memcontrol.c 146.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
T
Tejun Heo 已提交
80
struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
B
Balbir Singh 已提交
81

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84 85
int do_swap_account __read_mostly;
#else
86
#define do_swap_account		0
87 88
#endif

89 90 91
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
92
	"rss_huge",
93
	"mapped_file",
94
	"dirty",
95
	"writeback",
96 97 98 99 100 101 102 103 104 105
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

106 107 108 109 110 111 112 113
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

114 115 116
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
138 139 140 141 142
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
143

144 145 146
/*
 * cgroup_event represents events which userspace want to receive.
 */
147
struct mem_cgroup_event {
148
	/*
149
	 * memcg which the event belongs to.
150
	 */
151
	struct mem_cgroup *memcg;
152 153 154 155 156 157 158 159
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
160 161 162 163 164
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
165
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
166
			      struct eventfd_ctx *eventfd, const char *args);
167 168 169 170 171
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
172
	void (*unregister_event)(struct mem_cgroup *memcg,
173
				 struct eventfd_ctx *eventfd);
174 175 176 177 178 179 180 181 182 183
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

184 185
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
186

187 188
/* Stuffs for move charges at task migration. */
/*
189
 * Types of charges to be moved.
190
 */
191 192 193
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
194

195 196
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
197
	spinlock_t	  lock; /* for from, to */
198 199
	struct mem_cgroup *from;
	struct mem_cgroup *to;
200
	unsigned long flags;
201
	unsigned long precharge;
202
	unsigned long moved_charge;
203
	unsigned long moved_swap;
204 205 206
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
207
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
208 209
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
210

211 212 213 214
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
215
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
216
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
217

218 219
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
220
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
221
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
222
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
223 224 225
	NR_CHARGE_TYPE,
};

226
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
227 228 229 230
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
231
	_KMEM,
G
Glauber Costa 已提交
232 233
};

234 235
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
236
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
237 238
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
239

240 241 242 243 244 245 246
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

247 248 249 250 251 252 253 254 255 256 257 258 259
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

260 261 262 263 264
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

265 266 267 268 269 270
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
271 272
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
273
	return memcg->css.id;
L
Li Zefan 已提交
274 275
}

276 277 278 279 280 281
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
282 283 284 285
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

286
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
287 288 289
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
290
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
291
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
292 293 294

void sock_update_memcg(struct sock *sk)
{
295
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
296
		struct mem_cgroup *memcg;
297
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
298 299 300

		BUG_ON(!sk->sk_prot->proto_cgroup);

301 302 303 304 305 306 307 308 309 310
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
311
			css_get(&sk->sk_cgrp->memcg->css);
312 313 314
			return;
		}

G
Glauber Costa 已提交
315 316
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
317
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
318
		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
319
		    css_tryget_online(&memcg->css)) {
320
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
321 322 323 324 325 326 327 328
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
329
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
330 331 332
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
333
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
334 335
	}
}
G
Glauber Costa 已提交
336 337 338 339 340 341

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

342
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
343 344
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
345

346 347
#endif

348
#ifdef CONFIG_MEMCG_KMEM
349
/*
350
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
351 352 353 354 355
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
356
 *
357 358
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
359
 */
360 361
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
362

363 364 365 366 367 368 369 370 371 372 373 374 375
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

376 377 378 379 380 381
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
382
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
383 384
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
385
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
386 387 388
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
389
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
390

391 392 393 394 395 396
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
397
struct static_key memcg_kmem_enabled_key;
398
EXPORT_SYMBOL(memcg_kmem_enabled_key);
399 400 401

#endif /* CONFIG_MEMCG_KMEM */

402
static struct mem_cgroup_per_zone *
403
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
404
{
405 406 407
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

408
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
409 410
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

	if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

444
static struct mem_cgroup_per_zone *
445
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
446
{
447 448
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
449

450
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
451 452
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

468 469
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
470
					 unsigned long new_usage_in_excess)
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

500 501
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
502 503 504 505 506 507 508
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

509 510
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
511
{
512 513 514
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
515
	__mem_cgroup_remove_exceeded(mz, mctz);
516
	spin_unlock_irqrestore(&mctz->lock, flags);
517 518
}

519 520 521
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
522
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
523 524 525 526 527 528 529
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
530 531 532

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
533
	unsigned long excess;
534 535 536
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

537
	mctz = soft_limit_tree_from_page(page);
538 539 540 541 542
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
543
		mz = mem_cgroup_page_zoneinfo(memcg, page);
544
		excess = soft_limit_excess(memcg);
545 546 547 548 549
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
550 551 552
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
553 554
			/* if on-tree, remove it */
			if (mz->on_tree)
555
				__mem_cgroup_remove_exceeded(mz, mctz);
556 557 558 559
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
560
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
561
			spin_unlock_irqrestore(&mctz->lock, flags);
562 563 564 565 566 567 568
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
569 570
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
571

572 573 574 575
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
576
			mem_cgroup_remove_exceeded(mz, mctz);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
599
	__mem_cgroup_remove_exceeded(mz, mctz);
600
	if (!soft_limit_excess(mz->memcg) ||
601
	    !css_tryget_online(&mz->memcg->css))
602 603 604 605 606 607 608 609 610 611
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

612
	spin_lock_irq(&mctz->lock);
613
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
614
	spin_unlock_irq(&mctz->lock);
615 616 617
	return mz;
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
637
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
638
				 enum mem_cgroup_stat_index idx)
639
{
640
	long val = 0;
641 642
	int cpu;

643
	for_each_possible_cpu(cpu)
644
		val += per_cpu(memcg->stat->count[idx], cpu);
645 646 647
	return val;
}

648
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
649 650 651 652 653
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

654
	for_each_possible_cpu(cpu)
655
		val += per_cpu(memcg->stat->events[idx], cpu);
656 657 658
	return val;
}

659
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
660
					 struct page *page,
661
					 int nr_pages)
662
{
663 664 665 666
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
667
	if (PageAnon(page))
668
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
669
				nr_pages);
670
	else
671
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
672
				nr_pages);
673

674 675 676 677
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

678 679
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
680
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
681
	else {
682
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
683 684
		nr_pages = -nr_pages; /* for event */
	}
685

686
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
687 688
}

689 690 691
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
692
{
693
	unsigned long nr = 0;
694 695
	int zid;

696
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
697

698 699 700 701 702 703 704 705 706 707 708 709
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
710
}
711

712
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
713
			unsigned int lru_mask)
714
{
715
	unsigned long nr = 0;
716
	int nid;
717

718
	for_each_node_state(nid, N_MEMORY)
719 720
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
721 722
}

723 724
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
725 726 727
{
	unsigned long val, next;

728
	val = __this_cpu_read(memcg->stat->nr_page_events);
729
	next = __this_cpu_read(memcg->stat->targets[target]);
730
	/* from time_after() in jiffies.h */
731 732 733 734 735
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
736 737 738
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
739 740 741 742 743 744 745 746
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
747
	}
748
	return false;
749 750 751 752 753 754
}

/*
 * Check events in order.
 *
 */
755
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
756 757
{
	/* threshold event is triggered in finer grain than soft limit */
758 759
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
760
		bool do_softlimit;
761
		bool do_numainfo __maybe_unused;
762

763 764
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
765 766 767 768
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
769
		mem_cgroup_threshold(memcg);
770 771
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
772
#if MAX_NUMNODES > 1
773
		if (unlikely(do_numainfo))
774
			atomic_inc(&memcg->numainfo_events);
775
#endif
776
	}
777 778
}

779
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
780
{
781 782 783 784 785 786 787 788
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

789
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
790
}
M
Michal Hocko 已提交
791
EXPORT_SYMBOL(mem_cgroup_from_task);
792

793
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
794
{
795
	struct mem_cgroup *memcg = NULL;
796

797 798
	rcu_read_lock();
	do {
799 800 801 802 803 804
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
805
			memcg = root_mem_cgroup;
806 807 808 809 810
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
811
	} while (!css_tryget_online(&memcg->css));
812
	rcu_read_unlock();
813
	return memcg;
814 815
}

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
833
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
834
				   struct mem_cgroup *prev,
835
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
836
{
M
Michal Hocko 已提交
837
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
838
	struct cgroup_subsys_state *css = NULL;
839
	struct mem_cgroup *memcg = NULL;
840
	struct mem_cgroup *pos = NULL;
841

842 843
	if (mem_cgroup_disabled())
		return NULL;
844

845 846
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
847

848
	if (prev && !reclaim)
849
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
850

851 852
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
853
			goto out;
854
		return root;
855
	}
K
KAMEZAWA Hiroyuki 已提交
856

857
	rcu_read_lock();
M
Michal Hocko 已提交
858

859 860 861 862 863 864 865 866 867 868
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
869
			pos = READ_ONCE(iter->position);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
893
		}
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
901

902 903
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
904

905
		if (css_tryget(css)) {
906 907 908 909 910 911 912
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
913

914
			css_put(css);
915
		}
916

917
		memcg = NULL;
918
	}
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
939
	}
940

941 942
out_unlock:
	rcu_read_unlock();
943
out:
944 945 946
	if (prev && prev != root)
		css_put(&prev->css);

947
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
948
}
K
KAMEZAWA Hiroyuki 已提交
949

950 951 952 953 954 955 956
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
957 958 959 960 961 962
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
963

964 965 966 967 968 969
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
970
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
971
	     iter != NULL;				\
972
	     iter = mem_cgroup_iter(root, iter, NULL))
973

974
#define for_each_mem_cgroup(iter)			\
975
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
976
	     iter != NULL;				\
977
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
978

979 980 981
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
982
 * @memcg: memcg of the wanted lruvec
983 984 985 986 987 988 989 990 991
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
992
	struct lruvec *lruvec;
993

994 995 996 997
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
998

999
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1010 1011 1012
}

/**
1013
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1014
 * @page: the page
1015
 * @zone: zone of the page
1016 1017 1018 1019
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1020
 */
1021
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1022 1023
{
	struct mem_cgroup_per_zone *mz;
1024
	struct mem_cgroup *memcg;
1025
	struct lruvec *lruvec;
1026

1027 1028 1029 1030
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1031

1032
	memcg = page->mem_cgroup;
1033
	/*
1034
	 * Swapcache readahead pages are added to the LRU - and
1035
	 * possibly migrated - before they are charged.
1036
	 */
1037 1038
	if (!memcg)
		memcg = root_mem_cgroup;
1039

1040
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1051
}
1052

1053
/**
1054 1055 1056 1057
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1058
 *
1059 1060
 * This function must be called when a page is added to or removed from an
 * lru list.
1061
 */
1062 1063
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1064 1065
{
	struct mem_cgroup_per_zone *mz;
1066
	unsigned long *lru_size;
1067 1068 1069 1070

	if (mem_cgroup_disabled())
		return;

1071 1072 1073 1074
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1075
}
1076

1077
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1078
{
1079
	struct mem_cgroup *task_memcg;
1080
	struct task_struct *p;
1081
	bool ret;
1082

1083
	p = find_lock_task_mm(task);
1084
	if (p) {
1085
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1086 1087 1088 1089 1090 1091 1092
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1093
		rcu_read_lock();
1094 1095
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1096
		rcu_read_unlock();
1097
	}
1098 1099
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1100 1101 1102
	return ret;
}

1103
#define mem_cgroup_from_counter(counter, member)	\
1104 1105
	container_of(counter, struct mem_cgroup, member)

1106
/**
1107
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1108
 * @memcg: the memory cgroup
1109
 *
1110
 * Returns the maximum amount of memory @mem can be charged with, in
1111
 * pages.
1112
 */
1113
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1114
{
1115 1116 1117
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1118

1119
	count = page_counter_read(&memcg->memory);
1120
	limit = READ_ONCE(memcg->memory.limit);
1121 1122 1123 1124 1125
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1126
		limit = READ_ONCE(memcg->memsw.limit);
1127 1128 1129 1130 1131
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1132 1133
}

1134
/*
Q
Qiang Huang 已提交
1135
 * A routine for checking "mem" is under move_account() or not.
1136
 *
Q
Qiang Huang 已提交
1137 1138 1139
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1140
 */
1141
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1142
{
1143 1144
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1145
	bool ret = false;
1146 1147 1148 1149 1150 1151 1152 1153 1154
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1155

1156 1157
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1158 1159
unlock:
	spin_unlock(&mc.lock);
1160 1161 1162
	return ret;
}

1163
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1164 1165
{
	if (mc.moving_task && current != mc.moving_task) {
1166
		if (mem_cgroup_under_move(memcg)) {
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1179
#define K(x) ((x) << (PAGE_SHIFT-10))
1180
/**
1181
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1182 1183 1184 1185 1186 1187 1188 1189
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1190
	/* oom_info_lock ensures that parallel ooms do not interleave */
1191
	static DEFINE_MUTEX(oom_info_lock);
1192 1193
	struct mem_cgroup *iter;
	unsigned int i;
1194

1195
	mutex_lock(&oom_info_lock);
1196 1197
	rcu_read_lock();

1198 1199 1200 1201 1202 1203 1204 1205
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1206
	pr_cont_cgroup_path(memcg->css.cgroup);
1207
	pr_cont("\n");
1208 1209 1210

	rcu_read_unlock();

1211 1212 1213 1214 1215 1216 1217 1218 1219
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1220 1221

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1222 1223
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1239
	mutex_unlock(&oom_info_lock);
1240 1241
}

1242 1243 1244 1245
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1246
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1247 1248
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1249 1250
	struct mem_cgroup *iter;

1251
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1252
		num++;
1253 1254 1255
	return num;
}

D
David Rientjes 已提交
1256 1257 1258
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1259
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1260
{
1261
	unsigned long limit;
1262

1263
	limit = memcg->memory.limit;
1264
	if (mem_cgroup_swappiness(memcg)) {
1265
		unsigned long memsw_limit;
1266

1267 1268
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1269 1270
	}
	return limit;
D
David Rientjes 已提交
1271 1272
}

1273 1274
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1275
{
1276 1277 1278 1279 1280 1281
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1282 1283 1284 1285 1286 1287
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1288 1289
	mutex_lock(&oom_lock);

1290
	/*
1291 1292 1293
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1294
	 */
1295
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1296
		mark_oom_victim(current);
1297
		goto unlock;
1298 1299
	}

1300
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1301
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1302
	for_each_mem_cgroup_tree(iter, memcg) {
1303
		struct css_task_iter it;
1304 1305
		struct task_struct *task;

1306 1307
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1308
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1319
				css_task_iter_end(&it);
1320 1321 1322
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1323
				goto unlock;
1324 1325 1326 1327
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1340
		}
1341
		css_task_iter_end(&it);
1342 1343
	}

1344 1345
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1346 1347
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1348 1349 1350
	}
unlock:
	mutex_unlock(&oom_lock);
1351 1352
}

1353 1354
#if MAX_NUMNODES > 1

1355 1356
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1357
 * @memcg: the target memcg
1358 1359 1360 1361 1362 1363 1364
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1365
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1366 1367
		int nid, bool noswap)
{
1368
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1369 1370 1371
		return true;
	if (noswap || !total_swap_pages)
		return false;
1372
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1373 1374 1375 1376
		return true;
	return false;

}
1377 1378 1379 1380 1381 1382 1383

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1384
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1385 1386
{
	int nid;
1387 1388 1389 1390
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1391
	if (!atomic_read(&memcg->numainfo_events))
1392
		return;
1393
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1394 1395 1396
		return;

	/* make a nodemask where this memcg uses memory from */
1397
	memcg->scan_nodes = node_states[N_MEMORY];
1398

1399
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1400

1401 1402
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1403
	}
1404

1405 1406
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1421
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1422 1423 1424
{
	int node;

1425 1426
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1427

1428
	node = next_node(node, memcg->scan_nodes);
1429
	if (node == MAX_NUMNODES)
1430
		node = first_node(memcg->scan_nodes);
1431 1432 1433 1434 1435 1436 1437 1438 1439
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1440
	memcg->last_scanned_node = node;
1441 1442 1443
	return node;
}
#else
1444
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1445 1446 1447 1448 1449
{
	return 0;
}
#endif

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1465
	excess = soft_limit_excess(root_memcg);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1494
		if (!soft_limit_excess(root_memcg))
1495
			break;
1496
	}
1497 1498
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1499 1500
}

1501 1502 1503 1504 1505 1506
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1507 1508
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1509 1510 1511 1512
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1513
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1514
{
1515
	struct mem_cgroup *iter, *failed = NULL;
1516

1517 1518
	spin_lock(&memcg_oom_lock);

1519
	for_each_mem_cgroup_tree(iter, memcg) {
1520
		if (iter->oom_lock) {
1521 1522 1523 1524 1525
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1526 1527
			mem_cgroup_iter_break(memcg, iter);
			break;
1528 1529
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1530
	}
K
KAMEZAWA Hiroyuki 已提交
1531

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1543
		}
1544 1545
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1546 1547 1548 1549

	spin_unlock(&memcg_oom_lock);

	return !failed;
1550
}
1551

1552
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1553
{
K
KAMEZAWA Hiroyuki 已提交
1554 1555
	struct mem_cgroup *iter;

1556
	spin_lock(&memcg_oom_lock);
1557
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1558
	for_each_mem_cgroup_tree(iter, memcg)
1559
		iter->oom_lock = false;
1560
	spin_unlock(&memcg_oom_lock);
1561 1562
}

1563
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1564 1565 1566
{
	struct mem_cgroup *iter;

1567
	spin_lock(&memcg_oom_lock);
1568
	for_each_mem_cgroup_tree(iter, memcg)
1569 1570
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1571 1572
}

1573
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1574 1575 1576
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1577 1578
	/*
	 * When a new child is created while the hierarchy is under oom,
1579
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1580
	 */
1581
	spin_lock(&memcg_oom_lock);
1582
	for_each_mem_cgroup_tree(iter, memcg)
1583 1584 1585
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1586 1587
}

K
KAMEZAWA Hiroyuki 已提交
1588 1589
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1590
struct oom_wait_info {
1591
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1592 1593 1594 1595 1596 1597
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1598 1599
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1600 1601 1602
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1603
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1604

1605 1606
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1607 1608 1609 1610
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1611
static void memcg_oom_recover(struct mem_cgroup *memcg)
1612
{
1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1622
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1623 1624
}

1625
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1626
{
1627 1628
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1629
	/*
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1642
	 */
1643 1644 1645 1646
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1647 1648 1649 1650
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1651
 * @handle: actually kill/wait or just clean up the OOM state
1652
 *
1653 1654
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1655
 *
1656
 * Memcg supports userspace OOM handling where failed allocations must
1657 1658 1659 1660
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1661
 * the end of the page fault to complete the OOM handling.
1662 1663
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1664
 * completed, %false otherwise.
1665
 */
1666
bool mem_cgroup_oom_synchronize(bool handle)
1667
{
1668
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1669
	struct oom_wait_info owait;
1670
	bool locked;
1671 1672 1673

	/* OOM is global, do not handle */
	if (!memcg)
1674
		return false;
1675

1676
	if (!handle || oom_killer_disabled)
1677
		goto cleanup;
1678 1679 1680 1681 1682 1683

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1684

1685
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1699
		schedule();
1700 1701 1702 1703 1704
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1705 1706 1707 1708 1709 1710 1711 1712
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1713 1714
cleanup:
	current->memcg_oom.memcg = NULL;
1715
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1716
	return true;
1717 1718
}

1719 1720 1721
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1722
 *
1723 1724 1725
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1726
 *
1727
 *   memcg = mem_cgroup_begin_page_stat(page);
1728 1729
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1730
 *   mem_cgroup_end_page_stat(memcg);
1731
 */
1732
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1733 1734
{
	struct mem_cgroup *memcg;
1735
	unsigned long flags;
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1749 1750 1751 1752
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1753
again:
1754
	memcg = page->mem_cgroup;
1755
	if (unlikely(!memcg))
1756 1757
		return NULL;

Q
Qiang Huang 已提交
1758
	if (atomic_read(&memcg->moving_account) <= 0)
1759
		return memcg;
1760

1761
	spin_lock_irqsave(&memcg->move_lock, flags);
1762
	if (memcg != page->mem_cgroup) {
1763
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1764 1765
		goto again;
	}
1766 1767 1768 1769 1770 1771 1772 1773

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1774 1775

	return memcg;
1776
}
1777
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1778

1779 1780 1781 1782
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1783
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1784
{
1785 1786 1787 1788 1789 1790 1791 1792
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1793

1794
	rcu_read_unlock();
1795
}
1796
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1797

1798 1799 1800 1801
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1802
#define CHARGE_BATCH	32U
1803 1804
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1805
	unsigned int nr_pages;
1806
	struct work_struct work;
1807
	unsigned long flags;
1808
#define FLUSHING_CACHED_CHARGE	0
1809 1810
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1811
static DEFINE_MUTEX(percpu_charge_mutex);
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1823
 */
1824
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1825 1826
{
	struct memcg_stock_pcp *stock;
1827
	bool ret = false;
1828

1829
	if (nr_pages > CHARGE_BATCH)
1830
		return ret;
1831

1832
	stock = &get_cpu_var(memcg_stock);
1833
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1834
		stock->nr_pages -= nr_pages;
1835 1836
		ret = true;
	}
1837 1838 1839 1840 1841
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1842
 * Returns stocks cached in percpu and reset cached information.
1843 1844 1845 1846 1847
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1848
	if (stock->nr_pages) {
1849
		page_counter_uncharge(&old->memory, stock->nr_pages);
1850
		if (do_swap_account)
1851
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1852
		css_put_many(&old->css, stock->nr_pages);
1853
		stock->nr_pages = 0;
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1864
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1865
	drain_stock(stock);
1866
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1867 1868 1869
}

/*
1870
 * Cache charges(val) to local per_cpu area.
1871
 * This will be consumed by consume_stock() function, later.
1872
 */
1873
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1874 1875 1876
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1877
	if (stock->cached != memcg) { /* reset if necessary */
1878
		drain_stock(stock);
1879
		stock->cached = memcg;
1880
	}
1881
	stock->nr_pages += nr_pages;
1882 1883 1884 1885
	put_cpu_var(memcg_stock);
}

/*
1886
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1887
 * of the hierarchy under it.
1888
 */
1889
static void drain_all_stock(struct mem_cgroup *root_memcg)
1890
{
1891
	int cpu, curcpu;
1892

1893 1894 1895
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1896 1897
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1898
	curcpu = get_cpu();
1899 1900
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1901
		struct mem_cgroup *memcg;
1902

1903 1904
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1905
			continue;
1906
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1907
			continue;
1908 1909 1910 1911 1912 1913
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1914
	}
1915
	put_cpu();
A
Andrew Morton 已提交
1916
	put_online_cpus();
1917
	mutex_unlock(&percpu_charge_mutex);
1918 1919
}

1920
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1921 1922 1923 1924 1925 1926
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1927
	if (action == CPU_ONLINE)
1928 1929
		return NOTIFY_OK;

1930
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1931
		return NOTIFY_OK;
1932

1933 1934 1935 1936 1937
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1938 1939
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1940
{
1941
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1942
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1943
	struct mem_cgroup *mem_over_limit;
1944
	struct page_counter *counter;
1945
	unsigned long nr_reclaimed;
1946 1947
	bool may_swap = true;
	bool drained = false;
1948
	int ret = 0;
1949

1950 1951
	if (mem_cgroup_is_root(memcg))
		goto done;
1952
retry:
1953 1954
	if (consume_stock(memcg, nr_pages))
		goto done;
1955

1956
	if (!do_swap_account ||
1957 1958
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
1959
			goto done_restock;
1960
		if (do_swap_account)
1961 1962
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1963
	} else {
1964
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1965
		may_swap = false;
1966
	}
1967

1968 1969 1970 1971
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1987 1988
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
1989

1990 1991
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1992 1993
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1994

1995
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1996
		goto retry;
1997

1998
	if (!drained) {
1999
		drain_all_stock(mem_over_limit);
2000 2001 2002 2003
		drained = true;
		goto retry;
	}

2004 2005
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2006 2007 2008 2009 2010 2011 2012 2013 2014
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2015
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2016 2017 2018 2019 2020 2021 2022 2023
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2024 2025 2026
	if (nr_retries--)
		goto retry;

2027 2028 2029
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2030 2031 2032
	if (fatal_signal_pending(current))
		goto bypass;

2033 2034
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2035
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2036
nomem:
2037
	if (!(gfp_mask & __GFP_NOFAIL))
2038
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2039
bypass:
2040
	return -EINTR;
2041 2042

done_restock:
2043
	css_get_many(&memcg->css, batch);
2044 2045
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2046 2047
	if (!(gfp_mask & __GFP_WAIT))
		goto done;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2058
done:
2059
	return ret;
2060
}
2061

2062
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2063
{
2064 2065 2066
	if (mem_cgroup_is_root(memcg))
		return;

2067
	page_counter_uncharge(&memcg->memory, nr_pages);
2068
	if (do_swap_account)
2069
		page_counter_uncharge(&memcg->memsw, nr_pages);
2070

2071
	css_put_many(&memcg->css, nr_pages);
2072 2073
}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2084
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2085
{
2086
	struct mem_cgroup *memcg;
2087
	unsigned short id;
2088 2089
	swp_entry_t ent;

2090
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2091

2092
	memcg = page->mem_cgroup;
2093 2094
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2095
			memcg = NULL;
2096
	} else if (PageSwapCache(page)) {
2097
		ent.val = page_private(page);
2098
		id = lookup_swap_cgroup_id(ent);
2099
		rcu_read_lock();
2100
		memcg = mem_cgroup_from_id(id);
2101
		if (memcg && !css_tryget_online(&memcg->css))
2102
			memcg = NULL;
2103
		rcu_read_unlock();
2104
	}
2105
	return memcg;
2106 2107
}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2139
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2140
			  bool lrucare)
2141
{
2142
	int isolated;
2143

2144
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2145 2146 2147 2148 2149

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2150 2151
	if (lrucare)
		lock_page_lru(page, &isolated);
2152

2153 2154
	/*
	 * Nobody should be changing or seriously looking at
2155
	 * page->mem_cgroup at this point:
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2167
	page->mem_cgroup = memcg;
2168

2169 2170
	if (lrucare)
		unlock_page_lru(page, isolated);
2171
}
2172

2173
#ifdef CONFIG_MEMCG_KMEM
2174 2175
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2176
{
2177
	struct page_counter *counter;
2178 2179
	int ret = 0;

2180 2181
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2182 2183
		return ret;

2184
	ret = try_charge(memcg, gfp, nr_pages);
2185 2186
	if (ret == -EINTR)  {
		/*
2187 2188 2189 2190 2191 2192
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2193 2194 2195
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2196 2197 2198
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2199 2200
		 * directed to the root cgroup in memcontrol.h
		 */
2201
		page_counter_charge(&memcg->memory, nr_pages);
2202
		if (do_swap_account)
2203
			page_counter_charge(&memcg->memsw, nr_pages);
2204
		css_get_many(&memcg->css, nr_pages);
2205 2206
		ret = 0;
	} else if (ret)
2207
		page_counter_uncharge(&memcg->kmem, nr_pages);
2208 2209 2210 2211

	return ret;
}

2212
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2213
{
2214
	page_counter_uncharge(&memcg->memory, nr_pages);
2215
	if (do_swap_account)
2216
		page_counter_uncharge(&memcg->memsw, nr_pages);
2217

2218
	page_counter_uncharge(&memcg->kmem, nr_pages);
2219

2220
	css_put_many(&memcg->css, nr_pages);
2221 2222
}

2223
static int memcg_alloc_cache_id(void)
2224
{
2225 2226 2227
	int id, size;
	int err;

2228
	id = ida_simple_get(&memcg_cache_ida,
2229 2230 2231
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2232

2233
	if (id < memcg_nr_cache_ids)
2234 2235 2236 2237 2238 2239
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2240
	down_write(&memcg_cache_ids_sem);
2241 2242

	size = 2 * (id + 1);
2243 2244 2245 2246 2247
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2248
	err = memcg_update_all_caches(size);
2249 2250
	if (!err)
		err = memcg_update_all_list_lrus(size);
2251 2252 2253 2254 2255
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2256
	if (err) {
2257
		ida_simple_remove(&memcg_cache_ida, id);
2258 2259 2260 2261 2262 2263 2264
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2265
	ida_simple_remove(&memcg_cache_ida, id);
2266 2267
}

2268
struct memcg_kmem_cache_create_work {
2269 2270 2271 2272 2273
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2274
static void memcg_kmem_cache_create_func(struct work_struct *w)
2275
{
2276 2277
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2278 2279
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2280

2281
	memcg_create_kmem_cache(memcg, cachep);
2282

2283
	css_put(&memcg->css);
2284 2285 2286 2287 2288 2289
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2290 2291
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2292
{
2293
	struct memcg_kmem_cache_create_work *cw;
2294

2295
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2296
	if (!cw)
2297
		return;
2298 2299

	css_get(&memcg->css);
2300 2301 2302

	cw->memcg = memcg;
	cw->cachep = cachep;
2303
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2304 2305 2306 2307

	schedule_work(&cw->work);
}

2308 2309
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2310 2311 2312 2313
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2314
	 * in __memcg_schedule_kmem_cache_create will recurse.
2315 2316 2317 2318 2319 2320 2321
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2322
	current->memcg_kmem_skip_account = 1;
2323
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2324
	current->memcg_kmem_skip_account = 0;
2325
}
2326

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2340
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2341 2342
{
	struct mem_cgroup *memcg;
2343
	struct kmem_cache *memcg_cachep;
2344
	int kmemcg_id;
2345

2346
	VM_BUG_ON(!is_root_cache(cachep));
2347

2348
	if (current->memcg_kmem_skip_account)
2349 2350
		return cachep;

2351
	memcg = get_mem_cgroup_from_mm(current->mm);
2352
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2353
	if (kmemcg_id < 0)
2354
		goto out;
2355

2356
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2357 2358
	if (likely(memcg_cachep))
		return memcg_cachep;
2359 2360 2361 2362 2363 2364 2365 2366 2367

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2368 2369 2370
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2371
	 */
2372
	memcg_schedule_kmem_cache_create(memcg, cachep);
2373
out:
2374
	css_put(&memcg->css);
2375
	return cachep;
2376 2377
}

2378 2379 2380
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2381
		css_put(&cachep->memcg_params.memcg->css);
2382 2383
}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2405

2406
	memcg = get_mem_cgroup_from_mm(current->mm);
2407

2408
	if (!memcg_kmem_is_active(memcg)) {
2409 2410 2411 2412
		css_put(&memcg->css);
		return true;
	}

2413
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2428
		memcg_uncharge_kmem(memcg, 1 << order);
2429 2430
		return;
	}
2431
	page->mem_cgroup = memcg;
2432 2433 2434 2435
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2436
	struct mem_cgroup *memcg = page->mem_cgroup;
2437 2438 2439 2440

	if (!memcg)
		return;

2441
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2442

2443
	memcg_uncharge_kmem(memcg, 1 << order);
2444
	page->mem_cgroup = NULL;
2445
}
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2457
			memcg = cachep->memcg_params.memcg;
2458 2459 2460 2461 2462 2463
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2464 2465
#endif /* CONFIG_MEMCG_KMEM */

2466 2467 2468 2469
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2470 2471 2472
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2473
 */
2474
void mem_cgroup_split_huge_fixup(struct page *head)
2475
{
2476
	int i;
2477

2478 2479
	if (mem_cgroup_disabled())
		return;
2480

2481
	for (i = 1; i < HPAGE_PMD_NR; i++)
2482
		head[i].mem_cgroup = head->mem_cgroup;
2483

2484
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2485
		       HPAGE_PMD_NR);
2486
}
2487
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2488

A
Andrew Morton 已提交
2489
#ifdef CONFIG_MEMCG_SWAP
2490 2491
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2492
{
2493 2494
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2495
}
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2508
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2509 2510 2511
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2512
				struct mem_cgroup *from, struct mem_cgroup *to)
2513 2514 2515
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2516 2517
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2518 2519 2520

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2521
		mem_cgroup_swap_statistics(to, true);
2522 2523 2524 2525 2526 2527
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2528
				struct mem_cgroup *from, struct mem_cgroup *to)
2529 2530 2531
{
	return -EINVAL;
}
2532
#endif
K
KAMEZAWA Hiroyuki 已提交
2533

2534
static DEFINE_MUTEX(memcg_limit_mutex);
2535

2536
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2537
				   unsigned long limit)
2538
{
2539 2540 2541
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2542
	int retry_count;
2543
	int ret;
2544 2545 2546 2547 2548 2549

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2550 2551
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2552

2553
	oldusage = page_counter_read(&memcg->memory);
2554

2555
	do {
2556 2557 2558 2559
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2560 2561 2562 2563

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2564
			ret = -EINVAL;
2565 2566
			break;
		}
2567 2568 2569 2570
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2571 2572 2573 2574

		if (!ret)
			break;

2575 2576
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2577
		curusage = page_counter_read(&memcg->memory);
2578
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2579
		if (curusage >= oldusage)
2580 2581 2582
			retry_count--;
		else
			oldusage = curusage;
2583 2584
	} while (retry_count);

2585 2586
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2587

2588 2589 2590
	return ret;
}

L
Li Zefan 已提交
2591
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2592
					 unsigned long limit)
2593
{
2594 2595 2596
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2597
	int retry_count;
2598
	int ret;
2599

2600
	/* see mem_cgroup_resize_res_limit */
2601 2602 2603 2604 2605 2606
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2607 2608 2609 2610
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2611 2612 2613 2614

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2615 2616 2617
			ret = -EINVAL;
			break;
		}
2618 2619 2620 2621
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2622 2623 2624 2625

		if (!ret)
			break;

2626 2627
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2628
		curusage = page_counter_read(&memcg->memsw);
2629
		/* Usage is reduced ? */
2630
		if (curusage >= oldusage)
2631
			retry_count--;
2632 2633
		else
			oldusage = curusage;
2634 2635
	} while (retry_count);

2636 2637
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2638

2639 2640 2641
	return ret;
}

2642 2643 2644 2645 2646 2647 2648 2649 2650
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2651
	unsigned long excess;
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2676
		spin_lock_irq(&mctz->lock);
2677
		__mem_cgroup_remove_exceeded(mz, mctz);
2678 2679 2680 2681 2682 2683

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2684 2685 2686
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2687
		excess = soft_limit_excess(mz->memcg);
2688 2689 2690 2691 2692 2693 2694 2695 2696
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2697
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2698
		spin_unlock_irq(&mctz->lock);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2716 2717 2718 2719 2720 2721
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2722 2723
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2724 2725
	bool ret;

2726
	/*
2727 2728 2729 2730
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2731
	 */
2732 2733 2734 2735 2736 2737
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2738 2739
}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2750 2751
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2752
	/* try to free all pages in this cgroup */
2753
	while (nr_retries && page_counter_read(&memcg->memory)) {
2754
		int progress;
2755

2756 2757 2758
		if (signal_pending(current))
			return -EINTR;

2759 2760
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2761
		if (!progress) {
2762
			nr_retries--;
2763
			/* maybe some writeback is necessary */
2764
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2765
		}
2766 2767

	}
2768 2769

	return 0;
2770 2771
}

2772 2773 2774
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2775
{
2776
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2777

2778 2779
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2780
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2781 2782
}

2783 2784
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2785
{
2786
	return mem_cgroup_from_css(css)->use_hierarchy;
2787 2788
}

2789 2790
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2791 2792
{
	int retval = 0;
2793
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2794
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2795

2796
	mutex_lock(&memcg_create_mutex);
2797 2798 2799 2800

	if (memcg->use_hierarchy == val)
		goto out;

2801
	/*
2802
	 * If parent's use_hierarchy is set, we can't make any modifications
2803 2804 2805 2806 2807 2808
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2809
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2810
				(val == 1 || val == 0)) {
2811
		if (!memcg_has_children(memcg))
2812
			memcg->use_hierarchy = val;
2813 2814 2815 2816
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2817 2818

out:
2819
	mutex_unlock(&memcg_create_mutex);
2820 2821 2822 2823

	return retval;
}

2824 2825
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

2843 2844 2845 2846 2847 2848
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2849
		if (!swap)
2850
			val = page_counter_read(&memcg->memory);
2851
		else
2852
			val = page_counter_read(&memcg->memsw);
2853 2854 2855 2856
	}
	return val << PAGE_SHIFT;
}

2857 2858 2859 2860 2861 2862 2863
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2864

2865
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2866
			       struct cftype *cft)
B
Balbir Singh 已提交
2867
{
2868
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2869
	struct page_counter *counter;
2870

2871
	switch (MEMFILE_TYPE(cft->private)) {
2872
	case _MEM:
2873 2874
		counter = &memcg->memory;
		break;
2875
	case _MEMSWAP:
2876 2877
		counter = &memcg->memsw;
		break;
2878
	case _KMEM:
2879
		counter = &memcg->kmem;
2880
		break;
2881 2882 2883
	default:
		BUG();
	}
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2903
}
2904 2905

#ifdef CONFIG_MEMCG_KMEM
2906 2907
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2908 2909 2910 2911
{
	int err = 0;
	int memcg_id;

2912
	BUG_ON(memcg->kmemcg_id >= 0);
2913
	BUG_ON(memcg->kmem_acct_activated);
2914
	BUG_ON(memcg->kmem_acct_active);
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2928
	mutex_lock(&memcg_create_mutex);
2929 2930
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2931 2932 2933 2934
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2935

2936
	memcg_id = memcg_alloc_cache_id();
2937 2938 2939 2940 2941 2942
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2943 2944
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2945
	 */
2946
	err = page_counter_limit(&memcg->kmem, nr_pages);
2947 2948 2949 2950
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2951 2952
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2953 2954 2955
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2956
	memcg->kmemcg_id = memcg_id;
2957
	memcg->kmem_acct_activated = true;
2958
	memcg->kmem_acct_active = true;
2959
out:
2960 2961 2962 2963
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2964
				   unsigned long limit)
2965 2966 2967
{
	int ret;

2968
	mutex_lock(&memcg_limit_mutex);
2969
	if (!memcg_kmem_is_active(memcg))
2970
		ret = memcg_activate_kmem(memcg, limit);
2971
	else
2972 2973
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2974 2975 2976
	return ret;
}

2977
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2978
{
2979
	int ret = 0;
2980
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2981

2982 2983
	if (!parent)
		return 0;
2984

2985
	mutex_lock(&memcg_limit_mutex);
2986
	/*
2987 2988
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
2989
	 */
2990
	if (memcg_kmem_is_active(parent))
2991 2992
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
2993
	return ret;
2994
}
2995 2996
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2997
				   unsigned long limit)
2998 2999 3000
{
	return -EINVAL;
}
3001
#endif /* CONFIG_MEMCG_KMEM */
3002

3003 3004 3005 3006
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3007 3008
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3009
{
3010
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3011
	unsigned long nr_pages;
3012 3013
	int ret;

3014
	buf = strstrip(buf);
3015
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3016 3017
	if (ret)
		return ret;
3018

3019
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3020
	case RES_LIMIT:
3021 3022 3023 3024
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3025 3026 3027
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3028
			break;
3029 3030
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3031
			break;
3032 3033 3034 3035
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3036
		break;
3037 3038 3039
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3040 3041
		break;
	}
3042
	return ret ?: nbytes;
B
Balbir Singh 已提交
3043 3044
}

3045 3046
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3047
{
3048
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3049
	struct page_counter *counter;
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3064

3065
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3066
	case RES_MAX_USAGE:
3067
		page_counter_reset_watermark(counter);
3068 3069
		break;
	case RES_FAILCNT:
3070
		counter->failcnt = 0;
3071
		break;
3072 3073
	default:
		BUG();
3074
	}
3075

3076
	return nbytes;
3077 3078
}

3079
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3080 3081
					struct cftype *cft)
{
3082
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3083 3084
}

3085
#ifdef CONFIG_MMU
3086
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3087 3088
					struct cftype *cft, u64 val)
{
3089
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3090

3091
	if (val & ~MOVE_MASK)
3092
		return -EINVAL;
3093

3094
	/*
3095 3096 3097 3098
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3099
	 */
3100
	memcg->move_charge_at_immigrate = val;
3101 3102
	return 0;
}
3103
#else
3104
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3105 3106 3107 3108 3109
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3110

3111
#ifdef CONFIG_NUMA
3112
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3113
{
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3126
	int nid;
3127
	unsigned long nr;
3128
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3129

3130 3131 3132 3133 3134 3135 3136 3137 3138
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3139 3140
	}

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3156 3157 3158 3159 3160 3161
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3162
static int memcg_stat_show(struct seq_file *m, void *v)
3163
{
3164
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3165
	unsigned long memory, memsw;
3166 3167
	struct mem_cgroup *mi;
	unsigned int i;
3168

3169 3170 3171 3172
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3173 3174
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3175
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3176
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3177
			continue;
3178 3179
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3180
	}
L
Lee Schermerhorn 已提交
3181

3182 3183 3184 3185 3186 3187 3188 3189
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3190
	/* Hierarchical information */
3191 3192 3193 3194
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3195
	}
3196 3197 3198 3199 3200
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3201

3202 3203 3204
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3205
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3206
			continue;
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3227
	}
K
KAMEZAWA Hiroyuki 已提交
3228

K
KOSAKI Motohiro 已提交
3229 3230 3231 3232
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3233
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3234 3235 3236 3237 3238
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3239
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3240
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3241

3242 3243 3244 3245
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3246
			}
3247 3248 3249 3250
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3251 3252 3253
	}
#endif

3254 3255 3256
	return 0;
}

3257 3258
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3259
{
3260
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3261

3262
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3263 3264
}

3265 3266
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3267
{
3268
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3269

3270
	if (val > 100)
K
KOSAKI Motohiro 已提交
3271 3272
		return -EINVAL;

3273
	if (css->parent)
3274 3275 3276
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3277

K
KOSAKI Motohiro 已提交
3278 3279 3280
	return 0;
}

3281 3282 3283
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3284
	unsigned long usage;
3285 3286 3287 3288
	int i;

	rcu_read_lock();
	if (!swap)
3289
		t = rcu_dereference(memcg->thresholds.primary);
3290
	else
3291
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3292 3293 3294 3295

	if (!t)
		goto unlock;

3296
	usage = mem_cgroup_usage(memcg, swap);
3297 3298

	/*
3299
	 * current_threshold points to threshold just below or equal to usage.
3300 3301 3302
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3303
	i = t->current_threshold;
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3327
	t->current_threshold = i - 1;
3328 3329 3330 3331 3332 3333
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3334 3335 3336 3337 3338 3339 3340
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3341 3342 3343 3344 3345 3346 3347
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3348 3349 3350 3351 3352 3353 3354
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3355 3356
}

3357
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3358 3359 3360
{
	struct mem_cgroup_eventfd_list *ev;

3361 3362
	spin_lock(&memcg_oom_lock);

3363
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3364
		eventfd_signal(ev->eventfd, 1);
3365 3366

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3367 3368 3369
	return 0;
}

3370
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3371
{
K
KAMEZAWA Hiroyuki 已提交
3372 3373
	struct mem_cgroup *iter;

3374
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3375
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3376 3377
}

3378
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3379
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3380
{
3381 3382
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3383 3384
	unsigned long threshold;
	unsigned long usage;
3385
	int i, size, ret;
3386

3387
	ret = page_counter_memparse(args, "-1", &threshold);
3388 3389 3390 3391
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3392

3393
	if (type == _MEM) {
3394
		thresholds = &memcg->thresholds;
3395
		usage = mem_cgroup_usage(memcg, false);
3396
	} else if (type == _MEMSWAP) {
3397
		thresholds = &memcg->memsw_thresholds;
3398
		usage = mem_cgroup_usage(memcg, true);
3399
	} else
3400 3401 3402
		BUG();

	/* Check if a threshold crossed before adding a new one */
3403
	if (thresholds->primary)
3404 3405
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3406
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3407 3408

	/* Allocate memory for new array of thresholds */
3409
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3410
			GFP_KERNEL);
3411
	if (!new) {
3412 3413 3414
		ret = -ENOMEM;
		goto unlock;
	}
3415
	new->size = size;
3416 3417

	/* Copy thresholds (if any) to new array */
3418 3419
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3420
				sizeof(struct mem_cgroup_threshold));
3421 3422
	}

3423
	/* Add new threshold */
3424 3425
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3426 3427

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3428
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3429 3430 3431
			compare_thresholds, NULL);

	/* Find current threshold */
3432
	new->current_threshold = -1;
3433
	for (i = 0; i < size; i++) {
3434
		if (new->entries[i].threshold <= usage) {
3435
			/*
3436 3437
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3438 3439
			 * it here.
			 */
3440
			++new->current_threshold;
3441 3442
		} else
			break;
3443 3444
	}

3445 3446 3447 3448 3449
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3450

3451
	/* To be sure that nobody uses thresholds */
3452 3453 3454 3455 3456 3457 3458 3459
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3460
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3461 3462
	struct eventfd_ctx *eventfd, const char *args)
{
3463
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3464 3465
}

3466
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3467 3468
	struct eventfd_ctx *eventfd, const char *args)
{
3469
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3470 3471
}

3472
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3473
	struct eventfd_ctx *eventfd, enum res_type type)
3474
{
3475 3476
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3477
	unsigned long usage;
3478
	int i, j, size;
3479 3480

	mutex_lock(&memcg->thresholds_lock);
3481 3482

	if (type == _MEM) {
3483
		thresholds = &memcg->thresholds;
3484
		usage = mem_cgroup_usage(memcg, false);
3485
	} else if (type == _MEMSWAP) {
3486
		thresholds = &memcg->memsw_thresholds;
3487
		usage = mem_cgroup_usage(memcg, true);
3488
	} else
3489 3490
		BUG();

3491 3492 3493
	if (!thresholds->primary)
		goto unlock;

3494 3495 3496 3497
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3498 3499 3500
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3501 3502 3503
			size++;
	}

3504
	new = thresholds->spare;
3505

3506 3507
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3508 3509
		kfree(new);
		new = NULL;
3510
		goto swap_buffers;
3511 3512
	}

3513
	new->size = size;
3514 3515

	/* Copy thresholds and find current threshold */
3516 3517 3518
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3519 3520
			continue;

3521
		new->entries[j] = thresholds->primary->entries[i];
3522
		if (new->entries[j].threshold <= usage) {
3523
			/*
3524
			 * new->current_threshold will not be used
3525 3526 3527
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3528
			++new->current_threshold;
3529 3530 3531 3532
		}
		j++;
	}

3533
swap_buffers:
3534 3535
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3536 3537 3538 3539 3540 3541
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3542
	rcu_assign_pointer(thresholds->primary, new);
3543

3544
	/* To be sure that nobody uses thresholds */
3545
	synchronize_rcu();
3546
unlock:
3547 3548
	mutex_unlock(&memcg->thresholds_lock);
}
3549

3550
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3551 3552
	struct eventfd_ctx *eventfd)
{
3553
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3554 3555
}

3556
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3557 3558
	struct eventfd_ctx *eventfd)
{
3559
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3560 3561
}

3562
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3563
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3564 3565 3566 3567 3568 3569 3570
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3571
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3572 3573 3574 3575 3576

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3577
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3578
		eventfd_signal(eventfd, 1);
3579
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3580 3581 3582 3583

	return 0;
}

3584
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3585
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3586 3587 3588
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3589
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3590

3591
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3592 3593 3594 3595 3596 3597
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3598
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3599 3600
}

3601
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3602
{
3603
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3604

3605
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3606
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3607 3608 3609
	return 0;
}

3610
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3611 3612
	struct cftype *cft, u64 val)
{
3613
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3614 3615

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3616
	if (!css->parent || !((val == 0) || (val == 1)))
3617 3618
		return -EINVAL;

3619
	memcg->oom_kill_disable = val;
3620
	if (!val)
3621
		memcg_oom_recover(memcg);
3622

3623 3624 3625
	return 0;
}

A
Andrew Morton 已提交
3626
#ifdef CONFIG_MEMCG_KMEM
3627
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3628
{
3629 3630 3631 3632 3633
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3634

3635
	return mem_cgroup_sockets_init(memcg, ss);
3636
}
3637

3638 3639
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3640 3641 3642 3643
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3682 3683
}

3684
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3685
{
3686 3687 3688 3689 3690
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3691
	mem_cgroup_sockets_destroy(memcg);
3692
}
3693
#else
3694
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3695 3696 3697
{
	return 0;
}
G
Glauber Costa 已提交
3698

3699 3700 3701 3702
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3703 3704 3705
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3706 3707
#endif

3708 3709 3710 3711 3712 3713 3714
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3725 3726 3727 3728 3729
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
 * @pavail: out parameter for number of available pages
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
 * Determine the numbers of available, dirty, and writeback pages in @wb's
 * memcg.  Dirty and writeback are self-explanatory.  Available is a bit
 * more involved.
 *
 * A memcg's headroom is "min(max, high) - used".  The available memory is
 * calculated as the lowest headroom of itself and the ancestors plus the
 * number of pages already being used for file pages.  Note that this
 * doesn't consider the actual amount of available memory in the system.
 * The caller should further cap *@pavail accordingly.
 */
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
			 unsigned long *pdirty, unsigned long *pwriteback)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;
	unsigned long head_room = PAGE_COUNTER_MAX;
	unsigned long file_pages;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);

	file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						    (1 << LRU_ACTIVE_FILE));
	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

		head_room = min(head_room, ceiling - min(ceiling, used));
		memcg = parent;
	}

	*pavail = file_pages + head_room;
}

T
Tejun Heo 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3794 3795 3796 3797
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3798 3799
#endif	/* CONFIG_CGROUP_WRITEBACK */

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3813 3814 3815 3816 3817
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3818
static void memcg_event_remove(struct work_struct *work)
3819
{
3820 3821
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3822
	struct mem_cgroup *memcg = event->memcg;
3823 3824 3825

	remove_wait_queue(event->wqh, &event->wait);

3826
	event->unregister_event(memcg, event->eventfd);
3827 3828 3829 3830 3831 3832

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3833
	css_put(&memcg->css);
3834 3835 3836 3837 3838 3839 3840
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3841 3842
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3843
{
3844 3845
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3846
	struct mem_cgroup *memcg = event->memcg;
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3859
		spin_lock(&memcg->event_list_lock);
3860 3861 3862 3863 3864 3865 3866 3867
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3868
		spin_unlock(&memcg->event_list_lock);
3869 3870 3871 3872 3873
	}

	return 0;
}

3874
static void memcg_event_ptable_queue_proc(struct file *file,
3875 3876
		wait_queue_head_t *wqh, poll_table *pt)
{
3877 3878
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3879 3880 3881 3882 3883 3884

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3885 3886
 * DO NOT USE IN NEW FILES.
 *
3887 3888 3889 3890 3891
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3892 3893
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3894
{
3895
	struct cgroup_subsys_state *css = of_css(of);
3896
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897
	struct mem_cgroup_event *event;
3898 3899 3900 3901
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3902
	const char *name;
3903 3904 3905
	char *endp;
	int ret;

3906 3907 3908
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3909 3910
	if (*endp != ' ')
		return -EINVAL;
3911
	buf = endp + 1;
3912

3913
	cfd = simple_strtoul(buf, &endp, 10);
3914 3915
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3916
	buf = endp + 1;
3917 3918 3919 3920 3921

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3922
	event->memcg = memcg;
3923
	INIT_LIST_HEAD(&event->list);
3924 3925 3926
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3952 3953 3954 3955 3956
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3957 3958
	 *
	 * DO NOT ADD NEW FILES.
3959
	 */
A
Al Viro 已提交
3960
	name = cfile.file->f_path.dentry->d_name.name;
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3972 3973
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3974 3975 3976 3977 3978
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3979
	/*
3980 3981 3982
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3983
	 */
A
Al Viro 已提交
3984
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3985
					       &memory_cgrp_subsys);
3986
	ret = -EINVAL;
3987
	if (IS_ERR(cfile_css))
3988
		goto out_put_cfile;
3989 3990
	if (cfile_css != css) {
		css_put(cfile_css);
3991
		goto out_put_cfile;
3992
	}
3993

3994
	ret = event->register_event(memcg, event->eventfd, buf);
3995 3996 3997 3998 3999
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4000 4001 4002
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4003 4004 4005 4006

	fdput(cfile);
	fdput(efile);

4007
	return nbytes;
4008 4009

out_put_css:
4010
	css_put(css);
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4023
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4024
	{
4025
		.name = "usage_in_bytes",
4026
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4027
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4028
	},
4029 4030
	{
		.name = "max_usage_in_bytes",
4031
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4032
		.write = mem_cgroup_reset,
4033
		.read_u64 = mem_cgroup_read_u64,
4034
	},
B
Balbir Singh 已提交
4035
	{
4036
		.name = "limit_in_bytes",
4037
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4038
		.write = mem_cgroup_write,
4039
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4040
	},
4041 4042 4043
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4044
		.write = mem_cgroup_write,
4045
		.read_u64 = mem_cgroup_read_u64,
4046
	},
B
Balbir Singh 已提交
4047 4048
	{
		.name = "failcnt",
4049
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4050
		.write = mem_cgroup_reset,
4051
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4052
	},
4053 4054
	{
		.name = "stat",
4055
		.seq_show = memcg_stat_show,
4056
	},
4057 4058
	{
		.name = "force_empty",
4059
		.write = mem_cgroup_force_empty_write,
4060
	},
4061 4062 4063 4064 4065
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4066
	{
4067
		.name = "cgroup.event_control",		/* XXX: for compat */
4068
		.write = memcg_write_event_control,
4069 4070 4071
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4072 4073 4074 4075 4076
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4077 4078 4079 4080 4081
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4082 4083
	{
		.name = "oom_control",
4084
		.seq_show = mem_cgroup_oom_control_read,
4085
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4086 4087
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4088 4089 4090
	{
		.name = "pressure_level",
	},
4091 4092 4093
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4094
		.seq_show = memcg_numa_stat_show,
4095 4096
	},
#endif
4097 4098 4099 4100
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4101
		.write = mem_cgroup_write,
4102
		.read_u64 = mem_cgroup_read_u64,
4103 4104 4105 4106
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4107
		.read_u64 = mem_cgroup_read_u64,
4108 4109 4110 4111
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4112
		.write = mem_cgroup_reset,
4113
		.read_u64 = mem_cgroup_read_u64,
4114 4115 4116 4117
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4118
		.write = mem_cgroup_reset,
4119
		.read_u64 = mem_cgroup_read_u64,
4120
	},
4121 4122 4123
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4124 4125 4126 4127
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4128 4129
	},
#endif
4130
#endif
4131
	{ },	/* terminate */
4132
};
4133

4134
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4135 4136
{
	struct mem_cgroup_per_node *pn;
4137
	struct mem_cgroup_per_zone *mz;
4138
	int zone, tmp = node;
4139 4140 4141 4142 4143 4144 4145 4146
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4147 4148
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4149
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4150 4151
	if (!pn)
		return 1;
4152 4153 4154

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4155
		lruvec_init(&mz->lruvec);
4156 4157
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4158
		mz->memcg = memcg;
4159
	}
4160
	memcg->nodeinfo[node] = pn;
4161 4162 4163
	return 0;
}

4164
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4165
{
4166
	kfree(memcg->nodeinfo[node]);
4167 4168
}

4169 4170
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4171
	struct mem_cgroup *memcg;
4172
	size_t size;
4173

4174 4175
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4176

4177
	memcg = kzalloc(size, GFP_KERNEL);
4178
	if (!memcg)
4179 4180
		return NULL;

4181 4182
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4183
		goto out_free;
T
Tejun Heo 已提交
4184 4185 4186 4187

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4188 4189
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4190

T
Tejun Heo 已提交
4191 4192
out_free_stat:
	free_percpu(memcg->stat);
4193
out_free:
4194
	kfree(memcg);
4195
	return NULL;
4196 4197
}

4198
/*
4199 4200 4201 4202 4203 4204 4205 4206
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4207
 */
4208 4209

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4210
{
4211
	int node;
4212

4213
	mem_cgroup_remove_from_trees(memcg);
4214 4215 4216 4217 4218

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4219
	memcg_wb_domain_exit(memcg);
4220
	kfree(memcg);
4221
}
4222

4223 4224 4225
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4226
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4227
{
4228
	if (!memcg->memory.parent)
4229
		return NULL;
4230
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4231
}
G
Glauber Costa 已提交
4232
EXPORT_SYMBOL(parent_mem_cgroup);
4233

L
Li Zefan 已提交
4234
static struct cgroup_subsys_state * __ref
4235
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4236
{
4237
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4238
	long error = -ENOMEM;
4239
	int node;
B
Balbir Singh 已提交
4240

4241 4242
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4243
		return ERR_PTR(error);
4244

B
Bob Liu 已提交
4245
	for_each_node(node)
4246
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4247
			goto free_out;
4248

4249
	/* root ? */
4250
	if (parent_css == NULL) {
4251
		root_mem_cgroup = memcg;
T
Tejun Heo 已提交
4252
		mem_cgroup_root_css = &memcg->css;
4253
		page_counter_init(&memcg->memory, NULL);
4254
		memcg->high = PAGE_COUNTER_MAX;
4255
		memcg->soft_limit = PAGE_COUNTER_MAX;
4256 4257
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4258
	}
4259

4260 4261 4262 4263 4264
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4265
	vmpressure_init(&memcg->vmpressure);
4266 4267
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4268 4269 4270
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4271 4272 4273
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4274 4275 4276 4277 4278 4279 4280 4281
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4282
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4283
{
4284
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4285
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4286
	int ret;
4287

4288
	if (css->id > MEM_CGROUP_ID_MAX)
4289 4290
		return -ENOSPC;

T
Tejun Heo 已提交
4291
	if (!parent)
4292 4293
		return 0;

4294
	mutex_lock(&memcg_create_mutex);
4295 4296 4297 4298 4299 4300

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4301
		page_counter_init(&memcg->memory, &parent->memory);
4302
		memcg->high = PAGE_COUNTER_MAX;
4303
		memcg->soft_limit = PAGE_COUNTER_MAX;
4304 4305
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4306

4307
		/*
4308 4309
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4310
		 */
4311
	} else {
4312
		page_counter_init(&memcg->memory, NULL);
4313
		memcg->high = PAGE_COUNTER_MAX;
4314
		memcg->soft_limit = PAGE_COUNTER_MAX;
4315 4316
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4317 4318 4319 4320 4321
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4322
		if (parent != root_mem_cgroup)
4323
			memory_cgrp_subsys.broken_hierarchy = true;
4324
	}
4325
	mutex_unlock(&memcg_create_mutex);
4326

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4339 4340
}

4341
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4342
{
4343
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4344
	struct mem_cgroup_event *event, *tmp;
4345 4346 4347 4348 4349 4350

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4351 4352
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4353 4354 4355
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4356
	spin_unlock(&memcg->event_list_lock);
4357

4358
	vmpressure_cleanup(&memcg->vmpressure);
4359 4360

	memcg_deactivate_kmem(memcg);
4361 4362

	wb_memcg_offline(memcg);
4363 4364
}

4365
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4366
{
4367
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4368

4369
	memcg_destroy_kmem(memcg);
4370
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4371 4372
}

4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4390 4391 4392
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4393 4394
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4395
	memcg->soft_limit = PAGE_COUNTER_MAX;
4396
	memcg_wb_domain_size_changed(memcg);
4397 4398
}

4399
#ifdef CONFIG_MMU
4400
/* Handlers for move charge at task migration. */
4401
static int mem_cgroup_do_precharge(unsigned long count)
4402
{
4403
	int ret;
4404 4405

	/* Try a single bulk charge without reclaim first */
4406
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4407
	if (!ret) {
4408 4409 4410
		mc.precharge += count;
		return ret;
	}
4411
	if (ret == -EINTR) {
4412
		cancel_charge(root_mem_cgroup, count);
4413 4414
		return ret;
	}
4415 4416

	/* Try charges one by one with reclaim */
4417
	while (count--) {
4418
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4419 4420 4421
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4422 4423
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4424
		 */
4425
		if (ret == -EINTR)
4426
			cancel_charge(root_mem_cgroup, 1);
4427 4428
		if (ret)
			return ret;
4429
		mc.precharge++;
4430
		cond_resched();
4431
	}
4432
	return 0;
4433 4434 4435
}

/**
4436
 * get_mctgt_type - get target type of moving charge
4437 4438 4439
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4440
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4441 4442 4443 4444 4445 4446
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4447 4448 4449
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4450 4451 4452 4453 4454
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4455
	swp_entry_t	ent;
4456 4457 4458
};

enum mc_target_type {
4459
	MC_TARGET_NONE = 0,
4460
	MC_TARGET_PAGE,
4461
	MC_TARGET_SWAP,
4462 4463
};

D
Daisuke Nishimura 已提交
4464 4465
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4466
{
D
Daisuke Nishimura 已提交
4467
	struct page *page = vm_normal_page(vma, addr, ptent);
4468

D
Daisuke Nishimura 已提交
4469 4470 4471
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4472
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4473
			return NULL;
4474 4475 4476 4477
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4478 4479 4480 4481 4482 4483
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4484
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4485 4486 4487 4488 4489 4490
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4491
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4492
		return NULL;
4493 4494 4495 4496
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4497
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4498 4499 4500 4501 4502
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4503 4504 4505 4506 4507 4508 4509
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4510

4511 4512 4513 4514 4515 4516 4517 4518 4519
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4520
	if (!(mc.flags & MOVE_FILE))
4521 4522 4523
		return NULL;

	mapping = vma->vm_file->f_mapping;
4524
	pgoff = linear_page_index(vma, addr);
4525 4526

	/* page is moved even if it's not RSS of this task(page-faulted). */
4527 4528
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4541
#endif
4542 4543 4544
	return page;
}

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4566
	bool anon;
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4592 4593
	anon = PageAnon(page);

4594 4595
	spin_lock_irqsave(&from->move_lock, flags);

4596
	if (!anon && page_mapped(page)) {
4597 4598 4599 4600 4601 4602
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4650
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4651 4652 4653
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4654
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4655 4656 4657 4658 4659 4660
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4661
	else if (pte_none(ptent))
4662
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4663 4664

	if (!page && !ent.val)
4665
		return ret;
4666 4667
	if (page) {
		/*
4668
		 * Do only loose check w/o serialization.
4669
		 * mem_cgroup_move_account() checks the page is valid or
4670
		 * not under LRU exclusion.
4671
		 */
4672
		if (page->mem_cgroup == mc.from) {
4673 4674 4675 4676 4677 4678 4679
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4680 4681
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4682
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4683 4684 4685
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4686 4687 4688 4689
	}
	return ret;
}

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4703
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4704
	if (!(mc.flags & MOVE_ANON))
4705
		return ret;
4706
	if (page->mem_cgroup == mc.from) {
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4723 4724 4725 4726
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4727
	struct vm_area_struct *vma = walk->vma;
4728 4729 4730
	pte_t *pte;
	spinlock_t *ptl;

4731
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4732 4733
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4734
		spin_unlock(ptl);
4735
		return 0;
4736
	}
4737

4738 4739
	if (pmd_trans_unstable(pmd))
		return 0;
4740 4741
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4742
		if (get_mctgt_type(vma, addr, *pte, NULL))
4743 4744 4745 4746
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4747 4748 4749
	return 0;
}

4750 4751 4752 4753
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4754 4755 4756 4757
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4758
	down_read(&mm->mmap_sem);
4759
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4760
	up_read(&mm->mmap_sem);
4761 4762 4763 4764 4765 4766 4767 4768 4769

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4770 4771 4772 4773 4774
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4775 4776
}

4777 4778
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4779
{
4780 4781 4782
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4783
	/* we must uncharge all the leftover precharges from mc.to */
4784
	if (mc.precharge) {
4785
		cancel_charge(mc.to, mc.precharge);
4786 4787 4788 4789 4790 4791 4792
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4793
		cancel_charge(mc.from, mc.moved_charge);
4794
		mc.moved_charge = 0;
4795
	}
4796 4797 4798
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4799
		if (!mem_cgroup_is_root(mc.from))
4800
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4801

4802
		/*
4803 4804
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4805
		 */
4806
		if (!mem_cgroup_is_root(mc.to))
4807 4808
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4809
		css_put_many(&mc.from->css, mc.moved_swap);
4810

L
Li Zefan 已提交
4811
		/* we've already done css_get(mc.to) */
4812 4813
		mc.moved_swap = 0;
	}
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4827
	spin_lock(&mc.lock);
4828 4829
	mc.from = NULL;
	mc.to = NULL;
4830
	spin_unlock(&mc.lock);
4831 4832
}

4833
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4834
				 struct cgroup_taskset *tset)
4835
{
4836
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4837 4838 4839
	struct mem_cgroup *from;
	struct task_struct *p;
	struct mm_struct *mm;
4840
	unsigned long move_flags;
4841
	int ret = 0;
4842

4843 4844 4845 4846 4847
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
4848
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
	if (!move_flags)
		return 0;

	p = cgroup_taskset_first(tset);
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4878
	}
4879
	mmput(mm);
4880 4881 4882
	return ret;
}

4883
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4884
				     struct cgroup_taskset *tset)
4885
{
4886 4887
	if (mc.to)
		mem_cgroup_clear_mc();
4888 4889
}

4890 4891 4892
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4893
{
4894
	int ret = 0;
4895
	struct vm_area_struct *vma = walk->vma;
4896 4897
	pte_t *pte;
	spinlock_t *ptl;
4898 4899 4900
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4901

4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4912
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4913
		if (mc.precharge < HPAGE_PMD_NR) {
4914
			spin_unlock(ptl);
4915 4916 4917 4918 4919 4920 4921
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4922
							     mc.from, mc.to)) {
4923 4924 4925 4926 4927 4928 4929
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4930
		spin_unlock(ptl);
4931
		return 0;
4932 4933
	}

4934 4935
	if (pmd_trans_unstable(pmd))
		return 0;
4936 4937 4938 4939
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4940
		swp_entry_t ent;
4941 4942 4943 4944

		if (!mc.precharge)
			break;

4945
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4946 4947 4948 4949
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4950
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4951
				mc.precharge--;
4952 4953
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4954 4955
			}
			putback_lru_page(page);
4956
put:			/* get_mctgt_type() gets the page */
4957 4958
			put_page(page);
			break;
4959 4960
		case MC_TARGET_SWAP:
			ent = target.ent;
4961
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4962
				mc.precharge--;
4963 4964 4965
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4966
			break;
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4981
		ret = mem_cgroup_do_precharge(1);
4982 4983 4984 4985 4986 4987 4988 4989 4990
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4991 4992 4993 4994
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4995 4996

	lru_add_drain_all();
4997 4998 4999 5000 5001 5002 5003
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5017 5018 5019 5020 5021
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5022
	up_read(&mm->mmap_sem);
5023
	atomic_dec(&mc.from->moving_account);
5024 5025
}

5026
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5027
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5028
{
5029
	struct task_struct *p = cgroup_taskset_first(tset);
5030
	struct mm_struct *mm = get_task_mm(p);
5031 5032

	if (mm) {
5033 5034
		if (mc.to)
			mem_cgroup_move_charge(mm);
5035 5036
		mmput(mm);
	}
5037 5038
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5039
}
5040
#else	/* !CONFIG_MMU */
5041
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5042
				 struct cgroup_taskset *tset)
5043 5044 5045
{
	return 0;
}
5046
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5047
				     struct cgroup_taskset *tset)
5048 5049
{
}
5050
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5051
				 struct cgroup_taskset *tset)
5052 5053 5054
{
}
#endif
B
Balbir Singh 已提交
5055

5056 5057
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5058 5059
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5060
 */
5061
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5062 5063
{
	/*
5064
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5065 5066 5067
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5068
	if (cgroup_on_dfl(root_css->cgroup))
5069 5070 5071
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5072 5073
}

5074 5075 5076 5077 5078 5079 5080 5081 5082
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5083
	unsigned long low = READ_ONCE(memcg->low);
5084 5085

	if (low == PAGE_COUNTER_MAX)
5086
		seq_puts(m, "max\n");
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5101
	err = page_counter_memparse(buf, "max", &low);
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5113
	unsigned long high = READ_ONCE(memcg->high);
5114 5115

	if (high == PAGE_COUNTER_MAX)
5116
		seq_puts(m, "max\n");
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5131
	err = page_counter_memparse(buf, "max", &high);
5132 5133 5134 5135 5136
	if (err)
		return err;

	memcg->high = high;

5137
	memcg_wb_domain_size_changed(memcg);
5138 5139 5140 5141 5142 5143
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5144
	unsigned long max = READ_ONCE(memcg->memory.limit);
5145 5146

	if (max == PAGE_COUNTER_MAX)
5147
		seq_puts(m, "max\n");
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5162
	err = page_counter_memparse(buf, "max", &max);
5163 5164 5165 5166 5167 5168 5169
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5170
	memcg_wb_domain_size_changed(memcg);
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5217
struct cgroup_subsys memory_cgrp_subsys = {
5218
	.css_alloc = mem_cgroup_css_alloc,
5219
	.css_online = mem_cgroup_css_online,
5220 5221
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5222
	.css_reset = mem_cgroup_css_reset,
5223 5224
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5225
	.attach = mem_cgroup_move_task,
5226
	.bind = mem_cgroup_bind,
5227 5228
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5229
	.early_init = 0,
B
Balbir Singh 已提交
5230
};
5231

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5254
	if (page_counter_read(&memcg->memory) >= memcg->low)
5255 5256 5257 5258 5259 5260 5261 5262
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5263
		if (page_counter_read(&memcg->memory) >= memcg->low)
5264 5265 5266 5267 5268
			return false;
	}
	return true;
}

5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5304
		if (page->mem_cgroup)
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5365 5366
	commit_charge(page, memcg, lrucare);

5367 5368 5369 5370 5371
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5372 5373 5374 5375
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5417 5418 5419 5420
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5421
	unsigned long nr_pages = nr_anon + nr_file;
5422 5423
	unsigned long flags;

5424
	if (!mem_cgroup_is_root(memcg)) {
5425 5426 5427
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5428 5429
		memcg_oom_recover(memcg);
	}
5430 5431 5432 5433 5434 5435

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5436
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5437 5438
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5439 5440

	if (!mem_cgroup_is_root(memcg))
5441
		css_put_many(&memcg->css, nr_pages);
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5464
		if (!page->mem_cgroup)
5465 5466 5467 5468
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5469
		 * page->mem_cgroup at this point, we have fully
5470
		 * exclusive access to the page.
5471 5472
		 */

5473
		if (memcg != page->mem_cgroup) {
5474
			if (memcg) {
5475 5476 5477
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5478
			}
5479
			memcg = page->mem_cgroup;
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5493
		page->mem_cgroup = NULL;
5494 5495 5496 5497 5498

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5499 5500
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5501 5502
}

5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5515
	/* Don't touch page->lru of any random page, pre-check: */
5516
	if (!page->mem_cgroup)
5517 5518
		return;

5519 5520 5521
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5522

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5534

5535 5536
	if (!list_empty(page_list))
		uncharge_list(page_list);
5537 5538 5539 5540 5541 5542
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5543
 * @lrucare: either or both pages might be on the LRU already
5544 5545 5546 5547 5548 5549 5550 5551
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5552
	struct mem_cgroup *memcg;
5553 5554 5555 5556 5557 5558 5559
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5560 5561
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5562 5563 5564 5565 5566

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5567
	if (newpage->mem_cgroup)
5568 5569
		return;

5570 5571 5572 5573 5574 5575
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5576
	memcg = oldpage->mem_cgroup;
5577
	if (!memcg)
5578 5579 5580 5581 5582
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5583
	oldpage->mem_cgroup = NULL;
5584 5585 5586 5587

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5588
	commit_charge(newpage, memcg, lrucare);
5589 5590
}

5591
/*
5592 5593 5594 5595 5596 5597
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5598 5599 5600
 */
static int __init mem_cgroup_init(void)
{
5601 5602
	int cpu, node;

5603
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5626 5627 5628
	return 0;
}
subsys_initcall(mem_cgroup_init);
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5664 5665 5666 5667 5668 5669 5670
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5691
	memcg = mem_cgroup_from_id(id);
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */