memcontrol.c 170.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

251 252 253 254 255 256 257 258 259 260 261 262 263
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

264
#ifdef CONFIG_MEMCG_KMEM
265
/*
266
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
267 268 269 270 271
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
272
 *
273 274
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
275
 */
276 277
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
278

279 280 281 282 283 284 285 286 287 288 289 290 291
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

292 293 294 295 296 297
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
298
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
299 300
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
301
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
302 303 304
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
305
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
306

307 308 309 310 311 312
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
313
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
314
EXPORT_SYMBOL(memcg_kmem_enabled_key);
315

316 317
struct workqueue_struct *memcg_kmem_cache_wq;

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
425 426 427 428 429 430 431 432

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
433 434
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
435 436 437 438 439
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

440 441 442 443 444 445
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
446
#endif /* CONFIG_MEMCG_KMEM */
447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

465
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 467 468 469 470
		memcg = root_mem_cgroup;

	return &memcg->css;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

499 500
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501
{
502
	int nid = page_to_nid(page);
503

504
	return memcg->nodeinfo[nid];
505 506
}

507 508
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
509
{
510
	return soft_limit_tree.rb_tree_per_node[nid];
511 512
}

513
static struct mem_cgroup_tree_per_node *
514 515 516 517
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

518
	return soft_limit_tree.rb_tree_per_node[nid];
519 520
}

521 522
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
523
					 unsigned long new_usage_in_excess)
524 525 526
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
527
	struct mem_cgroup_per_node *mz_node;
528
	bool rightmost = true;
529 530 531 532 533 534 535 536 537

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
538
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539
					tree_node);
540
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
541
			p = &(*p)->rb_left;
542 543 544
			rightmost = false;
		}

545 546 547 548 549 550 551
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
552 553 554 555

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

556 557 558 559 560
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

561 562
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
563 564 565
{
	if (!mz->on_tree)
		return;
566 567 568 569

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

570 571 572 573
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

574 575
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
576
{
577 578 579
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
580
	__mem_cgroup_remove_exceeded(mz, mctz);
581
	spin_unlock_irqrestore(&mctz->lock, flags);
582 583
}

584 585 586
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
587
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 589 590 591 592 593 594
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
595 596 597

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
598
	unsigned long excess;
599 600
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
601

602
	mctz = soft_limit_tree_from_page(page);
603 604
	if (!mctz)
		return;
605 606 607 608 609
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610
		mz = mem_cgroup_page_nodeinfo(memcg, page);
611
		excess = soft_limit_excess(memcg);
612 613 614 615 616
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
617 618 619
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
620 621
			/* if on-tree, remove it */
			if (mz->on_tree)
622
				__mem_cgroup_remove_exceeded(mz, mctz);
623 624 625 626
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
627
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
628
			spin_unlock_irqrestore(&mctz->lock, flags);
629 630 631 632 633 634
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
635 636 637
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
638

639
	for_each_node(nid) {
640 641
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
642 643
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
644 645 646
	}
}

647 648
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649
{
650
	struct mem_cgroup_per_node *mz;
651 652 653

retry:
	mz = NULL;
654
	if (!mctz->rb_rightmost)
655 656
		goto done;		/* Nothing to reclaim from */

657 658
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
659 660 661 662 663
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
664
	__mem_cgroup_remove_exceeded(mz, mctz);
665
	if (!soft_limit_excess(mz->memcg) ||
666
	    !css_tryget_online(&mz->memcg->css))
667 668 669 670 671
		goto retry;
done:
	return mz;
}

672 673
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674
{
675
	struct mem_cgroup_per_node *mz;
676

677
	spin_lock_irq(&mctz->lock);
678
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
679
	spin_unlock_irq(&mctz->lock);
680 681 682
	return mz;
}

683
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
684
				      int event)
685
{
686
	return atomic_long_read(&memcg->events[event]);
687 688
}

689
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
690
					 struct page *page,
691
					 bool compound, int nr_pages)
692
{
693 694 695 696
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
697
	if (PageAnon(page))
698
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
699
	else {
700
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
701
		if (PageSwapBacked(page))
702
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
703
	}
704

705 706
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
707
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
708
	}
709

710 711
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
712
		__count_memcg_events(memcg, PGPGIN, 1);
713
	else {
714
		__count_memcg_events(memcg, PGPGOUT, 1);
715 716
		nr_pages = -nr_pages; /* for event */
	}
717

718
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
719 720
}

721 722
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
723
{
724
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
725
	unsigned long nr = 0;
726
	enum lru_list lru;
727

728
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
729

730 731 732
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
733
		nr += mem_cgroup_get_lru_size(lruvec, lru);
734 735
	}
	return nr;
736
}
737

738
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
739
			unsigned int lru_mask)
740
{
741
	unsigned long nr = 0;
742
	int nid;
743

744
	for_each_node_state(nid, N_MEMORY)
745 746
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
747 748
}

749 750
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
751 752 753
{
	unsigned long val, next;

754 755
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
756
	/* from time_after() in jiffies.h */
757
	if ((long)(next - val) < 0) {
758 759 760 761
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
762 763 764
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
765 766 767 768 769 770
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
771
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
772
		return true;
773
	}
774
	return false;
775 776 777 778 779 780
}

/*
 * Check events in order.
 *
 */
781
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
782 783
{
	/* threshold event is triggered in finer grain than soft limit */
784 785
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
786
		bool do_softlimit;
787
		bool do_numainfo __maybe_unused;
788

789 790
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
791 792 793 794
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
795
		mem_cgroup_threshold(memcg);
796 797
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
798
#if MAX_NUMNODES > 1
799
		if (unlikely(do_numainfo))
800
			atomic_inc(&memcg->numainfo_events);
801
#endif
802
	}
803 804
}

805
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
806
{
807 808 809 810 811 812 813 814
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

815
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
816
}
M
Michal Hocko 已提交
817
EXPORT_SYMBOL(mem_cgroup_from_task);
818

819 820 821 822 823 824 825 826 827
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
828
{
829 830 831 832
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
833

834 835
	rcu_read_lock();
	do {
836 837 838 839 840 841
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
842
			memcg = root_mem_cgroup;
843 844 845 846 847
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
848
	} while (!css_tryget_online(&memcg->css));
849
	rcu_read_unlock();
850
	return memcg;
851
}
852 853
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
892

893 894 895 896 897 898 899 900 901 902 903 904 905
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
906
 * Reclaimers can specify a node and a priority level in @reclaim to
907
 * divide up the memcgs in the hierarchy among all concurrent
908
 * reclaimers operating on the same node and priority.
909
 */
910
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
911
				   struct mem_cgroup *prev,
912
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
913
{
M
Michal Hocko 已提交
914
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
915
	struct cgroup_subsys_state *css = NULL;
916
	struct mem_cgroup *memcg = NULL;
917
	struct mem_cgroup *pos = NULL;
918

919 920
	if (mem_cgroup_disabled())
		return NULL;
921

922 923
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
924

925
	if (prev && !reclaim)
926
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
927

928 929
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
930
			goto out;
931
		return root;
932
	}
K
KAMEZAWA Hiroyuki 已提交
933

934
	rcu_read_lock();
M
Michal Hocko 已提交
935

936
	if (reclaim) {
937
		struct mem_cgroup_per_node *mz;
938

939
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
940 941 942 943 944
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

945
		while (1) {
946
			pos = READ_ONCE(iter->position);
947 948
			if (!pos || css_tryget(&pos->css))
				break;
949
			/*
950 951 952 953 954 955
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
956
			 */
957 958
			(void)cmpxchg(&iter->position, pos, NULL);
		}
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
976
		}
K
KAMEZAWA Hiroyuki 已提交
977

978 979 980 981 982 983
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
984

985 986
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
987

988 989
		if (css_tryget(css))
			break;
990

991
		memcg = NULL;
992
	}
993 994 995

	if (reclaim) {
		/*
996 997 998
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
999
		 */
1000 1001
		(void)cmpxchg(&iter->position, pos, memcg);

1002 1003 1004 1005 1006 1007 1008
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1009
	}
1010

1011 1012
out_unlock:
	rcu_read_unlock();
1013
out:
1014 1015 1016
	if (prev && prev != root)
		css_put(&prev->css);

1017
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1018
}
K
KAMEZAWA Hiroyuki 已提交
1019

1020 1021 1022 1023 1024 1025 1026
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1027 1028 1029 1030 1031 1032
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1033

1034 1035 1036 1037
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
1038 1039
	struct mem_cgroup_per_node *mz;
	int nid;
1040 1041
	int i;

1042
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043
		for_each_node(nid) {
1044 1045 1046 1047 1048
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
1049 1050 1051 1052 1053
			}
		}
	}
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1079
		css_task_iter_start(&iter->css, 0, &it);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1091
/**
1092
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1093
 * @page: the page
1094
 * @pgdat: pgdat of the page
1095 1096 1097 1098
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1099
 */
M
Mel Gorman 已提交
1100
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1101
{
1102
	struct mem_cgroup_per_node *mz;
1103
	struct mem_cgroup *memcg;
1104
	struct lruvec *lruvec;
1105

1106
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1107
		lruvec = &pgdat->lruvec;
1108 1109
		goto out;
	}
1110

1111
	memcg = page->mem_cgroup;
1112
	/*
1113
	 * Swapcache readahead pages are added to the LRU - and
1114
	 * possibly migrated - before they are charged.
1115
	 */
1116 1117
	if (!memcg)
		memcg = root_mem_cgroup;
1118

1119
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1120 1121 1122 1123 1124 1125 1126
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1127 1128
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1129
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1130
}
1131

1132
/**
1133 1134 1135
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1136
 * @zid: zone id of the accounted pages
1137
 * @nr_pages: positive when adding or negative when removing
1138
 *
1139 1140 1141
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1142
 */
1143
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144
				int zid, int nr_pages)
1145
{
1146
	struct mem_cgroup_per_node *mz;
1147
	unsigned long *lru_size;
1148
	long size;
1149 1150 1151 1152

	if (mem_cgroup_disabled())
		return;

1153
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154
	lru_size = &mz->lru_zone_size[zid][lru];
1155 1156 1157 1158 1159

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1160 1161 1162
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1163 1164 1165 1166 1167 1168
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1169
}
1170

1171
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1172
{
1173
	struct mem_cgroup *task_memcg;
1174
	struct task_struct *p;
1175
	bool ret;
1176

1177
	p = find_lock_task_mm(task);
1178
	if (p) {
1179
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1180 1181 1182 1183 1184 1185 1186
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1187
		rcu_read_lock();
1188 1189
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1190
		rcu_read_unlock();
1191
	}
1192 1193
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1194 1195 1196
	return ret;
}

1197
/**
1198
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1199
 * @memcg: the memory cgroup
1200
 *
1201
 * Returns the maximum amount of memory @mem can be charged with, in
1202
 * pages.
1203
 */
1204
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1205
{
1206 1207 1208
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1209

1210
	count = page_counter_read(&memcg->memory);
1211
	limit = READ_ONCE(memcg->memory.max);
1212 1213 1214
	if (count < limit)
		margin = limit - count;

1215
	if (do_memsw_account()) {
1216
		count = page_counter_read(&memcg->memsw);
1217
		limit = READ_ONCE(memcg->memsw.max);
1218 1219
		if (count <= limit)
			margin = min(margin, limit - count);
1220 1221
		else
			margin = 0;
1222 1223 1224
	}

	return margin;
1225 1226
}

1227
/*
Q
Qiang Huang 已提交
1228
 * A routine for checking "mem" is under move_account() or not.
1229
 *
Q
Qiang Huang 已提交
1230 1231 1232
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1233
 */
1234
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1235
{
1236 1237
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1238
	bool ret = false;
1239 1240 1241 1242 1243 1244 1245 1246 1247
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1248

1249 1250
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1251 1252
unlock:
	spin_unlock(&mc.lock);
1253 1254 1255
	return ret;
}

1256
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1257 1258
{
	if (mc.moving_task && current != mc.moving_task) {
1259
		if (mem_cgroup_under_move(memcg)) {
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1272
static const unsigned int memcg1_stats[] = {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1294
#define K(x) ((x) << (PAGE_SHIFT-10))
1295
/**
1296
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297 1298 1299 1300 1301 1302 1303 1304
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1305 1306
	struct mem_cgroup *iter;
	unsigned int i;
1307 1308 1309

	rcu_read_lock();

1310 1311 1312 1313 1314 1315 1316 1317
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1318
	pr_cont_cgroup_path(memcg->css.cgroup);
1319
	pr_cont("\n");
1320 1321 1322

	rcu_read_unlock();

1323 1324
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1325
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1326 1327
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1328
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329 1330
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1331
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1332 1333

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1334 1335
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1336 1337
		pr_cont(":");

1338 1339
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1340
				continue;
1341
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342
				K(memcg_page_state(iter, memcg1_stats[i])));
1343 1344 1345 1346 1347 1348 1349 1350
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1351 1352
}

D
David Rientjes 已提交
1353 1354 1355
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1356
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1357
{
1358
	unsigned long max;
1359

1360
	max = memcg->memory.max;
1361
	if (mem_cgroup_swappiness(memcg)) {
1362 1363
		unsigned long memsw_max;
		unsigned long swap_max;
1364

1365 1366 1367 1368
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1369
	}
1370
	return max;
D
David Rientjes 已提交
1371 1372
}

1373
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1374
				     int order)
1375
{
1376 1377 1378
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1379
		.memcg = memcg,
1380 1381 1382
		.gfp_mask = gfp_mask,
		.order = order,
	};
1383
	bool ret;
1384

1385
	mutex_lock(&oom_lock);
1386
	ret = out_of_memory(&oc);
1387
	mutex_unlock(&oom_lock);
1388
	return ret;
1389 1390
}

1391 1392
#if MAX_NUMNODES > 1

1393 1394
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1395
 * @memcg: the target memcg
1396 1397 1398 1399 1400 1401 1402
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1403
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 1405
		int nid, bool noswap)
{
1406
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 1408 1409
		return true;
	if (noswap || !total_swap_pages)
		return false;
1410
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 1412 1413 1414
		return true;
	return false;

}
1415 1416 1417 1418 1419 1420 1421

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1422
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 1424
{
	int nid;
1425 1426 1427 1428
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1429
	if (!atomic_read(&memcg->numainfo_events))
1430
		return;
1431
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 1433 1434
		return;

	/* make a nodemask where this memcg uses memory from */
1435
	memcg->scan_nodes = node_states[N_MEMORY];
1436

1437
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1438

1439 1440
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1441
	}
1442

1443 1444
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1459
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 1461 1462
{
	int node;

1463 1464
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1465

1466
	node = next_node_in(node, memcg->scan_nodes);
1467
	/*
1468 1469 1470
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1471 1472 1473 1474
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1475
	memcg->last_scanned_node = node;
1476 1477 1478
	return node;
}
#else
1479
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1480 1481 1482 1483 1484
{
	return 0;
}
#endif

1485
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1486
				   pg_data_t *pgdat,
1487 1488 1489 1490 1491 1492 1493 1494 1495
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1496
		.pgdat = pgdat,
1497 1498 1499
		.priority = 0,
	};

1500
	excess = soft_limit_excess(root_memcg);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1526
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527
					pgdat, &nr_scanned);
1528
		*total_scanned += nr_scanned;
1529
		if (!soft_limit_excess(root_memcg))
1530
			break;
1531
	}
1532 1533
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1534 1535
}

1536 1537 1538 1539 1540 1541
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1542 1543
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1544 1545 1546 1547
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1548
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1549
{
1550
	struct mem_cgroup *iter, *failed = NULL;
1551

1552 1553
	spin_lock(&memcg_oom_lock);

1554
	for_each_mem_cgroup_tree(iter, memcg) {
1555
		if (iter->oom_lock) {
1556 1557 1558 1559 1560
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1561 1562
			mem_cgroup_iter_break(memcg, iter);
			break;
1563 1564
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1565
	}
K
KAMEZAWA Hiroyuki 已提交
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1578
		}
1579 1580
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1581 1582 1583 1584

	spin_unlock(&memcg_oom_lock);

	return !failed;
1585
}
1586

1587
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1588
{
K
KAMEZAWA Hiroyuki 已提交
1589 1590
	struct mem_cgroup *iter;

1591
	spin_lock(&memcg_oom_lock);
1592
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593
	for_each_mem_cgroup_tree(iter, memcg)
1594
		iter->oom_lock = false;
1595
	spin_unlock(&memcg_oom_lock);
1596 1597
}

1598
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1599 1600 1601
{
	struct mem_cgroup *iter;

1602
	spin_lock(&memcg_oom_lock);
1603
	for_each_mem_cgroup_tree(iter, memcg)
1604 1605
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1606 1607
}

1608
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1609 1610 1611
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1612 1613
	/*
	 * When a new child is created while the hierarchy is under oom,
1614
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1615
	 */
1616
	spin_lock(&memcg_oom_lock);
1617
	for_each_mem_cgroup_tree(iter, memcg)
1618 1619 1620
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1621 1622
}

K
KAMEZAWA Hiroyuki 已提交
1623 1624
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1625
struct oom_wait_info {
1626
	struct mem_cgroup *memcg;
1627
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1628 1629
};

1630
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1631 1632
	unsigned mode, int sync, void *arg)
{
1633 1634
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1635 1636 1637
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1639

1640 1641
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1642 1643 1644 1645
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1646
static void memcg_oom_recover(struct mem_cgroup *memcg)
1647
{
1648 1649 1650 1651 1652 1653 1654 1655 1656
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1657
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1658 1659
}

1660 1661 1662 1663 1664 1665 1666 1667
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1668
{
1669 1670 1671
	enum oom_status ret;
	bool locked;

1672 1673 1674
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

K
KAMEZAWA Hiroyuki 已提交
1675
	/*
1676 1677 1678 1679
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1680 1681 1682 1683
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1684
	 *
1685 1686 1687 1688 1689 1690 1691
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1692
	 */
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1704 1705 1706 1707 1708 1709 1710 1711
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1712
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1713 1714 1715 1716 1717 1718
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1719

1720
	return ret;
1721 1722 1723 1724
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1725
 * @handle: actually kill/wait or just clean up the OOM state
1726
 *
1727 1728
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1729
 *
1730
 * Memcg supports userspace OOM handling where failed allocations must
1731 1732 1733 1734
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1735
 * the end of the page fault to complete the OOM handling.
1736 1737
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1738
 * completed, %false otherwise.
1739
 */
1740
bool mem_cgroup_oom_synchronize(bool handle)
1741
{
T
Tejun Heo 已提交
1742
	struct mem_cgroup *memcg = current->memcg_in_oom;
1743
	struct oom_wait_info owait;
1744
	bool locked;
1745 1746 1747

	/* OOM is global, do not handle */
	if (!memcg)
1748
		return false;
1749

1750
	if (!handle)
1751
		goto cleanup;
1752 1753 1754 1755 1756

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1757
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1758

1759
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1770 1771
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1772
	} else {
1773
		schedule();
1774 1775 1776 1777 1778
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1779 1780 1781 1782 1783 1784 1785 1786
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1787
cleanup:
T
Tejun Heo 已提交
1788
	current->memcg_in_oom = NULL;
1789
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1790
	return true;
1791 1792
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1849
/**
1850 1851
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1852
 *
1853
 * This function protects unlocked LRU pages from being moved to
1854 1855 1856 1857 1858
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1859
 */
1860
struct mem_cgroup *lock_page_memcg(struct page *page)
1861 1862
{
	struct mem_cgroup *memcg;
1863
	unsigned long flags;
1864

1865 1866 1867 1868
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1869 1870 1871 1872 1873 1874 1875
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1876 1877 1878
	rcu_read_lock();

	if (mem_cgroup_disabled())
1879
		return NULL;
1880
again:
1881
	memcg = page->mem_cgroup;
1882
	if (unlikely(!memcg))
1883
		return NULL;
1884

Q
Qiang Huang 已提交
1885
	if (atomic_read(&memcg->moving_account) <= 0)
1886
		return memcg;
1887

1888
	spin_lock_irqsave(&memcg->move_lock, flags);
1889
	if (memcg != page->mem_cgroup) {
1890
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1891 1892
		goto again;
	}
1893 1894 1895 1896

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1897
	 * the task who has the lock for unlock_page_memcg().
1898 1899 1900
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1901

1902
	return memcg;
1903
}
1904
EXPORT_SYMBOL(lock_page_memcg);
1905

1906
/**
1907 1908 1909 1910
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1911
 */
1912
void __unlock_page_memcg(struct mem_cgroup *memcg)
1913
{
1914 1915 1916 1917 1918 1919 1920 1921
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1922

1923
	rcu_read_unlock();
1924
}
1925 1926 1927 1928 1929 1930 1931 1932 1933

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1934
EXPORT_SYMBOL(unlock_page_memcg);
1935

1936 1937
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1938
	unsigned int nr_pages;
1939
	struct work_struct work;
1940
	unsigned long flags;
1941
#define FLUSHING_CACHED_CHARGE	0
1942 1943
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1944
static DEFINE_MUTEX(percpu_charge_mutex);
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1956
 */
1957
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1958 1959
{
	struct memcg_stock_pcp *stock;
1960
	unsigned long flags;
1961
	bool ret = false;
1962

1963
	if (nr_pages > MEMCG_CHARGE_BATCH)
1964
		return ret;
1965

1966 1967 1968
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1969
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1970
		stock->nr_pages -= nr_pages;
1971 1972
		ret = true;
	}
1973 1974 1975

	local_irq_restore(flags);

1976 1977 1978 1979
	return ret;
}

/*
1980
 * Returns stocks cached in percpu and reset cached information.
1981 1982 1983 1984 1985
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1986
	if (stock->nr_pages) {
1987
		page_counter_uncharge(&old->memory, stock->nr_pages);
1988
		if (do_memsw_account())
1989
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1990
		css_put_many(&old->css, stock->nr_pages);
1991
		stock->nr_pages = 0;
1992 1993 1994 1995 1996 1997
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1998 1999 2000
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2001 2002 2003 2004
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2005 2006 2007
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2008
	drain_stock(stock);
2009
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2010 2011

	local_irq_restore(flags);
2012 2013 2014
}

/*
2015
 * Cache charges(val) to local per_cpu area.
2016
 * This will be consumed by consume_stock() function, later.
2017
 */
2018
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2019
{
2020 2021 2022 2023
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2024

2025
	stock = this_cpu_ptr(&memcg_stock);
2026
	if (stock->cached != memcg) { /* reset if necessary */
2027
		drain_stock(stock);
2028
		stock->cached = memcg;
2029
	}
2030
	stock->nr_pages += nr_pages;
2031

2032
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2033 2034
		drain_stock(stock);

2035
	local_irq_restore(flags);
2036 2037 2038
}

/*
2039
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2040
 * of the hierarchy under it.
2041
 */
2042
static void drain_all_stock(struct mem_cgroup *root_memcg)
2043
{
2044
	int cpu, curcpu;
2045

2046 2047 2048
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2049 2050 2051 2052 2053 2054
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2055
	curcpu = get_cpu();
2056 2057
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2058
		struct mem_cgroup *memcg;
2059

2060
		memcg = stock->cached;
2061
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2062
			continue;
2063 2064
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2065
			continue;
2066
		}
2067 2068 2069 2070 2071 2072
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2073
		css_put(&memcg->css);
2074
	}
2075
	put_cpu();
2076
	mutex_unlock(&percpu_charge_mutex);
2077 2078
}

2079
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2080 2081
{
	struct memcg_stock_pcp *stock;
2082
	struct mem_cgroup *memcg;
2083 2084 2085

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

2111
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2112 2113 2114 2115 2116 2117 2118 2119
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

2120
	return 0;
2121 2122
}

2123 2124 2125 2126 2127 2128 2129
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2130
		memcg_memory_event(memcg, MEMCG_HIGH);
2131 2132 2133 2134 2135 2136 2137 2138 2139
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2140
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2141 2142
}

2143 2144 2145 2146 2147 2148 2149
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2150
	struct mem_cgroup *memcg;
2151 2152 2153 2154

	if (likely(!nr_pages))
		return;

2155 2156
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2157 2158 2159 2160
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2161 2162
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2163
{
2164
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2165
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2166
	struct mem_cgroup *mem_over_limit;
2167
	struct page_counter *counter;
2168
	unsigned long nr_reclaimed;
2169 2170
	bool may_swap = true;
	bool drained = false;
2171 2172
	bool oomed = false;
	enum oom_status oom_status;
2173

2174
	if (mem_cgroup_is_root(memcg))
2175
		return 0;
2176
retry:
2177
	if (consume_stock(memcg, nr_pages))
2178
		return 0;
2179

2180
	if (!do_memsw_account() ||
2181 2182
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2183
			goto done_restock;
2184
		if (do_memsw_account())
2185 2186
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2187
	} else {
2188
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2189
		may_swap = false;
2190
	}
2191

2192 2193 2194 2195
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2196

2197 2198 2199 2200 2201 2202
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2203
	if (unlikely(tsk_is_oom_victim(current) ||
2204 2205
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2206
		goto force;
2207

2208 2209 2210 2211 2212 2213 2214 2215 2216
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2217 2218 2219
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2220
	if (!gfpflags_allow_blocking(gfp_mask))
2221
		goto nomem;
2222

2223
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2224

2225 2226
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2227

2228
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2229
		goto retry;
2230

2231
	if (!drained) {
2232
		drain_all_stock(mem_over_limit);
2233 2234 2235 2236
		drained = true;
		goto retry;
	}

2237 2238
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2239 2240 2241 2242 2243 2244 2245 2246 2247
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2248
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2249 2250 2251 2252 2253 2254 2255 2256
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2257 2258 2259
	if (nr_retries--)
		goto retry;

2260 2261 2262
	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
		goto nomem;

2263
	if (gfp_mask & __GFP_NOFAIL)
2264
		goto force;
2265

2266
	if (fatal_signal_pending(current))
2267
		goto force;
2268

2269
	memcg_memory_event(mem_over_limit, MEMCG_OOM);
2270

2271 2272 2273 2274 2275 2276
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2277
		       get_order(nr_pages * PAGE_SIZE));
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		oomed = true;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2288
nomem:
2289
	if (!(gfp_mask & __GFP_NOFAIL))
2290
		return -ENOMEM;
2291 2292 2293 2294 2295 2296 2297
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2298
	if (do_memsw_account())
2299 2300 2301 2302
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2303 2304

done_restock:
2305
	css_get_many(&memcg->css, batch);
2306 2307
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2308

2309
	/*
2310 2311
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2312
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2313 2314 2315 2316
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2317 2318
	 */
	do {
2319
		if (page_counter_read(&memcg->memory) > memcg->high) {
2320 2321 2322 2323 2324
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2325
			current->memcg_nr_pages_over_high += batch;
2326 2327 2328
			set_notify_resume(current);
			break;
		}
2329
	} while ((memcg = parent_mem_cgroup(memcg)));
2330 2331

	return 0;
2332
}
2333

2334
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2335
{
2336 2337 2338
	if (mem_cgroup_is_root(memcg))
		return;

2339
	page_counter_uncharge(&memcg->memory, nr_pages);
2340
	if (do_memsw_account())
2341
		page_counter_uncharge(&memcg->memsw, nr_pages);
2342

2343
	css_put_many(&memcg->css, nr_pages);
2344 2345
}

2346 2347 2348 2349
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2350
	spin_lock_irq(zone_lru_lock(zone));
2351 2352 2353
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2354
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2369
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2370 2371 2372 2373
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2374
	spin_unlock_irq(zone_lru_lock(zone));
2375 2376
}

2377
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2378
			  bool lrucare)
2379
{
2380
	int isolated;
2381

2382
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2383 2384 2385 2386 2387

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2388 2389
	if (lrucare)
		lock_page_lru(page, &isolated);
2390

2391 2392
	/*
	 * Nobody should be changing or seriously looking at
2393
	 * page->mem_cgroup at this point:
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2405
	page->mem_cgroup = memcg;
2406

2407 2408
	if (lrucare)
		unlock_page_lru(page, isolated);
2409
}
2410

2411
#ifdef CONFIG_MEMCG_KMEM
2412
static int memcg_alloc_cache_id(void)
2413
{
2414 2415 2416
	int id, size;
	int err;

2417
	id = ida_simple_get(&memcg_cache_ida,
2418 2419 2420
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2421

2422
	if (id < memcg_nr_cache_ids)
2423 2424 2425 2426 2427 2428
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2429
	down_write(&memcg_cache_ids_sem);
2430 2431

	size = 2 * (id + 1);
2432 2433 2434 2435 2436
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2437
	err = memcg_update_all_caches(size);
2438 2439
	if (!err)
		err = memcg_update_all_list_lrus(size);
2440 2441 2442 2443 2444
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2445
	if (err) {
2446
		ida_simple_remove(&memcg_cache_ida, id);
2447 2448 2449 2450 2451 2452 2453
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2454
	ida_simple_remove(&memcg_cache_ida, id);
2455 2456
}

2457
struct memcg_kmem_cache_create_work {
2458 2459 2460 2461 2462
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2463
static void memcg_kmem_cache_create_func(struct work_struct *w)
2464
{
2465 2466
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2467 2468
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2469

2470
	memcg_create_kmem_cache(memcg, cachep);
2471

2472
	css_put(&memcg->css);
2473 2474 2475 2476 2477 2478
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2479 2480
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2481
{
2482
	struct memcg_kmem_cache_create_work *cw;
2483

2484
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2485
	if (!cw)
2486
		return;
2487 2488

	css_get(&memcg->css);
2489 2490 2491

	cw->memcg = memcg;
	cw->cachep = cachep;
2492
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2493

2494
	queue_work(memcg_kmem_cache_wq, &cw->work);
2495 2496
}

2497 2498
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2499 2500 2501 2502
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2503
	 * in __memcg_schedule_kmem_cache_create will recurse.
2504 2505 2506 2507 2508 2509 2510
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2511
	current->memcg_kmem_skip_account = 1;
2512
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2513
	current->memcg_kmem_skip_account = 0;
2514
}
2515

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2527 2528 2529
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2530 2531 2532
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2533
 *
2534 2535 2536 2537
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2538
 */
2539
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2540 2541
{
	struct mem_cgroup *memcg;
2542
	struct kmem_cache *memcg_cachep;
2543
	int kmemcg_id;
2544

2545
	VM_BUG_ON(!is_root_cache(cachep));
2546

2547
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2548 2549
		return cachep;

2550
	if (current->memcg_kmem_skip_account)
2551 2552
		return cachep;

2553
	memcg = get_mem_cgroup_from_current();
2554
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2555
	if (kmemcg_id < 0)
2556
		goto out;
2557

2558
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2559 2560
	if (likely(memcg_cachep))
		return memcg_cachep;
2561 2562 2563 2564 2565 2566 2567 2568 2569

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2570 2571 2572
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2573
	 */
2574
	memcg_schedule_kmem_cache_create(memcg, cachep);
2575
out:
2576
	css_put(&memcg->css);
2577
	return cachep;
2578 2579
}

2580 2581 2582 2583 2584
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2585 2586
{
	if (!is_root_cache(cachep))
2587
		css_put(&cachep->memcg_params.memcg->css);
2588 2589
}

2590
/**
2591
 * memcg_kmem_charge_memcg: charge a kmem page
2592 2593 2594 2595 2596 2597 2598 2599 2600
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2601
{
2602 2603
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2604 2605
	int ret;

2606
	ret = try_charge(memcg, gfp, nr_pages);
2607
	if (ret)
2608
		return ret;
2609 2610 2611 2612 2613

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2614 2615
	}

2616
	page->mem_cgroup = memcg;
2617

2618
	return 0;
2619 2620
}

2621 2622 2623 2624 2625 2626 2627 2628 2629
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2630
{
2631
	struct mem_cgroup *memcg;
2632
	int ret = 0;
2633

2634 2635 2636
	if (memcg_kmem_bypass())
		return 0;

2637
	memcg = get_mem_cgroup_from_current();
2638
	if (!mem_cgroup_is_root(memcg)) {
2639
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2640 2641 2642
		if (!ret)
			__SetPageKmemcg(page);
	}
2643
	css_put(&memcg->css);
2644
	return ret;
2645
}
2646 2647 2648 2649 2650 2651
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2652
{
2653
	struct mem_cgroup *memcg = page->mem_cgroup;
2654
	unsigned int nr_pages = 1 << order;
2655 2656 2657 2658

	if (!memcg)
		return;

2659
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2660

2661 2662 2663
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2664
	page_counter_uncharge(&memcg->memory, nr_pages);
2665
	if (do_memsw_account())
2666
		page_counter_uncharge(&memcg->memsw, nr_pages);
2667

2668
	page->mem_cgroup = NULL;
2669 2670 2671 2672 2673

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2674
	css_put_many(&memcg->css, nr_pages);
2675
}
2676
#endif /* CONFIG_MEMCG_KMEM */
2677

2678 2679 2680 2681
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2682
 * zone_lru_lock and migration entries setup in all page mappings.
2683
 */
2684
void mem_cgroup_split_huge_fixup(struct page *head)
2685
{
2686
	int i;
2687

2688 2689
	if (mem_cgroup_disabled())
		return;
2690

2691
	for (i = 1; i < HPAGE_PMD_NR; i++)
2692
		head[i].mem_cgroup = head->mem_cgroup;
2693

2694
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2695
}
2696
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2697

A
Andrew Morton 已提交
2698
#ifdef CONFIG_MEMCG_SWAP
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2710
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2711 2712 2713
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2714
				struct mem_cgroup *from, struct mem_cgroup *to)
2715 2716 2717
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2718 2719
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2720 2721

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2722 2723
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2724 2725 2726 2727 2728 2729
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2730
				struct mem_cgroup *from, struct mem_cgroup *to)
2731 2732 2733
{
	return -EINVAL;
}
2734
#endif
K
KAMEZAWA Hiroyuki 已提交
2735

2736
static DEFINE_MUTEX(memcg_max_mutex);
2737

2738 2739
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2740
{
2741
	bool enlarge = false;
2742
	bool drained = false;
2743
	int ret;
2744 2745
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2746

2747
	do {
2748 2749 2750 2751
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2752

2753
		mutex_lock(&memcg_max_mutex);
2754 2755
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2756
		 * break our basic invariant rule memory.max <= memsw.max.
2757
		 */
2758 2759
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2760
		if (!limits_invariant) {
2761
			mutex_unlock(&memcg_max_mutex);
2762 2763 2764
			ret = -EINVAL;
			break;
		}
2765
		if (max > counter->max)
2766
			enlarge = true;
2767 2768
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2769 2770 2771 2772

		if (!ret)
			break;

2773 2774 2775 2776 2777 2778
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2779 2780 2781 2782 2783 2784
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2785

2786 2787
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2788

2789 2790 2791
	return ret;
}

2792
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2793 2794 2795 2796
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2797
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2798 2799
	unsigned long reclaimed;
	int loop = 0;
2800
	struct mem_cgroup_tree_per_node *mctz;
2801
	unsigned long excess;
2802 2803 2804 2805 2806
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2807
	mctz = soft_limit_tree_node(pgdat->node_id);
2808 2809 2810 2811 2812 2813

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2814
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2815 2816
		return 0;

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2831
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2832 2833 2834
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2835
		spin_lock_irq(&mctz->lock);
2836
		__mem_cgroup_remove_exceeded(mz, mctz);
2837 2838 2839 2840 2841 2842

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2843 2844 2845
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2846
		excess = soft_limit_excess(mz->memcg);
2847 2848 2849 2850 2851 2852 2853 2854 2855
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2856
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2857
		spin_unlock_irq(&mctz->lock);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2875 2876 2877 2878 2879 2880
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2881 2882
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2883 2884 2885 2886 2887 2888
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2889 2890
}

2891
/*
2892
 * Reclaims as many pages from the given memcg as possible.
2893 2894 2895 2896 2897 2898 2899
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2900 2901
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2902 2903 2904

	drain_all_stock(memcg);

2905
	/* try to free all pages in this cgroup */
2906
	while (nr_retries && page_counter_read(&memcg->memory)) {
2907
		int progress;
2908

2909 2910 2911
		if (signal_pending(current))
			return -EINTR;

2912 2913
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2914
		if (!progress) {
2915
			nr_retries--;
2916
			/* maybe some writeback is necessary */
2917
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2918
		}
2919 2920

	}
2921 2922

	return 0;
2923 2924
}

2925 2926 2927
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2928
{
2929
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2930

2931 2932
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2933
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2934 2935
}

2936 2937
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2938
{
2939
	return mem_cgroup_from_css(css)->use_hierarchy;
2940 2941
}

2942 2943
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2944 2945
{
	int retval = 0;
2946
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2947
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2948

2949
	if (memcg->use_hierarchy == val)
2950
		return 0;
2951

2952
	/*
2953
	 * If parent's use_hierarchy is set, we can't make any modifications
2954 2955 2956 2957 2958 2959
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2960
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2961
				(val == 1 || val == 0)) {
2962
		if (!memcg_has_children(memcg))
2963
			memcg->use_hierarchy = val;
2964 2965 2966 2967
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2968

2969 2970 2971
	return retval;
}

2972 2973 2974 2975 2976 2977 2978 2979 2980
struct accumulated_stats {
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[NR_VM_EVENT_ITEMS];
	unsigned long lru_pages[NR_LRU_LISTS];
	const unsigned int *stats_array;
	const unsigned int *events_array;
	int stats_size;
	int events_size;
};
2981

2982 2983
static void accumulate_memcg_tree(struct mem_cgroup *memcg,
				  struct accumulated_stats *acc)
2984
{
2985
	struct mem_cgroup *mi;
2986
	int i;
2987

2988 2989 2990 2991
	for_each_mem_cgroup_tree(mi, memcg) {
		for (i = 0; i < acc->stats_size; i++)
			acc->stat[i] += memcg_page_state(mi,
				acc->stats_array ? acc->stats_array[i] : i);
2992

2993 2994 2995 2996 2997 2998 2999
		for (i = 0; i < acc->events_size; i++)
			acc->events[i] += memcg_sum_events(mi,
				acc->events_array ? acc->events_array[i] : i);

		for (i = 0; i < NR_LRU_LISTS; i++)
			acc->lru_pages[i] +=
				mem_cgroup_nr_lru_pages(mi, BIT(i));
3000
	}
3001 3002
}

3003
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3004
{
3005
	unsigned long val = 0;
3006

3007
	if (mem_cgroup_is_root(memcg)) {
3008 3009 3010
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
3011 3012
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
3013
			if (swap)
3014
				val += memcg_page_state(iter, MEMCG_SWAP);
3015
		}
3016
	} else {
3017
		if (!swap)
3018
			val = page_counter_read(&memcg->memory);
3019
		else
3020
			val = page_counter_read(&memcg->memsw);
3021
	}
3022
	return val;
3023 3024
}

3025 3026 3027 3028 3029 3030 3031
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3032

3033
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3034
			       struct cftype *cft)
B
Balbir Singh 已提交
3035
{
3036
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3037
	struct page_counter *counter;
3038

3039
	switch (MEMFILE_TYPE(cft->private)) {
3040
	case _MEM:
3041 3042
		counter = &memcg->memory;
		break;
3043
	case _MEMSWAP:
3044 3045
		counter = &memcg->memsw;
		break;
3046
	case _KMEM:
3047
		counter = &memcg->kmem;
3048
		break;
V
Vladimir Davydov 已提交
3049
	case _TCP:
3050
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3051
		break;
3052 3053 3054
	default:
		BUG();
	}
3055 3056 3057 3058

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3059
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3060
		if (counter == &memcg->memsw)
3061
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3062 3063
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3064
		return (u64)counter->max * PAGE_SIZE;
3065 3066 3067 3068 3069 3070 3071 3072 3073
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3074
}
3075

3076
#ifdef CONFIG_MEMCG_KMEM
3077
static int memcg_online_kmem(struct mem_cgroup *memcg)
3078 3079 3080
{
	int memcg_id;

3081 3082 3083
	if (cgroup_memory_nokmem)
		return 0;

3084
	BUG_ON(memcg->kmemcg_id >= 0);
3085
	BUG_ON(memcg->kmem_state);
3086

3087
	memcg_id = memcg_alloc_cache_id();
3088 3089
	if (memcg_id < 0)
		return memcg_id;
3090

3091
	static_branch_inc(&memcg_kmem_enabled_key);
3092
	/*
3093
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3094
	 * kmemcg_id. Setting the id after enabling static branching will
3095 3096 3097
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3098
	memcg->kmemcg_id = memcg_id;
3099
	memcg->kmem_state = KMEM_ONLINE;
3100
	INIT_LIST_HEAD(&memcg->kmem_caches);
3101 3102

	return 0;
3103 3104
}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3138
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3139 3140 3141 3142 3143 3144 3145
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3146 3147
	rcu_read_unlock();

3148
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3149 3150 3151 3152 3153 3154

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3155 3156 3157 3158
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3159 3160 3161 3162 3163 3164
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
3165
#else
3166
static int memcg_online_kmem(struct mem_cgroup *memcg)
3167 3168 3169 3170 3171 3172 3173 3174 3175
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3176
#endif /* CONFIG_MEMCG_KMEM */
3177

3178 3179
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3180
{
3181
	int ret;
3182

3183 3184 3185
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3186
	return ret;
3187
}
3188

3189
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3190 3191 3192
{
	int ret;

3193
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3194

3195
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3196 3197 3198
	if (ret)
		goto out;

3199
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3200 3201 3202
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3203 3204 3205
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3206 3207 3208 3209 3210 3211
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3212
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3213 3214 3215 3216
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3217
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3218 3219
	}
out:
3220
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3221 3222 3223
	return ret;
}

3224 3225 3226 3227
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3228 3229
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3230
{
3231
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3232
	unsigned long nr_pages;
3233 3234
	int ret;

3235
	buf = strstrip(buf);
3236
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3237 3238
	if (ret)
		return ret;
3239

3240
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3241
	case RES_LIMIT:
3242 3243 3244 3245
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3246 3247
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3248
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3249
			break;
3250
		case _MEMSWAP:
3251
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3252
			break;
3253
		case _KMEM:
3254
			ret = memcg_update_kmem_max(memcg, nr_pages);
3255
			break;
V
Vladimir Davydov 已提交
3256
		case _TCP:
3257
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3258
			break;
3259
		}
3260
		break;
3261 3262 3263
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3264 3265
		break;
	}
3266
	return ret ?: nbytes;
B
Balbir Singh 已提交
3267 3268
}

3269 3270
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3271
{
3272
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3273
	struct page_counter *counter;
3274

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3285
	case _TCP:
3286
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3287
		break;
3288 3289 3290
	default:
		BUG();
	}
3291

3292
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3293
	case RES_MAX_USAGE:
3294
		page_counter_reset_watermark(counter);
3295 3296
		break;
	case RES_FAILCNT:
3297
		counter->failcnt = 0;
3298
		break;
3299 3300
	default:
		BUG();
3301
	}
3302

3303
	return nbytes;
3304 3305
}

3306
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3307 3308
					struct cftype *cft)
{
3309
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3310 3311
}

3312
#ifdef CONFIG_MMU
3313
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3314 3315
					struct cftype *cft, u64 val)
{
3316
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3317

3318
	if (val & ~MOVE_MASK)
3319
		return -EINVAL;
3320

3321
	/*
3322 3323 3324 3325
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3326
	 */
3327
	memcg->move_charge_at_immigrate = val;
3328 3329
	return 0;
}
3330
#else
3331
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3332 3333 3334 3335 3336
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3337

3338
#ifdef CONFIG_NUMA
3339
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3340
{
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3353
	int nid;
3354
	unsigned long nr;
3355
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3356

3357 3358 3359 3360 3361 3362 3363 3364 3365
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3366 3367
	}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3383 3384 3385 3386 3387 3388
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3389
/* Universal VM events cgroup1 shows, original sort order */
3390
static const unsigned int memcg1_events[] = {
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3404
static int memcg_stat_show(struct seq_file *m, void *v)
3405
{
3406
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3407
	unsigned long memory, memsw;
3408 3409
	struct mem_cgroup *mi;
	unsigned int i;
3410
	struct accumulated_stats acc;
3411

3412
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3413 3414
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3415 3416
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3417
			continue;
3418
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3419
			   memcg_page_state(memcg, memcg1_stats[i]) *
3420
			   PAGE_SIZE);
3421
	}
L
Lee Schermerhorn 已提交
3422

3423 3424
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3425
			   memcg_sum_events(memcg, memcg1_events[i]));
3426 3427 3428 3429 3430

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3431
	/* Hierarchical information */
3432 3433
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3434 3435
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3436
	}
3437 3438
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3439
	if (do_memsw_account())
3440 3441
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3442

3443 3444 3445 3446 3447 3448
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = ARRAY_SIZE(memcg1_stats);
	acc.stats_array = memcg1_stats;
	acc.events_size = ARRAY_SIZE(memcg1_events);
	acc.events_array = memcg1_events;
	accumulate_memcg_tree(memcg, &acc);
3449

3450
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3451
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3452
			continue;
3453 3454
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
			   (u64)acc.stat[i] * PAGE_SIZE);
3455 3456
	}

3457 3458 3459
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
			   (u64)acc.events[i]);
3460

3461 3462 3463
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3464

K
KOSAKI Motohiro 已提交
3465 3466
#ifdef CONFIG_DEBUG_VM
	{
3467 3468
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3469
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3470 3471 3472
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3473 3474 3475
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3476

3477 3478 3479 3480 3481
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3482 3483 3484 3485
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3486 3487 3488
	}
#endif

3489 3490 3491
	return 0;
}

3492 3493
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3494
{
3495
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3496

3497
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3498 3499
}

3500 3501
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3502
{
3503
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3504

3505
	if (val > 100)
K
KOSAKI Motohiro 已提交
3506 3507
		return -EINVAL;

3508
	if (css->parent)
3509 3510 3511
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3512

K
KOSAKI Motohiro 已提交
3513 3514 3515
	return 0;
}

3516 3517 3518
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3519
	unsigned long usage;
3520 3521 3522 3523
	int i;

	rcu_read_lock();
	if (!swap)
3524
		t = rcu_dereference(memcg->thresholds.primary);
3525
	else
3526
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3527 3528 3529 3530

	if (!t)
		goto unlock;

3531
	usage = mem_cgroup_usage(memcg, swap);
3532 3533

	/*
3534
	 * current_threshold points to threshold just below or equal to usage.
3535 3536 3537
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3538
	i = t->current_threshold;
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3562
	t->current_threshold = i - 1;
3563 3564 3565 3566 3567 3568
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3569 3570
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3571
		if (do_memsw_account())
3572 3573 3574 3575
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3576 3577 3578 3579 3580 3581 3582
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3583 3584 3585 3586 3587 3588 3589
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3590 3591
}

3592
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3593 3594 3595
{
	struct mem_cgroup_eventfd_list *ev;

3596 3597
	spin_lock(&memcg_oom_lock);

3598
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3599
		eventfd_signal(ev->eventfd, 1);
3600 3601

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3602 3603 3604
	return 0;
}

3605
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3606
{
K
KAMEZAWA Hiroyuki 已提交
3607 3608
	struct mem_cgroup *iter;

3609
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3610
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3611 3612
}

3613
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3614
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3615
{
3616 3617
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3618 3619
	unsigned long threshold;
	unsigned long usage;
3620
	int i, size, ret;
3621

3622
	ret = page_counter_memparse(args, "-1", &threshold);
3623 3624 3625 3626
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3627

3628
	if (type == _MEM) {
3629
		thresholds = &memcg->thresholds;
3630
		usage = mem_cgroup_usage(memcg, false);
3631
	} else if (type == _MEMSWAP) {
3632
		thresholds = &memcg->memsw_thresholds;
3633
		usage = mem_cgroup_usage(memcg, true);
3634
	} else
3635 3636 3637
		BUG();

	/* Check if a threshold crossed before adding a new one */
3638
	if (thresholds->primary)
3639 3640
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3641
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3642 3643

	/* Allocate memory for new array of thresholds */
3644
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3645
			GFP_KERNEL);
3646
	if (!new) {
3647 3648 3649
		ret = -ENOMEM;
		goto unlock;
	}
3650
	new->size = size;
3651 3652

	/* Copy thresholds (if any) to new array */
3653 3654
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3655
				sizeof(struct mem_cgroup_threshold));
3656 3657
	}

3658
	/* Add new threshold */
3659 3660
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3661 3662

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3663
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3664 3665 3666
			compare_thresholds, NULL);

	/* Find current threshold */
3667
	new->current_threshold = -1;
3668
	for (i = 0; i < size; i++) {
3669
		if (new->entries[i].threshold <= usage) {
3670
			/*
3671 3672
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3673 3674
			 * it here.
			 */
3675
			++new->current_threshold;
3676 3677
		} else
			break;
3678 3679
	}

3680 3681 3682 3683 3684
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3685

3686
	/* To be sure that nobody uses thresholds */
3687 3688 3689 3690 3691 3692 3693 3694
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3695
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3696 3697
	struct eventfd_ctx *eventfd, const char *args)
{
3698
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3699 3700
}

3701
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3702 3703
	struct eventfd_ctx *eventfd, const char *args)
{
3704
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3705 3706
}

3707
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3708
	struct eventfd_ctx *eventfd, enum res_type type)
3709
{
3710 3711
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3712
	unsigned long usage;
3713
	int i, j, size;
3714 3715

	mutex_lock(&memcg->thresholds_lock);
3716 3717

	if (type == _MEM) {
3718
		thresholds = &memcg->thresholds;
3719
		usage = mem_cgroup_usage(memcg, false);
3720
	} else if (type == _MEMSWAP) {
3721
		thresholds = &memcg->memsw_thresholds;
3722
		usage = mem_cgroup_usage(memcg, true);
3723
	} else
3724 3725
		BUG();

3726 3727 3728
	if (!thresholds->primary)
		goto unlock;

3729 3730 3731 3732
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3733 3734 3735
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3736 3737 3738
			size++;
	}

3739
	new = thresholds->spare;
3740

3741 3742
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3743 3744
		kfree(new);
		new = NULL;
3745
		goto swap_buffers;
3746 3747
	}

3748
	new->size = size;
3749 3750

	/* Copy thresholds and find current threshold */
3751 3752 3753
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3754 3755
			continue;

3756
		new->entries[j] = thresholds->primary->entries[i];
3757
		if (new->entries[j].threshold <= usage) {
3758
			/*
3759
			 * new->current_threshold will not be used
3760 3761 3762
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3763
			++new->current_threshold;
3764 3765 3766 3767
		}
		j++;
	}

3768
swap_buffers:
3769 3770
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3771

3772
	rcu_assign_pointer(thresholds->primary, new);
3773

3774
	/* To be sure that nobody uses thresholds */
3775
	synchronize_rcu();
3776 3777 3778 3779 3780 3781

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3782
unlock:
3783 3784
	mutex_unlock(&memcg->thresholds_lock);
}
3785

3786
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3787 3788
	struct eventfd_ctx *eventfd)
{
3789
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3790 3791
}

3792
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3793 3794
	struct eventfd_ctx *eventfd)
{
3795
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3796 3797
}

3798
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3799
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3800 3801 3802 3803 3804 3805 3806
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3807
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3808 3809 3810 3811 3812

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3813
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3814
		eventfd_signal(eventfd, 1);
3815
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3816 3817 3818 3819

	return 0;
}

3820
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3821
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3822 3823 3824
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3825
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3826

3827
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3828 3829 3830 3831 3832 3833
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3834
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3835 3836
}

3837
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3838
{
3839
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3840

3841
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3842
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3843 3844
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3845 3846 3847
	return 0;
}

3848
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3849 3850
	struct cftype *cft, u64 val)
{
3851
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3852 3853

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3854
	if (!css->parent || !((val == 0) || (val == 1)))
3855 3856
		return -EINVAL;

3857
	memcg->oom_kill_disable = val;
3858
	if (!val)
3859
		memcg_oom_recover(memcg);
3860

3861 3862 3863
	return 0;
}

3864 3865
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3876 3877 3878 3879 3880
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3891 3892 3893
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3894 3895
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3896 3897 3898
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3899 3900 3901
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3902
 *
3903 3904 3905 3906 3907
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3908
 */
3909 3910 3911
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3912 3913 3914 3915
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3916
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3917 3918

	/* this should eventually include NR_UNSTABLE_NFS */
3919
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3920 3921 3922
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3923 3924

	while ((parent = parent_mem_cgroup(memcg))) {
3925
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3926 3927
		unsigned long used = page_counter_read(&memcg->memory);

3928
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3929 3930 3931 3932
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3944 3945 3946 3947
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3948 3949
#endif	/* CONFIG_CGROUP_WRITEBACK */

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3963 3964 3965 3966 3967
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3968
static void memcg_event_remove(struct work_struct *work)
3969
{
3970 3971
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3972
	struct mem_cgroup *memcg = event->memcg;
3973 3974 3975

	remove_wait_queue(event->wqh, &event->wait);

3976
	event->unregister_event(memcg, event->eventfd);
3977 3978 3979 3980 3981 3982

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3983
	css_put(&memcg->css);
3984 3985 3986
}

/*
3987
 * Gets called on EPOLLHUP on eventfd when user closes it.
3988 3989 3990
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3991
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3992
			    int sync, void *key)
3993
{
3994 3995
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3996
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
3997
	__poll_t flags = key_to_poll(key);
3998

3999
	if (flags & EPOLLHUP) {
4000 4001 4002 4003 4004 4005 4006 4007 4008
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4009
		spin_lock(&memcg->event_list_lock);
4010 4011 4012 4013 4014 4015 4016 4017
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4018
		spin_unlock(&memcg->event_list_lock);
4019 4020 4021 4022 4023
	}

	return 0;
}

4024
static void memcg_event_ptable_queue_proc(struct file *file,
4025 4026
		wait_queue_head_t *wqh, poll_table *pt)
{
4027 4028
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4029 4030 4031 4032 4033 4034

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4035 4036
 * DO NOT USE IN NEW FILES.
 *
4037 4038 4039 4040 4041
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4042 4043
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4044
{
4045
	struct cgroup_subsys_state *css = of_css(of);
4046
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4047
	struct mem_cgroup_event *event;
4048 4049 4050 4051
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4052
	const char *name;
4053 4054 4055
	char *endp;
	int ret;

4056 4057 4058
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4059 4060
	if (*endp != ' ')
		return -EINVAL;
4061
	buf = endp + 1;
4062

4063
	cfd = simple_strtoul(buf, &endp, 10);
4064 4065
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4066
	buf = endp + 1;
4067 4068 4069 4070 4071

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4072
	event->memcg = memcg;
4073
	INIT_LIST_HEAD(&event->list);
4074 4075 4076
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4102 4103 4104 4105 4106
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4107 4108
	 *
	 * DO NOT ADD NEW FILES.
4109
	 */
A
Al Viro 已提交
4110
	name = cfile.file->f_path.dentry->d_name.name;
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4122 4123
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4124 4125 4126 4127 4128
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4129
	/*
4130 4131 4132
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4133
	 */
A
Al Viro 已提交
4134
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4135
					       &memory_cgrp_subsys);
4136
	ret = -EINVAL;
4137
	if (IS_ERR(cfile_css))
4138
		goto out_put_cfile;
4139 4140
	if (cfile_css != css) {
		css_put(cfile_css);
4141
		goto out_put_cfile;
4142
	}
4143

4144
	ret = event->register_event(memcg, event->eventfd, buf);
4145 4146 4147
	if (ret)
		goto out_put_css;

4148
	vfs_poll(efile.file, &event->pt);
4149

4150 4151 4152
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4153 4154 4155 4156

	fdput(cfile);
	fdput(efile);

4157
	return nbytes;
4158 4159

out_put_css:
4160
	css_put(css);
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4173
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4174
	{
4175
		.name = "usage_in_bytes",
4176
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4177
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4178
	},
4179 4180
	{
		.name = "max_usage_in_bytes",
4181
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4182
		.write = mem_cgroup_reset,
4183
		.read_u64 = mem_cgroup_read_u64,
4184
	},
B
Balbir Singh 已提交
4185
	{
4186
		.name = "limit_in_bytes",
4187
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4188
		.write = mem_cgroup_write,
4189
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4190
	},
4191 4192 4193
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4194
		.write = mem_cgroup_write,
4195
		.read_u64 = mem_cgroup_read_u64,
4196
	},
B
Balbir Singh 已提交
4197 4198
	{
		.name = "failcnt",
4199
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4200
		.write = mem_cgroup_reset,
4201
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4202
	},
4203 4204
	{
		.name = "stat",
4205
		.seq_show = memcg_stat_show,
4206
	},
4207 4208
	{
		.name = "force_empty",
4209
		.write = mem_cgroup_force_empty_write,
4210
	},
4211 4212 4213 4214 4215
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4216
	{
4217
		.name = "cgroup.event_control",		/* XXX: for compat */
4218
		.write = memcg_write_event_control,
4219
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4220
	},
K
KOSAKI Motohiro 已提交
4221 4222 4223 4224 4225
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4226 4227 4228 4229 4230
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4231 4232
	{
		.name = "oom_control",
4233
		.seq_show = mem_cgroup_oom_control_read,
4234
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4235 4236
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4237 4238 4239
	{
		.name = "pressure_level",
	},
4240 4241 4242
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4243
		.seq_show = memcg_numa_stat_show,
4244 4245
	},
#endif
4246 4247 4248
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4249
		.write = mem_cgroup_write,
4250
		.read_u64 = mem_cgroup_read_u64,
4251 4252 4253 4254
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4255
		.read_u64 = mem_cgroup_read_u64,
4256 4257 4258 4259
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4260
		.write = mem_cgroup_reset,
4261
		.read_u64 = mem_cgroup_read_u64,
4262 4263 4264 4265
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4266
		.write = mem_cgroup_reset,
4267
		.read_u64 = mem_cgroup_read_u64,
4268
	},
Y
Yang Shi 已提交
4269
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4270 4271
	{
		.name = "kmem.slabinfo",
4272 4273 4274
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4275
		.seq_show = memcg_slab_show,
4276 4277
	},
#endif
V
Vladimir Davydov 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4301
	{ },	/* terminate */
4302
};
4303

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4330 4331 4332 4333 4334 4335 4336 4337
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4338
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4339
{
4340
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4341
	atomic_add(n, &memcg->id.ref);
4342 4343
}

4344
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4345
{
4346
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4347
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4348
		mem_cgroup_id_remove(memcg);
4349 4350 4351 4352 4353 4354

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4377
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4378 4379
{
	struct mem_cgroup_per_node *pn;
4380
	int tmp = node;
4381 4382 4383 4384 4385 4386 4387 4388
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4389 4390
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4391
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4392 4393
	if (!pn)
		return 1;
4394

4395 4396
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4397 4398 4399 4400
		kfree(pn);
		return 1;
	}

4401 4402 4403 4404 4405
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4406
	memcg->nodeinfo[node] = pn;
4407 4408 4409
	return 0;
}

4410
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4411
{
4412 4413
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4414 4415 4416
	if (!pn)
		return;

4417
	free_percpu(pn->lruvec_stat_cpu);
4418
	kfree(pn);
4419 4420
}

4421
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4422
{
4423
	int node;
4424

4425
	for_each_node(node)
4426
		free_mem_cgroup_per_node_info(memcg, node);
4427
	free_percpu(memcg->stat_cpu);
4428
	kfree(memcg);
4429
}
4430

4431 4432 4433 4434 4435 4436
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4437
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4438
{
4439
	struct mem_cgroup *memcg;
4440
	size_t size;
4441
	int node;
B
Balbir Singh 已提交
4442

4443 4444 4445 4446
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4447
	if (!memcg)
4448 4449
		return NULL;

4450 4451 4452 4453 4454 4455
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4456 4457
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4458
		goto fail;
4459

B
Bob Liu 已提交
4460
	for_each_node(node)
4461
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4462
			goto fail;
4463

4464 4465
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4466

4467
	INIT_WORK(&memcg->high_work, high_work_func);
4468 4469 4470 4471
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4472
	vmpressure_init(&memcg->vmpressure);
4473 4474
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4475
	memcg->socket_pressure = jiffies;
4476
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4477 4478
	memcg->kmemcg_id = -1;
#endif
4479 4480 4481
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4482
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4483 4484
	return memcg;
fail:
4485
	mem_cgroup_id_remove(memcg);
4486
	__mem_cgroup_free(memcg);
4487
	return NULL;
4488 4489
}

4490 4491
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4492
{
4493 4494 4495
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4496

4497 4498 4499
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4500

4501 4502 4503 4504 4505 4506 4507 4508
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4509
		page_counter_init(&memcg->memory, &parent->memory);
4510
		page_counter_init(&memcg->swap, &parent->swap);
4511 4512
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4513
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4514
	} else {
4515
		page_counter_init(&memcg->memory, NULL);
4516
		page_counter_init(&memcg->swap, NULL);
4517 4518
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4519
		page_counter_init(&memcg->tcpmem, NULL);
4520 4521 4522 4523 4524
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4525
		if (parent != root_mem_cgroup)
4526
			memory_cgrp_subsys.broken_hierarchy = true;
4527
	}
4528

4529 4530 4531 4532 4533 4534
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4535
	error = memcg_online_kmem(memcg);
4536 4537
	if (error)
		goto fail;
4538

4539
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4540
		static_branch_inc(&memcg_sockets_enabled_key);
4541

4542 4543
	return &memcg->css;
fail:
4544
	mem_cgroup_id_remove(memcg);
4545
	mem_cgroup_free(memcg);
4546
	return ERR_PTR(-ENOMEM);
4547 4548
}

4549
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4550
{
4551 4552
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4563
	/* Online state pins memcg ID, memcg ID pins CSS */
4564
	atomic_set(&memcg->id.ref, 1);
4565
	css_get(css);
4566
	return 0;
B
Balbir Singh 已提交
4567 4568
}

4569
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4570
{
4571
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4572
	struct mem_cgroup_event *event, *tmp;
4573 4574 4575 4576 4577 4578

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4579 4580
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4581 4582 4583
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4584
	spin_unlock(&memcg->event_list_lock);
4585

R
Roman Gushchin 已提交
4586
	page_counter_set_min(&memcg->memory, 0);
4587
	page_counter_set_low(&memcg->memory, 0);
4588

4589
	memcg_offline_kmem(memcg);
4590
	wb_memcg_offline(memcg);
4591 4592

	mem_cgroup_id_put(memcg);
4593 4594
}

4595 4596 4597 4598 4599 4600 4601
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4602
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4603
{
4604
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4605

4606
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4607
		static_branch_dec(&memcg_sockets_enabled_key);
4608

4609
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4610
		static_branch_dec(&memcg_sockets_enabled_key);
4611

4612 4613 4614
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4615
	memcg_free_shrinker_maps(memcg);
4616
	memcg_free_kmem(memcg);
4617
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4618 4619
}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4637 4638 4639 4640 4641
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4642
	page_counter_set_min(&memcg->memory, 0);
4643
	page_counter_set_low(&memcg->memory, 0);
4644
	memcg->high = PAGE_COUNTER_MAX;
4645
	memcg->soft_limit = PAGE_COUNTER_MAX;
4646
	memcg_wb_domain_size_changed(memcg);
4647 4648
}

4649
#ifdef CONFIG_MMU
4650
/* Handlers for move charge at task migration. */
4651
static int mem_cgroup_do_precharge(unsigned long count)
4652
{
4653
	int ret;
4654

4655 4656
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4657
	if (!ret) {
4658 4659 4660
		mc.precharge += count;
		return ret;
	}
4661

4662
	/* Try charges one by one with reclaim, but do not retry */
4663
	while (count--) {
4664
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4665 4666
		if (ret)
			return ret;
4667
		mc.precharge++;
4668
		cond_resched();
4669
	}
4670
	return 0;
4671 4672 4673 4674
}

union mc_target {
	struct page	*page;
4675
	swp_entry_t	ent;
4676 4677 4678
};

enum mc_target_type {
4679
	MC_TARGET_NONE = 0,
4680
	MC_TARGET_PAGE,
4681
	MC_TARGET_SWAP,
4682
	MC_TARGET_DEVICE,
4683 4684
};

D
Daisuke Nishimura 已提交
4685 4686
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4687
{
4688
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4689

D
Daisuke Nishimura 已提交
4690 4691 4692
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4693
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4694
			return NULL;
4695 4696 4697 4698
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4699 4700 4701 4702 4703 4704
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4705
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4706
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4707
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4708 4709 4710 4711
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4712
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4713
		return NULL;
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4731 4732 4733 4734
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4735
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4736
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4737 4738 4739 4740
		entry->val = ent.val;

	return page;
}
4741 4742
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4743
			pte_t ptent, swp_entry_t *entry)
4744 4745 4746 4747
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4748

4749 4750 4751 4752 4753 4754 4755 4756 4757
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4758
	if (!(mc.flags & MOVE_FILE))
4759 4760 4761
		return NULL;

	mapping = vma->vm_file->f_mapping;
4762
	pgoff = linear_page_index(vma, addr);
4763 4764

	/* page is moved even if it's not RSS of this task(page-faulted). */
4765 4766
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4767 4768 4769 4770
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4771
			if (do_memsw_account())
4772
				*entry = swp;
4773 4774
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4775 4776 4777 4778 4779
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4780
#endif
4781 4782 4783
	return page;
}

4784 4785 4786
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4787
 * @compound: charge the page as compound or small page
4788 4789 4790
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4791
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4792 4793 4794 4795 4796
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4797
				   bool compound,
4798 4799 4800 4801
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4802
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4803
	int ret;
4804
	bool anon;
4805 4806 4807

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4808
	VM_BUG_ON(compound && !PageTransHuge(page));
4809 4810

	/*
4811
	 * Prevent mem_cgroup_migrate() from looking at
4812
	 * page->mem_cgroup of its source page while we change it.
4813
	 */
4814
	ret = -EBUSY;
4815 4816 4817 4818 4819 4820 4821
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4822 4823
	anon = PageAnon(page);

4824 4825
	spin_lock_irqsave(&from->move_lock, flags);

4826
	if (!anon && page_mapped(page)) {
4827 4828
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4829 4830
	}

4831 4832
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4833
	 * mod_memcg_page_state will serialize updates to PageDirty.
4834 4835 4836 4837 4838 4839
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4840 4841
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4842 4843 4844
		}
	}

4845
	if (PageWriteback(page)) {
4846 4847
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4863
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4864
	memcg_check_events(to, page);
4865
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4866 4867 4868 4869 4870 4871 4872 4873
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4889 4890 4891 4892 4893
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4894 4895
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4896 4897 4898 4899
 *
 * Called with pte lock held.
 */

4900
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4901 4902 4903
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4904
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4905 4906 4907 4908 4909
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4910
		page = mc_handle_swap_pte(vma, ptent, &ent);
4911
	else if (pte_none(ptent))
4912
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4913 4914

	if (!page && !ent.val)
4915
		return ret;
4916 4917
	if (page) {
		/*
4918
		 * Do only loose check w/o serialization.
4919
		 * mem_cgroup_move_account() checks the page is valid or
4920
		 * not under LRU exclusion.
4921
		 */
4922
		if (page->mem_cgroup == mc.from) {
4923
			ret = MC_TARGET_PAGE;
4924 4925
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4926
				ret = MC_TARGET_DEVICE;
4927 4928 4929 4930 4931 4932
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4933 4934 4935 4936 4937
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4938
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4939 4940 4941
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4942 4943 4944 4945
	}
	return ret;
}

4946 4947
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4948 4949
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4950 4951 4952 4953 4954 4955 4956 4957
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4958 4959 4960 4961 4962
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4963
	page = pmd_page(pmd);
4964
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4965
	if (!(mc.flags & MOVE_ANON))
4966
		return ret;
4967
	if (page->mem_cgroup == mc.from) {
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4984 4985 4986 4987
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4988
	struct vm_area_struct *vma = walk->vma;
4989 4990 4991
	pte_t *pte;
	spinlock_t *ptl;

4992 4993
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4994 4995 4996 4997 4998
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
4999 5000
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5001
		spin_unlock(ptl);
5002
		return 0;
5003
	}
5004

5005 5006
	if (pmd_trans_unstable(pmd))
		return 0;
5007 5008
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5009
		if (get_mctgt_type(vma, addr, *pte, NULL))
5010 5011 5012 5013
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5014 5015 5016
	return 0;
}

5017 5018 5019 5020
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5021 5022 5023 5024
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5025
	down_read(&mm->mmap_sem);
5026 5027
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5028
	up_read(&mm->mmap_sem);
5029 5030 5031 5032 5033 5034 5035 5036 5037

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5038 5039 5040 5041 5042
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5043 5044
}

5045 5046
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5047
{
5048 5049 5050
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5051
	/* we must uncharge all the leftover precharges from mc.to */
5052
	if (mc.precharge) {
5053
		cancel_charge(mc.to, mc.precharge);
5054 5055 5056 5057 5058 5059 5060
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5061
		cancel_charge(mc.from, mc.moved_charge);
5062
		mc.moved_charge = 0;
5063
	}
5064 5065 5066
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5067
		if (!mem_cgroup_is_root(mc.from))
5068
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5069

5070 5071
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5072
		/*
5073 5074
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5075
		 */
5076
		if (!mem_cgroup_is_root(mc.to))
5077 5078
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5079 5080
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5081

5082 5083
		mc.moved_swap = 0;
	}
5084 5085 5086 5087 5088 5089 5090
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5091 5092
	struct mm_struct *mm = mc.mm;

5093 5094 5095 5096 5097 5098
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5099
	spin_lock(&mc.lock);
5100 5101
	mc.from = NULL;
	mc.to = NULL;
5102
	mc.mm = NULL;
5103
	spin_unlock(&mc.lock);
5104 5105

	mmput(mm);
5106 5107
}

5108
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5109
{
5110
	struct cgroup_subsys_state *css;
5111
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5112
	struct mem_cgroup *from;
5113
	struct task_struct *leader, *p;
5114
	struct mm_struct *mm;
5115
	unsigned long move_flags;
5116
	int ret = 0;
5117

5118 5119
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5120 5121
		return 0;

5122 5123 5124 5125 5126 5127 5128
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5129
	cgroup_taskset_for_each_leader(leader, css, tset) {
5130 5131
		WARN_ON_ONCE(p);
		p = leader;
5132
		memcg = mem_cgroup_from_css(css);
5133 5134 5135 5136
	}
	if (!p)
		return 0;

5137 5138 5139 5140 5141 5142 5143 5144 5145
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5162
		mc.mm = mm;
5163 5164 5165 5166 5167 5168 5169 5170 5171
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5172 5173
	} else {
		mmput(mm);
5174 5175 5176 5177
	}
	return ret;
}

5178
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5179
{
5180 5181
	if (mc.to)
		mem_cgroup_clear_mc();
5182 5183
}

5184 5185 5186
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5187
{
5188
	int ret = 0;
5189
	struct vm_area_struct *vma = walk->vma;
5190 5191
	pte_t *pte;
	spinlock_t *ptl;
5192 5193 5194
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5195

5196 5197
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5198
		if (mc.precharge < HPAGE_PMD_NR) {
5199
			spin_unlock(ptl);
5200 5201 5202 5203 5204 5205
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5206
				if (!mem_cgroup_move_account(page, true,
5207
							     mc.from, mc.to)) {
5208 5209 5210 5211 5212 5213
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5214 5215 5216 5217 5218 5219 5220 5221
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5222
		}
5223
		spin_unlock(ptl);
5224
		return 0;
5225 5226
	}

5227 5228
	if (pmd_trans_unstable(pmd))
		return 0;
5229 5230 5231 5232
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5233
		bool device = false;
5234
		swp_entry_t ent;
5235 5236 5237 5238

		if (!mc.precharge)
			break;

5239
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5240 5241 5242
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5243 5244
		case MC_TARGET_PAGE:
			page = target.page;
5245 5246 5247 5248 5249 5250 5251 5252
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5253
			if (!device && isolate_lru_page(page))
5254
				goto put;
5255 5256
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5257
				mc.precharge--;
5258 5259
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5260
			}
5261 5262
			if (!device)
				putback_lru_page(page);
5263
put:			/* get_mctgt_type() gets the page */
5264 5265
			put_page(page);
			break;
5266 5267
		case MC_TARGET_SWAP:
			ent = target.ent;
5268
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5269
				mc.precharge--;
5270 5271 5272
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5273
			break;
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5288
		ret = mem_cgroup_do_precharge(1);
5289 5290 5291 5292 5293 5294 5295
		if (!ret)
			goto retry;
	}

	return ret;
}

5296
static void mem_cgroup_move_charge(void)
5297
{
5298 5299
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5300
		.mm = mc.mm,
5301
	};
5302 5303

	lru_add_drain_all();
5304
	/*
5305 5306 5307
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5308 5309 5310
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5311
retry:
5312
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5324 5325 5326 5327
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5328 5329
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5330
	up_read(&mc.mm->mmap_sem);
5331
	atomic_dec(&mc.from->moving_account);
5332 5333
}

5334
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5335
{
5336 5337
	if (mc.to) {
		mem_cgroup_move_charge();
5338
		mem_cgroup_clear_mc();
5339
	}
B
Balbir Singh 已提交
5340
}
5341
#else	/* !CONFIG_MMU */
5342
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5343 5344 5345
{
	return 0;
}
5346
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5347 5348
{
}
5349
static void mem_cgroup_move_task(void)
5350 5351 5352
{
}
#endif
B
Balbir Singh 已提交
5353

5354 5355
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5356 5357
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5358
 */
5359
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5360 5361
{
	/*
5362
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5363 5364 5365
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5366
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5367 5368 5369
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5370 5371
}

5372 5373 5374
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5375 5376 5377
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5378 5379
}

R
Roman Gushchin 已提交
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
static int memory_min_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long min = READ_ONCE(memcg->memory.min);

	if (min == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);

	return 0;
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5410 5411 5412
static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5413
	unsigned long low = READ_ONCE(memcg->memory.low);
5414 5415

	if (low == PAGE_COUNTER_MAX)
5416
		seq_puts(m, "max\n");
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5431
	err = page_counter_memparse(buf, "max", &low);
5432 5433 5434
	if (err)
		return err;

5435
	page_counter_set_low(&memcg->memory, low);
5436 5437 5438 5439 5440 5441 5442

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5443
	unsigned long high = READ_ONCE(memcg->high);
5444 5445

	if (high == PAGE_COUNTER_MAX)
5446
		seq_puts(m, "max\n");
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5457
	unsigned long nr_pages;
5458 5459 5460 5461
	unsigned long high;
	int err;

	buf = strstrip(buf);
5462
	err = page_counter_memparse(buf, "max", &high);
5463 5464 5465 5466 5467
	if (err)
		return err;

	memcg->high = high;

5468 5469 5470 5471 5472
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5473
	memcg_wb_domain_size_changed(memcg);
5474 5475 5476 5477 5478 5479
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5480
	unsigned long max = READ_ONCE(memcg->memory.max);
5481 5482

	if (max == PAGE_COUNTER_MAX)
5483
		seq_puts(m, "max\n");
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5494 5495
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5496 5497 5498 5499
	unsigned long max;
	int err;

	buf = strstrip(buf);
5500
	err = page_counter_memparse(buf, "max", &max);
5501 5502 5503
	if (err)
		return err;

5504
	xchg(&memcg->memory.max, max);
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5530
		memcg_memory_event(memcg, MEMCG_OOM);
5531 5532 5533
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5534

5535
	memcg_wb_domain_size_changed(memcg);
5536 5537 5538 5539 5540 5541 5542
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5543 5544 5545 5546 5547 5548 5549 5550
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5551 5552
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5553 5554 5555 5556

	return 0;
}

5557 5558 5559
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5560
	struct accumulated_stats acc;
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5574 5575 5576 5577
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = MEMCG_NR_STAT;
	acc.events_size = NR_VM_EVENT_ITEMS;
	accumulate_memcg_tree(memcg, &acc);
5578

5579
	seq_printf(m, "anon %llu\n",
5580
		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5581
	seq_printf(m, "file %llu\n",
5582
		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5583
	seq_printf(m, "kernel_stack %llu\n",
5584
		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5585
	seq_printf(m, "slab %llu\n",
5586 5587
		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5588
	seq_printf(m, "sock %llu\n",
5589
		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5590

5591
	seq_printf(m, "shmem %llu\n",
5592
		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5593
	seq_printf(m, "file_mapped %llu\n",
5594
		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5595
	seq_printf(m, "file_dirty %llu\n",
5596
		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5597
	seq_printf(m, "file_writeback %llu\n",
5598
		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5599

5600 5601 5602
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5603

5604
	seq_printf(m, "slab_reclaimable %llu\n",
5605
		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5606
	seq_printf(m, "slab_unreclaimable %llu\n",
5607
		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5608

5609 5610
	/* Accumulated memory events */

5611 5612
	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5613

5614 5615 5616 5617 5618 5619 5620 5621 5622
	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
		   acc.events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
		   acc.events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5623

5624
	seq_printf(m, "workingset_refault %lu\n",
5625
		   acc.stat[WORKINGSET_REFAULT]);
5626
	seq_printf(m, "workingset_activate %lu\n",
5627
		   acc.stat[WORKINGSET_ACTIVATE]);
5628
	seq_printf(m, "workingset_nodereclaim %lu\n",
5629
		   acc.stat[WORKINGSET_NODERECLAIM]);
5630

5631 5632 5633
	return 0;
}

5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
static int memory_oom_group_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5665 5666 5667
static struct cftype memory_files[] = {
	{
		.name = "current",
5668
		.flags = CFTYPE_NOT_ON_ROOT,
5669 5670
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5671 5672 5673 5674 5675 5676
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5698
		.file_offset = offsetof(struct mem_cgroup, events_file),
5699 5700
		.seq_show = memory_events_show,
	},
5701 5702 5703 5704 5705
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5706 5707 5708 5709 5710 5711
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5712 5713 5714
	{ }	/* terminate */
};

5715
struct cgroup_subsys memory_cgrp_subsys = {
5716
	.css_alloc = mem_cgroup_css_alloc,
5717
	.css_online = mem_cgroup_css_online,
5718
	.css_offline = mem_cgroup_css_offline,
5719
	.css_released = mem_cgroup_css_released,
5720
	.css_free = mem_cgroup_css_free,
5721
	.css_reset = mem_cgroup_css_reset,
5722 5723
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5724
	.post_attach = mem_cgroup_move_task,
5725
	.bind = mem_cgroup_bind,
5726 5727
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5728
	.early_init = 0,
B
Balbir Singh 已提交
5729
};
5730

5731
/**
R
Roman Gushchin 已提交
5732
 * mem_cgroup_protected - check if memory consumption is in the normal range
5733
 * @root: the top ancestor of the sub-tree being checked
5734 5735
 * @memcg: the memory cgroup to check
 *
5736 5737
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5738
 *
R
Roman Gushchin 已提交
5739 5740 5741 5742 5743
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5744
 *
R
Roman Gushchin 已提交
5745
 * @root is exclusive; it is never protected when looked at directly
5746
 *
R
Roman Gushchin 已提交
5747 5748 5749
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5750
 *
5751 5752 5753 5754 5755 5756 5757
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5758
 *
5759 5760 5761
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5762
 *
5763 5764 5765
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
	       | 0, otherwise.
5766
 *
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5794 5795
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5796 5797 5798 5799
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5800
 */
R
Roman Gushchin 已提交
5801 5802
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5803
{
5804
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5805 5806 5807
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5808

5809
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5810
		return MEMCG_PROT_NONE;
5811

5812 5813 5814
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5815
		return MEMCG_PROT_NONE;
5816

5817
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5818 5819 5820 5821 5822
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5823

R
Roman Gushchin 已提交
5824
	parent = parent_mem_cgroup(memcg);
5825 5826 5827 5828
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5829 5830 5831
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5846 5847
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5848 5849
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5850

R
Roman Gushchin 已提交
5851 5852 5853
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5854

R
Roman Gushchin 已提交
5855 5856 5857 5858
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5859 5860

exit:
R
Roman Gushchin 已提交
5861
	memcg->memory.emin = emin;
5862
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5863 5864 5865 5866 5867 5868 5869

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5870 5871
}

5872 5873 5874 5875 5876 5877
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5878
 * @compound: charge the page as compound or small page
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5891 5892
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5893 5894
{
	struct mem_cgroup *memcg = NULL;
5895
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5909
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5910
		if (compound_head(page)->mem_cgroup)
5911
			goto out;
5912

5913
		if (do_swap_account) {
5914 5915 5916 5917 5918 5919 5920 5921 5922
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

5949 5950 5951 5952 5953
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5954
 * @compound: charge the page as compound or small page
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5967
			      bool lrucare, bool compound)
5968
{
5969
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5984 5985 5986
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5987
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5988 5989
	memcg_check_events(memcg, page);
	local_irq_enable();
5990

5991
	if (do_memsw_account() && PageSwapCache(page)) {
5992 5993 5994 5995 5996 5997
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5998
		mem_cgroup_uncharge_swap(entry, nr_pages);
5999 6000 6001 6002 6003 6004 6005
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6006
 * @compound: charge the page as compound or small page
6007 6008 6009
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6010 6011
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6012
{
6013
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6040
{
6041 6042 6043 6044 6045 6046
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6047 6048
	unsigned long flags;

6049 6050
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6051
		if (do_memsw_account())
6052 6053 6054 6055
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6056
	}
6057 6058

	local_irq_save(flags);
6059 6060 6061 6062 6063
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6064
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6065
	memcg_check_events(ug->memcg, ug->dummy_page);
6066
	local_irq_restore(flags);
6067

6068 6069 6070 6071 6072 6073 6074
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6075 6076
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6117 6118 6119 6120
}

static void uncharge_list(struct list_head *page_list)
{
6121
	struct uncharge_gather ug;
6122
	struct list_head *next;
6123 6124

	uncharge_gather_clear(&ug);
6125

6126 6127 6128 6129
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6130 6131
	next = page_list->next;
	do {
6132 6133
		struct page *page;

6134 6135 6136
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6137
		uncharge_page(page, &ug);
6138 6139
	} while (next != page_list);

6140 6141
	if (ug.memcg)
		uncharge_batch(&ug);
6142 6143
}

6144 6145 6146 6147 6148 6149 6150 6151 6152
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6153 6154
	struct uncharge_gather ug;

6155 6156 6157
	if (mem_cgroup_disabled())
		return;

6158
	/* Don't touch page->lru of any random page, pre-check: */
6159
	if (!page->mem_cgroup)
6160 6161
		return;

6162 6163 6164
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6165
}
6166

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6178

6179 6180
	if (!list_empty(page_list))
		uncharge_list(page_list);
6181 6182 6183
}

/**
6184 6185 6186
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6187
 *
6188 6189
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6190 6191 6192
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6193
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6194
{
6195
	struct mem_cgroup *memcg;
6196 6197
	unsigned int nr_pages;
	bool compound;
6198
	unsigned long flags;
6199 6200 6201 6202

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6203 6204
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6205 6206 6207 6208 6209

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6210
	if (newpage->mem_cgroup)
6211 6212
		return;

6213
	/* Swapcache readahead pages can get replaced before being charged */
6214
	memcg = oldpage->mem_cgroup;
6215
	if (!memcg)
6216 6217
		return;

6218 6219 6220 6221 6222 6223 6224 6225
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6226

6227
	commit_charge(newpage, memcg, false);
6228

6229
	local_irq_save(flags);
6230 6231
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6232
	local_irq_restore(flags);
6233 6234
}

6235
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6236 6237
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6238
void mem_cgroup_sk_alloc(struct sock *sk)
6239 6240 6241
{
	struct mem_cgroup *memcg;

6242 6243 6244
	if (!mem_cgroup_sockets_enabled)
		return;

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6259 6260
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6261 6262
	if (memcg == root_mem_cgroup)
		goto out;
6263
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6264 6265
		goto out;
	if (css_tryget_online(&memcg->css))
6266
		sk->sk_memcg = memcg;
6267
out:
6268 6269 6270
	rcu_read_unlock();
}

6271
void mem_cgroup_sk_free(struct sock *sk)
6272
{
6273 6274
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6287
	gfp_t gfp_mask = GFP_KERNEL;
6288

6289
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6290
		struct page_counter *fail;
6291

6292 6293
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6294 6295
			return true;
		}
6296 6297
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6298
		return false;
6299
	}
6300

6301 6302 6303 6304
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6305
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6306

6307 6308 6309 6310
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6311 6312 6313 6314 6315
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6316 6317
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6318 6319 6320
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6321
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6322
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6323 6324
		return;
	}
6325

6326
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6327

6328
	refill_stock(memcg, nr_pages);
6329 6330
}

6331 6332 6333 6334 6335 6336 6337 6338 6339
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6340 6341
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6342 6343 6344 6345
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6346

6347
/*
6348 6349
 * subsys_initcall() for memory controller.
 *
6350 6351 6352 6353
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6354 6355 6356
 */
static int __init mem_cgroup_init(void)
{
6357 6358
	int cpu, node;

6359
#ifdef CONFIG_MEMCG_KMEM
6360 6361
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6362 6363 6364
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6365
	 */
6366 6367
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6368 6369
#endif

6370 6371
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6383
		rtpn->rb_root = RB_ROOT;
6384
		rtpn->rb_rightmost = NULL;
6385
		spin_lock_init(&rtpn->lock);
6386 6387 6388
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6389 6390 6391
	return 0;
}
subsys_initcall(mem_cgroup_init);
6392 6393

#ifdef CONFIG_MEMCG_SWAP
6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6412 6413 6414 6415 6416 6417 6418 6419 6420
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6421
	struct mem_cgroup *memcg, *swap_memcg;
6422
	unsigned int nr_entries;
6423 6424 6425 6426 6427
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6428
	if (!do_memsw_account())
6429 6430 6431 6432 6433 6434 6435 6436
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6437 6438 6439 6440 6441 6442
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6443 6444 6445 6446 6447 6448
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6449
	VM_BUG_ON_PAGE(oldid, page);
6450
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6451 6452 6453 6454

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6455
		page_counter_uncharge(&memcg->memory, nr_entries);
6456

6457 6458
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6459 6460
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6461 6462
	}

6463 6464
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6465
	 * i_pages lock which is taken with interrupts-off. It is
6466
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6467
	 * only synchronisation we have for updating the per-CPU variables.
6468 6469
	 */
	VM_BUG_ON(!irqs_disabled());
6470 6471
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6472
	memcg_check_events(memcg, page);
6473 6474

	if (!mem_cgroup_is_root(memcg))
6475
		css_put_many(&memcg->css, nr_entries);
6476 6477
}

6478 6479
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6480 6481 6482
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6483
 * Try to charge @page's memcg for the swap space at @entry.
6484 6485 6486 6487 6488
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6489
	unsigned int nr_pages = hpage_nr_pages(page);
6490
	struct page_counter *counter;
6491
	struct mem_cgroup *memcg;
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6503 6504
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6505
		return 0;
6506
	}
6507

6508 6509
	memcg = mem_cgroup_id_get_online(memcg);

6510
	if (!mem_cgroup_is_root(memcg) &&
6511
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6512 6513
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6514
		mem_cgroup_id_put(memcg);
6515
		return -ENOMEM;
6516
	}
6517

6518 6519 6520 6521
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6522
	VM_BUG_ON_PAGE(oldid, page);
6523
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6524 6525 6526 6527

	return 0;
}

6528
/**
6529
 * mem_cgroup_uncharge_swap - uncharge swap space
6530
 * @entry: swap entry to uncharge
6531
 * @nr_pages: the amount of swap space to uncharge
6532
 */
6533
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6534 6535 6536 6537
{
	struct mem_cgroup *memcg;
	unsigned short id;

6538
	if (!do_swap_account)
6539 6540
		return;

6541
	id = swap_cgroup_record(entry, 0, nr_pages);
6542
	rcu_read_lock();
6543
	memcg = mem_cgroup_from_id(id);
6544
	if (memcg) {
6545 6546
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6547
				page_counter_uncharge(&memcg->swap, nr_pages);
6548
			else
6549
				page_counter_uncharge(&memcg->memsw, nr_pages);
6550
		}
6551
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6552
		mem_cgroup_id_put_many(memcg, nr_pages);
6553 6554 6555 6556
	}
	rcu_read_unlock();
}

6557 6558 6559 6560 6561 6562 6563 6564
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6565
				      READ_ONCE(memcg->swap.max) -
6566 6567 6568 6569
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6586
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6587 6588 6589 6590 6591
			return true;

	return false;
}

6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6620
	unsigned long max = READ_ONCE(memcg->swap.max);
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6642
	xchg(&memcg->swap.max, max);
6643 6644 6645 6646

	return nbytes;
}

6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
static int swap_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6671 6672 6673 6674 6675 6676
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6677 6678 6679
	{ }	/* terminate */
};

6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6711 6712
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6713 6714 6715 6716 6717 6718 6719 6720
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */