提交
790

791
	rcu_read_lock();
M
Michal Hocko 已提交
792

793
	if (reclaim) {
794
		struct mem_cgroup_per_node *mz;
795

796
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
797 798 799 800 801
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

802
		while (1) {
803
			pos = READ_ONCE(iter->position);
804 805
			if (!pos || css_tryget(&pos->css))
				break;
806
			/*
807 808 809 810 811 812
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
813
			 */
814 815
			(void)cmpxchg(&iter->position, pos, NULL);
		}
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
833
		}
K
KAMEZAWA Hiroyuki 已提交
834

835 836 837 838 839 840
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
841

842 843
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
844

845 846
		if (css_tryget(css))
			break;
847

848
		memcg = NULL;
849
	}
850 851 852

	if (reclaim) {
		/*
853 854 855
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
856
		 */
857 858
		(void)cmpxchg(&iter->position, pos, memcg);

859 860 861 862 863 864 865
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
866
	}
867

868 869
out_unlock:
	rcu_read_unlock();
870
out:
871 872 873
	if (prev && prev != root)
		css_put(&prev->css);

874
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
875
}
K
KAMEZAWA Hiroyuki 已提交
876

877 878 879 880 881 882 883
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
884 885 886 887 888 889
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
890

891 892 893 894
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
895 896
	struct mem_cgroup_per_node *mz;
	int nid;
897 898 899 900
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
901 902 903 904 905
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
906 907 908 909 910
			}
		}
	}
}

911 912 913 914 915 916
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
917
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
918
	     iter != NULL;				\
919
	     iter = mem_cgroup_iter(root, iter, NULL))
920

921
#define for_each_mem_cgroup(iter)			\
922
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
923
	     iter != NULL;				\
924
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
925

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

		css_task_iter_start(&iter->css, &it);
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

963
/**
964
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
965
 * @page: the page
966
 * @zone: zone of the page
967 968 969 970
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
971
 */
M
Mel Gorman 已提交
972
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
973
{
974
	struct mem_cgroup_per_node *mz;
975
	struct mem_cgroup *memcg;
976
	struct lruvec *lruvec;
977

978
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
979
		lruvec = &pgdat->lruvec;
980 981
		goto out;
	}
982

983
	memcg = page->mem_cgroup;
984
	/*
985
	 * Swapcache readahead pages are added to the LRU - and
986
	 * possibly migrated - before they are charged.
987
	 */
988 989
	if (!memcg)
		memcg = root_mem_cgroup;
990

991
	mz = mem_cgroup_page_nodeinfo(memcg, page);
992 993 994 995 996 997 998
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
999 1000
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1001
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1002
}
1003

1004
/**
1005 1006 1007
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1008
 * @zid: zone id of the accounted pages
1009
 * @nr_pages: positive when adding or negative when removing
1010
 *
1011 1012 1013
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1014
 */
1015
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1016
				int zid, int nr_pages)
1017
{
1018
	struct mem_cgroup_per_node *mz;
1019
	unsigned long *lru_size;
1020
	long size;
1021 1022 1023 1024

	if (mem_cgroup_disabled())
		return;

1025
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1026
	lru_size = &mz->lru_zone_size[zid][lru];
1027 1028 1029 1030 1031

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1032 1033 1034
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1035 1036 1037 1038 1039 1040
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1041
}
1042

1043
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1044
{
1045
	struct mem_cgroup *task_memcg;
1046
	struct task_struct *p;
1047
	bool ret;
1048

1049
	p = find_lock_task_mm(task);
1050
	if (p) {
1051
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1052 1053 1054 1055 1056 1057 1058
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1059
		rcu_read_lock();
1060 1061
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1062
		rcu_read_unlock();
1063
	}
1064 1065
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1066 1067 1068
	return ret;
}

1069
/**
1070
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1071
 * @memcg: the memory cgroup
1072
 *
1073
 * Returns the maximum amount of memory @mem can be charged with, in
1074
 * pages.
1075
 */
1076
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1077
{
1078 1079 1080
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1081

1082
	count = page_counter_read(&memcg->memory);
1083
	limit = READ_ONCE(memcg->memory.limit);
1084 1085 1086
	if (count < limit)
		margin = limit - count;

1087
	if (do_memsw_account()) {
1088
		count = page_counter_read(&memcg->memsw);
1089
		limit = READ_ONCE(memcg->memsw.limit);
1090 1091
		if (count <= limit)
			margin = min(margin, limit - count);
1092 1093
		else
			margin = 0;
1094 1095 1096
	}

	return margin;
1097 1098
}

1099
/*
Q
Qiang Huang 已提交
1100
 * A routine for checking "mem" is under move_account() or not.
1101
 *
Q
Qiang Huang 已提交
1102 1103 1104
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1105
 */
1106
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1107
{
1108 1109
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1110
	bool ret = false;
1111 1112 1113 1114 1115 1116 1117 1118 1119
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1120

1121 1122
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1123 1124
unlock:
	spin_unlock(&mc.lock);
1125 1126 1127
	return ret;
}

1128
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1129 1130
{
	if (mc.moving_task && current != mc.moving_task) {
1131
		if (mem_cgroup_under_move(memcg)) {
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1144
#define K(x) ((x) << (PAGE_SHIFT-10))
1145
/**
1146
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1147 1148 1149 1150 1151 1152 1153 1154
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1155 1156
	struct mem_cgroup *iter;
	unsigned int i;
1157 1158 1159

	rcu_read_lock();

1160 1161 1162 1163 1164 1165 1166 1167
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1168
	pr_cont_cgroup_path(memcg->css.cgroup);
1169
	pr_cont("\n");
1170 1171 1172

	rcu_read_unlock();

1173 1174 1175 1176 1177 1178 1179 1180 1181
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1182 1183

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1184 1185
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1186 1187 1188
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1189
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1190
				continue;
1191
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1192 1193 1194 1195 1196 1197 1198 1199 1200
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1201 1202
}

1203 1204 1205 1206
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1207
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1208 1209
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1210 1211
	struct mem_cgroup *iter;

1212
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1213
		num++;
1214 1215 1216
	return num;
}

D
David Rientjes 已提交
1217 1218 1219
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1220
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1221
{
1222
	unsigned long limit;
1223

1224
	limit = memcg->memory.limit;
1225
	if (mem_cgroup_swappiness(memcg)) {
1226
		unsigned long memsw_limit;
1227
		unsigned long swap_limit;
1228

1229
		memsw_limit = memcg->memsw.limit;
1230 1231 1232
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1233 1234
	}
	return limit;
D
David Rientjes 已提交
1235 1236
}

1237
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1238
				     int order)
1239
{
1240 1241 1242
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1243
		.memcg = memcg,
1244 1245 1246
		.gfp_mask = gfp_mask,
		.order = order,
	};
1247
	bool ret;
1248

1249
	mutex_lock(&oom_lock);
1250
	ret = out_of_memory(&oc);
1251
	mutex_unlock(&oom_lock);
1252
	return ret;
1253 1254
}

1255 1256
#if MAX_NUMNODES > 1

1257 1258
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1259
 * @memcg: the target memcg
1260 1261 1262 1263 1264 1265 1266
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1267
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1268 1269
		int nid, bool noswap)
{
1270
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1271 1272 1273
		return true;
	if (noswap || !total_swap_pages)
		return false;
1274
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1275 1276 1277 1278
		return true;
	return false;

}
1279 1280 1281 1282 1283 1284 1285

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1286
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1287 1288
{
	int nid;
1289 1290 1291 1292
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1293
	if (!atomic_read(&memcg->numainfo_events))
1294
		return;
1295
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1296 1297 1298
		return;

	/* make a nodemask where this memcg uses memory from */
1299
	memcg->scan_nodes = node_states[N_MEMORY];
1300

1301
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1302

1303 1304
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1305
	}
1306

1307 1308
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1323
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1324 1325 1326
{
	int node;

1327 1328
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1329

1330
	node = next_node_in(node, memcg->scan_nodes);
1331
	/*
1332 1333 1334
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1335 1336 1337 1338
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1339
	memcg->last_scanned_node = node;
1340 1341 1342
	return node;
}
#else
1343
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1344 1345 1346 1347 1348
{
	return 0;
}
#endif

1349
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1350
				   pg_data_t *pgdat,
1351 1352 1353 1354 1355 1356 1357 1358 1359
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1360
		.pgdat = pgdat,
1361 1362 1363
		.priority = 0,
	};

1364
	excess = soft_limit_excess(root_memcg);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1390
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1391
					pgdat, &nr_scanned);
1392
		*total_scanned += nr_scanned;
1393
		if (!soft_limit_excess(root_memcg))
1394
			break;
1395
	}
1396 1397
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1398 1399
}

1400 1401 1402 1403 1404 1405
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1406 1407
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1408 1409 1410 1411
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1412
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1413
{
1414
	struct mem_cgroup *iter, *failed = NULL;
1415

1416 1417
	spin_lock(&memcg_oom_lock);

1418
	for_each_mem_cgroup_tree(iter, memcg) {
1419
		if (iter->oom_lock) {
1420 1421 1422 1423 1424
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1425 1426
			mem_cgroup_iter_break(memcg, iter);
			break;
1427 1428
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1429
	}
K
KAMEZAWA Hiroyuki 已提交
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1442
		}
1443 1444
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1445 1446 1447 1448

	spin_unlock(&memcg_oom_lock);

	return !failed;
1449
}
1450

1451
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1452
{
K
KAMEZAWA Hiroyuki 已提交
1453 1454
	struct mem_cgroup *iter;

1455
	spin_lock(&memcg_oom_lock);
1456
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1457
	for_each_mem_cgroup_tree(iter, memcg)
1458
		iter->oom_lock = false;
1459
	spin_unlock(&memcg_oom_lock);
1460 1461
}

1462
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1463 1464 1465
{
	struct mem_cgroup *iter;

1466
	spin_lock(&memcg_oom_lock);
1467
	for_each_mem_cgroup_tree(iter, memcg)
1468 1469
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1470 1471
}

1472
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1473 1474 1475
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1476 1477
	/*
	 * When a new child is created while the hierarchy is under oom,
1478
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1479
	 */
1480
	spin_lock(&memcg_oom_lock);
1481
	for_each_mem_cgroup_tree(iter, memcg)
1482 1483 1484
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1485 1486
}

K
KAMEZAWA Hiroyuki 已提交
1487 1488
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1489
struct oom_wait_info {
1490
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1491 1492 1493 1494 1495 1496
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1497 1498
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1499 1500 1501
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1502
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1503

1504 1505
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1506 1507 1508 1509
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1510
static void memcg_oom_recover(struct mem_cgroup *memcg)
1511
{
1512 1513 1514 1515 1516 1517 1518 1519 1520
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1521
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1522 1523
}

1524
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1525
{
1526
	if (!current->memcg_may_oom)
1527
		return;
K
KAMEZAWA Hiroyuki 已提交
1528
	/*
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1541
	 */
1542
	css_get(&memcg->css);
T
Tejun Heo 已提交
1543 1544 1545
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1546 1547 1548 1549
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1550
 * @handle: actually kill/wait or just clean up the OOM state
1551
 *
1552 1553
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1554
 *
1555
 * Memcg supports userspace OOM handling where failed allocations must
1556 1557 1558 1559
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1560
 * the end of the page fault to complete the OOM handling.
1561 1562
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1563
 * completed, %false otherwise.
1564
 */
1565
bool mem_cgroup_oom_synchronize(bool handle)
1566
{
T
Tejun Heo 已提交
1567
	struct mem_cgroup *memcg = current->memcg_in_oom;
1568
	struct oom_wait_info owait;
1569
	bool locked;
1570 1571 1572

	/* OOM is global, do not handle */
	if (!memcg)
1573
		return false;
1574

1575
	if (!handle)
1576
		goto cleanup;
1577 1578 1579 1580 1581 1582

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1583

1584
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1595 1596
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1597
	} else {
1598
		schedule();
1599 1600 1601 1602 1603
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1604 1605 1606 1607 1608 1609 1610 1611
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1612
cleanup:
T
Tejun Heo 已提交
1613
	current->memcg_in_oom = NULL;
1614
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1615
	return true;
1616 1617
}

1618
/**
1619 1620
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1621
 *
1622 1623
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1624
 */
J
Johannes Weiner 已提交
1625
void lock_page_memcg(struct page *page)
1626 1627
{
	struct mem_cgroup *memcg;
1628
	unsigned long flags;
1629

1630 1631 1632 1633 1634
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1635 1636 1637
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1638
		return;
1639
again:
1640
	memcg = page->mem_cgroup;
1641
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1642
		return;
1643

Q
Qiang Huang 已提交
1644
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1645
		return;
1646

1647
	spin_lock_irqsave(&memcg->move_lock, flags);
1648
	if (memcg != page->mem_cgroup) {
1649
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1650 1651
		goto again;
	}
1652 1653 1654 1655

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1656
	 * the task who has the lock for unlock_page_memcg().
1657 1658 1659
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1660

J
Johannes Weiner 已提交
1661
	return;
1662
}
1663
EXPORT_SYMBOL(lock_page_memcg);
1664

1665
/**
1666
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1667
 * @page: the page
1668
 */
J
Johannes Weiner 已提交
1669
void unlock_page_memcg(struct page *page)
1670
{
J
Johannes Weiner 已提交
1671 1672
	struct mem_cgroup *memcg = page->mem_cgroup;

1673 1674 1675 1676 1677 1678 1679 1680
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1681

1682
	rcu_read_unlock();
1683
}
1684
EXPORT_SYMBOL(unlock_page_memcg);
1685

1686 1687 1688 1689
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1690
#define CHARGE_BATCH	32U
1691 1692
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1693
	unsigned int nr_pages;
1694
	struct work_struct work;
1695
	unsigned long flags;
1696
#define FLUSHING_CACHED_CHARGE	0
1697 1698
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1699
static DEFINE_MUTEX(percpu_charge_mutex);
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1711
 */
1712
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1713 1714
{
	struct memcg_stock_pcp *stock;
1715
	unsigned long flags;
1716
	bool ret = false;
1717

1718
	if (nr_pages > CHARGE_BATCH)
1719
		return ret;
1720

1721 1722 1723
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1724
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1725
		stock->nr_pages -= nr_pages;
1726 1727
		ret = true;
	}
1728 1729 1730

	local_irq_restore(flags);

1731 1732 1733 1734
	return ret;
}

/*
1735
 * Returns stocks cached in percpu and reset cached information.
1736 1737 1738 1739 1740
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1741
	if (stock->nr_pages) {
1742
		page_counter_uncharge(&old->memory, stock->nr_pages);
1743
		if (do_memsw_account())
1744
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1745
		css_put_many(&old->css, stock->nr_pages);
1746
		stock->nr_pages = 0;
1747 1748 1749 1750 1751 1752
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1753 1754 1755 1756 1757 1758
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1759
	drain_stock(stock);
1760
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1761 1762

	local_irq_restore(flags);
1763 1764 1765
}

/*
1766
 * Cache charges(val) to local per_cpu area.
1767
 * This will be consumed by consume_stock() function, later.
1768
 */
1769
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1770
{
1771 1772 1773 1774
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1775

1776
	stock = this_cpu_ptr(&memcg_stock);
1777
	if (stock->cached != memcg) { /* reset if necessary */
1778
		drain_stock(stock);
1779
		stock->cached = memcg;
1780
	}
1781
	stock->nr_pages += nr_pages;
1782 1783

	local_irq_restore(flags);
1784 1785 1786
}

/*
1787
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1788
 * of the hierarchy under it.
1789
 */
1790
static void drain_all_stock(struct mem_cgroup *root_memcg)
1791
{
1792
	int cpu, curcpu;
1793

1794 1795 1796
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1797 1798
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1799
	curcpu = get_cpu();
1800 1801
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1802
		struct mem_cgroup *memcg;
1803

1804 1805
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1806
			continue;
1807
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1808
			continue;
1809 1810 1811 1812 1813 1814
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1815
	}
1816
	put_cpu();
A
Andrew Morton 已提交
1817
	put_online_cpus();
1818
	mutex_unlock(&percpu_charge_mutex);
1819 1820
}

1821
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1822 1823 1824 1825 1826
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1827
	return 0;
1828 1829
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1850 1851 1852 1853 1854 1855 1856
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1857
	struct mem_cgroup *memcg;
1858 1859 1860 1861

	if (likely(!nr_pages))
		return;

1862 1863
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1864 1865 1866 1867
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1868 1869
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1870
{
1871
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1872
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1873
	struct mem_cgroup *mem_over_limit;
1874
	struct page_counter *counter;
1875
	unsigned long nr_reclaimed;
1876 1877
	bool may_swap = true;
	bool drained = false;
1878

1879
	if (mem_cgroup_is_root(memcg))
1880
		return 0;
1881
retry:
1882
	if (consume_stock(memcg, nr_pages))
1883
		return 0;
1884

1885
	if (!do_memsw_account() ||
1886 1887
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1888
			goto done_restock;
1889
		if (do_memsw_account())
1890 1891
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1892
	} else {
1893
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1894
		may_swap = false;
1895
	}
1896

1897 1898 1899 1900
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1911
		goto force;
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1922 1923 1924
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1925
	if (!gfpflags_allow_blocking(gfp_mask))
1926
		goto nomem;
1927

1928 1929
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1930 1931
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1932

1933
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1934
		goto retry;
1935

1936
	if (!drained) {
1937
		drain_all_stock(mem_over_limit);
1938 1939 1940 1941
		drained = true;
		goto retry;
	}

1942 1943
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1944 1945 1946 1947 1948 1949 1950 1951 1952
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1953
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1954 1955 1956 1957 1958 1959 1960 1961
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1962 1963 1964
	if (nr_retries--)
		goto retry;

1965
	if (gfp_mask & __GFP_NOFAIL)
1966
		goto force;
1967

1968
	if (fatal_signal_pending(current))
1969
		goto force;
1970

1971 1972
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

1973 1974
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1975
nomem:
1976
	if (!(gfp_mask & __GFP_NOFAIL))
1977
		return -ENOMEM;
1978 1979 1980 1981 1982 1983 1984
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
1985
	if (do_memsw_account())
1986 1987 1988 1989
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
1990 1991

done_restock:
1992
	css_get_many(&memcg->css, batch);
1993 1994
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
1995

1996
	/*
1997 1998
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
1999
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2000 2001 2002 2003
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2004 2005
	 */
	do {
2006
		if (page_counter_read(&memcg->memory) > memcg->high) {
2007 2008 2009 2010 2011
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2012
			current->memcg_nr_pages_over_high += batch;
2013 2014 2015
			set_notify_resume(current);
			break;
		}
2016
	} while ((memcg = parent_mem_cgroup(memcg)));
2017 2018

	return 0;
2019
}
2020

2021
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2022
{
2023 2024 2025
	if (mem_cgroup_is_root(memcg))
		return;

2026
	page_counter_uncharge(&memcg->memory, nr_pages);
2027
	if (do_memsw_account())
2028
		page_counter_uncharge(&memcg->memsw, nr_pages);
2029

2030
	css_put_many(&memcg->css, nr_pages);
2031 2032
}

2033 2034 2035 2036
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2037
	spin_lock_irq(zone_lru_lock(zone));
2038 2039 2040
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2041
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2056
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2057 2058 2059 2060
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2061
	spin_unlock_irq(zone_lru_lock(zone));
2062 2063
}

2064
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2065
			  bool lrucare)
2066
{
2067
	int isolated;
2068

2069
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2070 2071 2072 2073 2074

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2075 2076
	if (lrucare)
		lock_page_lru(page, &isolated);
2077

2078 2079
	/*
	 * Nobody should be changing or seriously looking at
2080
	 * page->mem_cgroup at this point:
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2092
	page->mem_cgroup = memcg;
2093

2094 2095
	if (lrucare)
		unlock_page_lru(page, isolated);
2096
}
2097

2098
#ifndef CONFIG_SLOB
2099
static int memcg_alloc_cache_id(void)
2100
{
2101 2102 2103
	int id, size;
	int err;

2104
	id = ida_simple_get(&memcg_cache_ida,
2105 2106 2107
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2108

2109
	if (id < memcg_nr_cache_ids)
2110 2111 2112 2113 2114 2115
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2116
	down_write(&memcg_cache_ids_sem);
2117 2118

	size = 2 * (id + 1);
2119 2120 2121 2122 2123
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2124
	err = memcg_update_all_caches(size);
2125 2126
	if (!err)
		err = memcg_update_all_list_lrus(size);
2127 2128 2129 2130 2131
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2132
	if (err) {
2133
		ida_simple_remove(&memcg_cache_ida, id);
2134 2135 2136 2137 2138 2139 2140
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2141
	ida_simple_remove(&memcg_cache_ida, id);
2142 2143
}

2144
struct memcg_kmem_cache_create_work {
2145 2146 2147 2148 2149
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2150
static void memcg_kmem_cache_create_func(struct work_struct *w)
2151
{
2152 2153
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2154 2155
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2156

2157
	memcg_create_kmem_cache(memcg, cachep);
2158

2159
	css_put(&memcg->css);
2160 2161 2162 2163 2164 2165
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2166 2167
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2168
{
2169
	struct memcg_kmem_cache_create_work *cw;
2170

2171
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2172
	if (!cw)
2173
		return;
2174 2175

	css_get(&memcg->css);
2176 2177 2178

	cw->memcg = memcg;
	cw->cachep = cachep;
2179
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2180

2181
	queue_work(memcg_kmem_cache_wq, &cw->work);
2182 2183
}

2184 2185
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2186 2187 2188 2189
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2190
	 * in __memcg_schedule_kmem_cache_create will recurse.
2191 2192 2193 2194 2195 2196 2197
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2198
	current->memcg_kmem_skip_account = 1;
2199
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2200
	current->memcg_kmem_skip_account = 0;
2201
}
2202

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2214 2215 2216
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2217 2218 2219
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2220
 *
2221 2222 2223 2224
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2225
 */
2226
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2227 2228
{
	struct mem_cgroup *memcg;
2229
	struct kmem_cache *memcg_cachep;
2230
	int kmemcg_id;
2231

2232
	VM_BUG_ON(!is_root_cache(cachep));
2233

2234
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2235 2236
		return cachep;

2237
	if (current->memcg_kmem_skip_account)
2238 2239
		return cachep;

2240
	memcg = get_mem_cgroup_from_mm(current->mm);
2241
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2242
	if (kmemcg_id < 0)
2243
		goto out;
2244

2245
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2246 2247
	if (likely(memcg_cachep))
		return memcg_cachep;
2248 2249 2250 2251 2252 2253 2254 2255 2256

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2257 2258 2259
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2260
	 */
2261
	memcg_schedule_kmem_cache_create(memcg, cachep);
2262
out:
2263
	css_put(&memcg->css);
2264
	return cachep;
2265 2266
}

2267 2268 2269 2270 2271
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2272 2273
{
	if (!is_root_cache(cachep))
2274
		css_put(&cachep->memcg_params.memcg->css);
2275 2276
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2288
{
2289 2290
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2291 2292
	int ret;

2293
	ret = try_charge(memcg, gfp, nr_pages);
2294
	if (ret)
2295
		return ret;
2296 2297 2298 2299 2300

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2301 2302
	}

2303
	page->mem_cgroup = memcg;
2304

2305
	return 0;
2306 2307
}

2308 2309 2310 2311 2312 2313 2314 2315 2316
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2317
{
2318
	struct mem_cgroup *memcg;
2319
	int ret = 0;
2320

2321 2322 2323
	if (memcg_kmem_bypass())
		return 0;

2324
	memcg = get_mem_cgroup_from_mm(current->mm);
2325
	if (!mem_cgroup_is_root(memcg)) {
2326
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2327 2328 2329
		if (!ret)
			__SetPageKmemcg(page);
	}
2330
	css_put(&memcg->css);
2331
	return ret;
2332
}
2333 2334 2335 2336 2337 2338
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2339
{
2340
	struct mem_cgroup *memcg = page->mem_cgroup;
2341
	unsigned int nr_pages = 1 << order;
2342 2343 2344 2345

	if (!memcg)
		return;

2346
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2347

2348 2349 2350
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2351
	page_counter_uncharge(&memcg->memory, nr_pages);
2352
	if (do_memsw_account())
2353
		page_counter_uncharge(&memcg->memsw, nr_pages);
2354

2355
	page->mem_cgroup = NULL;
2356 2357 2358 2359 2360

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2361
	css_put_many(&memcg->css, nr_pages);
2362
}
2363
#endif /* !CONFIG_SLOB */
2364

2365 2366 2367 2368
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2369
 * zone_lru_lock and migration entries setup in all page mappings.
2370
 */
2371
void mem_cgroup_split_huge_fixup(struct page *head)
2372
{
2373
	int i;
2374

2375 2376
	if (mem_cgroup_disabled())
		return;
2377

2378
	for (i = 1; i < HPAGE_PMD_NR; i++)
2379
		head[i].mem_cgroup = head->mem_cgroup;
2380

2381
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2382
		       HPAGE_PMD_NR);
2383
}
2384
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2385

A
Andrew Morton 已提交
2386
#ifdef CONFIG_MEMCG_SWAP
2387 2388
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2389
{
2390 2391
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2392
}
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2405
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2406 2407 2408
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2409
				struct mem_cgroup *from, struct mem_cgroup *to)
2410 2411 2412
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2413 2414
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2415 2416 2417

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2418
		mem_cgroup_swap_statistics(to, true);
2419 2420 2421 2422 2423 2424
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2425
				struct mem_cgroup *from, struct mem_cgroup *to)
2426 2427 2428
{
	return -EINVAL;
}
2429
#endif
K
KAMEZAWA Hiroyuki 已提交
2430

2431
static DEFINE_MUTEX(memcg_limit_mutex);
2432

2433
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2434
				   unsigned long limit)
2435
{
2436 2437 2438
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2439
	int retry_count;
2440
	int ret;
2441 2442 2443 2444 2445 2446

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2447 2448
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2449

2450
	oldusage = page_counter_read(&memcg->memory);
2451

2452
	do {
2453 2454 2455 2456
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2457 2458 2459 2460

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2461
			ret = -EINVAL;
2462 2463
			break;
		}
2464 2465 2466 2467
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2468 2469 2470 2471

		if (!ret)
			break;

2472 2473
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2474
		curusage = page_counter_read(&memcg->memory);
2475
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2476
		if (curusage >= oldusage)
2477 2478 2479
			retry_count--;
		else
			oldusage = curusage;
2480 2481
	} while (retry_count);

2482 2483
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2484

2485 2486 2487
	return ret;
}

L
Li Zefan 已提交
2488
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2489
					 unsigned long limit)
2490
{
2491 2492 2493
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2494
	int retry_count;
2495
	int ret;
2496

2497
	/* see mem_cgroup_resize_res_limit */
2498 2499 2500 2501 2502 2503
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2504 2505 2506 2507
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2508 2509 2510 2511

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2512 2513 2514
			ret = -EINVAL;
			break;
		}
2515 2516 2517 2518
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2519 2520 2521 2522

		if (!ret)
			break;

2523 2524
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2525
		curusage = page_counter_read(&memcg->memsw);
2526
		/* Usage is reduced ? */
2527
		if (curusage >= oldusage)
2528
			retry_count--;
2529 2530
		else
			oldusage = curusage;
2531 2532
	} while (retry_count);

2533 2534
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2535

2536 2537 2538
	return ret;
}

2539
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2540 2541 2542 2543
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2544
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2545 2546
	unsigned long reclaimed;
	int loop = 0;
2547
	struct mem_cgroup_tree_per_node *mctz;
2548
	unsigned long excess;
2549 2550 2551 2552 2553
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2554
	mctz = soft_limit_tree_node(pgdat->node_id);
2555 2556 2557 2558 2559 2560 2561 2562 2563

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
	if (RB_EMPTY_ROOT(&mctz->rb_root))
		return 0;

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2578
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2579 2580 2581
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2582
		spin_lock_irq(&mctz->lock);
2583
		__mem_cgroup_remove_exceeded(mz, mctz);
2584 2585 2586 2587 2588 2589

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2590 2591 2592
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2593
		excess = soft_limit_excess(mz->memcg);
2594 2595 2596 2597 2598 2599 2600 2601 2602
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2603
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2604
		spin_unlock_irq(&mctz->lock);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2622 2623 2624 2625 2626 2627
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2628 2629
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2630 2631 2632 2633 2634 2635
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2636 2637
}

2638
/*
2639
 * Reclaims as many pages from the given memcg as possible.
2640 2641 2642 2643 2644 2645 2646
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2647 2648
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2649
	/* try to free all pages in this cgroup */
2650
	while (nr_retries && page_counter_read(&memcg->memory)) {
2651
		int progress;
2652

2653 2654 2655
		if (signal_pending(current))
			return -EINTR;

2656 2657
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2658
		if (!progress) {
2659
			nr_retries--;
2660
			/* maybe some writeback is necessary */
2661
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2662
		}
2663 2664

	}
2665 2666

	return 0;
2667 2668
}

2669 2670 2671
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2672
{
2673
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2674

2675 2676
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2677
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2678 2679
}

2680 2681
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2682
{
2683
	return mem_cgroup_from_css(css)->use_hierarchy;
2684 2685
}

2686 2687
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2688 2689
{
	int retval = 0;
2690
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2691
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2692

2693
	if (memcg->use_hierarchy == val)
2694
		return 0;
2695

2696
	/*
2697
	 * If parent's use_hierarchy is set, we can't make any modifications
2698 2699 2700 2701 2702 2703
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2704
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2705
				(val == 1 || val == 0)) {
2706
		if (!memcg_has_children(memcg))
2707
			memcg->use_hierarchy = val;
2708 2709 2710 2711
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2712

2713 2714 2715
	return retval;
}

2716
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2717 2718
{
	struct mem_cgroup *iter;
2719
	int i;
2720

2721
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2722

2723 2724 2725 2726
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2727 2728
}

2729
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2730 2731
{
	struct mem_cgroup *iter;
2732
	int i;
2733

2734
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2735

2736 2737 2738 2739
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2740 2741
}

2742
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2743
{
2744
	unsigned long val = 0;
2745

2746
	if (mem_cgroup_is_root(memcg)) {
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2758
	} else {
2759
		if (!swap)
2760
			val = page_counter_read(&memcg->memory);
2761
		else
2762
			val = page_counter_read(&memcg->memsw);
2763
	}
2764
	return val;
2765 2766
}

2767 2768 2769 2770 2771 2772 2773
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2774

2775
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2776
			       struct cftype *cft)
B
Balbir Singh 已提交
2777
{
2778
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2779
	struct page_counter *counter;
2780

2781
	switch (MEMFILE_TYPE(cft->private)) {
2782
	case _MEM:
2783 2784
		counter = &memcg->memory;
		break;
2785
	case _MEMSWAP:
2786 2787
		counter = &memcg->memsw;
		break;
2788
	case _KMEM:
2789
		counter = &memcg->kmem;
2790
		break;
V
Vladimir Davydov 已提交
2791
	case _TCP:
2792
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2793
		break;
2794 2795 2796
	default:
		BUG();
	}
2797 2798 2799 2800

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2801
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2802
		if (counter == &memcg->memsw)
2803
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2816
}
2817

2818
#ifndef CONFIG_SLOB
2819
static int memcg_online_kmem(struct mem_cgroup *memcg)
2820 2821 2822
{
	int memcg_id;

2823 2824 2825
	if (cgroup_memory_nokmem)
		return 0;

2826
	BUG_ON(memcg->kmemcg_id >= 0);
2827
	BUG_ON(memcg->kmem_state);
2828

2829
	memcg_id = memcg_alloc_cache_id();
2830 2831
	if (memcg_id < 0)
		return memcg_id;
2832

2833
	static_branch_inc(&memcg_kmem_enabled_key);
2834
	/*
2835
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2836
	 * kmemcg_id. Setting the id after enabling static branching will
2837 2838 2839
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2840
	memcg->kmemcg_id = memcg_id;
2841
	memcg->kmem_state = KMEM_ONLINE;
2842
	INIT_LIST_HEAD(&memcg->kmem_caches);
2843 2844

	return 0;
2845 2846
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2880
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2881 2882 2883 2884 2885 2886 2887
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2888 2889
	rcu_read_unlock();

2890 2891 2892 2893 2894 2895 2896
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2897 2898 2899 2900
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2901 2902 2903 2904 2905 2906
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2907
#else
2908
static int memcg_online_kmem(struct mem_cgroup *memcg)
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2920
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2921
				   unsigned long limit)
2922
{
2923
	int ret;
2924 2925 2926 2927 2928

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2929
}
2930

V
Vladimir Davydov 已提交
2931 2932 2933 2934 2935 2936
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2937
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2938 2939 2940
	if (ret)
		goto out;

2941
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2942 2943 2944
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2945 2946 2947
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2948 2949 2950 2951 2952 2953
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2954
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2955 2956 2957 2958
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2959
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2960 2961 2962 2963 2964 2965
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2966 2967 2968 2969
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2970 2971
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2972
{
2973
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2974
	unsigned long nr_pages;
2975 2976
	int ret;

2977
	buf = strstrip(buf);
2978
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2979 2980
	if (ret)
		return ret;
2981

2982
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2983
	case RES_LIMIT:
2984 2985 2986 2987
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2988 2989 2990
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2991
			break;
2992 2993
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2994
			break;
2995 2996 2997
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
2998 2999 3000
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3001
		}
3002
		break;
3003 3004 3005
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3006 3007
		break;
	}
3008
	return ret ?: nbytes;
B
Balbir Singh 已提交
3009 3010
}

3011 3012
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3013
{
3014
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3015
	struct page_counter *counter;
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3027
	case _TCP:
3028
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3029
		break;
3030 3031 3032
	default:
		BUG();
	}
3033

3034
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035
	case RES_MAX_USAGE:
3036
		page_counter_reset_watermark(counter);
3037 3038
		break;
	case RES_FAILCNT:
3039
		counter->failcnt = 0;
3040
		break;
3041 3042
	default:
		BUG();
3043
	}
3044

3045
	return nbytes;
3046 3047
}

3048
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3049 3050
					struct cftype *cft)
{
3051
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3052 3053
}

3054
#ifdef CONFIG_MMU
3055
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3056 3057
					struct cftype *cft, u64 val)
{
3058
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3059

3060
	if (val & ~MOVE_MASK)
3061
		return -EINVAL;
3062

3063
	/*
3064 3065 3066 3067
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3068
	 */
3069
	memcg->move_charge_at_immigrate = val;
3070 3071
	return 0;
}
3072
#else
3073
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3074 3075 3076 3077 3078
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3079

3080
#ifdef CONFIG_NUMA
3081
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3082
{
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3095
	int nid;
3096
	unsigned long nr;
3097
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3098

3099 3100 3101 3102 3103 3104 3105 3106 3107
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3108 3109
	}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3125 3126 3127 3128 3129 3130
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3131
static int memcg_stat_show(struct seq_file *m, void *v)
3132
{
3133
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3134
	unsigned long memory, memsw;
3135 3136
	struct mem_cgroup *mi;
	unsigned int i;
3137

3138 3139 3140 3141
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3142 3143
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3144
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3145
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3146
			continue;
3147
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3148
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3149
	}
L
Lee Schermerhorn 已提交
3150

3151 3152 3153 3154 3155 3156 3157 3158
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3159
	/* Hierarchical information */
3160 3161 3162 3163
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3164
	}
3165 3166
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3167
	if (do_memsw_account())
3168 3169
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3170

3171
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3172
		unsigned long long val = 0;
3173

3174
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3175
			continue;
3176 3177
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3178
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3196
	}
K
KAMEZAWA Hiroyuki 已提交
3197

K
KOSAKI Motohiro 已提交
3198 3199
#ifdef CONFIG_DEBUG_VM
	{
3200 3201
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3202
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3203 3204 3205
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3206 3207 3208
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3209

3210 3211 3212 3213 3214
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3215 3216 3217 3218
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3219 3220 3221
	}
#endif

3222 3223 3224
	return 0;
}

3225 3226
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3227
{
3228
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3229

3230
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3231 3232
}

3233 3234
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3235
{
3236
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3237

3238
	if (val > 100)
K
KOSAKI Motohiro 已提交
3239 3240
		return -EINVAL;

3241
	if (css->parent)
3242 3243 3244
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3245

K
KOSAKI Motohiro 已提交
3246 3247 3248
	return 0;
}

3249 3250 3251
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3252
	unsigned long usage;
3253 3254 3255 3256
	int i;

	rcu_read_lock();
	if (!swap)
3257
		t = rcu_dereference(memcg->thresholds.primary);
3258
	else
3259
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3260 3261 3262 3263

	if (!t)
		goto unlock;

3264
	usage = mem_cgroup_usage(memcg, swap);
3265 3266

	/*
3267
	 * current_threshold points to threshold just below or equal to usage.
3268 3269 3270
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3271
	i = t->current_threshold;
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3295
	t->current_threshold = i - 1;
3296 3297 3298 3299 3300 3301
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3302 3303
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3304
		if (do_memsw_account())
3305 3306 3307 3308
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3309 3310 3311 3312 3313 3314 3315
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3316 3317 3318 3319 3320 3321 3322
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3323 3324
}

3325
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3326 3327 3328
{
	struct mem_cgroup_eventfd_list *ev;

3329 3330
	spin_lock(&memcg_oom_lock);

3331
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3332
		eventfd_signal(ev->eventfd, 1);
3333 3334

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3335 3336 3337
	return 0;
}

3338
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3339
{
K
KAMEZAWA Hiroyuki 已提交
3340 3341
	struct mem_cgroup *iter;

3342
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3343
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3344 3345
}

3346
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3347
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348
{
3349 3350
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3351 3352
	unsigned long threshold;
	unsigned long usage;
3353
	int i, size, ret;
3354

3355
	ret = page_counter_memparse(args, "-1", &threshold);
3356 3357 3358 3359
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3360

3361
	if (type == _MEM) {
3362
		thresholds = &memcg->thresholds;
3363
		usage = mem_cgroup_usage(memcg, false);
3364
	} else if (type == _MEMSWAP) {
3365
		thresholds = &memcg->memsw_thresholds;
3366
		usage = mem_cgroup_usage(memcg, true);
3367
	} else
3368 3369 3370
		BUG();

	/* Check if a threshold crossed before adding a new one */
3371
	if (thresholds->primary)
3372 3373
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3374
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375 3376

	/* Allocate memory for new array of thresholds */
3377
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3378
			GFP_KERNEL);
3379
	if (!new) {
3380 3381 3382
		ret = -ENOMEM;
		goto unlock;
	}
3383
	new->size = size;
3384 3385

	/* Copy thresholds (if any) to new array */
3386 3387
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3388
				sizeof(struct mem_cgroup_threshold));
3389 3390
	}

3391
	/* Add new threshold */
3392 3393
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3394 3395

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3396
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3397 3398 3399
			compare_thresholds, NULL);

	/* Find current threshold */
3400
	new->current_threshold = -1;
3401
	for (i = 0; i < size; i++) {
3402
		if (new->entries[i].threshold <= usage) {
3403
			/*
3404 3405
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3406 3407
			 * it here.
			 */
3408
			++new->current_threshold;
3409 3410
		} else
			break;
3411 3412
	}

3413 3414 3415 3416 3417
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3418

3419
	/* To be sure that nobody uses thresholds */
3420 3421 3422 3423 3424 3425 3426 3427
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3428
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3429 3430
	struct eventfd_ctx *eventfd, const char *args)
{
3431
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3432 3433
}

3434
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3435 3436
	struct eventfd_ctx *eventfd, const char *args)
{
3437
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3438 3439
}

3440
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3441
	struct eventfd_ctx *eventfd, enum res_type type)
3442
{
3443 3444
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3445
	unsigned long usage;
3446
	int i, j, size;
3447 3448

	mutex_lock(&memcg->thresholds_lock);
3449 3450

	if (type == _MEM) {
3451
		thresholds = &memcg->thresholds;
3452
		usage = mem_cgroup_usage(memcg, false);
3453
	} else if (type == _MEMSWAP) {
3454
		thresholds = &memcg->memsw_thresholds;
3455
		usage = mem_cgroup_usage(memcg, true);
3456
	} else
3457 3458
		BUG();

3459 3460 3461
	if (!thresholds->primary)
		goto unlock;

3462 3463 3464 3465
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3466 3467 3468
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3469 3470 3471
			size++;
	}

3472
	new = thresholds->spare;
3473

3474 3475
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3476 3477
		kfree(new);
		new = NULL;
3478
		goto swap_buffers;
3479 3480
	}

3481
	new->size = size;
3482 3483

	/* Copy thresholds and find current threshold */
3484 3485 3486
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3487 3488
			continue;

3489
		new->entries[j] = thresholds->primary->entries[i];
3490
		if (new->entries[j].threshold <= usage) {
3491
			/*
3492
			 * new->current_threshold will not be used
3493 3494 3495
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3496
			++new->current_threshold;
3497 3498 3499 3500
		}
		j++;
	}

3501
swap_buffers:
3502 3503
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3504

3505
	rcu_assign_pointer(thresholds->primary, new);
3506

3507
	/* To be sure that nobody uses thresholds */
3508
	synchronize_rcu();
3509 3510 3511 3512 3513 3514

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3515
unlock:
3516 3517
	mutex_unlock(&memcg->thresholds_lock);
}
3518

3519
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3520 3521
	struct eventfd_ctx *eventfd)
{
3522
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3523 3524
}

3525
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3526 3527
	struct eventfd_ctx *eventfd)
{
3528
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3529 3530
}

3531
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3532
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3533 3534 3535 3536 3537 3538 3539
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3540
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3541 3542 3543 3544 3545

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3546
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3547
		eventfd_signal(eventfd, 1);
3548
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3549 3550 3551 3552

	return 0;
}

3553
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3554
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3555 3556 3557
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3558
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3559

3560
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3561 3562 3563 3564 3565 3566
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3567
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3568 3569
}

3570
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571
{
3572
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573

3574
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3575
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3576 3577 3578
	return 0;
}

3579
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3580 3581
	struct cftype *cft, u64 val)
{
3582
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3583 3584

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3585
	if (!css->parent || !((val == 0) || (val == 1)))
3586 3587
		return -EINVAL;

3588
	memcg->oom_kill_disable = val;
3589
	if (!val)
3590
		memcg_oom_recover(memcg);
3591

3592 3593 3594
	return 0;
}

3595 3596 3597 3598 3599 3600 3601
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3612 3613 3614 3615 3616
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3627 3628 3629
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3630 3631
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3632 3633 3634
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3635 3636 3637
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3638
 *
3639 3640 3641 3642 3643
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3644
 */
3645 3646 3647
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3648 3649 3650 3651 3652 3653 3654 3655
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3656 3657 3658
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3659 3660 3661 3662 3663

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3664
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3665 3666 3667 3668
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3680 3681 3682 3683
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3684 3685
#endif	/* CONFIG_CGROUP_WRITEBACK */

3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3699 3700 3701 3702 3703
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3704
static void memcg_event_remove(struct work_struct *work)
3705
{
3706 3707
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3708
	struct mem_cgroup *memcg = event->memcg;
3709 3710 3711

	remove_wait_queue(event->wqh, &event->wait);

3712
	event->unregister_event(memcg, event->eventfd);
3713 3714 3715 3716 3717 3718

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3719
	css_put(&memcg->css);
3720 3721 3722 3723 3724 3725 3726
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3727 3728
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3729
{
3730 3731
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3732
	struct mem_cgroup *memcg = event->memcg;
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3745
		spin_lock(&memcg->event_list_lock);
3746 3747 3748 3749 3750 3751 3752 3753
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3754
		spin_unlock(&memcg->event_list_lock);
3755 3756 3757 3758 3759
	}

	return 0;
}

3760
static void memcg_event_ptable_queue_proc(struct file *file,
3761 3762
		wait_queue_head_t *wqh, poll_table *pt)
{
3763 3764
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3765 3766 3767 3768 3769 3770

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3771 3772
 * DO NOT USE IN NEW FILES.
 *
3773 3774 3775 3776 3777
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3778 3779
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3780
{
3781
	struct cgroup_subsys_state *css = of_css(of);
3782
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3783
	struct mem_cgroup_event *event;
3784 3785 3786 3787
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3788
	const char *name;
3789 3790 3791
	char *endp;
	int ret;

3792 3793 3794
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3795 3796
	if (*endp != ' ')
		return -EINVAL;
3797
	buf = endp + 1;
3798

3799
	cfd = simple_strtoul(buf, &endp, 10);
3800 3801
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3802
	buf = endp + 1;
3803 3804 3805 3806 3807

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3808
	event->memcg = memcg;
3809
	INIT_LIST_HEAD(&event->list);
3810 3811 3812
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3838 3839 3840 3841 3842
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3843 3844
	 *
	 * DO NOT ADD NEW FILES.
3845
	 */
A
Al Viro 已提交
3846
	name = cfile.file->f_path.dentry->d_name.name;
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3858 3859
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3860 3861 3862 3863 3864
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3865
	/*
3866 3867 3868
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3869
	 */
A
Al Viro 已提交
3870
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3871
					       &memory_cgrp_subsys);
3872
	ret = -EINVAL;
3873
	if (IS_ERR(cfile_css))
3874
		goto out_put_cfile;
3875 3876
	if (cfile_css != css) {
		css_put(cfile_css);
3877
		goto out_put_cfile;
3878
	}
3879

3880
	ret = event->register_event(memcg, event->eventfd, buf);
3881 3882 3883 3884 3885
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3886 3887 3888
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3889 3890 3891 3892

	fdput(cfile);
	fdput(efile);

3893
	return nbytes;
3894 3895

out_put_css:
3896
	css_put(css);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3909
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3910
	{
3911
		.name = "usage_in_bytes",
3912
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3913
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3914
	},
3915 3916
	{
		.name = "max_usage_in_bytes",
3917
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3918
		.write = mem_cgroup_reset,
3919
		.read_u64 = mem_cgroup_read_u64,
3920
	},
B
Balbir Singh 已提交
3921
	{
3922
		.name = "limit_in_bytes",
3923
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3924
		.write = mem_cgroup_write,
3925
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3926
	},
3927 3928 3929
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3930
		.write = mem_cgroup_write,
3931
		.read_u64 = mem_cgroup_read_u64,
3932
	},
B
Balbir Singh 已提交
3933 3934
	{
		.name = "failcnt",
3935
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3936
		.write = mem_cgroup_reset,
3937
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3938
	},
3939 3940
	{
		.name = "stat",
3941
		.seq_show = memcg_stat_show,
3942
	},
3943 3944
	{
		.name = "force_empty",
3945
		.write = mem_cgroup_force_empty_write,
3946
	},
3947 3948 3949 3950 3951
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3952
	{
3953
		.name = "cgroup.event_control",		/* XXX: for compat */
3954
		.write = memcg_write_event_control,
3955
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3956
	},
K
KOSAKI Motohiro 已提交
3957 3958 3959 3960 3961
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3962 3963 3964 3965 3966
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3967 3968
	{
		.name = "oom_control",
3969
		.seq_show = mem_cgroup_oom_control_read,
3970
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3971 3972
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3973 3974 3975
	{
		.name = "pressure_level",
	},
3976 3977 3978
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3979
		.seq_show = memcg_numa_stat_show,
3980 3981
	},
#endif
3982 3983 3984
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3985
		.write = mem_cgroup_write,
3986
		.read_u64 = mem_cgroup_read_u64,
3987 3988 3989 3990
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3991
		.read_u64 = mem_cgroup_read_u64,
3992 3993 3994 3995
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3996
		.write = mem_cgroup_reset,
3997
		.read_u64 = mem_cgroup_read_u64,
3998 3999 4000 4001
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4002
		.write = mem_cgroup_reset,
4003
		.read_u64 = mem_cgroup_read_u64,
4004
	},
4005 4006 4007
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4008 4009 4010
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4011
		.seq_show = memcg_slab_show,
4012 4013
	},
#endif
V
Vladimir Davydov 已提交
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4037
	{ },	/* terminate */
4038
};
4039

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4066
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4067
{
4068
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4069
	atomic_add(n, &memcg->id.ref);
4070 4071
}

4072
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4073
{
4074
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4075
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4076 4077 4078 4079 4080 4081 4082 4083
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4106
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4107 4108
{
	struct mem_cgroup_per_node *pn;
4109
	int tmp = node;
4110 4111 4112 4113 4114 4115 4116 4117
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4118 4119
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4120
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4121 4122
	if (!pn)
		return 1;
4123

4124 4125 4126 4127 4128
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4129
	memcg->nodeinfo[node] = pn;
4130 4131 4132
	return 0;
}

4133
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4134
{
4135
	kfree(memcg->nodeinfo[node]);
4136 4137
}

4138
static void mem_cgroup_free(struct mem_cgroup *memcg)
4139
{
4140
	int node;
4141

4142
	memcg_wb_domain_exit(memcg);
4143
	for_each_node(node)
4144
		free_mem_cgroup_per_node_info(memcg, node);
4145
	free_percpu(memcg->stat);
4146
	kfree(memcg);
4147
}
4148

4149
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4150
{
4151
	struct mem_cgroup *memcg;
4152
	size_t size;
4153
	int node;
B
Balbir Singh 已提交
4154

4155 4156 4157 4158
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4159
	if (!memcg)
4160 4161
		return NULL;

4162 4163 4164 4165 4166 4167
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4168 4169 4170
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4171

B
Bob Liu 已提交
4172
	for_each_node(node)
4173
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4174
			goto fail;
4175

4176 4177
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4178

4179
	INIT_WORK(&memcg->high_work, high_work_func);
4180 4181 4182 4183
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4184
	vmpressure_init(&memcg->vmpressure);
4185 4186
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4187
	memcg->socket_pressure = jiffies;
4188
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4189 4190
	memcg->kmemcg_id = -1;
#endif
4191 4192 4193
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4194
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4195 4196
	return memcg;
fail:
4197 4198
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4199 4200
	mem_cgroup_free(memcg);
	return NULL;
4201 4202
}

4203 4204
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4205
{
4206 4207 4208
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4209

4210 4211 4212
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4213

4214 4215 4216 4217 4218 4219 4220 4221
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4222
		page_counter_init(&memcg->memory, &parent->memory);
4223
		page_counter_init(&memcg->swap, &parent->swap);
4224 4225
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4226
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4227
	} else {
4228
		page_counter_init(&memcg->memory, NULL);
4229
		page_counter_init(&memcg->swap, NULL);
4230 4231
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4232
		page_counter_init(&memcg->tcpmem, NULL);
4233 4234 4235 4236 4237
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4238
		if (parent != root_mem_cgroup)
4239
			memory_cgrp_subsys.broken_hierarchy = true;
4240
	}
4241

4242 4243 4244 4245 4246 4247
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4248
	error = memcg_online_kmem(memcg);
4249 4250
	if (error)
		goto fail;
4251

4252
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4253
		static_branch_inc(&memcg_sockets_enabled_key);
4254

4255 4256 4257
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4258
	return ERR_PTR(-ENOMEM);
4259 4260
}

4261
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4262
{
4263 4264
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4265
	/* Online state pins memcg ID, memcg ID pins CSS */
4266
	atomic_set(&memcg->id.ref, 1);
4267
	css_get(css);
4268
	return 0;
B
Balbir Singh 已提交
4269 4270
}

4271
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4272
{
4273
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4274
	struct mem_cgroup_event *event, *tmp;
4275 4276 4277 4278 4279 4280

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4281 4282
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4283 4284 4285
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4286
	spin_unlock(&memcg->event_list_lock);
4287

4288
	memcg_offline_kmem(memcg);
4289
	wb_memcg_offline(memcg);
4290 4291

	mem_cgroup_id_put(memcg);
4292 4293
}

4294 4295 4296 4297 4298 4299 4300
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4301
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4302
{
4303
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4304

4305
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4306
		static_branch_dec(&memcg_sockets_enabled_key);
4307

4308
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4309
		static_branch_dec(&memcg_sockets_enabled_key);
4310

4311 4312 4313
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4314
	memcg_free_kmem(memcg);
4315
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4316 4317
}

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4335 4336 4337 4338 4339
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4340 4341
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4342
	memcg->soft_limit = PAGE_COUNTER_MAX;
4343
	memcg_wb_domain_size_changed(memcg);
4344 4345
}

4346
#ifdef CONFIG_MMU
4347
/* Handlers for move charge at task migration. */
4348
static int mem_cgroup_do_precharge(unsigned long count)
4349
{
4350
	int ret;
4351

4352 4353
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4354
	if (!ret) {
4355 4356 4357
		mc.precharge += count;
		return ret;
	}
4358

4359
	/* Try charges one by one with reclaim, but do not retry */
4360
	while (count--) {
4361
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4362 4363
		if (ret)
			return ret;
4364
		mc.precharge++;
4365
		cond_resched();
4366
	}
4367
	return 0;
4368 4369 4370 4371
}

union mc_target {
	struct page	*page;
4372
	swp_entry_t	ent;
4373 4374 4375
};

enum mc_target_type {
4376
	MC_TARGET_NONE = 0,
4377
	MC_TARGET_PAGE,
4378
	MC_TARGET_SWAP,
4379 4380
};

D
Daisuke Nishimura 已提交
4381 4382
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4383
{
D
Daisuke Nishimura 已提交
4384
	struct page *page = vm_normal_page(vma, addr, ptent);
4385

D
Daisuke Nishimura 已提交
4386 4387 4388
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4389
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4390
			return NULL;
4391 4392 4393 4394
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4395 4396 4397 4398 4399 4400
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4401
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4402
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4403
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4404 4405 4406 4407
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4408
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4409
		return NULL;
4410 4411 4412 4413
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4414
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4415
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4416 4417 4418 4419
		entry->val = ent.val;

	return page;
}
4420 4421
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4422
			pte_t ptent, swp_entry_t *entry)
4423 4424 4425 4426
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4427

4428 4429 4430 4431 4432 4433 4434 4435 4436
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4437
	if (!(mc.flags & MOVE_FILE))
4438 4439 4440
		return NULL;

	mapping = vma->vm_file->f_mapping;
4441
	pgoff = linear_page_index(vma, addr);
4442 4443

	/* page is moved even if it's not RSS of this task(page-faulted). */
4444 4445
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4446 4447 4448 4449
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4450
			if (do_memsw_account())
4451
				*entry = swp;
4452 4453
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4454 4455 4456 4457 4458
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4459
#endif
4460 4461 4462
	return page;
}

4463 4464 4465
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4466
 * @compound: charge the page as compound or small page
4467 4468 4469
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4470
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4471 4472 4473 4474 4475
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4476
				   bool compound,
4477 4478 4479 4480
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4481
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4482
	int ret;
4483
	bool anon;
4484 4485 4486

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4487
	VM_BUG_ON(compound && !PageTransHuge(page));
4488 4489

	/*
4490
	 * Prevent mem_cgroup_migrate() from looking at
4491
	 * page->mem_cgroup of its source page while we change it.
4492
	 */
4493
	ret = -EBUSY;
4494 4495 4496 4497 4498 4499 4500
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4501 4502
	anon = PageAnon(page);

4503 4504
	spin_lock_irqsave(&from->move_lock, flags);

4505
	if (!anon && page_mapped(page)) {
4506 4507 4508 4509 4510 4511
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4548
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4549
	memcg_check_events(to, page);
4550
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4551 4552 4553 4554 4555 4556 4557 4558
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4578
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4579 4580 4581
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4582
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4583 4584 4585 4586 4587
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4588
		page = mc_handle_swap_pte(vma, ptent, &ent);
4589
	else if (pte_none(ptent))
4590
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4591 4592

	if (!page && !ent.val)
4593
		return ret;
4594 4595
	if (page) {
		/*
4596
		 * Do only loose check w/o serialization.
4597
		 * mem_cgroup_move_account() checks the page is valid or
4598
		 * not under LRU exclusion.
4599
		 */
4600
		if (page->mem_cgroup == mc.from) {
4601 4602 4603 4604 4605 4606 4607
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4608 4609
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4610
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4611 4612 4613
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4614 4615 4616 4617
	}
	return ret;
}

4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4631
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4632
	if (!(mc.flags & MOVE_ANON))
4633
		return ret;
4634
	if (page->mem_cgroup == mc.from) {
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4651 4652 4653 4654
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4655
	struct vm_area_struct *vma = walk->vma;
4656 4657 4658
	pte_t *pte;
	spinlock_t *ptl;

4659 4660
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4661 4662
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4663
		spin_unlock(ptl);
4664
		return 0;
4665
	}
4666

4667 4668
	if (pmd_trans_unstable(pmd))
		return 0;
4669 4670
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4671
		if (get_mctgt_type(vma, addr, *pte, NULL))
4672 4673 4674 4675
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4676 4677 4678
	return 0;
}

4679 4680 4681 4682
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4683 4684 4685 4686
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4687
	down_read(&mm->mmap_sem);
4688 4689
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4690
	up_read(&mm->mmap_sem);
4691 4692 4693 4694 4695 4696 4697 4698 4699

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4700 4701 4702 4703 4704
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4705 4706
}

4707 4708
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4709
{
4710 4711 4712
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4713
	/* we must uncharge all the leftover precharges from mc.to */
4714
	if (mc.precharge) {
4715
		cancel_charge(mc.to, mc.precharge);
4716 4717 4718 4719 4720 4721 4722
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4723
		cancel_charge(mc.from, mc.moved_charge);
4724
		mc.moved_charge = 0;
4725
	}
4726 4727 4728
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4729
		if (!mem_cgroup_is_root(mc.from))
4730
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4731

4732 4733
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4734
		/*
4735 4736
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4737
		 */
4738
		if (!mem_cgroup_is_root(mc.to))
4739 4740
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4741 4742
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4743

4744 4745
		mc.moved_swap = 0;
	}
4746 4747 4748 4749 4750 4751 4752
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4753 4754
	struct mm_struct *mm = mc.mm;

4755 4756 4757 4758 4759 4760
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4761
	spin_lock(&mc.lock);
4762 4763
	mc.from = NULL;
	mc.to = NULL;
4764
	mc.mm = NULL;
4765
	spin_unlock(&mc.lock);
4766 4767

	mmput(mm);
4768 4769
}

4770
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4771
{
4772
	struct cgroup_subsys_state *css;
4773
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4774
	struct mem_cgroup *from;
4775
	struct task_struct *leader, *p;
4776
	struct mm_struct *mm;
4777
	unsigned long move_flags;
4778
	int ret = 0;
4779

4780 4781
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4782 4783
		return 0;

4784 4785 4786 4787 4788 4789 4790
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4791
	cgroup_taskset_for_each_leader(leader, css, tset) {
4792 4793
		WARN_ON_ONCE(p);
		p = leader;
4794
		memcg = mem_cgroup_from_css(css);
4795 4796 4797 4798
	}
	if (!p)
		return 0;

4799 4800 4801 4802 4803 4804 4805 4806 4807
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4824
		mc.mm = mm;
4825 4826 4827 4828 4829 4830 4831 4832 4833
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4834 4835
	} else {
		mmput(mm);
4836 4837 4838 4839
	}
	return ret;
}

4840
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4841
{
4842 4843
	if (mc.to)
		mem_cgroup_clear_mc();
4844 4845
}

4846 4847 4848
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4849
{
4850
	int ret = 0;
4851
	struct vm_area_struct *vma = walk->vma;
4852 4853
	pte_t *pte;
	spinlock_t *ptl;
4854 4855 4856
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4857

4858 4859
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4860
		if (mc.precharge < HPAGE_PMD_NR) {
4861
			spin_unlock(ptl);
4862 4863 4864 4865 4866 4867
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4868
				if (!mem_cgroup_move_account(page, true,
4869
							     mc.from, mc.to)) {
4870 4871 4872 4873 4874 4875 4876
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4877
		spin_unlock(ptl);
4878
		return 0;
4879 4880
	}

4881 4882
	if (pmd_trans_unstable(pmd))
		return 0;
4883 4884 4885 4886
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4887
		swp_entry_t ent;
4888 4889 4890 4891

		if (!mc.precharge)
			break;

4892
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4893 4894
		case MC_TARGET_PAGE:
			page = target.page;
4895 4896 4897 4898 4899 4900 4901 4902
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4903 4904
			if (isolate_lru_page(page))
				goto put;
4905 4906
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4907
				mc.precharge--;
4908 4909
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4910 4911
			}
			putback_lru_page(page);
4912
put:			/* get_mctgt_type() gets the page */
4913 4914
			put_page(page);
			break;
4915 4916
		case MC_TARGET_SWAP:
			ent = target.ent;
4917
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4918
				mc.precharge--;
4919 4920 4921
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4922
			break;
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4937
		ret = mem_cgroup_do_precharge(1);
4938 4939 4940 4941 4942 4943 4944
		if (!ret)
			goto retry;
	}

	return ret;
}

4945
static void mem_cgroup_move_charge(void)
4946
{
4947 4948
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4949
		.mm = mc.mm,
4950
	};
4951 4952

	lru_add_drain_all();
4953
	/*
4954 4955 4956
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4957 4958 4959
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4960
retry:
4961
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4973 4974 4975 4976
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
4977 4978
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

4979
	up_read(&mc.mm->mmap_sem);
4980
	atomic_dec(&mc.from->moving_account);
4981 4982
}

4983
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4984
{
4985 4986
	if (mc.to) {
		mem_cgroup_move_charge();
4987
		mem_cgroup_clear_mc();
4988
	}
B
Balbir Singh 已提交
4989
}
4990
#else	/* !CONFIG_MMU */
4991
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4992 4993 4994
{
	return 0;
}
4995
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4996 4997
{
}
4998
static void mem_cgroup_move_task(void)
4999 5000 5001
{
}
#endif
B
Balbir Singh 已提交
5002

5003 5004
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5005 5006
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5007
 */
5008
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5009 5010
{
	/*
5011
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5012 5013 5014
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5015
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5016 5017 5018
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5019 5020
}

5021 5022 5023
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5024 5025 5026
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5027 5028 5029 5030 5031
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5032
	unsigned long low = READ_ONCE(memcg->low);
5033 5034

	if (low == PAGE_COUNTER_MAX)
5035
		seq_puts(m, "max\n");
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5050
	err = page_counter_memparse(buf, "max", &low);
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5062
	unsigned long high = READ_ONCE(memcg->high);
5063 5064

	if (high == PAGE_COUNTER_MAX)
5065
		seq_puts(m, "max\n");
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5076
	unsigned long nr_pages;
5077 5078 5079 5080
	unsigned long high;
	int err;

	buf = strstrip(buf);
5081
	err = page_counter_memparse(buf, "max", &high);
5082 5083 5084 5085 5086
	if (err)
		return err;

	memcg->high = high;

5087 5088 5089 5090 5091
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5092
	memcg_wb_domain_size_changed(memcg);
5093 5094 5095 5096 5097 5098
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5099
	unsigned long max = READ_ONCE(memcg->memory.limit);
5100 5101

	if (max == PAGE_COUNTER_MAX)
5102
		seq_puts(m, "max\n");
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5113 5114
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5115 5116 5117 5118
	unsigned long max;
	int err;

	buf = strstrip(buf);
5119
	err = page_counter_memparse(buf, "max", &max);
5120 5121 5122
	if (err)
		return err;

5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5153

5154
	memcg_wb_domain_size_changed(memcg);
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5170 5171 5172
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5173 5174
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5188 5189 5190
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5191
	seq_printf(m, "anon %llu\n",
5192
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5193
	seq_printf(m, "file %llu\n",
5194
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5195
	seq_printf(m, "kernel_stack %llu\n",
5196
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5197 5198 5199
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5200
	seq_printf(m, "sock %llu\n",
5201
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5202 5203

	seq_printf(m, "file_mapped %llu\n",
5204
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5205
	seq_printf(m, "file_dirty %llu\n",
5206
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5207
	seq_printf(m, "file_writeback %llu\n",
5208
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5220 5221 5222 5223 5224
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5225 5226 5227
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5228
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5229
	seq_printf(m, "pgmajfault %lu\n",
5230
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5231 5232 5233 5234

	return 0;
}

5235 5236 5237
static struct cftype memory_files[] = {
	{
		.name = "current",
5238
		.flags = CFTYPE_NOT_ON_ROOT,
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5262
		.file_offset = offsetof(struct mem_cgroup, events_file),
5263 5264
		.seq_show = memory_events_show,
	},
5265 5266 5267 5268 5269
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5270 5271 5272
	{ }	/* terminate */
};

5273
struct cgroup_subsys memory_cgrp_subsys = {
5274
	.css_alloc = mem_cgroup_css_alloc,
5275
	.css_online = mem_cgroup_css_online,
5276
	.css_offline = mem_cgroup_css_offline,
5277
	.css_released = mem_cgroup_css_released,
5278
	.css_free = mem_cgroup_css_free,
5279
	.css_reset = mem_cgroup_css_reset,
5280 5281
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5282
	.post_attach = mem_cgroup_move_task,
5283
	.bind = mem_cgroup_bind,
5284 5285
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5286
	.early_init = 0,
B
Balbir Singh 已提交
5287
};
5288

5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5311
	if (page_counter_read(&memcg->memory) >= memcg->low)
5312 5313 5314 5315 5316 5317 5318 5319
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5320
		if (page_counter_read(&memcg->memory) >= memcg->low)
5321 5322 5323 5324 5325
			return false;
	}
	return true;
}

5326 5327 5328 5329 5330 5331
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5332
 * @compound: charge the page as compound or small page
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5345 5346
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5347 5348
{
	struct mem_cgroup *memcg = NULL;
5349
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5363
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5364
		if (page->mem_cgroup)
5365
			goto out;
5366

5367
		if (do_swap_account) {
5368 5369 5370 5371 5372 5373 5374 5375 5376
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5395
 * @compound: charge the page as compound or small page
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5408
			      bool lrucare, bool compound)
5409
{
5410
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5425 5426 5427
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5428
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5429 5430
	memcg_check_events(memcg, page);
	local_irq_enable();
5431

5432
	if (do_memsw_account() && PageSwapCache(page)) {
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5447
 * @compound: charge the page as compound or small page
5448 5449 5450
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5451 5452
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5453
{
5454
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5469 5470
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5471 5472
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5473
{
5474
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5475 5476
	unsigned long flags;

5477
	if (!mem_cgroup_is_root(memcg)) {
5478
		page_counter_uncharge(&memcg->memory, nr_pages);
5479
		if (do_memsw_account())
5480
			page_counter_uncharge(&memcg->memsw, nr_pages);
5481 5482
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5483 5484
		memcg_oom_recover(memcg);
	}
5485 5486 5487 5488 5489 5490

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5491
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5492 5493
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5494 5495

	if (!mem_cgroup_is_root(memcg))
5496
		css_put_many(&memcg->css, nr_pages);
5497 5498 5499 5500 5501 5502 5503 5504
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5505
	unsigned long nr_kmem = 0;
5506 5507 5508 5509
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5510 5511 5512 5513
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5514 5515 5516 5517 5518 5519 5520 5521
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5522
		if (!page->mem_cgroup)
5523 5524 5525 5526
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5527
		 * page->mem_cgroup at this point, we have fully
5528
		 * exclusive access to the page.
5529 5530
		 */

5531
		if (memcg != page->mem_cgroup) {
5532
			if (memcg) {
5533
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5534 5535 5536
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5537
			}
5538
			memcg = page->mem_cgroup;
5539 5540
		}

5541 5542
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5543

5544 5545 5546 5547 5548 5549 5550 5551 5552
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
5553
		} else {
5554
			nr_kmem += 1 << compound_order(page);
5555 5556
			__ClearPageKmemcg(page);
		}
5557

5558
		page->mem_cgroup = NULL;
5559 5560 5561
	} while (next != page_list);

	if (memcg)
5562
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5563
			       nr_huge, nr_kmem, page);
5564 5565
}

5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5578
	/* Don't touch page->lru of any random page, pre-check: */
5579
	if (!page->mem_cgroup)
5580 5581
		return;

5582 5583 5584
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5585

5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5597

5598 5599
	if (!list_empty(page_list))
		uncharge_list(page_list);
5600 5601 5602
}

/**
5603 5604 5605
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5606
 *
5607 5608
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5609 5610 5611
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5612
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5613
{
5614
	struct mem_cgroup *memcg;
5615 5616
	unsigned int nr_pages;
	bool compound;
5617
	unsigned long flags;
5618 5619 5620 5621

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5622 5623
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5624 5625 5626 5627 5628

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5629
	if (newpage->mem_cgroup)
5630 5631
		return;

5632
	/* Swapcache readahead pages can get replaced before being charged */
5633
	memcg = oldpage->mem_cgroup;
5634
	if (!memcg)
5635 5636
		return;

5637 5638 5639 5640 5641 5642 5643 5644
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5645

5646
	commit_charge(newpage, memcg, false);
5647

5648
	local_irq_save(flags);
5649 5650
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5651
	local_irq_restore(flags);
5652 5653
}

5654
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5655 5656
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5657
void mem_cgroup_sk_alloc(struct sock *sk)
5658 5659 5660
{
	struct mem_cgroup *memcg;

5661 5662 5663 5664 5665
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5681 5682
	if (memcg == root_mem_cgroup)
		goto out;
5683
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5684 5685
		goto out;
	if (css_tryget_online(&memcg->css))
5686
		sk->sk_memcg = memcg;
5687
out:
5688 5689 5690
	rcu_read_unlock();
}

5691
void mem_cgroup_sk_free(struct sock *sk)
5692
{
5693 5694
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5707
	gfp_t gfp_mask = GFP_KERNEL;
5708

5709
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5710
		struct page_counter *fail;
5711

5712 5713
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5714 5715
			return true;
		}
5716 5717
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5718
		return false;
5719
	}
5720

5721 5722 5723 5724
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5725 5726
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5727 5728 5729 5730
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5741
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5742
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5743 5744
		return;
	}
5745

5746 5747
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5748 5749
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5750 5751
}

5752 5753 5754 5755 5756 5757 5758 5759 5760
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5761 5762
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5763 5764 5765 5766
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5767

5768
/*
5769 5770
 * subsys_initcall() for memory controller.
 *
5771 5772 5773 5774
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5775 5776 5777
 */
static int __init mem_cgroup_init(void)
{
5778 5779
	int cpu, node;

5780 5781 5782
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5783 5784 5785
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5786
	 */
5787 5788
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5789 5790
#endif

5791 5792
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5804 5805
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5806 5807 5808
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5809 5810 5811
	return 0;
}
subsys_initcall(mem_cgroup_init);
5812 5813

#ifdef CONFIG_MEMCG_SWAP
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5832 5833 5834 5835 5836 5837 5838 5839 5840
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5841
	struct mem_cgroup *memcg, *swap_memcg;
5842 5843 5844 5845 5846
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5847
	if (!do_memsw_account())
5848 5849 5850 5851 5852 5853 5854 5855
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5856 5857 5858 5859 5860 5861 5862
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5863
	VM_BUG_ON_PAGE(oldid, page);
5864
	mem_cgroup_swap_statistics(swap_memcg, true);
5865 5866 5867 5868 5869 5870

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5871 5872 5873 5874 5875 5876
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
			page_counter_charge(&swap_memcg->memsw, 1);
		page_counter_uncharge(&memcg->memsw, 1);
	}

5877 5878 5879 5880 5881 5882 5883
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5884
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5885
	memcg_check_events(memcg, page);
5886 5887 5888

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5889 5890
}

5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

5915 5916
	memcg = mem_cgroup_id_get_online(memcg);

5917
	if (!mem_cgroup_is_root(memcg) &&
5918 5919
	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
		mem_cgroup_id_put(memcg);
5920
		return -ENOMEM;
5921
	}
5922 5923 5924 5925 5926 5927 5928 5929

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5930 5931 5932 5933
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5934
 * Drop the swap charge associated with @entry.
5935 5936 5937 5938 5939 5940
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5941
	if (!do_swap_account)
5942 5943 5944 5945
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5946
	memcg = mem_cgroup_from_id(id);
5947
	if (memcg) {
5948 5949 5950 5951 5952 5953
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5954
		mem_cgroup_swap_statistics(memcg, false);
5955
		mem_cgroup_id_put(memcg);
5956 5957 5958 5959
	}
	rcu_read_unlock();
}

5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6100 6101
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6102 6103 6104 6105 6106 6107 6108 6109
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */