memcontrol.c 186.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
91
	"rss_huge",
92
	"mapped_file",
93
	"writeback",
94 95 96
	"swap",
};

97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

112 113 114 115 116 117 118 119
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

120 121 122 123 124 125 126 127
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
128
	MEM_CGROUP_TARGET_SOFTLIMIT,
129
	MEM_CGROUP_TARGET_NUMAINFO,
130 131
	MEM_CGROUP_NTARGETS,
};
132 133 134
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
135

136
struct mem_cgroup_stat_cpu {
137
	long count[MEM_CGROUP_STAT_NSTATS];
138
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
139
	unsigned long nr_page_events;
140
	unsigned long targets[MEM_CGROUP_NTARGETS];
141 142
};

143
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
144 145 146 147
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
148
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
149 150
	unsigned long last_dead_count;

151 152 153 154
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

155 156 157 158
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
159
	struct lruvec		lruvec;
160
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
161

162 163
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

164 165 166 167
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
168
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
169
						/* use container_of	   */
170 171 172 173 174 175
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

196 197 198 199 200
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
201
/* For threshold */
202
struct mem_cgroup_threshold_ary {
203
	/* An array index points to threshold just below or equal to usage. */
204
	int current_threshold;
205 206 207 208 209
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
210 211 212 213 214 215 216 217 218 219 220 221

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
222 223 224 225 226
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
227

228 229
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
230

B
Balbir Singh 已提交
231 232 233 234 235 236 237
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
238 239 240
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
241 242 243 244 245 246 247
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
248

249 250 251
	/* vmpressure notifications */
	struct vmpressure vmpressure;

252 253 254 255
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
256

257 258 259 260
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
261 262 263 264
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
265
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
266 267 268

	bool		oom_lock;
	atomic_t	under_oom;
269
	atomic_t	oom_wakeups;
270

271
	int	swappiness;
272 273
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
274

275 276 277
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

278 279 280 281
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
282
	struct mem_cgroup_thresholds thresholds;
283

284
	/* thresholds for mem+swap usage. RCU-protected */
285
	struct mem_cgroup_thresholds memsw_thresholds;
286

K
KAMEZAWA Hiroyuki 已提交
287 288
	/* For oom notifier event fd */
	struct list_head oom_notify;
289

290 291 292 293
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
294
	unsigned long move_charge_at_immigrate;
295 296 297 298
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
299 300
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
301
	/*
302
	 * percpu counter.
303
	 */
304
	struct mem_cgroup_stat_cpu __percpu *stat;
305 306 307 308 309 310
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
311

M
Michal Hocko 已提交
312
	atomic_t	dead_count;
M
Michal Hocko 已提交
313
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
314 315
	struct tcp_memcontrol tcp_mem;
#endif
316 317 318 319 320 321 322 323
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
324 325 326 327 328 329 330

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
331

332 333
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
334 335
};

336 337 338 339 340 341
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

342 343 344
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
345
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
346
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
347 348
};

349 350 351
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
352 353 354 355 356 357

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
358 359 360 361 362 363

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

364 365 366 367 368
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

369 370 371 372 373
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

374 375
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
376 377 378 379 380
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
381 382 383 384 385 386 387 388 389
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
390 391
#endif

392 393
/* Stuffs for move charges at task migration. */
/*
394 395
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
396 397
 */
enum move_type {
398
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
399
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
400 401 402
	NR_MOVE_TYPE,
};

403 404
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
405
	spinlock_t	  lock; /* for from, to */
406 407
	struct mem_cgroup *from;
	struct mem_cgroup *to;
408
	unsigned long immigrate_flags;
409
	unsigned long precharge;
410
	unsigned long moved_charge;
411
	unsigned long moved_swap;
412 413 414
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
415
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
416 417
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
418

D
Daisuke Nishimura 已提交
419 420
static bool move_anon(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
422 423
}

424 425
static bool move_file(void)
{
426
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
427 428
}

429 430 431 432
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
433
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
434
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
435

436 437
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
438
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
439
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
440
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
441 442 443
	NR_CHARGE_TYPE,
};

444
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
445 446 447 448
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
449
	_KMEM,
G
Glauber Costa 已提交
450 451
};

452 453
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
454
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
455 456
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
457

458 459 460 461 462 463 464 465
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

466 467 468 469 470 471 472
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

473 474
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
475
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

496 497 498 499 500
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
501
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
502
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
503 504 505

void sock_update_memcg(struct sock *sk)
{
506
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
507
		struct mem_cgroup *memcg;
508
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
509 510 511

		BUG_ON(!sk->sk_prot->proto_cgroup);

512 513 514 515 516 517 518 519 520 521
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
522
			css_get(&sk->sk_cgrp->memcg->css);
523 524 525
			return;
		}

G
Glauber Costa 已提交
526 527
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
528
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
529 530
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
531
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
532 533 534 535 536 537 538 539
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
540
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
541 542 543
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
544
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
545 546
	}
}
G
Glauber Costa 已提交
547 548 549 550 551 552 553 554 555

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
556

557 558 559 560 561 562 563 564 565 566 567 568
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

569
#ifdef CONFIG_MEMCG_KMEM
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
588 589
int memcg_limited_groups_array_size;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

605 606 607 608 609 610
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
611
struct static_key memcg_kmem_enabled_key;
612
EXPORT_SYMBOL(memcg_kmem_enabled_key);
613 614 615

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
616
	if (memcg_kmem_is_active(memcg)) {
617
		static_key_slow_dec(&memcg_kmem_enabled_key);
618 619
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
620 621 622 623 624
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
625 626 627 628 629 630 631 632 633 634 635 636 637
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

638
static void drain_all_stock_async(struct mem_cgroup *memcg);
639

640
static struct mem_cgroup_per_zone *
641
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
642
{
643
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
644
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
645 646
}

647
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
648
{
649
	return &memcg->css;
650 651
}

652
static struct mem_cgroup_per_zone *
653
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
654
{
655 656
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
657

658
	return mem_cgroup_zoneinfo(memcg, nid, zid);
659 660
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
838
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
839
				 enum mem_cgroup_stat_index idx)
840
{
841
	long val = 0;
842 843
	int cpu;

844 845
	get_online_cpus();
	for_each_online_cpu(cpu)
846
		val += per_cpu(memcg->stat->count[idx], cpu);
847
#ifdef CONFIG_HOTPLUG_CPU
848 849 850
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
851 852
#endif
	put_online_cpus();
853 854 855
	return val;
}

856
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
857 858 859
					 bool charge)
{
	int val = (charge) ? 1 : -1;
860
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
861 862
}

863
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
864 865 866 867 868
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

869
	get_online_cpus();
870
	for_each_online_cpu(cpu)
871
		val += per_cpu(memcg->stat->events[idx], cpu);
872
#ifdef CONFIG_HOTPLUG_CPU
873 874 875
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
876
#endif
877
	put_online_cpus();
878 879 880
	return val;
}

881
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
882
					 struct page *page,
883
					 bool anon, int nr_pages)
884
{
885 886
	preempt_disable();

887 888 889 890 891 892
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
893
				nr_pages);
894
	else
895
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
896
				nr_pages);
897

898 899 900 901
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

902 903
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
904
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
905
	else {
906
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
907 908
		nr_pages = -nr_pages; /* for event */
	}
909

910
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
911

912
	preempt_enable();
913 914
}

915
unsigned long
916
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
917 918 919 920 921 922 923 924
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
925
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
926
			unsigned int lru_mask)
927 928
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
929
	enum lru_list lru;
930 931
	unsigned long ret = 0;

932
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
933

H
Hugh Dickins 已提交
934 935 936
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
937 938 939 940 941
	}
	return ret;
}

static unsigned long
942
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
943 944
			int nid, unsigned int lru_mask)
{
945 946 947
	u64 total = 0;
	int zid;

948
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
949 950
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
951

952 953
	return total;
}
954

955
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
956
			unsigned int lru_mask)
957
{
958
	int nid;
959 960
	u64 total = 0;

961
	for_each_node_state(nid, N_MEMORY)
962
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
963
	return total;
964 965
}

966 967
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
968 969 970
{
	unsigned long val, next;

971
	val = __this_cpu_read(memcg->stat->nr_page_events);
972
	next = __this_cpu_read(memcg->stat->targets[target]);
973
	/* from time_after() in jiffies.h */
974 975 976 977 978
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
979 980 981
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
982 983 984 985 986 987 988 989
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
990
	}
991
	return false;
992 993 994 995 996 997
}

/*
 * Check events in order.
 *
 */
998
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
999
{
1000
	preempt_disable();
1001
	/* threshold event is triggered in finer grain than soft limit */
1002 1003
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1004
		bool do_softlimit;
1005
		bool do_numainfo __maybe_unused;
1006

1007 1008
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1009 1010 1011 1012 1013 1014
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1015
		mem_cgroup_threshold(memcg);
1016 1017
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1018
#if MAX_NUMNODES > 1
1019
		if (unlikely(do_numainfo))
1020
			atomic_inc(&memcg->numainfo_events);
1021
#endif
1022 1023
	} else
		preempt_enable();
1024 1025
}

1026
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1027
{
1028 1029 1030 1031 1032 1033 1034 1035
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1036
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1037 1038
}

1039
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1040
{
1041
	struct mem_cgroup *memcg = NULL;
1042 1043 1044

	if (!mm)
		return NULL;
1045 1046 1047 1048 1049 1050 1051
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1052 1053
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1054
			break;
1055
	} while (!css_tryget(&memcg->css));
1056
	rcu_read_unlock();
1057
	return memcg;
1058 1059
}

1060 1061 1062 1063 1064 1065 1066
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1067
		struct mem_cgroup *last_visited)
1068
{
1069
	struct cgroup_subsys_state *prev_css, *next_css;
1070

1071
	prev_css = last_visited ? &last_visited->css : NULL;
1072
skip_node:
1073
	next_css = css_next_descendant_pre(prev_css, &root->css);
1074 1075 1076 1077 1078 1079 1080 1081

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1082 1083 1084
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1085 1086 1087
		if (css_tryget(&mem->css))
			return mem;
		else {
1088
			prev_css = next_css;
1089 1090 1091 1092 1093 1094 1095
			goto skip_node;
		}
	}

	return NULL;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1165
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1166
				   struct mem_cgroup *prev,
1167
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1168
{
1169
	struct mem_cgroup *memcg = NULL;
1170
	struct mem_cgroup *last_visited = NULL;
1171

1172 1173
	if (mem_cgroup_disabled())
		return NULL;
1174

1175 1176
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1177

1178
	if (prev && !reclaim)
1179
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1180

1181 1182
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1183
			goto out_css_put;
1184
		return root;
1185
	}
K
KAMEZAWA Hiroyuki 已提交
1186

1187
	rcu_read_lock();
1188
	while (!memcg) {
1189
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1190
		int uninitialized_var(seq);
1191

1192 1193 1194 1195 1196 1197 1198
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1199
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1200
				iter->last_visited = NULL;
1201 1202
				goto out_unlock;
			}
M
Michal Hocko 已提交
1203

1204
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1205
		}
K
KAMEZAWA Hiroyuki 已提交
1206

1207
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1208

1209
		if (reclaim) {
1210
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1211

M
Michal Hocko 已提交
1212
			if (!memcg)
1213 1214 1215 1216
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1217

1218
		if (prev && !memcg)
1219
			goto out_unlock;
1220
	}
1221 1222
out_unlock:
	rcu_read_unlock();
1223 1224 1225 1226
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1227
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1228
}
K
KAMEZAWA Hiroyuki 已提交
1229

1230 1231 1232 1233 1234 1235 1236
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1237 1238 1239 1240 1241 1242
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1243

1244 1245 1246 1247 1248 1249
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1250
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1251
	     iter != NULL;				\
1252
	     iter = mem_cgroup_iter(root, iter, NULL))
1253

1254
#define for_each_mem_cgroup(iter)			\
1255
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1256
	     iter != NULL;				\
1257
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1258

1259
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1260
{
1261
	struct mem_cgroup *memcg;
1262 1263

	rcu_read_lock();
1264 1265
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1266 1267 1268 1269
		goto out;

	switch (idx) {
	case PGFAULT:
1270 1271 1272 1273
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1274 1275 1276 1277 1278 1279 1280
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1281
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1282

1283 1284 1285
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1286
 * @memcg: memcg of the wanted lruvec
1287 1288 1289 1290 1291 1292 1293 1294 1295
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1296
	struct lruvec *lruvec;
1297

1298 1299 1300 1301
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1302 1303

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1314 1315
}

K
KAMEZAWA Hiroyuki 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1329

1330
/**
1331
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1332
 * @page: the page
1333
 * @zone: zone of the page
1334
 */
1335
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1336 1337
{
	struct mem_cgroup_per_zone *mz;
1338 1339
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1340
	struct lruvec *lruvec;
1341

1342 1343 1344 1345
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1346

K
KAMEZAWA Hiroyuki 已提交
1347
	pc = lookup_page_cgroup(page);
1348
	memcg = pc->mem_cgroup;
1349 1350

	/*
1351
	 * Surreptitiously switch any uncharged offlist page to root:
1352 1353 1354 1355 1356 1357 1358
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1359
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1360 1361
		pc->mem_cgroup = memcg = root_mem_cgroup;

1362
	mz = page_cgroup_zoneinfo(memcg, page);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1373
}
1374

1375
/**
1376 1377 1378 1379
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1380
 *
1381 1382
 * This function must be called when a page is added to or removed from an
 * lru list.
1383
 */
1384 1385
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1386 1387
{
	struct mem_cgroup_per_zone *mz;
1388
	unsigned long *lru_size;
1389 1390 1391 1392

	if (mem_cgroup_disabled())
		return;

1393 1394 1395 1396
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1397
}
1398

1399
/*
1400
 * Checks whether given mem is same or in the root_mem_cgroup's
1401 1402
 * hierarchy subtree
 */
1403 1404
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1405
{
1406 1407
	if (root_memcg == memcg)
		return true;
1408
	if (!root_memcg->use_hierarchy || !memcg)
1409
		return false;
1410 1411 1412 1413 1414 1415 1416 1417
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1418
	rcu_read_lock();
1419
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1420 1421
	rcu_read_unlock();
	return ret;
1422 1423
}

1424 1425
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1426
{
1427
	struct mem_cgroup *curr = NULL;
1428
	struct task_struct *p;
1429
	bool ret;
1430

1431
	p = find_lock_task_mm(task);
1432 1433 1434 1435 1436 1437 1438 1439 1440
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1441
		rcu_read_lock();
1442 1443 1444
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1445
		rcu_read_unlock();
1446
	}
1447
	if (!curr)
1448
		return false;
1449
	/*
1450
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1451
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1452 1453
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1454
	 */
1455
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1456
	css_put(&curr->css);
1457 1458 1459
	return ret;
}

1460
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1461
{
1462
	unsigned long inactive_ratio;
1463
	unsigned long inactive;
1464
	unsigned long active;
1465
	unsigned long gb;
1466

1467 1468
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1469

1470 1471 1472 1473 1474 1475
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1476
	return inactive * inactive_ratio < active;
1477 1478
}

1479 1480 1481
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1482
/**
1483
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1484
 * @memcg: the memory cgroup
1485
 *
1486
 * Returns the maximum amount of memory @mem can be charged with, in
1487
 * pages.
1488
 */
1489
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1490
{
1491 1492
	unsigned long long margin;

1493
	margin = res_counter_margin(&memcg->res);
1494
	if (do_swap_account)
1495
		margin = min(margin, res_counter_margin(&memcg->memsw));
1496
	return margin >> PAGE_SHIFT;
1497 1498
}

1499
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1500 1501
{
	/* root ? */
T
Tejun Heo 已提交
1502
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1503 1504
		return vm_swappiness;

1505
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1506 1507
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1522 1523 1524 1525

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1526
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1527
{
1528
	atomic_inc(&memcg_moving);
1529
	atomic_inc(&memcg->moving_account);
1530 1531 1532
	synchronize_rcu();
}

1533
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1534
{
1535 1536 1537 1538
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1539 1540
	if (memcg) {
		atomic_dec(&memcg_moving);
1541
		atomic_dec(&memcg->moving_account);
1542
	}
1543
}
1544

1545 1546 1547
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1548 1549
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1550 1551 1552 1553 1554 1555 1556
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1557
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1558 1559
{
	VM_BUG_ON(!rcu_read_lock_held());
1560
	return atomic_read(&memcg->moving_account) > 0;
1561
}
1562

1563
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1564
{
1565 1566
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1567
	bool ret = false;
1568 1569 1570 1571 1572 1573 1574 1575 1576
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1577

1578 1579
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1580 1581
unlock:
	spin_unlock(&mc.lock);
1582 1583 1584
	return ret;
}

1585
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1586 1587
{
	if (mc.moving_task && current != mc.moving_task) {
1588
		if (mem_cgroup_under_move(memcg)) {
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1601 1602 1603 1604
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1605
 * see mem_cgroup_stolen(), too.
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1619
#define K(x) ((x) << (PAGE_SHIFT-10))
1620
/**
1621
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1639 1640
	struct mem_cgroup *iter;
	unsigned int i;
1641

1642
	if (!p)
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1661
	pr_info("Task in %s killed", memcg_name);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1674
	pr_cont(" as a result of limit of %s\n", memcg_name);
1675 1676
done:

1677
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1678 1679 1680
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1681
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1682 1683 1684
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1685
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1686 1687 1688
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1713 1714
}

1715 1716 1717 1718
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1719
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1720 1721
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1722 1723
	struct mem_cgroup *iter;

1724
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1725
		num++;
1726 1727 1728
	return num;
}

D
David Rientjes 已提交
1729 1730 1731
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1732
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1733 1734 1735
{
	u64 limit;

1736 1737
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1738
	/*
1739
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1740
	 */
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1755 1756
}

1757 1758
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1759 1760 1761 1762 1763 1764 1765
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1766
	/*
1767 1768 1769
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1770
	 */
1771
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1772 1773 1774 1775 1776
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1777 1778
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1779
		struct css_task_iter it;
1780 1781
		struct task_struct *task;

1782 1783
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1796
				css_task_iter_end(&it);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1813
		css_task_iter_end(&it);
1814 1815 1816 1817 1818 1819 1820 1821 1822
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1859 1860
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1861
 * @memcg: the target memcg
1862 1863 1864 1865 1866 1867 1868
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1869
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1870 1871
		int nid, bool noswap)
{
1872
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1873 1874 1875
		return true;
	if (noswap || !total_swap_pages)
		return false;
1876
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1877 1878 1879 1880
		return true;
	return false;

}
1881
#if MAX_NUMNODES > 1
1882 1883 1884 1885 1886 1887 1888

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1889
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1890 1891
{
	int nid;
1892 1893 1894 1895
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1896
	if (!atomic_read(&memcg->numainfo_events))
1897
		return;
1898
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1899 1900 1901
		return;

	/* make a nodemask where this memcg uses memory from */
1902
	memcg->scan_nodes = node_states[N_MEMORY];
1903

1904
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1905

1906 1907
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1908
	}
1909

1910 1911
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1926
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1927 1928 1929
{
	int node;

1930 1931
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1932

1933
	node = next_node(node, memcg->scan_nodes);
1934
	if (node == MAX_NUMNODES)
1935
		node = first_node(memcg->scan_nodes);
1936 1937 1938 1939 1940 1941 1942 1943 1944
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1945
	memcg->last_scanned_node = node;
1946 1947 1948
	return node;
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1984
#else
1985
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1986 1987 1988
{
	return 0;
}
1989

1990 1991 1992 1993
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1994 1995
#endif

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2044
	}
2045 2046
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2047 2048
}

2049 2050
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2051 2052 2053 2054
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2055
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2056
{
2057
	struct mem_cgroup *iter, *failed = NULL;
2058

2059 2060
	spin_lock(&memcg_oom_lock);

2061
	for_each_mem_cgroup_tree(iter, memcg) {
2062
		if (iter->oom_lock) {
2063 2064 2065 2066 2067
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2068 2069
			mem_cgroup_iter_break(memcg, iter);
			break;
2070 2071
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2072
	}
K
KAMEZAWA Hiroyuki 已提交
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2085 2086
		}
	}
2087 2088 2089 2090

	spin_unlock(&memcg_oom_lock);

	return !failed;
2091
}
2092

2093
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2094
{
K
KAMEZAWA Hiroyuki 已提交
2095 2096
	struct mem_cgroup *iter;

2097
	spin_lock(&memcg_oom_lock);
2098
	for_each_mem_cgroup_tree(iter, memcg)
2099
		iter->oom_lock = false;
2100
	spin_unlock(&memcg_oom_lock);
2101 2102
}

2103
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2104 2105 2106
{
	struct mem_cgroup *iter;

2107
	for_each_mem_cgroup_tree(iter, memcg)
2108 2109 2110
		atomic_inc(&iter->under_oom);
}

2111
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2112 2113 2114
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2115 2116 2117 2118 2119
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2120
	for_each_mem_cgroup_tree(iter, memcg)
2121
		atomic_add_unless(&iter->under_oom, -1, 0);
2122 2123
}

K
KAMEZAWA Hiroyuki 已提交
2124 2125
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2126
struct oom_wait_info {
2127
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2128 2129 2130 2131 2132 2133
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2134 2135
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2136 2137 2138
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2139
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2140 2141

	/*
2142
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2143 2144
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2145 2146
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2147 2148 2149 2150
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2151
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2152
{
2153
	atomic_inc(&memcg->oom_wakeups);
2154 2155
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2156 2157
}

2158
static void memcg_oom_recover(struct mem_cgroup *memcg)
2159
{
2160 2161
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2162 2163
}

2164
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2165
{
2166 2167
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2168
	/*
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2181
	 */
2182 2183 2184 2185
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2186 2187 2188 2189
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2190
 * @handle: actually kill/wait or just clean up the OOM state
2191
 *
2192 2193
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2194
 *
2195
 * Memcg supports userspace OOM handling where failed allocations must
2196 2197 2198 2199
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2200
 * the end of the page fault to complete the OOM handling.
2201 2202
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2203
 * completed, %false otherwise.
2204
 */
2205
bool mem_cgroup_oom_synchronize(bool handle)
2206
{
2207
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2208
	struct oom_wait_info owait;
2209
	bool locked;
2210 2211 2212

	/* OOM is global, do not handle */
	if (!memcg)
2213
		return false;
2214

2215 2216
	if (!handle)
		goto cleanup;
2217 2218 2219 2220 2221 2222

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2223

2224
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2238
		schedule();
2239 2240 2241 2242 2243
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2244 2245 2246 2247 2248 2249 2250 2251
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2252 2253
cleanup:
	current->memcg_oom.memcg = NULL;
2254
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2255
	return true;
2256 2257
}

2258 2259 2260
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2278 2279
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2280
 */
2281

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2295
	 * need to take move_lock_mem_cgroup(). Because we already hold
2296
	 * rcu_read_lock(), any calls to move_account will be delayed until
2297
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2298
	 */
2299
	if (!mem_cgroup_stolen(memcg))
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2317
	 * should take move_lock_mem_cgroup().
2318 2319 2320 2321
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2322
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2323
				 enum mem_cgroup_stat_index idx, int val)
2324
{
2325
	struct mem_cgroup *memcg;
2326
	struct page_cgroup *pc = lookup_page_cgroup(page);
2327
	unsigned long uninitialized_var(flags);
2328

2329
	if (mem_cgroup_disabled())
2330
		return;
2331

2332
	VM_BUG_ON(!rcu_read_lock_held());
2333 2334
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2335
		return;
2336

2337
	this_cpu_add(memcg->stat->count[idx], val);
2338
}
2339

2340 2341 2342 2343
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2344
#define CHARGE_BATCH	32U
2345 2346
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2347
	unsigned int nr_pages;
2348
	struct work_struct work;
2349
	unsigned long flags;
2350
#define FLUSHING_CACHED_CHARGE	0
2351 2352
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2353
static DEFINE_MUTEX(percpu_charge_mutex);
2354

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2365
 */
2366
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2367 2368 2369 2370
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2371 2372 2373
	if (nr_pages > CHARGE_BATCH)
		return false;

2374
	stock = &get_cpu_var(memcg_stock);
2375 2376
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2390 2391 2392 2393
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2394
		if (do_swap_account)
2395 2396
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2409
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2410 2411
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2423 2424
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2425
 * This will be consumed by consume_stock() function, later.
2426
 */
2427
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2428 2429 2430
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2431
	if (stock->cached != memcg) { /* reset if necessary */
2432
		drain_stock(stock);
2433
		stock->cached = memcg;
2434
	}
2435
	stock->nr_pages += nr_pages;
2436 2437 2438 2439
	put_cpu_var(memcg_stock);
}

/*
2440
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2441 2442
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2443
 */
2444
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2445
{
2446
	int cpu, curcpu;
2447

2448 2449
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2450
	curcpu = get_cpu();
2451 2452
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2453
		struct mem_cgroup *memcg;
2454

2455 2456
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2457
			continue;
2458
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2459
			continue;
2460 2461 2462 2463 2464 2465
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2466
	}
2467
	put_cpu();
2468 2469 2470 2471 2472 2473

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2474
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2475 2476 2477
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2478
	put_online_cpus();
2479 2480 2481 2482 2483 2484 2485 2486
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2487
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2488
{
2489 2490 2491 2492 2493
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2494
	drain_all_stock(root_memcg, false);
2495
	mutex_unlock(&percpu_charge_mutex);
2496 2497 2498
}

/* This is a synchronous drain interface. */
2499
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2500 2501
{
	/* called when force_empty is called */
2502
	mutex_lock(&percpu_charge_mutex);
2503
	drain_all_stock(root_memcg, true);
2504
	mutex_unlock(&percpu_charge_mutex);
2505 2506
}

2507 2508 2509 2510
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2511
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2512 2513 2514
{
	int i;

2515
	spin_lock(&memcg->pcp_counter_lock);
2516
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2517
		long x = per_cpu(memcg->stat->count[i], cpu);
2518

2519 2520
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2521
	}
2522
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2523
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2524

2525 2526
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2527
	}
2528
	spin_unlock(&memcg->pcp_counter_lock);
2529 2530
}

2531
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2532 2533 2534 2535 2536
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2537
	struct mem_cgroup *iter;
2538

2539
	if (action == CPU_ONLINE)
2540 2541
		return NOTIFY_OK;

2542
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2543
		return NOTIFY_OK;
2544

2545
	for_each_mem_cgroup(iter)
2546 2547
		mem_cgroup_drain_pcp_counter(iter, cpu);

2548 2549 2550 2551 2552
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2553 2554 2555 2556 2557 2558 2559 2560 2561

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2562
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2563
				unsigned int nr_pages, unsigned int min_pages,
2564
				bool invoke_oom)
2565
{
2566
	unsigned long csize = nr_pages * PAGE_SIZE;
2567 2568 2569 2570 2571
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2572
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2573 2574 2575 2576

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2577
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2578 2579 2580
		if (likely(!ret))
			return CHARGE_OK;

2581
		res_counter_uncharge(&memcg->res, csize);
2582 2583 2584 2585
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2586 2587 2588 2589
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2590
	if (nr_pages > min_pages)
2591 2592 2593 2594 2595
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2596 2597 2598
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2599
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2600
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2601
		return CHARGE_RETRY;
2602
	/*
2603 2604 2605 2606 2607 2608 2609
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2610
	 */
2611
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2612 2613 2614 2615 2616 2617 2618 2619 2620
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2621 2622
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2623

2624
	return CHARGE_NOMEM;
2625 2626
}

2627
/*
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2647
 */
2648
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2649
				   gfp_t gfp_mask,
2650
				   unsigned int nr_pages,
2651
				   struct mem_cgroup **ptr,
2652
				   bool oom)
2653
{
2654
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2655
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2656
	struct mem_cgroup *memcg = NULL;
2657
	int ret;
2658

K
KAMEZAWA Hiroyuki 已提交
2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2667

2668 2669 2670
	if (unlikely(task_in_memcg_oom(current)))
		goto bypass;

2671
	/*
2672 2673
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2674
	 * thread group leader migrates. It's possible that mm is not
2675
	 * set, if so charge the root memcg (happens for pagecache usage).
2676
	 */
2677
	if (!*ptr && !mm)
2678
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2679
again:
2680 2681 2682
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2683
			goto done;
2684
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2685
			goto done;
2686
		css_get(&memcg->css);
2687
	} else {
K
KAMEZAWA Hiroyuki 已提交
2688
		struct task_struct *p;
2689

K
KAMEZAWA Hiroyuki 已提交
2690 2691 2692
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2693
		 * Because we don't have task_lock(), "p" can exit.
2694
		 * In that case, "memcg" can point to root or p can be NULL with
2695 2696 2697 2698 2699 2700
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2701
		 */
2702
		memcg = mem_cgroup_from_task(p);
2703 2704 2705
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2706 2707 2708
			rcu_read_unlock();
			goto done;
		}
2709
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2722
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2723 2724 2725 2726 2727
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2728

2729
	do {
2730
		bool invoke_oom = oom && !nr_oom_retries;
2731

2732
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2733
		if (fatal_signal_pending(current)) {
2734
			css_put(&memcg->css);
2735
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2736
		}
2737

2738 2739
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2740 2741 2742 2743
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2744
			batch = nr_pages;
2745 2746
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2747
			goto again;
2748
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2749
			css_put(&memcg->css);
2750 2751
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2752
			if (!oom || invoke_oom) {
2753
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2754
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2755
			}
2756 2757
			nr_oom_retries--;
			break;
2758
		}
2759 2760
	} while (ret != CHARGE_OK);

2761
	if (batch > nr_pages)
2762 2763
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2764
done:
2765
	*ptr = memcg;
2766 2767
	return 0;
nomem:
2768
	*ptr = NULL;
2769 2770
	if (gfp_mask & __GFP_NOFAIL)
		return 0;
2771
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2772
bypass:
2773 2774
	*ptr = root_mem_cgroup;
	return -EINTR;
2775
}
2776

2777 2778 2779 2780 2781
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2782
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2783
				       unsigned int nr_pages)
2784
{
2785
	if (!mem_cgroup_is_root(memcg)) {
2786 2787
		unsigned long bytes = nr_pages * PAGE_SIZE;

2788
		res_counter_uncharge(&memcg->res, bytes);
2789
		if (do_swap_account)
2790
			res_counter_uncharge(&memcg->memsw, bytes);
2791
	}
2792 2793
}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2812 2813
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2814 2815 2816
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2828
	return mem_cgroup_from_css(css);
2829 2830
}

2831
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2832
{
2833
	struct mem_cgroup *memcg = NULL;
2834
	struct page_cgroup *pc;
2835
	unsigned short id;
2836 2837
	swp_entry_t ent;

2838 2839 2840
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2841
	lock_page_cgroup(pc);
2842
	if (PageCgroupUsed(pc)) {
2843 2844 2845
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2846
	} else if (PageSwapCache(page)) {
2847
		ent.val = page_private(page);
2848
		id = lookup_swap_cgroup_id(ent);
2849
		rcu_read_lock();
2850 2851 2852
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2853
		rcu_read_unlock();
2854
	}
2855
	unlock_page_cgroup(pc);
2856
	return memcg;
2857 2858
}

2859
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2860
				       struct page *page,
2861
				       unsigned int nr_pages,
2862 2863
				       enum charge_type ctype,
				       bool lrucare)
2864
{
2865
	struct page_cgroup *pc = lookup_page_cgroup(page);
2866
	struct zone *uninitialized_var(zone);
2867
	struct lruvec *lruvec;
2868
	bool was_on_lru = false;
2869
	bool anon;
2870

2871
	lock_page_cgroup(pc);
2872
	VM_BUG_ON(PageCgroupUsed(pc));
2873 2874 2875 2876
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2877 2878 2879 2880 2881 2882 2883 2884 2885

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2886
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2887
			ClearPageLRU(page);
2888
			del_page_from_lru_list(page, lruvec, page_lru(page));
2889 2890 2891 2892
			was_on_lru = true;
		}
	}

2893
	pc->mem_cgroup = memcg;
2894 2895 2896 2897 2898 2899
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2900
	 */
K
KAMEZAWA Hiroyuki 已提交
2901
	smp_wmb();
2902
	SetPageCgroupUsed(pc);
2903

2904 2905
	if (lrucare) {
		if (was_on_lru) {
2906
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2907 2908
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2909
			add_page_to_lru_list(page, lruvec, page_lru(page));
2910 2911 2912 2913
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2914
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2915 2916 2917 2918
		anon = true;
	else
		anon = false;

2919
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2920
	unlock_page_cgroup(pc);
2921

2922
	/*
2923 2924 2925
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2926
	 */
2927
	memcg_check_events(memcg, page);
2928
}
2929

2930 2931
static DEFINE_MUTEX(set_limit_mutex);

2932 2933 2934 2935 2936 2937 2938
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2952
#ifdef CONFIG_SLABINFO
2953 2954
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2955
{
2956
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3026 3027 3028 3029 3030

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3031 3032 3033 3034 3035 3036 3037 3038
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3039
	if (memcg_kmem_test_and_clear_dead(memcg))
3040
		css_put(&memcg->css);
3041 3042
}

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3126 3127
static void kmem_cache_destroy_work_func(struct work_struct *w);

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3139
		size += offsetof(struct memcg_cache_params, memcg_caches);
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3179 3180
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3181
{
3182
	size_t size;
3183 3184 3185 3186

	if (!memcg_kmem_enabled())
		return 0;

3187 3188
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3189
		size += memcg_limited_groups_array_size * sizeof(void *);
3190 3191
	} else
		size = sizeof(struct memcg_cache_params);
3192

3193 3194 3195 3196
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3197
	if (memcg) {
3198
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3199
		s->memcg_params->root_cache = root_cache;
3200 3201
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3202 3203 3204
	} else
		s->memcg_params->is_root_cache = true;

3205 3206 3207 3208 3209
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3234
	css_put(&memcg->css);
3235
out:
3236 3237 3238
	kfree(s->memcg_params);
}

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3300 3301 3302 3303 3304 3305 3306 3307
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3328 3329 3330 3331 3332 3333 3334
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3335 3336 3337 3338 3339 3340 3341 3342 3343
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3344

3345 3346 3347
/*
 * Called with memcg_cache_mutex held
 */
3348 3349 3350 3351
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3352
	static char *tmp_name = NULL;
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3372

3373
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3374
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3375

3376 3377 3378
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3394 3395
	if (new_cachep) {
		css_put(&memcg->css);
3396
		goto out;
3397
	}
3398 3399 3400 3401

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3402
		css_put(&memcg->css);
3403 3404 3405
		goto out;
	}

G
Glauber Costa 已提交
3406
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3458
		cancel_work_sync(&c->memcg_params->destroy);
3459 3460 3461 3462 3463
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3464 3465 3466 3467 3468 3469
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3499 3500
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3501 3502 3503 3504
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3505 3506
	if (cw == NULL) {
		css_put(&memcg->css);
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3557 3558 3559
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3560 3561 3562 3563
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3564
		goto out;
3565 3566 3567 3568 3569 3570 3571 3572

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3573 3574 3575
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3576 3577
	}

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3605 3606 3607
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3644 3645 3646
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3731 3732 3733 3734
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3735 3736
#endif /* CONFIG_MEMCG_KMEM */

3737 3738
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3739
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3740 3741
/*
 * Because tail pages are not marked as "used", set it. We're under
3742 3743 3744
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3745
 */
3746
void mem_cgroup_split_huge_fixup(struct page *head)
3747 3748
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3749
	struct page_cgroup *pc;
3750
	struct mem_cgroup *memcg;
3751
	int i;
3752

3753 3754
	if (mem_cgroup_disabled())
		return;
3755 3756

	memcg = head_pc->mem_cgroup;
3757 3758
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3759
		pc->mem_cgroup = memcg;
3760 3761 3762
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3763 3764
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3765
}
3766
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3767

3768 3769 3770 3771 3772 3773 3774 3775 3776
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3777
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3778 3779 3780 3781
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3782
/**
3783
 * mem_cgroup_move_account - move account of the page
3784
 * @page: the page
3785
 * @nr_pages: number of regular pages (>1 for huge pages)
3786 3787 3788 3789 3790
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3791
 * - page is not on LRU (isolate_page() is useful.)
3792
 * - compound_lock is held when nr_pages > 1
3793
 *
3794 3795
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3796
 */
3797 3798 3799 3800
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3801
				   struct mem_cgroup *to)
3802
{
3803 3804
	unsigned long flags;
	int ret;
3805
	bool anon = PageAnon(page);
3806

3807
	VM_BUG_ON(from == to);
3808
	VM_BUG_ON(PageLRU(page));
3809 3810 3811 3812 3813 3814 3815
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3816
	if (nr_pages > 1 && !PageTransHuge(page))
3817 3818 3819 3820 3821 3822 3823 3824
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3825
	move_lock_mem_cgroup(from, &flags);
3826

3827 3828 3829 3830 3831 3832 3833 3834
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3835
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3836

3837
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3838
	pc->mem_cgroup = to;
3839
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3840
	move_unlock_mem_cgroup(from, &flags);
3841 3842
	ret = 0;
unlock:
3843
	unlock_page_cgroup(pc);
3844 3845 3846
	/*
	 * check events
	 */
3847 3848
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3849
out:
3850 3851 3852
	return ret;
}

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3873
 */
3874 3875
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3876
				  struct mem_cgroup *child)
3877 3878
{
	struct mem_cgroup *parent;
3879
	unsigned int nr_pages;
3880
	unsigned long uninitialized_var(flags);
3881 3882
	int ret;

3883
	VM_BUG_ON(mem_cgroup_is_root(child));
3884

3885 3886 3887 3888 3889
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3890

3891
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3892

3893 3894 3895 3896 3897 3898
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3899

3900 3901
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3902
		flags = compound_lock_irqsave(page);
3903
	}
3904

3905
	ret = mem_cgroup_move_account(page, nr_pages,
3906
				pc, child, parent);
3907 3908
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3909

3910
	if (nr_pages > 1)
3911
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3912
	putback_lru_page(page);
3913
put:
3914
	put_page(page);
3915
out:
3916 3917 3918
	return ret;
}

3919 3920 3921 3922 3923 3924 3925
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3926
				gfp_t gfp_mask, enum charge_type ctype)
3927
{
3928
	struct mem_cgroup *memcg = NULL;
3929
	unsigned int nr_pages = 1;
3930
	bool oom = true;
3931
	int ret;
A
Andrea Arcangeli 已提交
3932

A
Andrea Arcangeli 已提交
3933
	if (PageTransHuge(page)) {
3934
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3935
		VM_BUG_ON(!PageTransHuge(page));
3936 3937 3938 3939 3940
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3941
	}
3942

3943
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3944
	if (ret == -ENOMEM)
3945
		return ret;
3946
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3947 3948 3949
	return 0;
}

3950 3951
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3952
{
3953
	if (mem_cgroup_disabled())
3954
		return 0;
3955 3956 3957
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3958
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3959
					MEM_CGROUP_CHARGE_TYPE_ANON);
3960 3961
}

3962 3963 3964
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3965
 * struct page_cgroup is acquired. This refcnt will be consumed by
3966 3967
 * "commit()" or removed by "cancel()"
 */
3968 3969 3970 3971
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3972
{
3973
	struct mem_cgroup *memcg;
3974
	struct page_cgroup *pc;
3975
	int ret;
3976

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3987 3988
	if (!do_swap_account)
		goto charge_cur_mm;
3989 3990
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3991
		goto charge_cur_mm;
3992 3993
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3994
	css_put(&memcg->css);
3995 3996
	if (ret == -EINTR)
		ret = 0;
3997
	return ret;
3998
charge_cur_mm:
3999 4000 4001 4002
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4003 4004
}

4005 4006 4007 4008 4009 4010
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4025 4026 4027
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4028 4029 4030 4031 4032 4033 4034 4035 4036
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4037
static void
4038
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4039
					enum charge_type ctype)
4040
{
4041
	if (mem_cgroup_disabled())
4042
		return;
4043
	if (!memcg)
4044
		return;
4045

4046
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4047 4048 4049
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4050 4051 4052
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4053
	 */
4054
	if (do_swap_account && PageSwapCache(page)) {
4055
		swp_entry_t ent = {.val = page_private(page)};
4056
		mem_cgroup_uncharge_swap(ent);
4057
	}
4058 4059
}

4060 4061
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4062
{
4063
	__mem_cgroup_commit_charge_swapin(page, memcg,
4064
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4065 4066
}

4067 4068
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4069
{
4070 4071 4072 4073
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4074
	if (mem_cgroup_disabled())
4075 4076 4077 4078 4079 4080 4081
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4082 4083
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4084 4085 4086 4087
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4088 4089
}

4090
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4091 4092
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4093 4094 4095
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4096

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4108
		batch->memcg = memcg;
4109 4110
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4111
	 * In those cases, all pages freed continuously can be expected to be in
4112 4113 4114 4115 4116 4117 4118 4119
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4120
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4121 4122
		goto direct_uncharge;

4123 4124 4125 4126 4127
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4128
	if (batch->memcg != memcg)
4129 4130
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4131
	batch->nr_pages++;
4132
	if (uncharge_memsw)
4133
		batch->memsw_nr_pages++;
4134 4135
	return;
direct_uncharge:
4136
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4137
	if (uncharge_memsw)
4138 4139 4140
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4141
}
4142

4143
/*
4144
 * uncharge if !page_mapped(page)
4145
 */
4146
static struct mem_cgroup *
4147 4148
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4149
{
4150
	struct mem_cgroup *memcg = NULL;
4151 4152
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4153
	bool anon;
4154

4155
	if (mem_cgroup_disabled())
4156
		return NULL;
4157

A
Andrea Arcangeli 已提交
4158
	if (PageTransHuge(page)) {
4159
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4160 4161
		VM_BUG_ON(!PageTransHuge(page));
	}
4162
	/*
4163
	 * Check if our page_cgroup is valid
4164
	 */
4165
	pc = lookup_page_cgroup(page);
4166
	if (unlikely(!PageCgroupUsed(pc)))
4167
		return NULL;
4168

4169
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4170

4171
	memcg = pc->mem_cgroup;
4172

K
KAMEZAWA Hiroyuki 已提交
4173 4174 4175
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4176 4177
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4178
	switch (ctype) {
4179
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4180 4181 4182 4183 4184
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4185 4186
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4187
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4188
		/* See mem_cgroup_prepare_migration() */
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4210
	}
K
KAMEZAWA Hiroyuki 已提交
4211

4212
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4213

4214
	ClearPageCgroupUsed(pc);
4215 4216 4217 4218 4219 4220
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4221

4222
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4223
	/*
4224
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4225
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4226
	 */
4227
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4228
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4229
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4230
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4231
	}
4232 4233 4234 4235 4236 4237
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4238
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4239

4240
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4241 4242 4243

unlock_out:
	unlock_page_cgroup(pc);
4244
	return NULL;
4245 4246
}

4247 4248
void mem_cgroup_uncharge_page(struct page *page)
{
4249 4250 4251
	/* early check. */
	if (page_mapped(page))
		return;
4252
	VM_BUG_ON(page->mapping && !PageAnon(page));
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4265 4266
	if (PageSwapCache(page))
		return;
4267
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4268 4269 4270 4271 4272
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4273
	VM_BUG_ON(page->mapping);
4274
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4275 4276
}

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4291 4292
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4313 4314 4315 4316 4317 4318
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4319
	memcg_oom_recover(batch->memcg);
4320 4321 4322 4323
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4324
#ifdef CONFIG_SWAP
4325
/*
4326
 * called after __delete_from_swap_cache() and drop "page" account.
4327 4328
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4329 4330
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4331 4332
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4333 4334 4335 4336 4337
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4338
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4339

K
KAMEZAWA Hiroyuki 已提交
4340 4341
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4342
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4343 4344
	 */
	if (do_swap_account && swapout && memcg)
4345
		swap_cgroup_record(ent, css_id(&memcg->css));
4346
}
4347
#endif
4348

A
Andrew Morton 已提交
4349
#ifdef CONFIG_MEMCG_SWAP
4350 4351 4352 4353 4354
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4355
{
4356
	struct mem_cgroup *memcg;
4357
	unsigned short id;
4358 4359 4360 4361

	if (!do_swap_account)
		return;

4362 4363 4364
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4365
	if (memcg) {
4366 4367 4368 4369
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4370
		if (!mem_cgroup_is_root(memcg))
4371
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4372
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4373
		css_put(&memcg->css);
4374
	}
4375
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4376
}
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4393
				struct mem_cgroup *from, struct mem_cgroup *to)
4394 4395 4396 4397 4398 4399 4400 4401
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4402
		mem_cgroup_swap_statistics(to, true);
4403
		/*
4404 4405 4406
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4407 4408 4409 4410 4411 4412
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4413
		 */
L
Li Zefan 已提交
4414
		css_get(&to->css);
4415 4416 4417 4418 4419 4420
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4421
				struct mem_cgroup *from, struct mem_cgroup *to)
4422 4423 4424
{
	return -EINVAL;
}
4425
#endif
K
KAMEZAWA Hiroyuki 已提交
4426

4427
/*
4428 4429
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4430
 */
4431 4432
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4433
{
4434
	struct mem_cgroup *memcg = NULL;
4435
	unsigned int nr_pages = 1;
4436
	struct page_cgroup *pc;
4437
	enum charge_type ctype;
4438

4439
	*memcgp = NULL;
4440

4441
	if (mem_cgroup_disabled())
4442
		return;
4443

4444 4445 4446
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4447 4448 4449
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4450 4451
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4483
	}
4484
	unlock_page_cgroup(pc);
4485 4486 4487 4488
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4489
	if (!memcg)
4490
		return;
4491

4492
	*memcgp = memcg;
4493 4494 4495 4496 4497 4498 4499
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4500
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4501
	else
4502
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4503 4504 4505 4506 4507
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4508
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4509
}
4510

4511
/* remove redundant charge if migration failed*/
4512
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4513
	struct page *oldpage, struct page *newpage, bool migration_ok)
4514
{
4515
	struct page *used, *unused;
4516
	struct page_cgroup *pc;
4517
	bool anon;
4518

4519
	if (!memcg)
4520
		return;
4521

4522
	if (!migration_ok) {
4523 4524
		used = oldpage;
		unused = newpage;
4525
	} else {
4526
		used = newpage;
4527 4528
		unused = oldpage;
	}
4529
	anon = PageAnon(used);
4530 4531 4532 4533
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4534
	css_put(&memcg->css);
4535
	/*
4536 4537 4538
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4539
	 */
4540 4541 4542 4543 4544
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4545
	/*
4546 4547 4548 4549 4550 4551
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4552
	 */
4553
	if (anon)
4554
		mem_cgroup_uncharge_page(used);
4555
}
4556

4557 4558 4559 4560 4561 4562 4563 4564
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4565
	struct mem_cgroup *memcg = NULL;
4566 4567 4568 4569 4570 4571 4572 4573 4574
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4575 4576
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4577
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4578 4579
		ClearPageCgroupUsed(pc);
	}
4580 4581
	unlock_page_cgroup(pc);

4582 4583 4584 4585 4586 4587
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4588 4589 4590 4591 4592
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4593
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4594 4595
}

4596 4597 4598 4599 4600 4601
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4602 4603 4604 4605 4606
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4626 4627
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4628 4629 4630 4631
	}
}
#endif

4632
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4633
				unsigned long long val)
4634
{
4635
	int retry_count;
4636
	u64 memswlimit, memlimit;
4637
	int ret = 0;
4638 4639
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4640
	int enlarge;
4641 4642 4643 4644 4645 4646 4647 4648 4649

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4650

4651
	enlarge = 0;
4652
	while (retry_count) {
4653 4654 4655 4656
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4657 4658 4659
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4660
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4661 4662 4663 4664 4665 4666
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4667 4668
			break;
		}
4669 4670 4671 4672 4673

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4674
		ret = res_counter_set_limit(&memcg->res, val);
4675 4676 4677 4678 4679 4680
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4681 4682 4683 4684 4685
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4686 4687
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4688 4689
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4690
		if (curusage >= oldusage)
4691 4692 4693
			retry_count--;
		else
			oldusage = curusage;
4694
	}
4695 4696
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4697

4698 4699 4700
	return ret;
}

L
Li Zefan 已提交
4701 4702
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4703
{
4704
	int retry_count;
4705
	u64 memlimit, memswlimit, oldusage, curusage;
4706 4707
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4708
	int enlarge = 0;
4709

4710
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4711
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4712
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4713 4714 4715 4716 4717 4718 4719 4720
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4721
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4722 4723 4724 4725 4726 4727 4728 4729
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4730 4731 4732
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4733
		ret = res_counter_set_limit(&memcg->memsw, val);
4734 4735 4736 4737 4738 4739
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4740 4741 4742 4743 4744
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4745 4746 4747
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4748
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4749
		/* Usage is reduced ? */
4750
		if (curusage >= oldusage)
4751
			retry_count--;
4752 4753
		else
			oldusage = curusage;
4754
	}
4755 4756
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4757 4758 4759
	return ret;
}

4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4852 4853 4854 4855 4856 4857 4858
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4859
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4860 4861
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4862
 */
4863
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4864
				int node, int zid, enum lru_list lru)
4865
{
4866
	struct lruvec *lruvec;
4867
	unsigned long flags;
4868
	struct list_head *list;
4869 4870
	struct page *busy;
	struct zone *zone;
4871

K
KAMEZAWA Hiroyuki 已提交
4872
	zone = &NODE_DATA(node)->node_zones[zid];
4873 4874
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4875

4876
	busy = NULL;
4877
	do {
4878
		struct page_cgroup *pc;
4879 4880
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4881
		spin_lock_irqsave(&zone->lru_lock, flags);
4882
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4883
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4884
			break;
4885
		}
4886 4887 4888
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4889
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4890
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4891 4892
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4893
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4894

4895
		pc = lookup_page_cgroup(page);
4896

4897
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4898
			/* found lock contention or "pc" is obsolete. */
4899
			busy = page;
4900 4901 4902
			cond_resched();
		} else
			busy = NULL;
4903
	} while (!list_empty(list));
4904 4905 4906
}

/*
4907 4908
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4909
 * This enables deleting this mem_cgroup.
4910 4911
 *
 * Caller is responsible for holding css reference on the memcg.
4912
 */
4913
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4914
{
4915
	int node, zid;
4916
	u64 usage;
4917

4918
	do {
4919 4920
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4921 4922
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4923
		for_each_node_state(node, N_MEMORY) {
4924
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4925 4926
				enum lru_list lru;
				for_each_lru(lru) {
4927
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4928
							node, zid, lru);
4929
				}
4930
			}
4931
		}
4932 4933
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4934
		cond_resched();
4935

4936
		/*
4937 4938 4939 4940 4941
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4942 4943 4944 4945 4946 4947
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4948 4949 4950
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4951 4952
}

4953 4954 4955 4956 4957 4958 4959
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4960
	struct cgroup_subsys_state *pos;
4961 4962

	/* bounce at first found */
4963
	css_for_each_child(pos, &memcg->css)
4964 4965 4966 4967 4968
		return true;
	return false;
}

/*
4969 4970
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4971 4972 4973 4974 4975 4976 4977 4978 4979
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4990

4991
	/* returns EBUSY if there is a task or if we come here twice. */
4992 4993 4994
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4995 4996
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4997
	/* try to free all pages in this cgroup */
4998
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4999
		int progress;
5000

5001 5002 5003
		if (signal_pending(current))
			return -EINTR;

5004
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5005
						false);
5006
		if (!progress) {
5007
			nr_retries--;
5008
			/* maybe some writeback is necessary */
5009
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5010
		}
5011 5012

	}
K
KAMEZAWA Hiroyuki 已提交
5013
	lru_add_drain();
5014 5015 5016
	mem_cgroup_reparent_charges(memcg);

	return 0;
5017 5018
}

5019 5020
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5021
{
5022
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5023

5024 5025
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5026
	return mem_cgroup_force_empty(memcg);
5027 5028
}

5029 5030
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5031
{
5032
	return mem_cgroup_from_css(css)->use_hierarchy;
5033 5034
}

5035 5036
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5037 5038
{
	int retval = 0;
5039
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5040
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5041

5042
	mutex_lock(&memcg_create_mutex);
5043 5044 5045 5046

	if (memcg->use_hierarchy == val)
		goto out;

5047
	/*
5048
	 * If parent's use_hierarchy is set, we can't make any modifications
5049 5050 5051 5052 5053 5054
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5055
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5056
				(val == 1 || val == 0)) {
5057
		if (!__memcg_has_children(memcg))
5058
			memcg->use_hierarchy = val;
5059 5060 5061 5062
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5063 5064

out:
5065
	mutex_unlock(&memcg_create_mutex);
5066 5067 5068 5069

	return retval;
}

5070

5071
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5072
					       enum mem_cgroup_stat_index idx)
5073
{
K
KAMEZAWA Hiroyuki 已提交
5074
	struct mem_cgroup *iter;
5075
	long val = 0;
5076

5077
	/* Per-cpu values can be negative, use a signed accumulator */
5078
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5079 5080 5081 5082 5083
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5084 5085
}

5086
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5087
{
K
KAMEZAWA Hiroyuki 已提交
5088
	u64 val;
5089

5090
	if (!mem_cgroup_is_root(memcg)) {
5091
		if (!swap)
5092
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5093
		else
5094
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5095 5096
	}

5097 5098 5099 5100
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5101 5102
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5103

K
KAMEZAWA Hiroyuki 已提交
5104
	if (swap)
5105
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5106 5107 5108 5109

	return val << PAGE_SHIFT;
}

5110 5111 5112
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5113
{
5114
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5115
	char str[64];
5116
	u64 val;
G
Glauber Costa 已提交
5117 5118
	int name, len;
	enum res_type type;
5119 5120 5121

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5122

5123 5124
	switch (type) {
	case _MEM:
5125
		if (name == RES_USAGE)
5126
			val = mem_cgroup_usage(memcg, false);
5127
		else
5128
			val = res_counter_read_u64(&memcg->res, name);
5129 5130
		break;
	case _MEMSWAP:
5131
		if (name == RES_USAGE)
5132
			val = mem_cgroup_usage(memcg, true);
5133
		else
5134
			val = res_counter_read_u64(&memcg->memsw, name);
5135
		break;
5136 5137 5138
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5139 5140 5141
	default:
		BUG();
	}
5142 5143 5144

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5145
}
5146

5147
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5148 5149 5150
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5151
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5164
	mutex_lock(&memcg_create_mutex);
5165
	mutex_lock(&set_limit_mutex);
5166
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5167
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5168 5169 5170 5171 5172 5173
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5174 5175
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5176
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5177 5178
			goto out;
		}
5179 5180 5181 5182 5183 5184
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5185 5186 5187 5188
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5189
	mutex_unlock(&memcg_create_mutex);
5190 5191 5192 5193
#endif
	return ret;
}

5194
#ifdef CONFIG_MEMCG_KMEM
5195
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5196
{
5197
	int ret = 0;
5198 5199
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5200 5201
		goto out;

5202
	memcg->kmem_account_flags = parent->kmem_account_flags;
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5213 5214 5215 5216
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5217 5218 5219
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5220 5221 5222 5223
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5224
	memcg_stop_kmem_account();
5225
	ret = memcg_update_cache_sizes(memcg);
5226
	memcg_resume_kmem_account();
5227 5228 5229
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5230
}
5231
#endif /* CONFIG_MEMCG_KMEM */
5232

5233 5234 5235 5236
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5237
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5238
			    const char *buffer)
B
Balbir Singh 已提交
5239
{
5240
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5241 5242
	enum res_type type;
	int name;
5243 5244 5245
	unsigned long long val;
	int ret;

5246 5247
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5248

5249
	switch (name) {
5250
	case RES_LIMIT:
5251 5252 5253 5254
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5255 5256
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5257 5258 5259
		if (ret)
			break;
		if (type == _MEM)
5260
			ret = mem_cgroup_resize_limit(memcg, val);
5261
		else if (type == _MEMSWAP)
5262
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5263
		else if (type == _KMEM)
5264
			ret = memcg_update_kmem_limit(css, val);
5265 5266
		else
			return -EINVAL;
5267
		break;
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5282 5283 5284 5285 5286
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5287 5288
}

5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5299 5300
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5313
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5314
{
5315
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5316 5317
	int name;
	enum res_type type;
5318

5319 5320
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5321

5322
	switch (name) {
5323
	case RES_MAX_USAGE:
5324
		if (type == _MEM)
5325
			res_counter_reset_max(&memcg->res);
5326
		else if (type == _MEMSWAP)
5327
			res_counter_reset_max(&memcg->memsw);
5328 5329 5330 5331
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5332 5333
		break;
	case RES_FAILCNT:
5334
		if (type == _MEM)
5335
			res_counter_reset_failcnt(&memcg->res);
5336
		else if (type == _MEMSWAP)
5337
			res_counter_reset_failcnt(&memcg->memsw);
5338 5339 5340 5341
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5342 5343
		break;
	}
5344

5345
	return 0;
5346 5347
}

5348
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5349 5350
					struct cftype *cft)
{
5351
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5352 5353
}

5354
#ifdef CONFIG_MMU
5355
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5356 5357
					struct cftype *cft, u64 val)
{
5358
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5359 5360 5361

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5362

5363
	/*
5364 5365 5366 5367
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5368
	 */
5369
	memcg->move_charge_at_immigrate = val;
5370 5371
	return 0;
}
5372
#else
5373
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5374 5375 5376 5377 5378
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5379

5380
#ifdef CONFIG_NUMA
5381 5382
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5383 5384 5385 5386
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5387
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5388

5389
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5390
	seq_printf(m, "total=%lu", total_nr);
5391
	for_each_node_state(nid, N_MEMORY) {
5392
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5393 5394 5395 5396
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5397
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5398
	seq_printf(m, "file=%lu", file_nr);
5399
	for_each_node_state(nid, N_MEMORY) {
5400
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5401
				LRU_ALL_FILE);
5402 5403 5404 5405
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5406
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5407
	seq_printf(m, "anon=%lu", anon_nr);
5408
	for_each_node_state(nid, N_MEMORY) {
5409
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5410
				LRU_ALL_ANON);
5411 5412 5413 5414
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5415
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5416
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5417
	for_each_node_state(nid, N_MEMORY) {
5418
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5419
				BIT(LRU_UNEVICTABLE));
5420 5421 5422 5423 5424 5425 5426
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5427 5428 5429 5430 5431
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5432
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5433
				 struct seq_file *m)
5434
{
5435
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5436 5437
	struct mem_cgroup *mi;
	unsigned int i;
5438

5439
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5440
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5441
			continue;
5442 5443
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5444
	}
L
Lee Schermerhorn 已提交
5445

5446 5447 5448 5449 5450 5451 5452 5453
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5454
	/* Hierarchical information */
5455 5456
	{
		unsigned long long limit, memsw_limit;
5457
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5458
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5459
		if (do_swap_account)
5460 5461
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5462
	}
K
KOSAKI Motohiro 已提交
5463

5464 5465 5466
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5467
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5468
			continue;
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5489
	}
K
KAMEZAWA Hiroyuki 已提交
5490

K
KOSAKI Motohiro 已提交
5491 5492 5493 5494
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5495
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5496 5497 5498 5499 5500
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5501
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5502
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5503

5504 5505 5506 5507
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5508
			}
5509 5510 5511 5512
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5513 5514 5515
	}
#endif

5516 5517 5518
	return 0;
}

5519 5520
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5521
{
5522
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5523

5524
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5525 5526
}

5527 5528
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5529
{
5530
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5531
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5532

T
Tejun Heo 已提交
5533
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5534 5535
		return -EINVAL;

5536
	mutex_lock(&memcg_create_mutex);
5537

K
KOSAKI Motohiro 已提交
5538
	/* If under hierarchy, only empty-root can set this value */
5539
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5540
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5541
		return -EINVAL;
5542
	}
K
KOSAKI Motohiro 已提交
5543 5544 5545

	memcg->swappiness = val;

5546
	mutex_unlock(&memcg_create_mutex);
5547

K
KOSAKI Motohiro 已提交
5548 5549 5550
	return 0;
}

5551 5552 5553 5554 5555 5556 5557 5558
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5559
		t = rcu_dereference(memcg->thresholds.primary);
5560
	else
5561
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5562 5563 5564 5565 5566 5567 5568

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5569
	 * current_threshold points to threshold just below or equal to usage.
5570 5571 5572
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5573
	i = t->current_threshold;
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5597
	t->current_threshold = i - 1;
5598 5599 5600 5601 5602 5603
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5604 5605 5606 5607 5608 5609 5610
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5611 5612 5613 5614 5615 5616 5617
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5618 5619 5620 5621 5622 5623 5624
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5625 5626
}

5627
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5628 5629 5630
{
	struct mem_cgroup_eventfd_list *ev;

5631
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5632 5633 5634 5635
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5636
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5637
{
K
KAMEZAWA Hiroyuki 已提交
5638 5639
	struct mem_cgroup *iter;

5640
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5641
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5642 5643
}

5644
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5645
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5646
{
5647
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5648 5649
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5650
	enum res_type type = MEMFILE_TYPE(cft->private);
5651
	u64 threshold, usage;
5652
	int i, size, ret;
5653 5654 5655 5656 5657 5658

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5659

5660
	if (type == _MEM)
5661
		thresholds = &memcg->thresholds;
5662
	else if (type == _MEMSWAP)
5663
		thresholds = &memcg->memsw_thresholds;
5664 5665 5666 5667 5668 5669
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5670
	if (thresholds->primary)
5671 5672
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5673
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5674 5675

	/* Allocate memory for new array of thresholds */
5676
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5677
			GFP_KERNEL);
5678
	if (!new) {
5679 5680 5681
		ret = -ENOMEM;
		goto unlock;
	}
5682
	new->size = size;
5683 5684

	/* Copy thresholds (if any) to new array */
5685 5686
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5687
				sizeof(struct mem_cgroup_threshold));
5688 5689
	}

5690
	/* Add new threshold */
5691 5692
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5693 5694

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5695
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5696 5697 5698
			compare_thresholds, NULL);

	/* Find current threshold */
5699
	new->current_threshold = -1;
5700
	for (i = 0; i < size; i++) {
5701
		if (new->entries[i].threshold <= usage) {
5702
			/*
5703 5704
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5705 5706
			 * it here.
			 */
5707
			++new->current_threshold;
5708 5709
		} else
			break;
5710 5711
	}

5712 5713 5714 5715 5716
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5717

5718
	/* To be sure that nobody uses thresholds */
5719 5720 5721 5722 5723 5724 5725 5726
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5727
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5728
	struct cftype *cft, struct eventfd_ctx *eventfd)
5729
{
5730
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5731 5732
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5733
	enum res_type type = MEMFILE_TYPE(cft->private);
5734
	u64 usage;
5735
	int i, j, size;
5736 5737 5738

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5739
		thresholds = &memcg->thresholds;
5740
	else if (type == _MEMSWAP)
5741
		thresholds = &memcg->memsw_thresholds;
5742 5743 5744
	else
		BUG();

5745 5746 5747
	if (!thresholds->primary)
		goto unlock;

5748 5749 5750 5751 5752 5753
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5754 5755 5756
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5757 5758 5759
			size++;
	}

5760
	new = thresholds->spare;
5761

5762 5763
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5764 5765
		kfree(new);
		new = NULL;
5766
		goto swap_buffers;
5767 5768
	}

5769
	new->size = size;
5770 5771

	/* Copy thresholds and find current threshold */
5772 5773 5774
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5775 5776
			continue;

5777
		new->entries[j] = thresholds->primary->entries[i];
5778
		if (new->entries[j].threshold <= usage) {
5779
			/*
5780
			 * new->current_threshold will not be used
5781 5782 5783
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5784
			++new->current_threshold;
5785 5786 5787 5788
		}
		j++;
	}

5789
swap_buffers:
5790 5791
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5792 5793 5794 5795 5796 5797
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5798
	rcu_assign_pointer(thresholds->primary, new);
5799

5800
	/* To be sure that nobody uses thresholds */
5801
	synchronize_rcu();
5802
unlock:
5803 5804
	mutex_unlock(&memcg->thresholds_lock);
}
5805

5806
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5807 5808
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5809
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5810
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5811
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5812 5813 5814 5815 5816 5817

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5818
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5819 5820 5821 5822 5823

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5824
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5825
		eventfd_signal(eventfd, 1);
5826
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5827 5828 5829 5830

	return 0;
}

5831
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5832 5833
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5834
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5835
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5836
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5837 5838 5839

	BUG_ON(type != _OOM_TYPE);

5840
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5841

5842
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5843 5844 5845 5846 5847 5848
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5849
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5850 5851
}

5852
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5853 5854
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5855
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5856

5857
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5858

5859
	if (atomic_read(&memcg->under_oom))
5860 5861 5862 5863 5864 5865
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5866
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5867 5868
	struct cftype *cft, u64 val)
{
5869
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5870
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5871 5872

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5873
	if (!parent || !((val == 0) || (val == 1)))
5874 5875
		return -EINVAL;

5876
	mutex_lock(&memcg_create_mutex);
5877
	/* oom-kill-disable is a flag for subhierarchy. */
5878
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5879
		mutex_unlock(&memcg_create_mutex);
5880 5881
		return -EINVAL;
	}
5882
	memcg->oom_kill_disable = val;
5883
	if (!val)
5884
		memcg_oom_recover(memcg);
5885
	mutex_unlock(&memcg_create_mutex);
5886 5887 5888
	return 0;
}

A
Andrew Morton 已提交
5889
#ifdef CONFIG_MEMCG_KMEM
5890
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5891
{
5892 5893
	int ret;

5894
	memcg->kmemcg_id = -1;
5895 5896 5897
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5898

5899
	return mem_cgroup_sockets_init(memcg, ss);
5900
}
5901

5902
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5903
{
5904
	mem_cgroup_sockets_destroy(memcg);
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5931 5932 5933 5934 5935 5936 5937

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5938
		css_put(&memcg->css);
G
Glauber Costa 已提交
5939
}
5940
#else
5941
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5942 5943 5944
{
	return 0;
}
G
Glauber Costa 已提交
5945

5946 5947 5948 5949 5950
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5951 5952
{
}
5953 5954
#endif

B
Balbir Singh 已提交
5955 5956
static struct cftype mem_cgroup_files[] = {
	{
5957
		.name = "usage_in_bytes",
5958
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5959
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5960 5961
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5962
	},
5963 5964
	{
		.name = "max_usage_in_bytes",
5965
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5966
		.trigger = mem_cgroup_reset,
5967
		.read = mem_cgroup_read,
5968
	},
B
Balbir Singh 已提交
5969
	{
5970
		.name = "limit_in_bytes",
5971
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5972
		.write_string = mem_cgroup_write,
5973
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5974
	},
5975 5976 5977 5978
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5979
		.read = mem_cgroup_read,
5980
	},
B
Balbir Singh 已提交
5981 5982
	{
		.name = "failcnt",
5983
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5984
		.trigger = mem_cgroup_reset,
5985
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5986
	},
5987 5988
	{
		.name = "stat",
5989
		.read_seq_string = memcg_stat_show,
5990
	},
5991 5992 5993 5994
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5995 5996
	{
		.name = "use_hierarchy",
5997
		.flags = CFTYPE_INSANE,
5998 5999 6000
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
6001 6002 6003 6004 6005
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6006 6007 6008 6009 6010
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6011 6012
	{
		.name = "oom_control",
6013 6014
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6015 6016 6017 6018
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6019 6020 6021 6022 6023
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6024 6025 6026
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6027
		.read_seq_string = memcg_numa_stat_show,
6028 6029
	},
#endif
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6054 6055 6056 6057 6058 6059
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6060
#endif
6061
	{ },	/* terminate */
6062
};
6063

6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6094
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6095 6096
{
	struct mem_cgroup_per_node *pn;
6097
	struct mem_cgroup_per_zone *mz;
6098
	int zone, tmp = node;
6099 6100 6101 6102 6103 6104 6105 6106
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6107 6108
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6109
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6110 6111
	if (!pn)
		return 1;
6112 6113 6114

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6115
		lruvec_init(&mz->lruvec);
6116 6117
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6118
		mz->memcg = memcg;
6119
	}
6120
	memcg->nodeinfo[node] = pn;
6121 6122 6123
	return 0;
}

6124
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6125
{
6126
	kfree(memcg->nodeinfo[node]);
6127 6128
}

6129 6130
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6131
	struct mem_cgroup *memcg;
6132
	size_t size = memcg_size();
6133

6134
	/* Can be very big if nr_node_ids is very big */
6135
	if (size < PAGE_SIZE)
6136
		memcg = kzalloc(size, GFP_KERNEL);
6137
	else
6138
		memcg = vzalloc(size);
6139

6140
	if (!memcg)
6141 6142
		return NULL;

6143 6144
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6145
		goto out_free;
6146 6147
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6148 6149 6150

out_free:
	if (size < PAGE_SIZE)
6151
		kfree(memcg);
6152
	else
6153
		vfree(memcg);
6154
	return NULL;
6155 6156
}

6157
/*
6158 6159 6160 6161 6162 6163 6164 6165
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6166
 */
6167 6168

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6169
{
6170
	int node;
6171
	size_t size = memcg_size();
6172

6173
	mem_cgroup_remove_from_trees(memcg);
6174 6175 6176 6177 6178 6179 6180
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6192
	disarm_static_keys(memcg);
6193 6194 6195 6196
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6197
}
6198

6199 6200 6201
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6202
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6203
{
6204
	if (!memcg->res.parent)
6205
		return NULL;
6206
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6207
}
G
Glauber Costa 已提交
6208
EXPORT_SYMBOL(parent_mem_cgroup);
6209

6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6233
static struct cgroup_subsys_state * __ref
6234
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6235
{
6236
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6237
	long error = -ENOMEM;
6238
	int node;
B
Balbir Singh 已提交
6239

6240 6241
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6242
		return ERR_PTR(error);
6243

B
Bob Liu 已提交
6244
	for_each_node(node)
6245
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6246
			goto free_out;
6247

6248
	/* root ? */
6249
	if (parent_css == NULL) {
6250
		root_mem_cgroup = memcg;
6251 6252 6253
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6254
	}
6255

6256 6257 6258 6259 6260
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6261
	vmpressure_init(&memcg->vmpressure);
6262 6263 6264 6265 6266 6267 6268 6269 6270

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6271
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6272
{
6273 6274
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6275 6276
	int error = 0;

T
Tejun Heo 已提交
6277
	if (!parent)
6278 6279
		return 0;

6280
	mutex_lock(&memcg_create_mutex);
6281 6282 6283 6284 6285 6286

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6287 6288
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6289
		res_counter_init(&memcg->kmem, &parent->kmem);
6290

6291
		/*
6292 6293
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6294
		 */
6295
	} else {
6296 6297
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6298
		res_counter_init(&memcg->kmem, NULL);
6299 6300 6301 6302 6303
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6304
		if (parent != root_mem_cgroup)
6305
			mem_cgroup_subsys.broken_hierarchy = true;
6306
	}
6307 6308

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6309
	mutex_unlock(&memcg_create_mutex);
6310
	return error;
B
Balbir Singh 已提交
6311 6312
}

M
Michal Hocko 已提交
6313 6314 6315 6316 6317 6318 6319 6320
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6321
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6322 6323 6324 6325 6326 6327

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6328
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6329 6330
}

6331
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6332
{
6333
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6334

6335 6336
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6337
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6338
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6339
	mem_cgroup_destroy_all_caches(memcg);
6340
	vmpressure_cleanup(&memcg->vmpressure);
6341 6342
}

6343
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6344
{
6345
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6346

6347
	memcg_destroy_kmem(memcg);
6348
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6349 6350
}

6351
#ifdef CONFIG_MMU
6352
/* Handlers for move charge at task migration. */
6353 6354
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6355
{
6356 6357
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6358
	struct mem_cgroup *memcg = mc.to;
6359

6360
	if (mem_cgroup_is_root(memcg)) {
6361 6362 6363 6364 6365 6366 6367 6368
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6369
		 * "memcg" cannot be under rmdir() because we've already checked
6370 6371 6372 6373
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6374
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6375
			goto one_by_one;
6376
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6377
						PAGE_SIZE * count, &dummy)) {
6378
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6395 6396
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6397
		if (ret)
6398
			/* mem_cgroup_clear_mc() will do uncharge later */
6399
			return ret;
6400 6401
		mc.precharge++;
	}
6402 6403 6404 6405
	return ret;
}

/**
6406
 * get_mctgt_type - get target type of moving charge
6407 6408 6409
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6410
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6411 6412 6413 6414 6415 6416
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6417 6418 6419
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6420 6421 6422 6423 6424
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6425
	swp_entry_t	ent;
6426 6427 6428
};

enum mc_target_type {
6429
	MC_TARGET_NONE = 0,
6430
	MC_TARGET_PAGE,
6431
	MC_TARGET_SWAP,
6432 6433
};

D
Daisuke Nishimura 已提交
6434 6435
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6436
{
D
Daisuke Nishimura 已提交
6437
	struct page *page = vm_normal_page(vma, addr, ptent);
6438

D
Daisuke Nishimura 已提交
6439 6440 6441 6442
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6443
		if (!move_anon())
D
Daisuke Nishimura 已提交
6444
			return NULL;
6445 6446
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6447 6448 6449 6450 6451 6452 6453
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6454
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6455 6456 6457 6458 6459 6460 6461 6462
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6463 6464 6465 6466
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6467
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6468 6469 6470 6471 6472
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6473 6474 6475 6476 6477 6478 6479
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6480

6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6500 6501 6502 6503 6504 6505
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6506
		if (do_swap_account)
6507
			*entry = swap;
6508
		page = find_get_page(swap_address_space(swap), swap.val);
6509
	}
6510
#endif
6511 6512 6513
	return page;
}

6514
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6515 6516 6517 6518
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6519
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6520 6521 6522 6523 6524 6525
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6526 6527
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6528 6529

	if (!page && !ent.val)
6530
		return ret;
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6546 6547
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6548
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6549 6550 6551
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6552 6553 6554 6555
	}
	return ret;
}

6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6591 6592 6593 6594 6595 6596 6597 6598
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6599 6600 6601 6602
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6603
		return 0;
6604
	}
6605

6606 6607
	if (pmd_trans_unstable(pmd))
		return 0;
6608 6609
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6610
		if (get_mctgt_type(vma, addr, *pte, NULL))
6611 6612 6613 6614
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6615 6616 6617
	return 0;
}

6618 6619 6620 6621 6622
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6623
	down_read(&mm->mmap_sem);
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6635
	up_read(&mm->mmap_sem);
6636 6637 6638 6639 6640 6641 6642 6643 6644

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6645 6646 6647 6648 6649
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6650 6651
}

6652 6653
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6654
{
6655 6656
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6657
	int i;
6658

6659
	/* we must uncharge all the leftover precharges from mc.to */
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6671
	}
6672 6673 6674 6675 6676 6677
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6678 6679 6680

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6681 6682 6683 6684 6685 6686 6687 6688 6689

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6690
		/* we've already done css_get(mc.to) */
6691 6692
		mc.moved_swap = 0;
	}
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6708
	spin_lock(&mc.lock);
6709 6710
	mc.from = NULL;
	mc.to = NULL;
6711
	spin_unlock(&mc.lock);
6712
	mem_cgroup_end_move(from);
6713 6714
}

6715
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6716
				 struct cgroup_taskset *tset)
6717
{
6718
	struct task_struct *p = cgroup_taskset_first(tset);
6719
	int ret = 0;
6720
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6721
	unsigned long move_charge_at_immigrate;
6722

6723 6724 6725 6726 6727 6728 6729
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6730 6731 6732
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6733
		VM_BUG_ON(from == memcg);
6734 6735 6736 6737 6738

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6739 6740 6741 6742
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6743
			VM_BUG_ON(mc.moved_charge);
6744
			VM_BUG_ON(mc.moved_swap);
6745
			mem_cgroup_start_move(from);
6746
			spin_lock(&mc.lock);
6747
			mc.from = from;
6748
			mc.to = memcg;
6749
			mc.immigrate_flags = move_charge_at_immigrate;
6750
			spin_unlock(&mc.lock);
6751
			/* We set mc.moving_task later */
6752 6753 6754 6755

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6756 6757
		}
		mmput(mm);
6758 6759 6760 6761
	}
	return ret;
}

6762
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6763
				     struct cgroup_taskset *tset)
6764
{
6765
	mem_cgroup_clear_mc();
6766 6767
}

6768 6769 6770
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6771
{
6772 6773 6774 6775
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6776 6777 6778 6779
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6780

6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6792
		if (mc.precharge < HPAGE_PMD_NR) {
6793 6794 6795 6796 6797 6798 6799 6800 6801
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6802
							pc, mc.from, mc.to)) {
6803 6804 6805 6806 6807 6808 6809 6810
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6811
		return 0;
6812 6813
	}

6814 6815
	if (pmd_trans_unstable(pmd))
		return 0;
6816 6817 6818 6819
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6820
		swp_entry_t ent;
6821 6822 6823 6824

		if (!mc.precharge)
			break;

6825
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6826 6827 6828 6829 6830
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6831
			if (!mem_cgroup_move_account(page, 1, pc,
6832
						     mc.from, mc.to)) {
6833
				mc.precharge--;
6834 6835
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6836 6837
			}
			putback_lru_page(page);
6838
put:			/* get_mctgt_type() gets the page */
6839 6840
			put_page(page);
			break;
6841 6842
		case MC_TARGET_SWAP:
			ent = target.ent;
6843
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6844
				mc.precharge--;
6845 6846 6847
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6848
			break;
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6863
		ret = mem_cgroup_do_precharge(1);
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6907
	up_read(&mm->mmap_sem);
6908 6909
}

6910
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6911
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6912
{
6913
	struct task_struct *p = cgroup_taskset_first(tset);
6914
	struct mm_struct *mm = get_task_mm(p);
6915 6916

	if (mm) {
6917 6918
		if (mc.to)
			mem_cgroup_move_charge(mm);
6919 6920
		mmput(mm);
	}
6921 6922
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6923
}
6924
#else	/* !CONFIG_MMU */
6925
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6926
				 struct cgroup_taskset *tset)
6927 6928 6929
{
	return 0;
}
6930
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6931
				     struct cgroup_taskset *tset)
6932 6933
{
}
6934
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6935
				 struct cgroup_taskset *tset)
6936 6937 6938
{
}
#endif
B
Balbir Singh 已提交
6939

6940 6941 6942 6943
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6944
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6945 6946 6947 6948 6949 6950
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6951 6952
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6953 6954
}

B
Balbir Singh 已提交
6955 6956 6957
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6958
	.css_alloc = mem_cgroup_css_alloc,
6959
	.css_online = mem_cgroup_css_online,
6960 6961
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6962 6963
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6964
	.attach = mem_cgroup_move_task,
6965
	.bind = mem_cgroup_bind,
6966
	.base_cftypes = mem_cgroup_files,
6967
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6968
	.use_id = 1,
B
Balbir Singh 已提交
6969
};
6970

A
Andrew Morton 已提交
6971
#ifdef CONFIG_MEMCG_SWAP
6972 6973
static int __init enable_swap_account(char *s)
{
6974
	if (!strcmp(s, "1"))
6975
		really_do_swap_account = 1;
6976
	else if (!strcmp(s, "0"))
6977 6978 6979
		really_do_swap_account = 0;
	return 1;
}
6980
__setup("swapaccount=", enable_swap_account);
6981

6982 6983
static void __init memsw_file_init(void)
{
6984 6985 6986 6987 6988 6989 6990 6991 6992
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6993
}
6994

6995
#else
6996
static void __init enable_swap_cgroup(void)
6997 6998
{
}
6999
#endif
7000 7001

/*
7002 7003 7004 7005 7006 7007
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7008 7009 7010 7011
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7012
	enable_swap_cgroup();
7013
	mem_cgroup_soft_limit_tree_init();
7014
	memcg_stock_init();
7015 7016 7017
	return 0;
}
subsys_initcall(mem_cgroup_init);