memcontrol.c 153.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210
	struct mm_struct  *mm;
211 212
	struct mem_cgroup *from;
	struct mem_cgroup *to;
213
	unsigned long flags;
214
	unsigned long precharge;
215
	unsigned long moved_charge;
216
	unsigned long moved_swap;
217 218 219
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
220
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 222
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
223

224 225 226 227
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
228
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230

231 232
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
235
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 237 238
	NR_CHARGE_TYPE,
};

239
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
240 241 242 243
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
244
	_KMEM,
V
Vladimir Davydov 已提交
245
	_TCP,
G
Glauber Costa 已提交
246 247
};

248 249
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
251 252
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

267 268 269 270 271
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

272
#ifndef CONFIG_SLOB
273
/*
274
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
275 276 277 278 279
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
280
 *
281 282
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
283
 */
284 285
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
286

287 288 289 290 291 292 293 294 295 296 297 298 299
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

300 301 302 303 304 305
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
306
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 308
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
309
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 311 312
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
313
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314

315 316 317 318 319 320
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
321
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322
EXPORT_SYMBOL(memcg_kmem_enabled_key);
323

324
#endif /* !CONFIG_SLOB */
325

326
static struct mem_cgroup_per_zone *
327
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328
{
329 330 331
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

332
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

352
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 354 355 356 357
		memcg = root_mem_cgroup;

	return &memcg->css;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

386
static struct mem_cgroup_per_zone *
387
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388
{
389 390
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
391

392
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

410 411
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
412
					 unsigned long new_usage_in_excess)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

442 443
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
444 445 446 447 448 449 450
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

451 452
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
453
{
454 455 456
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
457
	__mem_cgroup_remove_exceeded(mz, mctz);
458
	spin_unlock_irqrestore(&mctz->lock, flags);
459 460
}

461 462 463
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
464
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 466 467 468 469 470 471
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
472 473 474

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
475
	unsigned long excess;
476 477 478
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

479
	mctz = soft_limit_tree_from_page(page);
480 481 482 483 484
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485
		mz = mem_cgroup_page_zoneinfo(memcg, page);
486
		excess = soft_limit_excess(memcg);
487 488 489 490 491
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
492 493 494
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
495 496
			/* if on-tree, remove it */
			if (mz->on_tree)
497
				__mem_cgroup_remove_exceeded(mz, mctz);
498 499 500 501
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
502
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503
			spin_unlock_irqrestore(&mctz->lock, flags);
504 505 506 507 508 509 510
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
511 512
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
513

514 515 516 517
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
518
			mem_cgroup_remove_exceeded(mz, mctz);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
541
	__mem_cgroup_remove_exceeded(mz, mctz);
542
	if (!soft_limit_excess(mz->memcg) ||
543
	    !css_tryget_online(&mz->memcg->css))
544 545 546 547 548 549 550 551 552 553
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

554
	spin_lock_irq(&mctz->lock);
555
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556
	spin_unlock_irq(&mctz->lock);
557 558 559
	return mz;
}

560
/*
561 562
 * Return page count for single (non recursive) @memcg.
 *
563 564 565 566 567
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
568
 * a periodic synchronization of counter in memcg's counter.
569 570 571 572 573 574 575 576 577
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
578
 * common workload, threshold and synchronization as vmstat[] should be
579 580
 * implemented.
 */
581 582
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583
{
584
	long val = 0;
585 586
	int cpu;

587
	/* Per-cpu values can be negative, use a signed accumulator */
588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->count[idx], cpu);
590 591 592 593 594 595
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
596 597 598
	return val;
}

599
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 601 602 603 604
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

605
	for_each_possible_cpu(cpu)
606
		val += per_cpu(memcg->stat->events[idx], cpu);
607 608 609
	return val;
}

610
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611
					 struct page *page,
612
					 bool compound, int nr_pages)
613
{
614 615 616 617
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
618
	if (PageAnon(page))
619
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620
				nr_pages);
621
	else
622
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623
				nr_pages);
624

625 626
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 628
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
629
	}
630

631 632
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
633
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634
	else {
635
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 637
		nr_pages = -nr_pages; /* for event */
	}
638

639
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 641
}

642 643
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
644
{
645
	unsigned long nr = 0;
646 647
	int zid;

648
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649

650 651 652 653 654 655 656 657 658 659 660 661
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
662
}
663

664
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665
			unsigned int lru_mask)
666
{
667
	unsigned long nr = 0;
668
	int nid;
669

670
	for_each_node_state(nid, N_MEMORY)
671 672
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
673 674
}

675 676
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
677 678 679
{
	unsigned long val, next;

680
	val = __this_cpu_read(memcg->stat->nr_page_events);
681
	next = __this_cpu_read(memcg->stat->targets[target]);
682
	/* from time_after() in jiffies.h */
683 684 685 686 687
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
688 689 690
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
691 692 693 694 695 696 697 698
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
699
	}
700
	return false;
701 702 703 704 705 706
}

/*
 * Check events in order.
 *
 */
707
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 709
{
	/* threshold event is triggered in finer grain than soft limit */
710 711
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
712
		bool do_softlimit;
713
		bool do_numainfo __maybe_unused;
714

715 716
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
717 718 719 720
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
721
		mem_cgroup_threshold(memcg);
722 723
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
724
#if MAX_NUMNODES > 1
725
		if (unlikely(do_numainfo))
726
			atomic_inc(&memcg->numainfo_events);
727
#endif
728
	}
729 730
}

731
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732
{
733 734 735 736 737 738 739 740
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

741
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742
}
M
Michal Hocko 已提交
743
EXPORT_SYMBOL(mem_cgroup_from_task);
744

745
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746
{
747
	struct mem_cgroup *memcg = NULL;
748

749 750
	rcu_read_lock();
	do {
751 752 753 754 755 756
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
757
			memcg = root_mem_cgroup;
758 759 760 761 762
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
763
	} while (!css_tryget_online(&memcg->css));
764
	rcu_read_unlock();
765
	return memcg;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
785
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786
				   struct mem_cgroup *prev,
787
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
788
{
M
Michal Hocko 已提交
789
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790
	struct cgroup_subsys_state *css = NULL;
791
	struct mem_cgroup *memcg = NULL;
792
	struct mem_cgroup *pos = NULL;
793

794 795
	if (mem_cgroup_disabled())
		return NULL;
796

797 798
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
799

800
	if (prev && !reclaim)
801
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
802

803 804
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
805
			goto out;
806
		return root;
807
	}
K
KAMEZAWA Hiroyuki 已提交
808

809
	rcu_read_lock();
M
Michal Hocko 已提交
810

811 812 813 814 815 816 817 818 819
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

820
		while (1) {
821
			pos = READ_ONCE(iter->position);
822 823
			if (!pos || css_tryget(&pos->css))
				break;
824
			/*
825 826 827 828 829 830
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
831
			 */
832 833
			(void)cmpxchg(&iter->position, pos, NULL);
		}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
851
		}
K
KAMEZAWA Hiroyuki 已提交
852

853 854 855 856 857 858
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
859

860 861
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
862

863 864
		if (css_tryget(css))
			break;
865

866
		memcg = NULL;
867
	}
868 869 870

	if (reclaim) {
		/*
871 872 873
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
874
		 */
875 876
		(void)cmpxchg(&iter->position, pos, memcg);

877 878 879 880 881 882 883
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
884
	}
885

886 887
out_unlock:
	rcu_read_unlock();
888
out:
889 890 891
	if (prev && prev != root)
		css_put(&prev->css);

892
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
893
}
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900 901
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
902 903 904 905 906 907
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

931 932 933 934 935 936
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
937
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938
	     iter != NULL;				\
939
	     iter = mem_cgroup_iter(root, iter, NULL))
940

941
#define for_each_mem_cgroup(iter)			\
942
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943
	     iter != NULL;				\
944
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
949
 * @memcg: memcg of the wanted lruvec
950 951 952 953 954 955 956 957 958
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
959
	struct lruvec *lruvec;
960

961 962 963 964
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
965

966
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 968 969 970 971 972 973 974 975 976
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
977 978 979
}

/**
980
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981
 * @page: the page
982
 * @zone: zone of the page
983 984 985 986
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
987
 */
988
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
989 990
{
	struct mem_cgroup_per_zone *mz;
991
	struct mem_cgroup *memcg;
992
	struct lruvec *lruvec;
993

994 995 996 997
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
998

999
	memcg = page->mem_cgroup;
1000
	/*
1001
	 * Swapcache readahead pages are added to the LRU - and
1002
	 * possibly migrated - before they are charged.
1003
	 */
1004 1005
	if (!memcg)
		memcg = root_mem_cgroup;
1006

1007
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1018
}
1019

1020
/**
1021 1022 1023 1024
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1025
 *
1026 1027 1028
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029
 */
1030 1031
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1032 1033
{
	struct mem_cgroup_per_zone *mz;
1034
	unsigned long *lru_size;
1035 1036
	long size;
	bool empty;
1037

1038 1039
	__update_lru_size(lruvec, lru, nr_pages);

1040 1041 1042
	if (mem_cgroup_disabled())
		return;

1043 1044
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1060
}
1061

1062
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063
{
1064
	struct mem_cgroup *task_memcg;
1065
	struct task_struct *p;
1066
	bool ret;
1067

1068
	p = find_lock_task_mm(task);
1069
	if (p) {
1070
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 1072 1073 1074 1075 1076 1077
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1078
		rcu_read_lock();
1079 1080
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1081
		rcu_read_unlock();
1082
	}
1083 1084
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1085 1086 1087
	return ret;
}

1088
/**
1089
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1090
 * @memcg: the memory cgroup
1091
 *
1092
 * Returns the maximum amount of memory @mem can be charged with, in
1093
 * pages.
1094
 */
1095
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096
{
1097 1098 1099
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1100

1101
	count = page_counter_read(&memcg->memory);
1102
	limit = READ_ONCE(memcg->memory.limit);
1103 1104 1105
	if (count < limit)
		margin = limit - count;

1106
	if (do_memsw_account()) {
1107
		count = page_counter_read(&memcg->memsw);
1108
		limit = READ_ONCE(memcg->memsw.limit);
1109 1110
		if (count <= limit)
			margin = min(margin, limit - count);
1111 1112
		else
			margin = 0;
1113 1114 1115
	}

	return margin;
1116 1117
}

1118
/*
Q
Qiang Huang 已提交
1119
 * A routine for checking "mem" is under move_account() or not.
1120
 *
Q
Qiang Huang 已提交
1121 1122 1123
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1124
 */
1125
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1126
{
1127 1128
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1129
	bool ret = false;
1130 1131 1132 1133 1134 1135 1136 1137 1138
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1139

1140 1141
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1142 1143
unlock:
	spin_unlock(&mc.lock);
1144 1145 1146
	return ret;
}

1147
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1148 1149
{
	if (mc.moving_task && current != mc.moving_task) {
1150
		if (mem_cgroup_under_move(memcg)) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1163
#define K(x) ((x) << (PAGE_SHIFT-10))
1164
/**
1165
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166 1167 1168 1169 1170 1171 1172 1173
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1174 1175
	struct mem_cgroup *iter;
	unsigned int i;
1176 1177 1178

	rcu_read_lock();

1179 1180 1181 1182 1183 1184 1185 1186
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1187
	pr_cont_cgroup_path(memcg->css.cgroup);
1188
	pr_cont("\n");
1189 1190 1191

	rcu_read_unlock();

1192 1193 1194 1195 1196 1197 1198 1199 1200
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1201 1202

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1203 1204
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1205 1206 1207
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1208
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1209
				continue;
1210
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1211 1212 1213 1214 1215 1216 1217 1218 1219
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1220 1221
}

1222 1223 1224 1225
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1226
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1227 1228
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1229 1230
	struct mem_cgroup *iter;

1231
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1232
		num++;
1233 1234 1235
	return num;
}

D
David Rientjes 已提交
1236 1237 1238
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1239
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1240
{
1241
	unsigned long limit;
1242

1243
	limit = memcg->memory.limit;
1244
	if (mem_cgroup_swappiness(memcg)) {
1245
		unsigned long memsw_limit;
1246
		unsigned long swap_limit;
1247

1248
		memsw_limit = memcg->memsw.limit;
1249 1250 1251
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1252 1253
	}
	return limit;
D
David Rientjes 已提交
1254 1255
}

1256
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1257
				     int order)
1258
{
1259 1260 1261
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1262
		.memcg = memcg,
1263 1264 1265
		.gfp_mask = gfp_mask,
		.order = order,
	};
1266 1267 1268 1269 1270 1271
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1272 1273
	mutex_lock(&oom_lock);

1274
	/*
1275 1276 1277
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1278
	 */
1279
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1280
		mark_oom_victim(current);
1281
		try_oom_reaper(current);
1282
		goto unlock;
1283 1284
	}

1285
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1286
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1287
	for_each_mem_cgroup_tree(iter, memcg) {
1288
		struct css_task_iter it;
1289 1290
		struct task_struct *task;

1291 1292
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1293
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1304
				css_task_iter_end(&it);
1305 1306 1307
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1308 1309
				/* Set a dummy value to return "true". */
				chosen = (void *) 1;
1310
				goto unlock;
1311 1312 1313 1314
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1327
		}
1328
		css_task_iter_end(&it);
1329 1330
	}

1331 1332
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1333
		oom_kill_process(&oc, chosen, points, totalpages,
1334
				 "Memory cgroup out of memory");
1335 1336 1337
	}
unlock:
	mutex_unlock(&oom_lock);
1338
	return chosen;
1339 1340
}

1341 1342
#if MAX_NUMNODES > 1

1343 1344
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1345
 * @memcg: the target memcg
1346 1347 1348 1349 1350 1351 1352
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1353
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1354 1355
		int nid, bool noswap)
{
1356
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1357 1358 1359
		return true;
	if (noswap || !total_swap_pages)
		return false;
1360
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1361 1362 1363 1364
		return true;
	return false;

}
1365 1366 1367 1368 1369 1370 1371

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1372
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1373 1374
{
	int nid;
1375 1376 1377 1378
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1379
	if (!atomic_read(&memcg->numainfo_events))
1380
		return;
1381
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1382 1383 1384
		return;

	/* make a nodemask where this memcg uses memory from */
1385
	memcg->scan_nodes = node_states[N_MEMORY];
1386

1387
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1388

1389 1390
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1391
	}
1392

1393 1394
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1409
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1410 1411 1412
{
	int node;

1413 1414
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1415

1416
	node = next_node_in(node, memcg->scan_nodes);
1417
	/*
1418 1419 1420
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1421 1422 1423 1424
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1425
	memcg->last_scanned_node = node;
1426 1427 1428
	return node;
}
#else
1429
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1430 1431 1432 1433 1434
{
	return 0;
}
#endif

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1450
	excess = soft_limit_excess(root_memcg);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1479
		if (!soft_limit_excess(root_memcg))
1480
			break;
1481
	}
1482 1483
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1484 1485
}

1486 1487 1488 1489 1490 1491
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1492 1493
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1494 1495 1496 1497
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1498
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1499
{
1500
	struct mem_cgroup *iter, *failed = NULL;
1501

1502 1503
	spin_lock(&memcg_oom_lock);

1504
	for_each_mem_cgroup_tree(iter, memcg) {
1505
		if (iter->oom_lock) {
1506 1507 1508 1509 1510
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1511 1512
			mem_cgroup_iter_break(memcg, iter);
			break;
1513 1514
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1515
	}
K
KAMEZAWA Hiroyuki 已提交
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1528
		}
1529 1530
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1531 1532 1533 1534

	spin_unlock(&memcg_oom_lock);

	return !failed;
1535
}
1536

1537
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1538
{
K
KAMEZAWA Hiroyuki 已提交
1539 1540
	struct mem_cgroup *iter;

1541
	spin_lock(&memcg_oom_lock);
1542
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1543
	for_each_mem_cgroup_tree(iter, memcg)
1544
		iter->oom_lock = false;
1545
	spin_unlock(&memcg_oom_lock);
1546 1547
}

1548
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1549 1550 1551
{
	struct mem_cgroup *iter;

1552
	spin_lock(&memcg_oom_lock);
1553
	for_each_mem_cgroup_tree(iter, memcg)
1554 1555
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1556 1557
}

1558
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1559 1560 1561
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1562 1563
	/*
	 * When a new child is created while the hierarchy is under oom,
1564
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1565
	 */
1566
	spin_lock(&memcg_oom_lock);
1567
	for_each_mem_cgroup_tree(iter, memcg)
1568 1569 1570
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1571 1572
}

K
KAMEZAWA Hiroyuki 已提交
1573 1574
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1575
struct oom_wait_info {
1576
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1577 1578 1579 1580 1581 1582
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1583 1584
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1585 1586 1587
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1588
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1589

1590 1591
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1592 1593 1594 1595
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1596
static void memcg_oom_recover(struct mem_cgroup *memcg)
1597
{
1598 1599 1600 1601 1602 1603 1604 1605 1606
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1607
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1608 1609
}

1610
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1611
{
1612
	if (!current->memcg_may_oom)
1613
		return;
K
KAMEZAWA Hiroyuki 已提交
1614
	/*
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1627
	 */
1628
	css_get(&memcg->css);
T
Tejun Heo 已提交
1629 1630 1631
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1632 1633 1634 1635
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1636
 * @handle: actually kill/wait or just clean up the OOM state
1637
 *
1638 1639
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1640
 *
1641
 * Memcg supports userspace OOM handling where failed allocations must
1642 1643 1644 1645
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1646
 * the end of the page fault to complete the OOM handling.
1647 1648
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1649
 * completed, %false otherwise.
1650
 */
1651
bool mem_cgroup_oom_synchronize(bool handle)
1652
{
T
Tejun Heo 已提交
1653
	struct mem_cgroup *memcg = current->memcg_in_oom;
1654
	struct oom_wait_info owait;
1655
	bool locked;
1656 1657 1658

	/* OOM is global, do not handle */
	if (!memcg)
1659
		return false;
1660

1661
	if (!handle || oom_killer_disabled)
1662
		goto cleanup;
1663 1664 1665 1666 1667 1668

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1669

1670
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1681 1682
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1683
	} else {
1684
		schedule();
1685 1686 1687 1688 1689
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1690 1691 1692 1693 1694 1695 1696 1697
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1698
cleanup:
T
Tejun Heo 已提交
1699
	current->memcg_in_oom = NULL;
1700
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1701
	return true;
1702 1703
}

1704
/**
1705 1706
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1707
 *
1708 1709
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1710
 */
J
Johannes Weiner 已提交
1711
void lock_page_memcg(struct page *page)
1712 1713
{
	struct mem_cgroup *memcg;
1714
	unsigned long flags;
1715

1716 1717 1718 1719 1720
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1721 1722 1723
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1724
		return;
1725
again:
1726
	memcg = page->mem_cgroup;
1727
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1728
		return;
1729

Q
Qiang Huang 已提交
1730
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1731
		return;
1732

1733
	spin_lock_irqsave(&memcg->move_lock, flags);
1734
	if (memcg != page->mem_cgroup) {
1735
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1736 1737
		goto again;
	}
1738 1739 1740 1741

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1742
	 * the task who has the lock for unlock_page_memcg().
1743 1744 1745
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1746

J
Johannes Weiner 已提交
1747
	return;
1748
}
1749
EXPORT_SYMBOL(lock_page_memcg);
1750

1751
/**
1752
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1753
 * @page: the page
1754
 */
J
Johannes Weiner 已提交
1755
void unlock_page_memcg(struct page *page)
1756
{
J
Johannes Weiner 已提交
1757 1758
	struct mem_cgroup *memcg = page->mem_cgroup;

1759 1760 1761 1762 1763 1764 1765 1766
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1767

1768
	rcu_read_unlock();
1769
}
1770
EXPORT_SYMBOL(unlock_page_memcg);
1771

1772 1773 1774 1775
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1776
#define CHARGE_BATCH	32U
1777 1778
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1779
	unsigned int nr_pages;
1780
	struct work_struct work;
1781
	unsigned long flags;
1782
#define FLUSHING_CACHED_CHARGE	0
1783 1784
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1785
static DEFINE_MUTEX(percpu_charge_mutex);
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1797
 */
1798
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1799 1800
{
	struct memcg_stock_pcp *stock;
1801
	bool ret = false;
1802

1803
	if (nr_pages > CHARGE_BATCH)
1804
		return ret;
1805

1806
	stock = &get_cpu_var(memcg_stock);
1807
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1808
		stock->nr_pages -= nr_pages;
1809 1810
		ret = true;
	}
1811 1812 1813 1814 1815
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1816
 * Returns stocks cached in percpu and reset cached information.
1817 1818 1819 1820 1821
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1822
	if (stock->nr_pages) {
1823
		page_counter_uncharge(&old->memory, stock->nr_pages);
1824
		if (do_memsw_account())
1825
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1826
		css_put_many(&old->css, stock->nr_pages);
1827
		stock->nr_pages = 0;
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1838
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1839
	drain_stock(stock);
1840
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1841 1842 1843
}

/*
1844
 * Cache charges(val) to local per_cpu area.
1845
 * This will be consumed by consume_stock() function, later.
1846
 */
1847
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1848 1849 1850
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1851
	if (stock->cached != memcg) { /* reset if necessary */
1852
		drain_stock(stock);
1853
		stock->cached = memcg;
1854
	}
1855
	stock->nr_pages += nr_pages;
1856 1857 1858 1859
	put_cpu_var(memcg_stock);
}

/*
1860
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1861
 * of the hierarchy under it.
1862
 */
1863
static void drain_all_stock(struct mem_cgroup *root_memcg)
1864
{
1865
	int cpu, curcpu;
1866

1867 1868 1869
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1870 1871
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1872
	curcpu = get_cpu();
1873 1874
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1875
		struct mem_cgroup *memcg;
1876

1877 1878
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1879
			continue;
1880
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1881
			continue;
1882 1883 1884 1885 1886 1887
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1888
	}
1889
	put_cpu();
A
Andrew Morton 已提交
1890
	put_online_cpus();
1891
	mutex_unlock(&percpu_charge_mutex);
1892 1893
}

1894
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1895 1896 1897 1898 1899 1900
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1901
	if (action == CPU_ONLINE)
1902 1903
		return NOTIFY_OK;

1904
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1905
		return NOTIFY_OK;
1906

1907 1908 1909 1910 1911
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1932 1933 1934 1935 1936 1937 1938
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1939
	struct mem_cgroup *memcg;
1940 1941 1942 1943

	if (likely(!nr_pages))
		return;

1944 1945
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1946 1947 1948 1949
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1950 1951
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1952
{
1953
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1954
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1955
	struct mem_cgroup *mem_over_limit;
1956
	struct page_counter *counter;
1957
	unsigned long nr_reclaimed;
1958 1959
	bool may_swap = true;
	bool drained = false;
1960

1961
	if (mem_cgroup_is_root(memcg))
1962
		return 0;
1963
retry:
1964
	if (consume_stock(memcg, nr_pages))
1965
		return 0;
1966

1967
	if (!do_memsw_account() ||
1968 1969
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1970
			goto done_restock;
1971
		if (do_memsw_account())
1972 1973
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1974
	} else {
1975
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1976
		may_swap = false;
1977
	}
1978

1979 1980 1981 1982
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1993
		goto force;
1994 1995 1996 1997

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1998
	if (!gfpflags_allow_blocking(gfp_mask))
1999
		goto nomem;
2000

2001 2002
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2003 2004
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2005

2006
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2007
		goto retry;
2008

2009
	if (!drained) {
2010
		drain_all_stock(mem_over_limit);
2011 2012 2013 2014
		drained = true;
		goto retry;
	}

2015 2016
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2017 2018 2019 2020 2021 2022 2023 2024 2025
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2026
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2027 2028 2029 2030 2031 2032 2033 2034
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2035 2036 2037
	if (nr_retries--)
		goto retry;

2038
	if (gfp_mask & __GFP_NOFAIL)
2039
		goto force;
2040

2041
	if (fatal_signal_pending(current))
2042
		goto force;
2043

2044 2045
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2046 2047
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2048
nomem:
2049
	if (!(gfp_mask & __GFP_NOFAIL))
2050
		return -ENOMEM;
2051 2052 2053 2054 2055 2056 2057
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2058
	if (do_memsw_account())
2059 2060 2061 2062
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2063 2064

done_restock:
2065
	css_get_many(&memcg->css, batch);
2066 2067
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2068

2069
	/*
2070 2071
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2072
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2073 2074 2075 2076
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2077 2078
	 */
	do {
2079
		if (page_counter_read(&memcg->memory) > memcg->high) {
2080 2081 2082 2083 2084
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2085
			current->memcg_nr_pages_over_high += batch;
2086 2087 2088
			set_notify_resume(current);
			break;
		}
2089
	} while ((memcg = parent_mem_cgroup(memcg)));
2090 2091

	return 0;
2092
}
2093

2094
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2095
{
2096 2097 2098
	if (mem_cgroup_is_root(memcg))
		return;

2099
	page_counter_uncharge(&memcg->memory, nr_pages);
2100
	if (do_memsw_account())
2101
		page_counter_uncharge(&memcg->memsw, nr_pages);
2102

2103
	css_put_many(&memcg->css, nr_pages);
2104 2105
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2137
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2138
			  bool lrucare)
2139
{
2140
	int isolated;
2141

2142
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2143 2144 2145 2146 2147

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2148 2149
	if (lrucare)
		lock_page_lru(page, &isolated);
2150

2151 2152
	/*
	 * Nobody should be changing or seriously looking at
2153
	 * page->mem_cgroup at this point:
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2165
	page->mem_cgroup = memcg;
2166

2167 2168
	if (lrucare)
		unlock_page_lru(page, isolated);
2169
}
2170

2171
#ifndef CONFIG_SLOB
2172
static int memcg_alloc_cache_id(void)
2173
{
2174 2175 2176
	int id, size;
	int err;

2177
	id = ida_simple_get(&memcg_cache_ida,
2178 2179 2180
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2181

2182
	if (id < memcg_nr_cache_ids)
2183 2184 2185 2186 2187 2188
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2189
	down_write(&memcg_cache_ids_sem);
2190 2191

	size = 2 * (id + 1);
2192 2193 2194 2195 2196
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2197
	err = memcg_update_all_caches(size);
2198 2199
	if (!err)
		err = memcg_update_all_list_lrus(size);
2200 2201 2202 2203 2204
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2205
	if (err) {
2206
		ida_simple_remove(&memcg_cache_ida, id);
2207 2208 2209 2210 2211 2212 2213
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2214
	ida_simple_remove(&memcg_cache_ida, id);
2215 2216
}

2217
struct memcg_kmem_cache_create_work {
2218 2219 2220 2221 2222
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2223
static void memcg_kmem_cache_create_func(struct work_struct *w)
2224
{
2225 2226
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2227 2228
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2229

2230
	memcg_create_kmem_cache(memcg, cachep);
2231

2232
	css_put(&memcg->css);
2233 2234 2235 2236 2237 2238
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2239 2240
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2241
{
2242
	struct memcg_kmem_cache_create_work *cw;
2243

2244
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2245
	if (!cw)
2246
		return;
2247 2248

	css_get(&memcg->css);
2249 2250 2251

	cw->memcg = memcg;
	cw->cachep = cachep;
2252
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2253 2254 2255 2256

	schedule_work(&cw->work);
}

2257 2258
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2259 2260 2261 2262
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2263
	 * in __memcg_schedule_kmem_cache_create will recurse.
2264 2265 2266 2267 2268 2269 2270
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2271
	current->memcg_kmem_skip_account = 1;
2272
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2273
	current->memcg_kmem_skip_account = 0;
2274
}
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2289
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2290 2291
{
	struct mem_cgroup *memcg;
2292
	struct kmem_cache *memcg_cachep;
2293
	int kmemcg_id;
2294

2295
	VM_BUG_ON(!is_root_cache(cachep));
2296

V
Vladimir Davydov 已提交
2297 2298 2299 2300 2301 2302
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2303
	if (current->memcg_kmem_skip_account)
2304 2305
		return cachep;

2306
	memcg = get_mem_cgroup_from_mm(current->mm);
2307
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2308
	if (kmemcg_id < 0)
2309
		goto out;
2310

2311
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2312 2313
	if (likely(memcg_cachep))
		return memcg_cachep;
2314 2315 2316 2317 2318 2319 2320 2321 2322

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2323 2324 2325
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2326
	 */
2327
	memcg_schedule_kmem_cache_create(memcg, cachep);
2328
out:
2329
	css_put(&memcg->css);
2330
	return cachep;
2331 2332
}

2333 2334 2335
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2336
		css_put(&cachep->memcg_params.memcg->css);
2337 2338
}

2339 2340
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2341
{
2342 2343
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2344 2345
	int ret;

2346
	ret = try_charge(memcg, gfp, nr_pages);
2347
	if (ret)
2348
		return ret;
2349 2350 2351 2352 2353

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2354 2355
	}

2356
	page->mem_cgroup = memcg;
2357

2358
	return 0;
2359 2360
}

2361
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2362
{
2363
	struct mem_cgroup *memcg;
2364
	int ret = 0;
2365

2366
	memcg = get_mem_cgroup_from_mm(current->mm);
2367
	if (!mem_cgroup_is_root(memcg))
2368
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2369
	css_put(&memcg->css);
2370
	return ret;
2371 2372
}

2373
void __memcg_kmem_uncharge(struct page *page, int order)
2374
{
2375
	struct mem_cgroup *memcg = page->mem_cgroup;
2376
	unsigned int nr_pages = 1 << order;
2377 2378 2379 2380

	if (!memcg)
		return;

2381
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2382

2383 2384 2385
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2386
	page_counter_uncharge(&memcg->memory, nr_pages);
2387
	if (do_memsw_account())
2388
		page_counter_uncharge(&memcg->memsw, nr_pages);
2389

2390
	page->mem_cgroup = NULL;
2391
	css_put_many(&memcg->css, nr_pages);
2392
}
2393
#endif /* !CONFIG_SLOB */
2394

2395 2396 2397 2398
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2399
 * zone->lru_lock and migration entries setup in all page mappings.
2400
 */
2401
void mem_cgroup_split_huge_fixup(struct page *head)
2402
{
2403
	int i;
2404

2405 2406
	if (mem_cgroup_disabled())
		return;
2407

2408
	for (i = 1; i < HPAGE_PMD_NR; i++)
2409
		head[i].mem_cgroup = head->mem_cgroup;
2410

2411
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2412
		       HPAGE_PMD_NR);
2413
}
2414
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2415

A
Andrew Morton 已提交
2416
#ifdef CONFIG_MEMCG_SWAP
2417 2418
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2419
{
2420 2421
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2422
}
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2435
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2436 2437 2438
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2439
				struct mem_cgroup *from, struct mem_cgroup *to)
2440 2441 2442
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2443 2444
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2445 2446 2447

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2448
		mem_cgroup_swap_statistics(to, true);
2449 2450 2451 2452 2453 2454
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2455
				struct mem_cgroup *from, struct mem_cgroup *to)
2456 2457 2458
{
	return -EINVAL;
}
2459
#endif
K
KAMEZAWA Hiroyuki 已提交
2460

2461
static DEFINE_MUTEX(memcg_limit_mutex);
2462

2463
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2464
				   unsigned long limit)
2465
{
2466 2467 2468
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2469
	int retry_count;
2470
	int ret;
2471 2472 2473 2474 2475 2476

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2477 2478
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2479

2480
	oldusage = page_counter_read(&memcg->memory);
2481

2482
	do {
2483 2484 2485 2486
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2487 2488 2489 2490

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2491
			ret = -EINVAL;
2492 2493
			break;
		}
2494 2495 2496 2497
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2498 2499 2500 2501

		if (!ret)
			break;

2502 2503
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2504
		curusage = page_counter_read(&memcg->memory);
2505
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2506
		if (curusage >= oldusage)
2507 2508 2509
			retry_count--;
		else
			oldusage = curusage;
2510 2511
	} while (retry_count);

2512 2513
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2514

2515 2516 2517
	return ret;
}

L
Li Zefan 已提交
2518
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2519
					 unsigned long limit)
2520
{
2521 2522 2523
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2524
	int retry_count;
2525
	int ret;
2526

2527
	/* see mem_cgroup_resize_res_limit */
2528 2529 2530 2531 2532 2533
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2534 2535 2536 2537
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2538 2539 2540 2541

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2542 2543 2544
			ret = -EINVAL;
			break;
		}
2545 2546 2547 2548
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2549 2550 2551 2552

		if (!ret)
			break;

2553 2554
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2555
		curusage = page_counter_read(&memcg->memsw);
2556
		/* Usage is reduced ? */
2557
		if (curusage >= oldusage)
2558
			retry_count--;
2559 2560
		else
			oldusage = curusage;
2561 2562
	} while (retry_count);

2563 2564
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2565

2566 2567 2568
	return ret;
}

2569 2570 2571 2572 2573 2574 2575 2576 2577
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2578
	unsigned long excess;
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2603
		spin_lock_irq(&mctz->lock);
2604
		__mem_cgroup_remove_exceeded(mz, mctz);
2605 2606 2607 2608 2609 2610

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2611 2612 2613
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2614
		excess = soft_limit_excess(mz->memcg);
2615 2616 2617 2618 2619 2620 2621 2622 2623
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2624
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2625
		spin_unlock_irq(&mctz->lock);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2643 2644 2645 2646 2647 2648
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2649 2650
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2651 2652 2653 2654 2655 2656
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2657 2658
}

2659
/*
2660
 * Reclaims as many pages from the given memcg as possible.
2661 2662 2663 2664 2665 2666 2667
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2668 2669
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2670
	/* try to free all pages in this cgroup */
2671
	while (nr_retries && page_counter_read(&memcg->memory)) {
2672
		int progress;
2673

2674 2675 2676
		if (signal_pending(current))
			return -EINTR;

2677 2678
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2679
		if (!progress) {
2680
			nr_retries--;
2681
			/* maybe some writeback is necessary */
2682
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2683
		}
2684 2685

	}
2686 2687

	return 0;
2688 2689
}

2690 2691 2692
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2693
{
2694
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2695

2696 2697
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2698
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2699 2700
}

2701 2702
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2703
{
2704
	return mem_cgroup_from_css(css)->use_hierarchy;
2705 2706
}

2707 2708
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2709 2710
{
	int retval = 0;
2711
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2712
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2713

2714
	if (memcg->use_hierarchy == val)
2715
		return 0;
2716

2717
	/*
2718
	 * If parent's use_hierarchy is set, we can't make any modifications
2719 2720 2721 2722 2723 2724
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2725
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2726
				(val == 1 || val == 0)) {
2727
		if (!memcg_has_children(memcg))
2728
			memcg->use_hierarchy = val;
2729 2730 2731 2732
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2733

2734 2735 2736
	return retval;
}

2737
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2738 2739
{
	struct mem_cgroup *iter;
2740
	int i;
2741

2742
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2743

2744 2745 2746 2747
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2748 2749
}

2750
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2751 2752
{
	struct mem_cgroup *iter;
2753
	int i;
2754

2755
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2756

2757 2758 2759 2760
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2761 2762
}

2763
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2764
{
2765
	unsigned long val = 0;
2766

2767
	if (mem_cgroup_is_root(memcg)) {
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2779
	} else {
2780
		if (!swap)
2781
			val = page_counter_read(&memcg->memory);
2782
		else
2783
			val = page_counter_read(&memcg->memsw);
2784
	}
2785
	return val;
2786 2787
}

2788 2789 2790 2791 2792 2793 2794
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2795

2796
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2797
			       struct cftype *cft)
B
Balbir Singh 已提交
2798
{
2799
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2800
	struct page_counter *counter;
2801

2802
	switch (MEMFILE_TYPE(cft->private)) {
2803
	case _MEM:
2804 2805
		counter = &memcg->memory;
		break;
2806
	case _MEMSWAP:
2807 2808
		counter = &memcg->memsw;
		break;
2809
	case _KMEM:
2810
		counter = &memcg->kmem;
2811
		break;
V
Vladimir Davydov 已提交
2812
	case _TCP:
2813
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2814
		break;
2815 2816 2817
	default:
		BUG();
	}
2818 2819 2820 2821

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2822
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2823
		if (counter == &memcg->memsw)
2824
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2837
}
2838

2839
#ifndef CONFIG_SLOB
2840
static int memcg_online_kmem(struct mem_cgroup *memcg)
2841 2842 2843
{
	int memcg_id;

2844 2845 2846
	if (cgroup_memory_nokmem)
		return 0;

2847
	BUG_ON(memcg->kmemcg_id >= 0);
2848
	BUG_ON(memcg->kmem_state);
2849

2850
	memcg_id = memcg_alloc_cache_id();
2851 2852
	if (memcg_id < 0)
		return memcg_id;
2853

2854
	static_branch_inc(&memcg_kmem_enabled_key);
2855
	/*
2856
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2857
	 * kmemcg_id. Setting the id after enabling static branching will
2858 2859 2860
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2861
	memcg->kmemcg_id = memcg_id;
2862
	memcg->kmem_state = KMEM_ONLINE;
2863 2864

	return 0;
2865 2866
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2900
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2901 2902 2903 2904 2905 2906 2907
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2908 2909
	rcu_read_unlock();

2910 2911 2912 2913 2914 2915 2916
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2917 2918 2919 2920
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2921 2922 2923 2924 2925 2926
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2927
#else
2928
static int memcg_online_kmem(struct mem_cgroup *memcg)
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2940
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2941
				   unsigned long limit)
2942
{
2943
	int ret;
2944 2945 2946 2947 2948

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2949
}
2950

V
Vladimir Davydov 已提交
2951 2952 2953 2954 2955 2956
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2957
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2958 2959 2960
	if (ret)
		goto out;

2961
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2979
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2980 2981 2982 2983 2984 2985
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2986 2987 2988 2989
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2990 2991
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2992
{
2993
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2994
	unsigned long nr_pages;
2995 2996
	int ret;

2997
	buf = strstrip(buf);
2998
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2999 3000
	if (ret)
		return ret;
3001

3002
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3003
	case RES_LIMIT:
3004 3005 3006 3007
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3008 3009 3010
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3011
			break;
3012 3013
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3014
			break;
3015 3016 3017
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3018 3019 3020
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3021
		}
3022
		break;
3023 3024 3025
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3026 3027
		break;
	}
3028
	return ret ?: nbytes;
B
Balbir Singh 已提交
3029 3030
}

3031 3032
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3033
{
3034
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3035
	struct page_counter *counter;
3036

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3047
	case _TCP:
3048
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3049
		break;
3050 3051 3052
	default:
		BUG();
	}
3053

3054
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3055
	case RES_MAX_USAGE:
3056
		page_counter_reset_watermark(counter);
3057 3058
		break;
	case RES_FAILCNT:
3059
		counter->failcnt = 0;
3060
		break;
3061 3062
	default:
		BUG();
3063
	}
3064

3065
	return nbytes;
3066 3067
}

3068
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3069 3070
					struct cftype *cft)
{
3071
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3072 3073
}

3074
#ifdef CONFIG_MMU
3075
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3076 3077
					struct cftype *cft, u64 val)
{
3078
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3079

3080
	if (val & ~MOVE_MASK)
3081
		return -EINVAL;
3082

3083
	/*
3084 3085 3086 3087
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3088
	 */
3089
	memcg->move_charge_at_immigrate = val;
3090 3091
	return 0;
}
3092
#else
3093
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3094 3095 3096 3097 3098
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3099

3100
#ifdef CONFIG_NUMA
3101
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3102
{
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3115
	int nid;
3116
	unsigned long nr;
3117
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3118

3119 3120 3121 3122 3123 3124 3125 3126 3127
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3128 3129
	}

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3145 3146 3147 3148 3149 3150
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3151
static int memcg_stat_show(struct seq_file *m, void *v)
3152
{
3153
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3154
	unsigned long memory, memsw;
3155 3156
	struct mem_cgroup *mi;
	unsigned int i;
3157

3158 3159 3160 3161
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3162 3163
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3164
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3165
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3166
			continue;
3167
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3168
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3169
	}
L
Lee Schermerhorn 已提交
3170

3171 3172 3173 3174 3175 3176 3177 3178
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3179
	/* Hierarchical information */
3180 3181 3182 3183
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3184
	}
3185 3186
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3187
	if (do_memsw_account())
3188 3189
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3190

3191
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3192
		unsigned long long val = 0;
3193

3194
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3195
			continue;
3196 3197
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3198
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3216
	}
K
KAMEZAWA Hiroyuki 已提交
3217

K
KOSAKI Motohiro 已提交
3218 3219 3220 3221
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3222
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3223 3224 3225 3226 3227
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3228
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3229
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3230

3231 3232 3233 3234
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3235
			}
3236 3237 3238 3239
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3240 3241 3242
	}
#endif

3243 3244 3245
	return 0;
}

3246 3247
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3248
{
3249
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3250

3251
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3252 3253
}

3254 3255
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3256
{
3257
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3258

3259
	if (val > 100)
K
KOSAKI Motohiro 已提交
3260 3261
		return -EINVAL;

3262
	if (css->parent)
3263 3264 3265
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3266

K
KOSAKI Motohiro 已提交
3267 3268 3269
	return 0;
}

3270 3271 3272
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3273
	unsigned long usage;
3274 3275 3276 3277
	int i;

	rcu_read_lock();
	if (!swap)
3278
		t = rcu_dereference(memcg->thresholds.primary);
3279
	else
3280
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3281 3282 3283 3284

	if (!t)
		goto unlock;

3285
	usage = mem_cgroup_usage(memcg, swap);
3286 3287

	/*
3288
	 * current_threshold points to threshold just below or equal to usage.
3289 3290 3291
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3292
	i = t->current_threshold;
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3316
	t->current_threshold = i - 1;
3317 3318 3319 3320 3321 3322
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3323 3324
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3325
		if (do_memsw_account())
3326 3327 3328 3329
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3330 3331 3332 3333 3334 3335 3336
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3337 3338 3339 3340 3341 3342 3343
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3344 3345
}

3346
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3347 3348 3349
{
	struct mem_cgroup_eventfd_list *ev;

3350 3351
	spin_lock(&memcg_oom_lock);

3352
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3353
		eventfd_signal(ev->eventfd, 1);
3354 3355

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3356 3357 3358
	return 0;
}

3359
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3360
{
K
KAMEZAWA Hiroyuki 已提交
3361 3362
	struct mem_cgroup *iter;

3363
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3364
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3365 3366
}

3367
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3368
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3369
{
3370 3371
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3372 3373
	unsigned long threshold;
	unsigned long usage;
3374
	int i, size, ret;
3375

3376
	ret = page_counter_memparse(args, "-1", &threshold);
3377 3378 3379 3380
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3381

3382
	if (type == _MEM) {
3383
		thresholds = &memcg->thresholds;
3384
		usage = mem_cgroup_usage(memcg, false);
3385
	} else if (type == _MEMSWAP) {
3386
		thresholds = &memcg->memsw_thresholds;
3387
		usage = mem_cgroup_usage(memcg, true);
3388
	} else
3389 3390 3391
		BUG();

	/* Check if a threshold crossed before adding a new one */
3392
	if (thresholds->primary)
3393 3394
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3395
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3396 3397

	/* Allocate memory for new array of thresholds */
3398
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3399
			GFP_KERNEL);
3400
	if (!new) {
3401 3402 3403
		ret = -ENOMEM;
		goto unlock;
	}
3404
	new->size = size;
3405 3406

	/* Copy thresholds (if any) to new array */
3407 3408
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3409
				sizeof(struct mem_cgroup_threshold));
3410 3411
	}

3412
	/* Add new threshold */
3413 3414
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3415 3416

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3417
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3418 3419 3420
			compare_thresholds, NULL);

	/* Find current threshold */
3421
	new->current_threshold = -1;
3422
	for (i = 0; i < size; i++) {
3423
		if (new->entries[i].threshold <= usage) {
3424
			/*
3425 3426
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3427 3428
			 * it here.
			 */
3429
			++new->current_threshold;
3430 3431
		} else
			break;
3432 3433
	}

3434 3435 3436 3437 3438
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3439

3440
	/* To be sure that nobody uses thresholds */
3441 3442 3443 3444 3445 3446 3447 3448
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3449
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3450 3451
	struct eventfd_ctx *eventfd, const char *args)
{
3452
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3453 3454
}

3455
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3456 3457
	struct eventfd_ctx *eventfd, const char *args)
{
3458
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3459 3460
}

3461
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3462
	struct eventfd_ctx *eventfd, enum res_type type)
3463
{
3464 3465
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3466
	unsigned long usage;
3467
	int i, j, size;
3468 3469

	mutex_lock(&memcg->thresholds_lock);
3470 3471

	if (type == _MEM) {
3472
		thresholds = &memcg->thresholds;
3473
		usage = mem_cgroup_usage(memcg, false);
3474
	} else if (type == _MEMSWAP) {
3475
		thresholds = &memcg->memsw_thresholds;
3476
		usage = mem_cgroup_usage(memcg, true);
3477
	} else
3478 3479
		BUG();

3480 3481 3482
	if (!thresholds->primary)
		goto unlock;

3483 3484 3485 3486
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3487 3488 3489
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3490 3491 3492
			size++;
	}

3493
	new = thresholds->spare;
3494

3495 3496
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3497 3498
		kfree(new);
		new = NULL;
3499
		goto swap_buffers;
3500 3501
	}

3502
	new->size = size;
3503 3504

	/* Copy thresholds and find current threshold */
3505 3506 3507
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3508 3509
			continue;

3510
		new->entries[j] = thresholds->primary->entries[i];
3511
		if (new->entries[j].threshold <= usage) {
3512
			/*
3513
			 * new->current_threshold will not be used
3514 3515 3516
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3517
			++new->current_threshold;
3518 3519 3520 3521
		}
		j++;
	}

3522
swap_buffers:
3523 3524
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3525

3526
	rcu_assign_pointer(thresholds->primary, new);
3527

3528
	/* To be sure that nobody uses thresholds */
3529
	synchronize_rcu();
3530 3531 3532 3533 3534 3535

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3536
unlock:
3537 3538
	mutex_unlock(&memcg->thresholds_lock);
}
3539

3540
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3541 3542
	struct eventfd_ctx *eventfd)
{
3543
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3544 3545
}

3546
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3547 3548
	struct eventfd_ctx *eventfd)
{
3549
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3550 3551
}

3552
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3553
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3554 3555 3556 3557 3558 3559 3560
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3561
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3562 3563 3564 3565 3566

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3567
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3568
		eventfd_signal(eventfd, 1);
3569
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3570 3571 3572 3573

	return 0;
}

3574
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3575
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3576 3577 3578
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3579
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3580

3581
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3582 3583 3584 3585 3586 3587
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3588
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3589 3590
}

3591
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3592
{
3593
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3594

3595
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3596
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3597 3598 3599
	return 0;
}

3600
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3601 3602
	struct cftype *cft, u64 val)
{
3603
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3604 3605

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3606
	if (!css->parent || !((val == 0) || (val == 1)))
3607 3608
		return -EINVAL;

3609
	memcg->oom_kill_disable = val;
3610
	if (!val)
3611
		memcg_oom_recover(memcg);
3612

3613 3614 3615
	return 0;
}

3616 3617 3618 3619 3620 3621 3622
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3633 3634 3635 3636 3637
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3648 3649 3650
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3651 3652
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3653 3654 3655
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3656 3657 3658
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3659
 *
3660 3661 3662 3663 3664
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3665
 */
3666 3667 3668
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3669 3670 3671 3672 3673 3674 3675 3676
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3677 3678 3679
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3680 3681 3682 3683 3684

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3685
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3686 3687 3688 3689
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3701 3702 3703 3704
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3705 3706
#endif	/* CONFIG_CGROUP_WRITEBACK */

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3720 3721 3722 3723 3724
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3725
static void memcg_event_remove(struct work_struct *work)
3726
{
3727 3728
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3729
	struct mem_cgroup *memcg = event->memcg;
3730 3731 3732

	remove_wait_queue(event->wqh, &event->wait);

3733
	event->unregister_event(memcg, event->eventfd);
3734 3735 3736 3737 3738 3739

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3740
	css_put(&memcg->css);
3741 3742 3743 3744 3745 3746 3747
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3748 3749
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3750
{
3751 3752
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3753
	struct mem_cgroup *memcg = event->memcg;
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3766
		spin_lock(&memcg->event_list_lock);
3767 3768 3769 3770 3771 3772 3773 3774
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3775
		spin_unlock(&memcg->event_list_lock);
3776 3777 3778 3779 3780
	}

	return 0;
}

3781
static void memcg_event_ptable_queue_proc(struct file *file,
3782 3783
		wait_queue_head_t *wqh, poll_table *pt)
{
3784 3785
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3786 3787 3788 3789 3790 3791

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3792 3793
 * DO NOT USE IN NEW FILES.
 *
3794 3795 3796 3797 3798
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3799 3800
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3801
{
3802
	struct cgroup_subsys_state *css = of_css(of);
3803
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3804
	struct mem_cgroup_event *event;
3805 3806 3807 3808
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3809
	const char *name;
3810 3811 3812
	char *endp;
	int ret;

3813 3814 3815
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3816 3817
	if (*endp != ' ')
		return -EINVAL;
3818
	buf = endp + 1;
3819

3820
	cfd = simple_strtoul(buf, &endp, 10);
3821 3822
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3823
	buf = endp + 1;
3824 3825 3826 3827 3828

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3829
	event->memcg = memcg;
3830
	INIT_LIST_HEAD(&event->list);
3831 3832 3833
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3859 3860 3861 3862 3863
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3864 3865
	 *
	 * DO NOT ADD NEW FILES.
3866
	 */
A
Al Viro 已提交
3867
	name = cfile.file->f_path.dentry->d_name.name;
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3879 3880
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3881 3882 3883 3884 3885
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3886
	/*
3887 3888 3889
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3890
	 */
A
Al Viro 已提交
3891
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3892
					       &memory_cgrp_subsys);
3893
	ret = -EINVAL;
3894
	if (IS_ERR(cfile_css))
3895
		goto out_put_cfile;
3896 3897
	if (cfile_css != css) {
		css_put(cfile_css);
3898
		goto out_put_cfile;
3899
	}
3900

3901
	ret = event->register_event(memcg, event->eventfd, buf);
3902 3903 3904 3905 3906
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3907 3908 3909
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3910 3911 3912 3913

	fdput(cfile);
	fdput(efile);

3914
	return nbytes;
3915 3916

out_put_css:
3917
	css_put(css);
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3930
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3931
	{
3932
		.name = "usage_in_bytes",
3933
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3934
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3935
	},
3936 3937
	{
		.name = "max_usage_in_bytes",
3938
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3939
		.write = mem_cgroup_reset,
3940
		.read_u64 = mem_cgroup_read_u64,
3941
	},
B
Balbir Singh 已提交
3942
	{
3943
		.name = "limit_in_bytes",
3944
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3945
		.write = mem_cgroup_write,
3946
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3947
	},
3948 3949 3950
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3951
		.write = mem_cgroup_write,
3952
		.read_u64 = mem_cgroup_read_u64,
3953
	},
B
Balbir Singh 已提交
3954 3955
	{
		.name = "failcnt",
3956
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3957
		.write = mem_cgroup_reset,
3958
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3959
	},
3960 3961
	{
		.name = "stat",
3962
		.seq_show = memcg_stat_show,
3963
	},
3964 3965
	{
		.name = "force_empty",
3966
		.write = mem_cgroup_force_empty_write,
3967
	},
3968 3969 3970 3971 3972
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3973
	{
3974
		.name = "cgroup.event_control",		/* XXX: for compat */
3975
		.write = memcg_write_event_control,
3976
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3977
	},
K
KOSAKI Motohiro 已提交
3978 3979 3980 3981 3982
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3983 3984 3985 3986 3987
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3988 3989
	{
		.name = "oom_control",
3990
		.seq_show = mem_cgroup_oom_control_read,
3991
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3992 3993
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3994 3995 3996
	{
		.name = "pressure_level",
	},
3997 3998 3999
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4000
		.seq_show = memcg_numa_stat_show,
4001 4002
	},
#endif
4003 4004 4005
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4006
		.write = mem_cgroup_write,
4007
		.read_u64 = mem_cgroup_read_u64,
4008 4009 4010 4011
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4012
		.read_u64 = mem_cgroup_read_u64,
4013 4014 4015 4016
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4017
		.write = mem_cgroup_reset,
4018
		.read_u64 = mem_cgroup_read_u64,
4019 4020 4021 4022
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4023
		.write = mem_cgroup_reset,
4024
		.read_u64 = mem_cgroup_read_u64,
4025
	},
4026 4027 4028
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4029 4030 4031 4032
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4033 4034
	},
#endif
V
Vladimir Davydov 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4058
	{ },	/* terminate */
4059
};
4060

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

static void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	atomic_inc(&memcg->id.ref);
}

static void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	if (atomic_dec_and_test(&memcg->id.ref)) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4115
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4116 4117
{
	struct mem_cgroup_per_node *pn;
4118
	struct mem_cgroup_per_zone *mz;
4119
	int zone, tmp = node;
4120 4121 4122 4123 4124 4125 4126 4127
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4128 4129
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4130
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4131 4132
	if (!pn)
		return 1;
4133 4134 4135

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4136
		lruvec_init(&mz->lruvec);
4137 4138
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4139
		mz->memcg = memcg;
4140
	}
4141
	memcg->nodeinfo[node] = pn;
4142 4143 4144
	return 0;
}

4145
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4146
{
4147
	kfree(memcg->nodeinfo[node]);
4148 4149
}

4150
static void mem_cgroup_free(struct mem_cgroup *memcg)
4151
{
4152
	int node;
4153

4154
	memcg_wb_domain_exit(memcg);
4155 4156 4157
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4158
	kfree(memcg);
4159
}
4160

4161
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4162
{
4163
	struct mem_cgroup *memcg;
4164
	size_t size;
4165
	int node;
B
Balbir Singh 已提交
4166

4167 4168 4169 4170
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4171
	if (!memcg)
4172 4173
		return NULL;

4174 4175 4176 4177 4178 4179
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4180 4181 4182
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4183

B
Bob Liu 已提交
4184
	for_each_node(node)
4185
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4186
			goto fail;
4187

4188 4189
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4190

4191
	INIT_WORK(&memcg->high_work, high_work_func);
4192 4193 4194 4195
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4196
	vmpressure_init(&memcg->vmpressure);
4197 4198
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4199
	memcg->socket_pressure = jiffies;
4200
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4201 4202
	memcg->kmemcg_id = -1;
#endif
4203 4204 4205
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4206
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4207 4208
	return memcg;
fail:
4209 4210
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4211 4212
	mem_cgroup_free(memcg);
	return NULL;
4213 4214
}

4215 4216
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4217
{
4218 4219 4220
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4221

4222 4223 4224
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4225

4226 4227 4228 4229 4230 4231 4232 4233
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4234
		page_counter_init(&memcg->memory, &parent->memory);
4235
		page_counter_init(&memcg->swap, &parent->swap);
4236 4237
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4238
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4239
	} else {
4240
		page_counter_init(&memcg->memory, NULL);
4241
		page_counter_init(&memcg->swap, NULL);
4242 4243
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4244
		page_counter_init(&memcg->tcpmem, NULL);
4245 4246 4247 4248 4249
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4250
		if (parent != root_mem_cgroup)
4251
			memory_cgrp_subsys.broken_hierarchy = true;
4252
	}
4253

4254 4255 4256 4257 4258 4259
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4260
	error = memcg_online_kmem(memcg);
4261 4262
	if (error)
		goto fail;
4263

4264
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4265
		static_branch_inc(&memcg_sockets_enabled_key);
4266

4267 4268 4269
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4270
	return ERR_PTR(-ENOMEM);
4271 4272
}

4273
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4274
{
4275 4276 4277
	/* Online state pins memcg ID, memcg ID pins CSS */
	mem_cgroup_id_get(mem_cgroup_from_css(css));
	css_get(css);
4278
	return 0;
B
Balbir Singh 已提交
4279 4280
}

4281
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4282
{
4283
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
	struct mem_cgroup_event *event, *tmp;
4285 4286 4287 4288 4289 4290

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4291 4292
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4293 4294 4295
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4296
	spin_unlock(&memcg->event_list_lock);
4297

4298
	memcg_offline_kmem(memcg);
4299
	wb_memcg_offline(memcg);
4300 4301

	mem_cgroup_id_put(memcg);
4302 4303
}

4304 4305 4306 4307 4308 4309 4310
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4311
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4312
{
4313
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4314

4315
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4316
		static_branch_dec(&memcg_sockets_enabled_key);
4317

4318
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4319
		static_branch_dec(&memcg_sockets_enabled_key);
4320

4321 4322 4323
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4324
	memcg_free_kmem(memcg);
4325
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4326 4327
}

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4345 4346 4347 4348 4349
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4350 4351
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4352
	memcg->soft_limit = PAGE_COUNTER_MAX;
4353
	memcg_wb_domain_size_changed(memcg);
4354 4355
}

4356
#ifdef CONFIG_MMU
4357
/* Handlers for move charge at task migration. */
4358
static int mem_cgroup_do_precharge(unsigned long count)
4359
{
4360
	int ret;
4361

4362 4363
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4364
	if (!ret) {
4365 4366 4367
		mc.precharge += count;
		return ret;
	}
4368 4369

	/* Try charges one by one with reclaim */
4370
	while (count--) {
4371
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4372 4373
		if (ret)
			return ret;
4374
		mc.precharge++;
4375
		cond_resched();
4376
	}
4377
	return 0;
4378 4379 4380 4381
}

union mc_target {
	struct page	*page;
4382
	swp_entry_t	ent;
4383 4384 4385
};

enum mc_target_type {
4386
	MC_TARGET_NONE = 0,
4387
	MC_TARGET_PAGE,
4388
	MC_TARGET_SWAP,
4389 4390
};

D
Daisuke Nishimura 已提交
4391 4392
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4393
{
D
Daisuke Nishimura 已提交
4394
	struct page *page = vm_normal_page(vma, addr, ptent);
4395

D
Daisuke Nishimura 已提交
4396 4397 4398
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4399
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4400
			return NULL;
4401 4402 4403 4404
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4405 4406 4407 4408 4409 4410
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4411
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4412
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4413
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4414 4415 4416 4417
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4418
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4419
		return NULL;
4420 4421 4422 4423
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4424
	page = find_get_page(swap_address_space(ent), ent.val);
4425
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4426 4427 4428 4429
		entry->val = ent.val;

	return page;
}
4430 4431
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4432
			pte_t ptent, swp_entry_t *entry)
4433 4434 4435 4436
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4437

4438 4439 4440 4441 4442 4443 4444 4445 4446
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4447
	if (!(mc.flags & MOVE_FILE))
4448 4449 4450
		return NULL;

	mapping = vma->vm_file->f_mapping;
4451
	pgoff = linear_page_index(vma, addr);
4452 4453

	/* page is moved even if it's not RSS of this task(page-faulted). */
4454 4455
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4456 4457 4458 4459
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4460
			if (do_memsw_account())
4461 4462 4463 4464 4465 4466 4467
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4468
#endif
4469 4470 4471
	return page;
}

4472 4473 4474 4475 4476 4477 4478
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4479
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4480 4481 4482 4483 4484
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4485
				   bool compound,
4486 4487 4488 4489
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4490
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4491
	int ret;
4492
	bool anon;
4493 4494 4495

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4496
	VM_BUG_ON(compound && !PageTransHuge(page));
4497 4498

	/*
4499
	 * Prevent mem_cgroup_migrate() from looking at
4500
	 * page->mem_cgroup of its source page while we change it.
4501
	 */
4502
	ret = -EBUSY;
4503 4504 4505 4506 4507 4508 4509
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4510 4511
	anon = PageAnon(page);

4512 4513
	spin_lock_irqsave(&from->move_lock, flags);

4514
	if (!anon && page_mapped(page)) {
4515 4516 4517 4518 4519 4520
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4557
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4558
	memcg_check_events(to, page);
4559
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4560 4561 4562 4563 4564 4565 4566 4567
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4587
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4588 4589 4590
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4591
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4592 4593 4594 4595 4596
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4597
		page = mc_handle_swap_pte(vma, ptent, &ent);
4598
	else if (pte_none(ptent))
4599
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4600 4601

	if (!page && !ent.val)
4602
		return ret;
4603 4604
	if (page) {
		/*
4605
		 * Do only loose check w/o serialization.
4606
		 * mem_cgroup_move_account() checks the page is valid or
4607
		 * not under LRU exclusion.
4608
		 */
4609
		if (page->mem_cgroup == mc.from) {
4610 4611 4612 4613 4614 4615 4616
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4617 4618
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4619
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4620 4621 4622
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4623 4624 4625 4626
	}
	return ret;
}

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4640
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4641
	if (!(mc.flags & MOVE_ANON))
4642
		return ret;
4643
	if (page->mem_cgroup == mc.from) {
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4660 4661 4662 4663
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4664
	struct vm_area_struct *vma = walk->vma;
4665 4666 4667
	pte_t *pte;
	spinlock_t *ptl;

4668 4669
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4670 4671
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4672
		spin_unlock(ptl);
4673
		return 0;
4674
	}
4675

4676 4677
	if (pmd_trans_unstable(pmd))
		return 0;
4678 4679
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4680
		if (get_mctgt_type(vma, addr, *pte, NULL))
4681 4682 4683 4684
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4685 4686 4687
	return 0;
}

4688 4689 4690 4691
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4692 4693 4694 4695
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4696
	down_read(&mm->mmap_sem);
4697
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4698
	up_read(&mm->mmap_sem);
4699 4700 4701 4702 4703 4704 4705 4706 4707

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4708 4709 4710 4711 4712
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4713 4714
}

4715 4716
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4717
{
4718 4719 4720
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4721
	/* we must uncharge all the leftover precharges from mc.to */
4722
	if (mc.precharge) {
4723
		cancel_charge(mc.to, mc.precharge);
4724 4725 4726 4727 4728 4729 4730
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4731
		cancel_charge(mc.from, mc.moved_charge);
4732
		mc.moved_charge = 0;
4733
	}
4734 4735 4736
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4737
		if (!mem_cgroup_is_root(mc.from))
4738
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4739

4740
		/*
4741 4742
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4743
		 */
4744
		if (!mem_cgroup_is_root(mc.to))
4745 4746
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4747
		css_put_many(&mc.from->css, mc.moved_swap);
4748

L
Li Zefan 已提交
4749
		/* we've already done css_get(mc.to) */
4750 4751
		mc.moved_swap = 0;
	}
4752 4753 4754 4755 4756 4757 4758
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4759 4760
	struct mm_struct *mm = mc.mm;

4761 4762 4763 4764 4765 4766
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4767
	spin_lock(&mc.lock);
4768 4769
	mc.from = NULL;
	mc.to = NULL;
4770
	mc.mm = NULL;
4771
	spin_unlock(&mc.lock);
4772 4773

	mmput(mm);
4774 4775
}

4776
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4777
{
4778
	struct cgroup_subsys_state *css;
4779
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4780
	struct mem_cgroup *from;
4781
	struct task_struct *leader, *p;
4782
	struct mm_struct *mm;
4783
	unsigned long move_flags;
4784
	int ret = 0;
4785

4786 4787
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4788 4789
		return 0;

4790 4791 4792 4793 4794 4795 4796
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4797
	cgroup_taskset_for_each_leader(leader, css, tset) {
4798 4799
		WARN_ON_ONCE(p);
		p = leader;
4800
		memcg = mem_cgroup_from_css(css);
4801 4802 4803 4804
	}
	if (!p)
		return 0;

4805 4806 4807 4808 4809 4810 4811 4812 4813
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4830
		mc.mm = mm;
4831 4832 4833 4834 4835 4836 4837 4838 4839
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4840 4841
	} else {
		mmput(mm);
4842 4843 4844 4845
	}
	return ret;
}

4846
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4847
{
4848 4849
	if (mc.to)
		mem_cgroup_clear_mc();
4850 4851
}

4852 4853 4854
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4855
{
4856
	int ret = 0;
4857
	struct vm_area_struct *vma = walk->vma;
4858 4859
	pte_t *pte;
	spinlock_t *ptl;
4860 4861 4862
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4863

4864 4865
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4866
		if (mc.precharge < HPAGE_PMD_NR) {
4867
			spin_unlock(ptl);
4868 4869 4870 4871 4872 4873
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4874
				if (!mem_cgroup_move_account(page, true,
4875
							     mc.from, mc.to)) {
4876 4877 4878 4879 4880 4881 4882
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4883
		spin_unlock(ptl);
4884
		return 0;
4885 4886
	}

4887 4888
	if (pmd_trans_unstable(pmd))
		return 0;
4889 4890 4891 4892
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4893
		swp_entry_t ent;
4894 4895 4896 4897

		if (!mc.precharge)
			break;

4898
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4899 4900
		case MC_TARGET_PAGE:
			page = target.page;
4901 4902 4903 4904 4905 4906 4907 4908
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4909 4910
			if (isolate_lru_page(page))
				goto put;
4911 4912
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4913
				mc.precharge--;
4914 4915
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4916 4917
			}
			putback_lru_page(page);
4918
put:			/* get_mctgt_type() gets the page */
4919 4920
			put_page(page);
			break;
4921 4922
		case MC_TARGET_SWAP:
			ent = target.ent;
4923
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4924
				mc.precharge--;
4925 4926 4927
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4928
			break;
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4943
		ret = mem_cgroup_do_precharge(1);
4944 4945 4946 4947 4948 4949 4950
		if (!ret)
			goto retry;
	}

	return ret;
}

4951
static void mem_cgroup_move_charge(void)
4952
{
4953 4954
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4955
		.mm = mc.mm,
4956
	};
4957 4958

	lru_add_drain_all();
4959
	/*
4960 4961 4962
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4963 4964 4965
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4966
retry:
4967
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4979 4980 4981 4982 4983
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4984
	up_read(&mc.mm->mmap_sem);
4985
	atomic_dec(&mc.from->moving_account);
4986 4987
}

4988
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4989
{
4990 4991
	if (mc.to) {
		mem_cgroup_move_charge();
4992
		mem_cgroup_clear_mc();
4993
	}
B
Balbir Singh 已提交
4994
}
4995
#else	/* !CONFIG_MMU */
4996
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4997 4998 4999
{
	return 0;
}
5000
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5001 5002
{
}
5003
static void mem_cgroup_move_task(void)
5004 5005 5006
{
}
#endif
B
Balbir Singh 已提交
5007

5008 5009
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5010 5011
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5012
 */
5013
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5014 5015
{
	/*
5016
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5017 5018 5019
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5020
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5021 5022 5023
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5024 5025
}

5026 5027 5028
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5029 5030 5031
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5032 5033 5034 5035 5036
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5037
	unsigned long low = READ_ONCE(memcg->low);
5038 5039

	if (low == PAGE_COUNTER_MAX)
5040
		seq_puts(m, "max\n");
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5055
	err = page_counter_memparse(buf, "max", &low);
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5067
	unsigned long high = READ_ONCE(memcg->high);
5068 5069

	if (high == PAGE_COUNTER_MAX)
5070
		seq_puts(m, "max\n");
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5081
	unsigned long nr_pages;
5082 5083 5084 5085
	unsigned long high;
	int err;

	buf = strstrip(buf);
5086
	err = page_counter_memparse(buf, "max", &high);
5087 5088 5089 5090 5091
	if (err)
		return err;

	memcg->high = high;

5092 5093 5094 5095 5096
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5097
	memcg_wb_domain_size_changed(memcg);
5098 5099 5100 5101 5102 5103
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5104
	unsigned long max = READ_ONCE(memcg->memory.limit);
5105 5106

	if (max == PAGE_COUNTER_MAX)
5107
		seq_puts(m, "max\n");
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5118 5119
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5120 5121 5122 5123
	unsigned long max;
	int err;

	buf = strstrip(buf);
5124
	err = page_counter_memparse(buf, "max", &max);
5125 5126 5127
	if (err)
		return err;

5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5158

5159
	memcg_wb_domain_size_changed(memcg);
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5175 5176 5177
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5178 5179
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5193 5194 5195
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5196
	seq_printf(m, "anon %llu\n",
5197
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5198
	seq_printf(m, "file %llu\n",
5199
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5200 5201
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5202 5203 5204
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5205
	seq_printf(m, "sock %llu\n",
5206
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5207 5208

	seq_printf(m, "file_mapped %llu\n",
5209
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5210
	seq_printf(m, "file_dirty %llu\n",
5211
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5212
	seq_printf(m, "file_writeback %llu\n",
5213
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5225 5226 5227 5228 5229
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5230 5231 5232
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5233
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5234
	seq_printf(m, "pgmajfault %lu\n",
5235
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5236 5237 5238 5239

	return 0;
}

5240 5241 5242
static struct cftype memory_files[] = {
	{
		.name = "current",
5243
		.flags = CFTYPE_NOT_ON_ROOT,
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5267
		.file_offset = offsetof(struct mem_cgroup, events_file),
5268 5269
		.seq_show = memory_events_show,
	},
5270 5271 5272 5273 5274
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5275 5276 5277
	{ }	/* terminate */
};

5278
struct cgroup_subsys memory_cgrp_subsys = {
5279
	.css_alloc = mem_cgroup_css_alloc,
5280
	.css_online = mem_cgroup_css_online,
5281
	.css_offline = mem_cgroup_css_offline,
5282
	.css_released = mem_cgroup_css_released,
5283
	.css_free = mem_cgroup_css_free,
5284
	.css_reset = mem_cgroup_css_reset,
5285 5286
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5287
	.post_attach = mem_cgroup_move_task,
5288
	.bind = mem_cgroup_bind,
5289 5290
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5291
	.early_init = 0,
B
Balbir Singh 已提交
5292
};
5293

5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5316
	if (page_counter_read(&memcg->memory) >= memcg->low)
5317 5318 5319 5320 5321 5322 5323 5324
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5325
		if (page_counter_read(&memcg->memory) >= memcg->low)
5326 5327 5328 5329 5330
			return false;
	}
	return true;
}

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5349 5350
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5351 5352
{
	struct mem_cgroup *memcg = NULL;
5353
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5367
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5368
		if (page->mem_cgroup)
5369
			goto out;
5370

5371
		if (do_swap_account) {
5372 5373 5374 5375 5376 5377 5378 5379 5380
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5411
			      bool lrucare, bool compound)
5412
{
5413
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5428 5429 5430
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5431
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5432 5433
	memcg_check_events(memcg, page);
	local_irq_enable();
5434

5435
	if (do_memsw_account() && PageSwapCache(page)) {
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5453 5454
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5455
{
5456
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5471 5472 5473 5474
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5475
	unsigned long nr_pages = nr_anon + nr_file;
5476 5477
	unsigned long flags;

5478
	if (!mem_cgroup_is_root(memcg)) {
5479
		page_counter_uncharge(&memcg->memory, nr_pages);
5480
		if (do_memsw_account())
5481
			page_counter_uncharge(&memcg->memsw, nr_pages);
5482 5483
		memcg_oom_recover(memcg);
	}
5484 5485 5486 5487 5488 5489

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 5492
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5493 5494

	if (!mem_cgroup_is_root(memcg))
5495
		css_put_many(&memcg->css, nr_pages);
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5508 5509 5510 5511
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5522
		if (!page->mem_cgroup)
5523 5524 5525 5526
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5527
		 * page->mem_cgroup at this point, we have fully
5528
		 * exclusive access to the page.
5529 5530
		 */

5531
		if (memcg != page->mem_cgroup) {
5532
			if (memcg) {
5533 5534 5535
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5536
			}
5537
			memcg = page->mem_cgroup;
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5551
		page->mem_cgroup = NULL;
5552 5553 5554 5555 5556

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5557 5558
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5559 5560
}

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5573
	/* Don't touch page->lru of any random page, pre-check: */
5574
	if (!page->mem_cgroup)
5575 5576
		return;

5577 5578 5579
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5580

5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5592

5593 5594
	if (!list_empty(page_list))
		uncharge_list(page_list);
5595 5596 5597
}

/**
5598 5599 5600
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5601
 *
5602 5603
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5604 5605 5606
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5607
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5608
{
5609
	struct mem_cgroup *memcg;
5610 5611
	unsigned int nr_pages;
	bool compound;
5612
	unsigned long flags;
5613 5614 5615 5616

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5617 5618
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5619 5620 5621 5622 5623

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5624
	if (newpage->mem_cgroup)
5625 5626
		return;

5627
	/* Swapcache readahead pages can get replaced before being charged */
5628
	memcg = oldpage->mem_cgroup;
5629
	if (!memcg)
5630 5631
		return;

5632 5633 5634 5635 5636 5637 5638 5639
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5640

5641
	commit_charge(newpage, memcg, false);
5642

5643
	local_irq_save(flags);
5644 5645
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5646
	local_irq_restore(flags);
5647 5648
}

5649
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5672 5673
	if (memcg == root_mem_cgroup)
		goto out;
5674
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5675 5676
		goto out;
	if (css_tryget_online(&memcg->css))
5677
		sk->sk_memcg = memcg;
5678
out:
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5699
	gfp_t gfp_mask = GFP_KERNEL;
5700

5701
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5702
		struct page_counter *fail;
5703

5704 5705
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5706 5707
			return true;
		}
5708 5709
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5710
		return false;
5711
	}
5712

5713 5714 5715 5716
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5717 5718
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5719 5720 5721 5722
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5733
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5734
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5735 5736
		return;
	}
5737

5738 5739
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5740 5741
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5742 5743
}

5744 5745 5746 5747 5748 5749 5750 5751 5752
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5753 5754
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5755 5756 5757 5758
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5759

5760
/*
5761 5762 5763 5764 5765 5766
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5767 5768 5769
 */
static int __init mem_cgroup_init(void)
{
5770 5771
	int cpu, node;

5772
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5795 5796 5797
	return 0;
}
subsys_initcall(mem_cgroup_init);
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5815
	if (!do_memsw_account())
5816 5817 5818 5819 5820 5821 5822 5823
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5824
	mem_cgroup_id_get(memcg);
5825 5826 5827 5828 5829 5830 5831 5832 5833
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5834 5835 5836 5837 5838 5839 5840
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5841
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5842
	memcg_check_events(memcg, page);
5843 5844 5845

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5846 5847
}

5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

5876
	mem_cgroup_id_get(memcg);
5877 5878 5879 5880 5881 5882 5883
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5884 5885 5886 5887
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5888
 * Drop the swap charge associated with @entry.
5889 5890 5891 5892 5893 5894
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5895
	if (!do_swap_account)
5896 5897 5898 5899
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5900
	memcg = mem_cgroup_from_id(id);
5901
	if (memcg) {
5902 5903 5904 5905 5906 5907
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5908
		mem_cgroup_swap_statistics(memcg, false);
5909
		mem_cgroup_id_put(memcg);
5910 5911 5912 5913
	}
	rcu_read_unlock();
}

5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6054 6055
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6056 6057 6058 6059 6060 6061 6062 6063
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */