memcontrol.c 113.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
56
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
57

58
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
59
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 61 62 63 64 65
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

66 67 68 69 70 71 72 73 74
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75

76 77 78 79 80 81 82 83
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
84
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
85
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86 87
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
90 91 92 93 94 95 96 97

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

98 99 100 101
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
102 103 104
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
105 106
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
107 108

	struct zone_reclaim_stat reclaim_stat;
109 110 111 112
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
113 114
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
115 116 117 118 119 120 121 122 123 124 125 126
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

147 148 149 150 151
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
152
/* For threshold */
153 154 155 156 157 158 159 160
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
	atomic_t current_threshold;
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
K
KAMEZAWA Hiroyuki 已提交
161 162 163 164 165
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
166 167

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
168
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
169

B
Balbir Singh 已提交
170 171 172 173 174 175 176
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
177 178 179
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
180 181 182 183 184 185 186
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
187 188 189 190
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
191 192 193 194
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
195
	struct mem_cgroup_lru_info info;
196

K
KOSAKI Motohiro 已提交
197 198 199 200 201
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

202
	int	prev_priority;	/* for recording reclaim priority */
203 204

	/*
205
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
206
	 * reclaimed from.
207
	 */
K
KAMEZAWA Hiroyuki 已提交
208
	int last_scanned_child;
209 210 211 212
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
213
	atomic_t	oom_lock;
214
	atomic_t	refcnt;
215

K
KOSAKI Motohiro 已提交
216 217
	unsigned int	swappiness;

218 219 220
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

221 222 223 224 225 226 227 228 229
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
	struct mem_cgroup_threshold_ary *thresholds;

	/* thresholds for mem+swap usage. RCU-protected */
	struct mem_cgroup_threshold_ary *memsw_thresholds;

K
KAMEZAWA Hiroyuki 已提交
230 231 232
	/* For oom notifier event fd */
	struct list_head oom_notify;

233 234 235 236 237 238
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;

239
	/*
240
	 * percpu counter.
241
	 */
242
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
243 244
};

245 246 247 248 249 250
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
251
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
252 253 254
	NR_MOVE_TYPE,
};

255 256 257 258 259
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
260
	unsigned long moved_charge;
261
	unsigned long moved_swap;
262 263 264 265 266
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
267

268 269 270 271 272 273 274
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

275 276 277
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
278
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
279
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
280
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
281
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
282 283 284
	NR_CHARGE_TYPE,
};

285 286 287 288
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
289 290
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
291

292 293 294
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
295
#define _OOM_TYPE		(2)
296 297 298
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
299 300
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
301

302 303 304 305 306 307 308
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
309 310
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
311

312 313
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
314
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
315
static void drain_all_stock_async(void);
316

317 318 319 320 321 322
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

323 324 325 326 327
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
357
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
358
				struct mem_cgroup_per_zone *mz,
359 360
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
361 362 363 364 365 366 367 368
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

369 370 371
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
388 389 390 391 392 393 394 395 396 397 398 399 400
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

401 402 403 404 405 406
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
407
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
408 409 410 411 412 413
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
414
	unsigned long long excess;
415 416
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
417 418
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
419 420 421
	mctz = soft_limit_tree_from_page(page);

	/*
422 423
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
424
	 */
425 426
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
427
		excess = res_counter_soft_limit_excess(&mem->res);
428 429 430 431
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
432
		if (excess || mz->on_tree) {
433 434 435 436 437
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
438 439
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
440
			 */
441
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
442 443
			spin_unlock(&mctz->lock);
		}
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

462 463 464 465 466 467 468 469 470
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
471
	struct mem_cgroup_per_zone *mz;
472 473

retry:
474
	mz = NULL;
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

524 525 526 527
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
528
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
529 530
}

531 532 533
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
534
{
535
	int val = (charge) ? 1 : -1;
536

537 538
	preempt_disable();

539
	if (PageCgroupCache(pc))
540
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
541
	else
542
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
543 544

	if (charge)
545
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
546
	else
547
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
548
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
549

550
	preempt_enable();
551 552
}

K
KAMEZAWA Hiroyuki 已提交
553
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
554
					enum lru_list idx)
555 556 557 558 559 560 561 562 563 564 565
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
566 567
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

591
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
592 593 594 595 596 597
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

598
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
599
{
600 601 602 603 604 605 606 607
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

608 609 610 611
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

612 613 614
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
615 616 617

	if (!mm)
		return NULL;
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

668 669 670 671 672
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
686

K
KAMEZAWA Hiroyuki 已提交
687 688 689 690
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
691

692
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
693 694 695
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
696
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
697
		return;
698
	VM_BUG_ON(!pc->mem_cgroup);
699 700 701 702
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
703
	mz = page_cgroup_zoneinfo(pc);
704
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
705 706 707
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
708 709
	list_del_init(&pc->lru);
	return;
710 711
}

K
KAMEZAWA Hiroyuki 已提交
712
void mem_cgroup_del_lru(struct page *page)
713
{
K
KAMEZAWA Hiroyuki 已提交
714 715
	mem_cgroup_del_lru_list(page, page_lru(page));
}
716

K
KAMEZAWA Hiroyuki 已提交
717 718 719 720
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
721

722
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
723
		return;
724

K
KAMEZAWA Hiroyuki 已提交
725
	pc = lookup_page_cgroup(page);
726 727 728 729
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
730
	smp_rmb();
731 732
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
733 734 735
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
736 737
}

K
KAMEZAWA Hiroyuki 已提交
738
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
739
{
K
KAMEZAWA Hiroyuki 已提交
740 741
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
742

743
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
744 745
		return;
	pc = lookup_page_cgroup(page);
746
	VM_BUG_ON(PageCgroupAcctLRU(pc));
747 748 749 750
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
751 752
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
753
		return;
754

K
KAMEZAWA Hiroyuki 已提交
755
	mz = page_cgroup_zoneinfo(pc);
756
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
757 758 759
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
760 761
	list_add(&pc->lru, &mz->lists[lru]);
}
762

K
KAMEZAWA Hiroyuki 已提交
763
/*
764 765 766 767 768
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
769
 */
770
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
771
{
772 773 774 775 776 777 778 779 780 781 782 783
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
784 785
}

786 787 788 789 790 791 792 793
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
794
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
795 796 797 798 799
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
800 801 802
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
803
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
804 805 806
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
807 808
}

809 810 811
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
812
	struct mem_cgroup *curr = NULL;
813 814

	task_lock(task);
815 816 817
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
818
	task_unlock(task);
819 820
	if (!curr)
		return 0;
821 822 823 824 825 826 827
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
828 829 830 831
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
832 833 834
	return ret;
}

835 836 837 838 839
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
840 841 842 843 844 845 846
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
847 848 849 850
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
851
	spin_lock(&mem->reclaim_param_lock);
852 853
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
854
	spin_unlock(&mem->reclaim_param_lock);
855 856 857 858
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
859
	spin_lock(&mem->reclaim_param_lock);
860
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
861
	spin_unlock(&mem->reclaim_param_lock);
862 863
}

864
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
865 866 867
{
	unsigned long active;
	unsigned long inactive;
868 869
	unsigned long gb;
	unsigned long inactive_ratio;
870

K
KAMEZAWA Hiroyuki 已提交
871 872
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
873

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
901 902 903 904 905
		return 1;

	return 0;
}

906 907 908 909 910 911 912 913 914 915 916
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

917 918 919 920 921 922 923 924 925 926 927
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
948 949 950 951 952 953 954 955
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
956 957 958 959 960 961 962
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

963 964 965 966 967
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
968
					int active, int file)
969 970 971 972 973 974
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
975
	struct page_cgroup *pc, *tmp;
976 977 978
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
979
	int lru = LRU_FILE * file + active;
980
	int ret;
981

982
	BUG_ON(!mem_cont);
983
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
984
	src = &mz->lists[lru];
985

986 987
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
988
		if (scan >= nr_to_scan)
989
			break;
K
KAMEZAWA Hiroyuki 已提交
990 991

		page = pc->page;
992 993
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
994
		if (unlikely(!PageLRU(page)))
995 996
			continue;

H
Hugh Dickins 已提交
997
		scan++;
998 999 1000
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1001
			list_move(&page->lru, dst);
1002
			mem_cgroup_del_lru(page);
1003
			nr_taken++;
1004 1005 1006 1007 1008 1009 1010
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1011 1012 1013 1014 1015 1016 1017
		}
	}

	*scanned = scan;
	return nr_taken;
}

1018 1019 1020
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1049 1050 1051 1052 1053 1054
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1055 1056

/**
1057
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1076
	if (!memcg || !p)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1134
/*
K
KAMEZAWA Hiroyuki 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1177 1178
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1179 1180 1181
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1182 1183
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1184 1185
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1186
						struct zone *zone,
1187 1188
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1189
{
K
KAMEZAWA Hiroyuki 已提交
1190 1191 1192
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1193 1194
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1195 1196
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1197

1198 1199 1200 1201
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1202
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1203
		victim = mem_cgroup_select_victim(root_mem);
1204
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1205
			loop++;
1206 1207
			if (loop >= 1)
				drain_all_stock_async();
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1231
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1232 1233
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1234 1235
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1236
		/* we use swappiness of local cgroup */
1237 1238 1239 1240 1241 1242 1243
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1244
		css_put(&victim->css);
1245 1246 1247 1248 1249 1250 1251
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1252
		total += ret;
1253 1254 1255 1256
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1257
			return 1 + total;
1258
	}
K
KAMEZAWA Hiroyuki 已提交
1259
	return total;
1260 1261
}

K
KAMEZAWA Hiroyuki 已提交
1262
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1263
{
K
KAMEZAWA Hiroyuki 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1282

K
KAMEZAWA Hiroyuki 已提交
1283 1284 1285 1286 1287
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1288
}
1289

K
KAMEZAWA Hiroyuki 已提交
1290
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1291
{
K
KAMEZAWA Hiroyuki 已提交
1292 1293 1294 1295 1296 1297
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1298 1299 1300
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1301 1302 1303 1304 1305 1306 1307 1308
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

K
KAMEZAWA Hiroyuki 已提交
1345 1346 1347 1348
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1349
{
K
KAMEZAWA Hiroyuki 已提交
1350
	struct oom_wait_info owait;
K
KAMEZAWA Hiroyuki 已提交
1351 1352
	bool locked;

K
KAMEZAWA Hiroyuki 已提交
1353 1354 1355 1356 1357 1358
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);

K
KAMEZAWA Hiroyuki 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
	if (!locked)
K
KAMEZAWA Hiroyuki 已提交
1368
		prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
K
KAMEZAWA Hiroyuki 已提交
1369 1370
	else
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1371 1372 1373 1374 1375 1376
	mutex_unlock(&memcg_oom_mutex);

	if (locked)
		mem_cgroup_out_of_memory(mem, mask);
	else {
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1377
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1378 1379 1380
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1381
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1382 1383 1384 1385 1386 1387 1388
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1389 1390
}

1391 1392 1393 1394
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1395
void mem_cgroup_update_file_mapped(struct page *page, int val)
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1406
	if (!mem || !PageCgroupUsed(pc))
1407 1408 1409
		goto done;

	/*
1410
	 * Preemption is already disabled. We can use __this_cpu_xxx
1411
	 */
1412 1413 1414 1415 1416 1417 1418
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		ClearPageCgroupFileMapped(pc);
	}
1419 1420 1421 1422

done:
	unlock_page_cgroup(pc);
}
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1485
 * This will be consumed by consume_stock() function, later.
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1551 1552 1553
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1554
 */
1555
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1556
			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1557
{
1558
	struct mem_cgroup *mem, *mem_over_limit;
1559
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1560
	struct res_counter *fail_res;
1561
	int csize = CHARGE_SIZE;
1562

K
KAMEZAWA Hiroyuki 已提交
1563 1564 1565 1566 1567 1568 1569 1570
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1571

1572
	/*
1573 1574
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1575 1576 1577
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1578 1579 1580
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1581
		*memcg = mem;
1582
	} else {
1583
		css_get(&mem->css);
1584
	}
1585 1586 1587
	if (unlikely(!mem))
		return 0;

1588
	VM_BUG_ON(css_is_removed(&mem->css));
1589 1590
	if (mem_cgroup_is_root(mem))
		goto done;
1591

1592
	while (1) {
1593
		int ret = 0;
1594
		unsigned long flags = 0;
1595

1596
		if (consume_stock(mem))
1597
			goto done;
1598 1599

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1600 1601 1602
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1603
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1604 1605 1606
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1607
			res_counter_uncharge(&mem->res, csize);
1608
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1609 1610 1611 1612 1613 1614 1615
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1616 1617 1618 1619 1620
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1621
		if (!(gfp_mask & __GFP_WAIT))
1622
			goto nomem;
1623

1624 1625
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1626 1627
		if (ret)
			continue;
1628 1629

		/*
1630 1631 1632 1633 1634
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1635
		 *
1636
		 */
1637 1638
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1680
		if (!nr_retries--) {
K
KAMEZAWA Hiroyuki 已提交
1681 1682 1683 1684 1685
			if (!oom)
				goto nomem;
			if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
				nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
				continue;
1686
			}
K
KAMEZAWA Hiroyuki 已提交
1687 1688 1689
			/* When we reach here, current task is dying .*/
			css_put(&mem->css);
			goto bypass;
1690
		}
1691
	}
1692 1693
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
1694
done:
1695 1696 1697 1698
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1699 1700 1701
bypass:
	*memcg = NULL;
	return 0;
1702
}
1703

1704 1705 1706 1707 1708
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1709 1710
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1711 1712
{
	if (!mem_cgroup_is_root(mem)) {
1713
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1714
		if (do_swap_account)
1715 1716 1717 1718
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1719
	}
1720 1721 1722 1723 1724 1725
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1726 1727
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1747
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1748
{
1749
	struct mem_cgroup *mem = NULL;
1750
	struct page_cgroup *pc;
1751
	unsigned short id;
1752 1753
	swp_entry_t ent;

1754 1755 1756
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1757
	lock_page_cgroup(pc);
1758
	if (PageCgroupUsed(pc)) {
1759
		mem = pc->mem_cgroup;
1760 1761
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1762
	} else if (PageSwapCache(page)) {
1763
		ent.val = page_private(page);
1764 1765 1766 1767 1768 1769
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1770
	}
1771
	unlock_page_cgroup(pc);
1772 1773 1774
	return mem;
}

1775
/*
1776
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1787 1788 1789 1790

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1791
		mem_cgroup_cancel_charge(mem);
1792
		return;
1793
	}
1794

1795
	pc->mem_cgroup = mem;
1796 1797 1798 1799 1800 1801 1802
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1803
	smp_wmb();
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1817

K
KAMEZAWA Hiroyuki 已提交
1818
	mem_cgroup_charge_statistics(mem, pc, true);
1819 1820

	unlock_page_cgroup(pc);
1821 1822 1823 1824 1825
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1826
	memcg_check_events(mem, pc->page);
1827
}
1828

1829
/**
1830
 * __mem_cgroup_move_account - move account of the page
1831 1832 1833
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1834
 * @uncharge: whether we should call uncharge and css_put against @from.
1835 1836
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1837
 * - page is not on LRU (isolate_page() is useful.)
1838
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1839
 *
1840 1841 1842 1843
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1844 1845
 */

1846
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1847
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1848 1849
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1850
	VM_BUG_ON(PageLRU(pc->page));
1851 1852 1853
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1854

1855
	if (PageCgroupFileMapped(pc)) {
1856 1857 1858 1859 1860
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1861
	}
1862 1863 1864 1865
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1866

1867
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1868 1869
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1870 1871 1872
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1873 1874 1875
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1876
	 */
1877 1878 1879 1880 1881 1882 1883
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1884
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1885 1886 1887 1888
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1889
		__mem_cgroup_move_account(pc, from, to, uncharge);
1890 1891 1892
		ret = 0;
	}
	unlock_page_cgroup(pc);
1893 1894 1895 1896 1897
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1909
	struct page *page = pc->page;
1910 1911 1912 1913 1914 1915 1916 1917 1918
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1919 1920 1921 1922 1923
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1924

1925
	parent = mem_cgroup_from_cont(pcg);
1926
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1927
	if (ret || !parent)
1928
		goto put_back;
1929

1930 1931 1932
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1933
put_back:
K
KAMEZAWA Hiroyuki 已提交
1934
	putback_lru_page(page);
1935
put:
1936
	put_page(page);
1937
out:
1938 1939 1940
	return ret;
}

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1962
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1963
	if (ret || !mem)
1964 1965 1966
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1967 1968 1969
	return 0;
}

1970 1971
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1972
{
1973
	if (mem_cgroup_disabled())
1974
		return 0;
1975 1976
	if (PageCompound(page))
		return 0;
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1988
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1989
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1990 1991
}

D
Daisuke Nishimura 已提交
1992 1993 1994 1995
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1996 1997
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1998
{
1999 2000 2001
	struct mem_cgroup *mem = NULL;
	int ret;

2002
	if (mem_cgroup_disabled())
2003
		return 0;
2004 2005
	if (PageCompound(page))
		return 0;
2006 2007 2008 2009 2010 2011 2012 2013
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2014 2015
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2016 2017 2018 2019
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2020 2021 2022 2023 2024 2025 2026

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2027 2028
			return 0;
		}
2029
		unlock_page_cgroup(pc);
2030 2031
	}

2032
	if (unlikely(!mm && !mem))
2033
		mm = &init_mm;
2034

2035 2036
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2037
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2038

D
Daisuke Nishimura 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2048 2049

	return ret;
2050 2051
}

2052 2053 2054
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2055
 * struct page_cgroup is acquired. This refcnt will be consumed by
2056 2057
 * "commit()" or removed by "cancel()"
 */
2058 2059 2060 2061 2062
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2063
	int ret;
2064

2065
	if (mem_cgroup_disabled())
2066 2067 2068 2069 2070 2071
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2072 2073 2074
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2075 2076
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2077
		goto charge_cur_mm;
2078
	mem = try_get_mem_cgroup_from_page(page);
2079 2080
	if (!mem)
		goto charge_cur_mm;
2081
	*ptr = mem;
2082
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2083 2084 2085
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2086 2087 2088
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2089
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2090 2091
}

D
Daisuke Nishimura 已提交
2092 2093 2094
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2095 2096 2097
{
	struct page_cgroup *pc;

2098
	if (mem_cgroup_disabled())
2099 2100 2101
		return;
	if (!ptr)
		return;
2102
	cgroup_exclude_rmdir(&ptr->css);
2103
	pc = lookup_page_cgroup(page);
2104
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2105
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2106
	mem_cgroup_lru_add_after_commit_swapcache(page);
2107 2108 2109
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2110 2111 2112
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2113
	 */
2114
	if (do_swap_account && PageSwapCache(page)) {
2115
		swp_entry_t ent = {.val = page_private(page)};
2116
		unsigned short id;
2117
		struct mem_cgroup *memcg;
2118 2119 2120 2121

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2122
		if (memcg) {
2123 2124 2125 2126
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2127
			if (!mem_cgroup_is_root(memcg))
2128
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2129
			mem_cgroup_swap_statistics(memcg, false);
2130 2131
			mem_cgroup_put(memcg);
		}
2132
		rcu_read_unlock();
2133
	}
2134 2135 2136 2137 2138 2139
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2140 2141
}

D
Daisuke Nishimura 已提交
2142 2143 2144 2145 2146 2147
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2148 2149
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2150
	if (mem_cgroup_disabled())
2151 2152 2153
		return;
	if (!mem)
		return;
2154
	mem_cgroup_cancel_charge(mem);
2155 2156
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */
	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	return;
}
2201

2202
/*
2203
 * uncharge if !page_mapped(page)
2204
 */
2205
static struct mem_cgroup *
2206
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2207
{
H
Hugh Dickins 已提交
2208
	struct page_cgroup *pc;
2209
	struct mem_cgroup *mem = NULL;
2210
	struct mem_cgroup_per_zone *mz;
2211

2212
	if (mem_cgroup_disabled())
2213
		return NULL;
2214

K
KAMEZAWA Hiroyuki 已提交
2215
	if (PageSwapCache(page))
2216
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2217

2218
	/*
2219
	 * Check if our page_cgroup is valid
2220
	 */
2221 2222
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2223
		return NULL;
2224

2225
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2226

2227 2228
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2229 2230 2231 2232 2233
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2234
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2247
	}
K
KAMEZAWA Hiroyuki 已提交
2248

2249 2250
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2251 2252
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2253
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2254

2255
	ClearPageCgroupUsed(pc);
2256 2257 2258 2259 2260 2261
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2262

2263
	mz = page_cgroup_zoneinfo(pc);
2264
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2265

2266
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2267 2268 2269
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2270

2271
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2272 2273 2274

unlock_out:
	unlock_page_cgroup(pc);
2275
	return NULL;
2276 2277
}

2278 2279
void mem_cgroup_uncharge_page(struct page *page)
{
2280 2281 2282 2283 2284
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2285 2286 2287 2288 2289 2290
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2291
	VM_BUG_ON(page->mapping);
2292 2293 2294
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2339
#ifdef CONFIG_SWAP
2340
/*
2341
 * called after __delete_from_swap_cache() and drop "page" account.
2342 2343
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2344 2345
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2346 2347
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2348 2349 2350 2351 2352 2353
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2354 2355

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2356
	if (do_swap_account && swapout && memcg) {
2357
		swap_cgroup_record(ent, css_id(&memcg->css));
2358 2359
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2360
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2361
		css_put(&memcg->css);
2362
}
2363
#endif
2364 2365 2366 2367 2368 2369 2370

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2371
{
2372
	struct mem_cgroup *memcg;
2373
	unsigned short id;
2374 2375 2376 2377

	if (!do_swap_account)
		return;

2378 2379 2380
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2381
	if (memcg) {
2382 2383 2384 2385
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2386
		if (!mem_cgroup_is_root(memcg))
2387
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2388
		mem_cgroup_swap_statistics(memcg, false);
2389 2390
		mem_cgroup_put(memcg);
	}
2391
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2392
}
2393 2394 2395 2396 2397 2398

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2399
 * @need_fixup: whether we should fixup res_counters and refcounts.
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2410
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2411 2412 2413 2414 2415 2416 2417 2418
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2419
		mem_cgroup_swap_statistics(to, true);
2420
		/*
2421 2422 2423 2424 2425 2426
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2427 2428
		 */
		mem_cgroup_get(to);
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2441 2442 2443 2444 2445 2446
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2447
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2448 2449 2450
{
	return -EINVAL;
}
2451
#endif
K
KAMEZAWA Hiroyuki 已提交
2452

2453
/*
2454 2455
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2456
 */
2457
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2458 2459
{
	struct page_cgroup *pc;
2460 2461
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2462

2463
	if (mem_cgroup_disabled())
2464 2465
		return 0;

2466 2467 2468
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2469 2470 2471
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2472
	unlock_page_cgroup(pc);
2473

A
Andrea Arcangeli 已提交
2474
	*ptr = mem;
2475
	if (mem) {
A
Andrea Arcangeli 已提交
2476
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2477 2478 2479
		css_put(&mem->css);
	}
	return ret;
2480
}
2481

2482
/* remove redundant charge if migration failed*/
2483 2484
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2485
{
2486 2487 2488 2489 2490 2491
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2492
	cgroup_exclude_rmdir(&mem->css);
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2510
	if (unused)
2511 2512 2513
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2514
	/*
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2529
	 */
2530 2531
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2532 2533 2534 2535 2536 2537
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2538
}
2539

2540
/*
2541 2542 2543 2544 2545 2546
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2547
 */
2548
int mem_cgroup_shmem_charge_fallback(struct page *page,
2549 2550
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2551
{
2552
	struct mem_cgroup *mem = NULL;
2553
	int ret;
2554

2555
	if (mem_cgroup_disabled())
2556
		return 0;
2557

2558 2559 2560
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2561

2562
	return ret;
2563 2564
}

2565 2566
static DEFINE_MUTEX(set_limit_mutex);

2567
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2568
				unsigned long long val)
2569
{
2570
	int retry_count;
2571
	u64 memswlimit;
2572
	int ret = 0;
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2584

2585
	while (retry_count) {
2586 2587 2588 2589
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2600 2601
			break;
		}
2602
		ret = res_counter_set_limit(&memcg->res, val);
2603 2604 2605 2606 2607 2608
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2609 2610 2611 2612 2613
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2614
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2615
						MEM_CGROUP_RECLAIM_SHRINK);
2616 2617 2618 2619 2620 2621
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2622
	}
2623

2624 2625 2626
	return ret;
}

L
Li Zefan 已提交
2627 2628
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2629
{
2630
	int retry_count;
2631
	u64 memlimit, oldusage, curusage;
2632 2633
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2634

2635 2636 2637
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2656 2657 2658 2659 2660 2661
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2662 2663 2664 2665 2666
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2667
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2668 2669
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2670
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2671
		/* Usage is reduced ? */
2672
		if (curusage >= oldusage)
2673
			retry_count--;
2674 2675
		else
			oldusage = curusage;
2676 2677 2678 2679
	}
	return ret;
}

2680 2681 2682 2683 2684 2685 2686 2687 2688
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2689
	unsigned long long excess;
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2742
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2743 2744 2745 2746 2747 2748 2749 2750
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2751 2752
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2771 2772 2773 2774
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2775
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2776
				int node, int zid, enum lru_list lru)
2777
{
K
KAMEZAWA Hiroyuki 已提交
2778 2779
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2780
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2781
	unsigned long flags, loop;
2782
	struct list_head *list;
2783
	int ret = 0;
2784

K
KAMEZAWA Hiroyuki 已提交
2785 2786
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2787
	list = &mz->lists[lru];
2788

2789 2790 2791 2792 2793 2794
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2795
		spin_lock_irqsave(&zone->lru_lock, flags);
2796
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2797
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2798
			break;
2799 2800 2801 2802
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2803
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2804
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2805 2806
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2807
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2808

K
KAMEZAWA Hiroyuki 已提交
2809
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2810
		if (ret == -ENOMEM)
2811
			break;
2812 2813 2814 2815 2816 2817 2818

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2819
	}
K
KAMEZAWA Hiroyuki 已提交
2820

2821 2822 2823
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2824 2825 2826 2827 2828 2829
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2830
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2831
{
2832 2833 2834
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2835
	struct cgroup *cgrp = mem->css.cgroup;
2836

2837
	css_get(&mem->css);
2838 2839

	shrink = 0;
2840 2841 2842
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2843
move_account:
2844
	do {
2845
		ret = -EBUSY;
2846 2847 2848 2849
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2850
			goto out;
2851 2852
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2853
		drain_all_stock_sync();
2854
		ret = 0;
2855
		for_each_node_state(node, N_HIGH_MEMORY) {
2856
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2857
				enum lru_list l;
2858 2859
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2860
							node, zid, l);
2861 2862 2863
					if (ret)
						break;
				}
2864
			}
2865 2866 2867 2868 2869 2870
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2871
		cond_resched();
2872 2873
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2874 2875 2876
out:
	css_put(&mem->css);
	return ret;
2877 2878

try_to_free:
2879 2880
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2881 2882 2883
		ret = -EBUSY;
		goto out;
	}
2884 2885
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2886 2887 2888 2889
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2890 2891 2892 2893 2894

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2895 2896
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2897
		if (!progress) {
2898
			nr_retries--;
2899
			/* maybe some writeback is necessary */
2900
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2901
		}
2902 2903

	}
K
KAMEZAWA Hiroyuki 已提交
2904
	lru_add_drain();
2905
	/* try move_account...there may be some *locked* pages. */
2906
	goto move_account;
2907 2908
}

2909 2910 2911 2912 2913 2914
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2933
	 * If parent's use_hierarchy is set, we can't make any modifications
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2953 2954 2955 2956 2957 2958 2959 2960 2961
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
2962
	d->val += mem_cgroup_read_stat(mem, d->idx);
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3002
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3003
{
3004
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3005
	u64 val;
3006 3007 3008 3009 3010 3011
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3012 3013 3014
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3015
			val = res_counter_read_u64(&mem->res, name);
3016 3017
		break;
	case _MEMSWAP:
3018 3019 3020
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3021
			val = res_counter_read_u64(&mem->memsw, name);
3022 3023 3024 3025 3026 3027
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3028
}
3029 3030 3031 3032
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3033 3034
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3035
{
3036
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3037
	int type, name;
3038 3039 3040
	unsigned long long val;
	int ret;

3041 3042 3043
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3044
	case RES_LIMIT:
3045 3046 3047 3048
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3049 3050
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3051 3052 3053
		if (ret)
			break;
		if (type == _MEM)
3054
			ret = mem_cgroup_resize_limit(memcg, val);
3055 3056
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3057
		break;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3072 3073 3074 3075 3076
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3077 3078
}

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3107
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3108 3109
{
	struct mem_cgroup *mem;
3110
	int type, name;
3111 3112

	mem = mem_cgroup_from_cont(cont);
3113 3114 3115
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3116
	case RES_MAX_USAGE:
3117 3118 3119 3120
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3121 3122
		break;
	case RES_FAILCNT:
3123 3124 3125 3126
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3127 3128
		break;
	}
3129

3130
	return 0;
3131 3132
}

3133 3134 3135 3136 3137 3138
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3139
#ifdef CONFIG_MMU
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3158 3159 3160 3161 3162 3163 3164
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3165

K
KAMEZAWA Hiroyuki 已提交
3166 3167 3168 3169 3170

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3171
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3172 3173
	MCS_PGPGIN,
	MCS_PGPGOUT,
3174
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3185 3186
};

K
KAMEZAWA Hiroyuki 已提交
3187 3188 3189 3190 3191 3192
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3193
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3194 3195
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3196
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3211
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3212
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3213
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3214
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3215
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3216
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3217
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3218
	s->stat[MCS_PGPGIN] += val;
3219
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3220
	s->stat[MCS_PGPGOUT] += val;
3221
	if (do_swap_account) {
3222
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3223 3224
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3246 3247
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3248 3249
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3250
	struct mcs_total_stat mystat;
3251 3252
	int i;

K
KAMEZAWA Hiroyuki 已提交
3253 3254
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3255

3256 3257 3258
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3259
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3260
	}
L
Lee Schermerhorn 已提交
3261

K
KAMEZAWA Hiroyuki 已提交
3262
	/* Hierarchical information */
3263 3264 3265 3266 3267 3268 3269
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3270

K
KAMEZAWA Hiroyuki 已提交
3271 3272
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3273 3274 3275
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3276
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3277
	}
K
KAMEZAWA Hiroyuki 已提交
3278

K
KOSAKI Motohiro 已提交
3279
#ifdef CONFIG_DEBUG_VM
3280
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3308 3309 3310
	return 0;
}

K
KOSAKI Motohiro 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3323

K
KOSAKI Motohiro 已提交
3324 3325 3326 3327 3328 3329 3330
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3331 3332 3333

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3334 3335
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3336 3337
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3338
		return -EINVAL;
3339
	}
K
KOSAKI Motohiro 已提交
3340 3341 3342 3343 3344

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3345 3346
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3347 3348 3349
	return 0;
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
		t = rcu_dereference(memcg->thresholds);
	else
		t = rcu_dereference(memcg->memsw_thresholds);

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
	i = atomic_read(&t->current_threshold);

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
	atomic_set(&t->current_threshold, i - 1);
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
	int size;
	int i, ret;

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
	if (thresholds)
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	if (thresholds)
		size = thresholds->size + 1;
	else
		size = 1;

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds (if any) to new array */
	if (thresholds)
		memcpy(thresholds_new->entries, thresholds->entries,
				thresholds->size *
				sizeof(struct mem_cgroup_threshold));
	/* Add new threshold */
	thresholds_new->entries[size - 1].eventfd = eventfd;
	thresholds_new->entries[size - 1].threshold = threshold;

	/* Sort thresholds. Registering of new threshold isn't time-critical */
	sort(thresholds_new->entries, size,
			sizeof(struct mem_cgroup_threshold),
			compare_thresholds, NULL);

	/* Find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0; i < size; i++) {
		if (thresholds_new->entries[i].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
	}

	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
3515 3516
static int mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd)
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
	int size = 0;
	int i, j, ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
	for (i = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd != eventfd)
			size++;
	}

	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
		thresholds_new = NULL;
		goto assign;
	}

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds and find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0, j = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd == eventfd)
			continue;

		thresholds_new->entries[j] = thresholds->entries[i];
		if (thresholds_new->entries[j].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
		j++;
	}

assign:
	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}
3599

K
KAMEZAWA Hiroyuki 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

static int mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

B
Balbir Singh 已提交
3648 3649
static struct cftype mem_cgroup_files[] = {
	{
3650
		.name = "usage_in_bytes",
3651
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3652
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3653 3654
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3655
	},
3656 3657
	{
		.name = "max_usage_in_bytes",
3658
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3659
		.trigger = mem_cgroup_reset,
3660 3661
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3662
	{
3663
		.name = "limit_in_bytes",
3664
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3665
		.write_string = mem_cgroup_write,
3666
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3667
	},
3668 3669 3670 3671 3672 3673
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3674 3675
	{
		.name = "failcnt",
3676
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3677
		.trigger = mem_cgroup_reset,
3678
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3679
	},
3680 3681
	{
		.name = "stat",
3682
		.read_map = mem_control_stat_show,
3683
	},
3684 3685 3686 3687
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3688 3689 3690 3691 3692
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3693 3694 3695 3696 3697
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3698 3699 3700 3701 3702
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3703 3704 3705 3706 3707 3708
	{
		.name = "oom_control",
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3709 3710
};

3711 3712 3713 3714 3715 3716
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3717 3718
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3754 3755 3756
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3757
	struct mem_cgroup_per_zone *mz;
3758
	enum lru_list l;
3759
	int zone, tmp = node;
3760 3761 3762 3763 3764 3765 3766 3767
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3768 3769 3770
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3771 3772
	if (!pn)
		return 1;
3773

3774 3775
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3776 3777 3778

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3779 3780
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3781
		mz->usage_in_excess = 0;
3782 3783
		mz->on_tree = false;
		mz->mem = mem;
3784
	}
3785 3786 3787
	return 0;
}

3788 3789 3790 3791 3792
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3793 3794 3795
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3796
	int size = sizeof(struct mem_cgroup);
3797

3798
	/* Can be very big if MAX_NUMNODES is very big */
3799 3800
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3801
	else
3802
		mem = vmalloc(size);
3803

3804 3805 3806 3807
	if (!mem)
		return NULL;

	memset(mem, 0, size);
3808 3809 3810 3811 3812 3813 3814 3815
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
3816 3817 3818
	return mem;
}

3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3830
static void __mem_cgroup_free(struct mem_cgroup *mem)
3831
{
K
KAMEZAWA Hiroyuki 已提交
3832 3833
	int node;

3834
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3835 3836
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3837 3838 3839
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3840 3841
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3842 3843 3844 3845 3846
		kfree(mem);
	else
		vfree(mem);
}

3847 3848 3849 3850 3851
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

3852
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3853
{
3854
	if (atomic_sub_and_test(count, &mem->refcnt)) {
3855
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3856
		__mem_cgroup_free(mem);
3857 3858 3859
		if (parent)
			mem_cgroup_put(parent);
	}
3860 3861
}

3862 3863 3864 3865 3866
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

3867 3868 3869 3870 3871 3872 3873 3874 3875
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3876

3877 3878 3879
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3880
	if (!mem_cgroup_disabled() && really_do_swap_account)
3881 3882 3883 3884 3885 3886 3887 3888
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3914
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3915 3916
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3917
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3918
	long error = -ENOMEM;
3919
	int node;
B
Balbir Singh 已提交
3920

3921 3922
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3923
		return ERR_PTR(error);
3924

3925 3926 3927
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3928

3929
	/* root ? */
3930
	if (cont->parent == NULL) {
3931
		int cpu;
3932
		enable_swap_cgroup();
3933
		parent = NULL;
3934
		root_mem_cgroup = mem;
3935 3936
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
3937 3938 3939 3940 3941 3942
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3943
	} else {
3944
		parent = mem_cgroup_from_cont(cont->parent);
3945 3946
		mem->use_hierarchy = parent->use_hierarchy;
	}
3947

3948 3949 3950
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3951 3952 3953 3954 3955 3956 3957
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3958 3959 3960 3961
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3962
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3963
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
3964
	INIT_LIST_HEAD(&mem->oom_notify);
3965

K
KOSAKI Motohiro 已提交
3966 3967
	if (parent)
		mem->swappiness = get_swappiness(parent);
3968
	atomic_set(&mem->refcnt, 1);
3969
	mem->move_charge_at_immigrate = 0;
3970
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
3971
	return &mem->css;
3972
free_out:
3973
	__mem_cgroup_free(mem);
3974
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3975
	return ERR_PTR(error);
B
Balbir Singh 已提交
3976 3977
}

3978
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3979 3980 3981
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3982 3983

	return mem_cgroup_force_empty(mem, false);
3984 3985
}

B
Balbir Singh 已提交
3986 3987 3988
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3989 3990 3991
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3992 3993 3994 3995 3996
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3997 3998 3999 4000 4001 4002 4003 4004
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4005 4006
}

4007
#ifdef CONFIG_MMU
4008
/* Handlers for move charge at task migration. */
4009 4010
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4011
{
4012 4013
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4014 4015
	struct mem_cgroup *mem = mc.to;

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4054
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4055 4056 4057 4058 4059
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4060 4061 4062 4063 4064 4065 4066 4067
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4068
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4069 4070 4071 4072 4073 4074
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4075 4076 4077
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4078 4079 4080 4081 4082
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4083
	swp_entry_t	ent;
4084 4085 4086 4087 4088
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4089
	MC_TARGET_SWAP,
4090 4091 4092 4093 4094
};

static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
4095
	struct page *page = NULL;
4096 4097
	struct page_cgroup *pc;
	int ret = 0;
4098 4099
	swp_entry_t ent = { .val = 0 };
	int usage_count = 0;
4100 4101 4102
	bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
	if (!pte_present(ptent)) {
		/* TODO: handle swap of shmes/tmpfs */
		if (pte_none(ptent) || pte_file(ptent))
			return 0;
		else if (is_swap_pte(ptent)) {
			ent = pte_to_swp_entry(ptent);
			if (!move_anon || non_swap_entry(ent))
				return 0;
			usage_count = mem_cgroup_count_swap_user(ent, &page);
		}
	} else {
		page = vm_normal_page(vma, addr, ptent);
		if (!page || !page_mapped(page))
			return 0;
		/*
		 * TODO: We don't move charges of file(including shmem/tmpfs)
		 * pages for now.
		 */
		if (!move_anon || !PageAnon(page))
			return 0;
		if (!get_page_unless_zero(page))
			return 0;
		usage_count = page_mapcount(page);
	}
	if (usage_count > 1) {
		/*
		 * TODO: We don't move charges of shared(used by multiple
		 * processes) pages for now.
		 */
		if (page)
			put_page(page);
4134
		return 0;
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	}
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
	/* throught */
4152 4153 4154 4155 4156
	if (ent.val && do_swap_account && !ret &&
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4176 4177 4178
	return 0;
}

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4209
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4210 4211 4212 4213 4214
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4226
	}
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4250 4251
	mc.from = NULL;
	mc.to = NULL;
4252 4253
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4254 4255
}

4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4274 4275 4276 4277
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4278
			VM_BUG_ON(mc.moved_charge);
4279
			VM_BUG_ON(mc.moved_swap);
4280
			VM_BUG_ON(mc.moving_task);
4281 4282 4283
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4284
			mc.moved_charge = 0;
4285
			mc.moved_swap = 0;
4286
			mc.moving_task = current;
4287 4288 4289 4290 4291

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4302
	mem_cgroup_clear_mc();
4303 4304
}

4305 4306 4307
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4308
{
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4322
		swp_entry_t ent;
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4334 4335
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4336
				mc.precharge--;
4337 4338
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4339 4340 4341 4342 4343
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4344 4345
		case MC_TARGET_SWAP:
			ent = target.ent;
4346 4347
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4348
				mc.precharge--;
4349 4350 4351
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4352
			break;
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4367
		ret = mem_cgroup_do_precharge(1);
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4403 4404
}

B
Balbir Singh 已提交
4405 4406 4407
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4408 4409
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4410
{
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4423
}
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4446

B
Balbir Singh 已提交
4447 4448 4449 4450
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4451
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4452 4453
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4454 4455
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4456
	.attach = mem_cgroup_move_task,
4457
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4458
	.use_id = 1,
B
Balbir Singh 已提交
4459
};
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif