memcontrol.c 144.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299 300 301

	bool		oom_lock;
	atomic_t	under_oom;
302
	atomic_t	oom_wakeups;
303

304
	int	swappiness;
305 306
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
307

308 309 310 311
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
312
	struct mem_cgroup_thresholds thresholds;
313

314
	/* thresholds for mem+swap usage. RCU-protected */
315
	struct mem_cgroup_thresholds memsw_thresholds;
316

K
KAMEZAWA Hiroyuki 已提交
317 318
	/* For oom notifier event fd */
	struct list_head oom_notify;
319

320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
324
	unsigned long move_charge_at_immigrate;
325 326 327 328
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
329 330
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
331
	/*
332
	 * percpu counter.
333
	 */
334
	struct mem_cgroup_stat_cpu __percpu *stat;
335 336 337 338 339 340
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
341

M
Michal Hocko 已提交
342
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
343
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
344
#endif
345 346 347 348
#if defined(CONFIG_MEMCG_KMEM)
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
349 350 351 352 353 354 355

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
356

357 358 359 360
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

361 362
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
363 364
};

365
#ifdef CONFIG_MEMCG_KMEM
366 367
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
V
Vladimir Davydov 已提交
368
	return memcg->kmemcg_id >= 0;
369
}
370 371
#endif

372 373
/* Stuffs for move charges at task migration. */
/*
374 375
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
376 377
 */
enum move_type {
378
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
379
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
380 381 382
	NR_MOVE_TYPE,
};

383 384
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
385
	spinlock_t	  lock; /* for from, to */
386 387
	struct mem_cgroup *from;
	struct mem_cgroup *to;
388
	unsigned long immigrate_flags;
389
	unsigned long precharge;
390
	unsigned long moved_charge;
391
	unsigned long moved_swap;
392 393 394
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
395
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
396 397
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
398

D
Daisuke Nishimura 已提交
399 400
static bool move_anon(void)
{
401
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
402 403
}

404 405
static bool move_file(void)
{
406
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
407 408
}

409 410 411 412
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
413
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
414
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
415

416 417
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
418
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
419
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
420
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
421 422 423
	NR_CHARGE_TYPE,
};

424
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
425 426 427 428
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
429
	_KMEM,
G
Glauber Costa 已提交
430 431
};

432 433
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
434
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
435 436
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
437

438 439 440 441 442 443 444
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

445 446
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
447
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
448 449
}

450 451 452 453 454 455 456 457 458 459 460 461 462
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

463 464 465 466 467
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

468 469 470 471 472 473
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
474 475
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
476
	return memcg->css.id;
L
Li Zefan 已提交
477 478 479 480 481 482
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

483
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
484 485 486
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
487
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
488
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
489 490 491

void sock_update_memcg(struct sock *sk)
{
492
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
493
		struct mem_cgroup *memcg;
494
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
495 496 497

		BUG_ON(!sk->sk_prot->proto_cgroup);

498 499 500 501 502 503 504 505 506 507
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
508
			css_get(&sk->sk_cgrp->memcg->css);
509 510 511
			return;
		}

G
Glauber Costa 已提交
512 513
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
514
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
515
		if (!mem_cgroup_is_root(memcg) &&
516 517
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
518
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
519 520 521 522 523 524 525 526
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
527
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
528 529 530
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
531
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
532 533
	}
}
G
Glauber Costa 已提交
534 535 536 537 538 539

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

540
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
541 542
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
543

544 545
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
546
	if (!memcg_proto_activated(&memcg->tcp_mem))
547 548 549 550 551 552 553 554 555
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

556
#ifdef CONFIG_MEMCG_KMEM
557 558
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
559 560 561 562 563
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
564 565 566 567 568 569
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
570 571
int memcg_limited_groups_array_size;

572 573 574 575 576 577
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
578
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
579 580
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
581
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
582 583 584
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
585
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
586

587 588 589 590 591 592
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
593
struct static_key memcg_kmem_enabled_key;
594
EXPORT_SYMBOL(memcg_kmem_enabled_key);
595

596 597
static void memcg_free_cache_id(int id);

598 599
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
600
	if (memcg_kmem_is_active(memcg)) {
601
		static_key_slow_dec(&memcg_kmem_enabled_key);
602
		memcg_free_cache_id(memcg->kmemcg_id);
603
	}
604 605 606 607
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
608
	WARN_ON(page_counter_read(&memcg->kmem));
609 610 611 612 613 614 615 616 617 618 619 620 621
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

622
static struct mem_cgroup_per_zone *
623
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
624
{
625 626 627
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

628
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
629 630
}

631
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
632
{
633
	return &memcg->css;
634 635
}

636
static struct mem_cgroup_per_zone *
637
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
638
{
639 640
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
641

642
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
643 644
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

660 661
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
662
					 unsigned long new_usage_in_excess)
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

692 693
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
694 695 696 697 698 699 700
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

701 702
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
703
{
704 705 706
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
707
	__mem_cgroup_remove_exceeded(mz, mctz);
708
	spin_unlock_irqrestore(&mctz->lock, flags);
709 710
}

711 712 713 714 715 716 717 718 719 720 721
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
722 723 724

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
725
	unsigned long excess;
726 727 728
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

729
	mctz = soft_limit_tree_from_page(page);
730 731 732 733 734
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
735
		mz = mem_cgroup_page_zoneinfo(memcg, page);
736
		excess = soft_limit_excess(memcg);
737 738 739 740 741
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
742 743 744
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
745 746
			/* if on-tree, remove it */
			if (mz->on_tree)
747
				__mem_cgroup_remove_exceeded(mz, mctz);
748 749 750 751
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
752
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
753
			spin_unlock_irqrestore(&mctz->lock, flags);
754 755 756 757 758 759 760
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
761 762
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
763

764 765 766 767
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
768
			mem_cgroup_remove_exceeded(mz, mctz);
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
791
	__mem_cgroup_remove_exceeded(mz, mctz);
792
	if (!soft_limit_excess(mz->memcg) ||
793
	    !css_tryget_online(&mz->memcg->css))
794 795 796 797 798 799 800 801 802 803
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

804
	spin_lock_irq(&mctz->lock);
805
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
806
	spin_unlock_irq(&mctz->lock);
807 808 809
	return mz;
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
829
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
830
				 enum mem_cgroup_stat_index idx)
831
{
832
	long val = 0;
833 834
	int cpu;

835 836
	get_online_cpus();
	for_each_online_cpu(cpu)
837
		val += per_cpu(memcg->stat->count[idx], cpu);
838
#ifdef CONFIG_HOTPLUG_CPU
839 840 841
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
842 843
#endif
	put_online_cpus();
844 845 846
	return val;
}

847
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
848 849 850 851 852
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

853
	get_online_cpus();
854
	for_each_online_cpu(cpu)
855
		val += per_cpu(memcg->stat->events[idx], cpu);
856
#ifdef CONFIG_HOTPLUG_CPU
857 858 859
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
860
#endif
861
	put_online_cpus();
862 863 864
	return val;
}

865
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
866
					 struct page *page,
867
					 int nr_pages)
868
{
869 870 871 872
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
873
	if (PageAnon(page))
874
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
875
				nr_pages);
876
	else
877
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
878
				nr_pages);
879

880 881 882 883
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

884 885
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
886
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
887
	else {
888
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
889 890
		nr_pages = -nr_pages; /* for event */
	}
891

892
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
893 894
}

895
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
896 897 898 899 900 901 902
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

903 904 905
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
906
{
907
	unsigned long nr = 0;
908 909
	int zid;

910
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
911

912 913 914 915 916 917 918 919 920 921 922 923
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
924
}
925

926
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
927
			unsigned int lru_mask)
928
{
929
	unsigned long nr = 0;
930
	int nid;
931

932
	for_each_node_state(nid, N_MEMORY)
933 934
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
935 936
}

937 938
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
939 940 941
{
	unsigned long val, next;

942
	val = __this_cpu_read(memcg->stat->nr_page_events);
943
	next = __this_cpu_read(memcg->stat->targets[target]);
944
	/* from time_after() in jiffies.h */
945 946 947 948 949
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
950 951 952
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
953 954 955 956 957 958 959 960
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
961
	}
962
	return false;
963 964 965 966 967 968
}

/*
 * Check events in order.
 *
 */
969
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
970 971
{
	/* threshold event is triggered in finer grain than soft limit */
972 973
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
974
		bool do_softlimit;
975
		bool do_numainfo __maybe_unused;
976

977 978
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
979 980 981 982
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
983
		mem_cgroup_threshold(memcg);
984 985
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
986
#if MAX_NUMNODES > 1
987
		if (unlikely(do_numainfo))
988
			atomic_inc(&memcg->numainfo_events);
989
#endif
990
	}
991 992
}

993
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
994
{
995 996 997 998 999 1000 1001 1002
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1003
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1004 1005
}

1006
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1007
{
1008
	struct mem_cgroup *memcg = NULL;
1009

1010 1011
	rcu_read_lock();
	do {
1012 1013 1014 1015 1016 1017
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1018
			memcg = root_mem_cgroup;
1019 1020 1021 1022 1023
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1024
	} while (!css_tryget_online(&memcg->css));
1025
	rcu_read_unlock();
1026
	return memcg;
1027 1028
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1046
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1047
				   struct mem_cgroup *prev,
1048
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1049
{
1050 1051
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1052
	struct mem_cgroup *memcg = NULL;
1053
	struct mem_cgroup *pos = NULL;
1054

1055 1056
	if (mem_cgroup_disabled())
		return NULL;
1057

1058 1059
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1060

1061
	if (prev && !reclaim)
1062
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1063

1064 1065
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1066
			goto out;
1067
		return root;
1068
	}
K
KAMEZAWA Hiroyuki 已提交
1069

1070
	rcu_read_lock();
M
Michal Hocko 已提交
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1106
		}
K
KAMEZAWA Hiroyuki 已提交
1107

1108 1109 1110 1111 1112 1113
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1114

1115 1116
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1117

1118
		if (css_tryget(css)) {
1119 1120 1121 1122 1123 1124 1125
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1126

1127
			css_put(css);
1128
		}
1129

1130
		memcg = NULL;
1131
	}
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1152
	}
1153

1154 1155
out_unlock:
	rcu_read_unlock();
1156
out:
1157 1158 1159
	if (prev && prev != root)
		css_put(&prev->css);

1160
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1161
}
K
KAMEZAWA Hiroyuki 已提交
1162

1163 1164 1165 1166 1167 1168 1169
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1170 1171 1172 1173 1174 1175
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1176

1177 1178 1179 1180 1181 1182
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1183
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1184
	     iter != NULL;				\
1185
	     iter = mem_cgroup_iter(root, iter, NULL))
1186

1187
#define for_each_mem_cgroup(iter)			\
1188
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1189
	     iter != NULL;				\
1190
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1191

1192
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1193
{
1194
	struct mem_cgroup *memcg;
1195 1196

	rcu_read_lock();
1197 1198
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1199 1200 1201 1202
		goto out;

	switch (idx) {
	case PGFAULT:
1203 1204 1205 1206
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1207 1208 1209 1210 1211 1212 1213
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1214
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1215

1216 1217 1218
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1219
 * @memcg: memcg of the wanted lruvec
1220 1221 1222 1223 1224 1225 1226 1227 1228
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1229
	struct lruvec *lruvec;
1230

1231 1232 1233 1234
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1235

1236
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1247 1248 1249
}

/**
1250
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1251
 * @page: the page
1252
 * @zone: zone of the page
1253 1254 1255 1256
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1257
 */
1258
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1259 1260
{
	struct mem_cgroup_per_zone *mz;
1261
	struct mem_cgroup *memcg;
1262
	struct lruvec *lruvec;
1263

1264 1265 1266 1267
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1268

1269
	memcg = page->mem_cgroup;
1270
	/*
1271
	 * Swapcache readahead pages are added to the LRU - and
1272
	 * possibly migrated - before they are charged.
1273
	 */
1274 1275
	if (!memcg)
		memcg = root_mem_cgroup;
1276

1277
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1288
}
1289

1290
/**
1291 1292 1293 1294
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1295
 *
1296 1297
 * This function must be called when a page is added to or removed from an
 * lru list.
1298
 */
1299 1300
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1301 1302
{
	struct mem_cgroup_per_zone *mz;
1303
	unsigned long *lru_size;
1304 1305 1306 1307

	if (mem_cgroup_disabled())
		return;

1308 1309 1310 1311
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1312
}
1313

1314
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1315
{
1316
	if (root == memcg)
1317
		return true;
1318
	if (!root->use_hierarchy)
1319
		return false;
1320
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1321 1322
}

1323
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1324
{
1325
	struct mem_cgroup *task_memcg;
1326
	struct task_struct *p;
1327
	bool ret;
1328

1329
	p = find_lock_task_mm(task);
1330
	if (p) {
1331
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1332 1333 1334 1335 1336 1337 1338
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1339
		rcu_read_lock();
1340 1341
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1342
		rcu_read_unlock();
1343
	}
1344 1345
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1346 1347 1348
	return ret;
}

1349
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1350
{
1351
	unsigned long inactive_ratio;
1352
	unsigned long inactive;
1353
	unsigned long active;
1354
	unsigned long gb;
1355

1356 1357
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1358

1359 1360 1361 1362 1363 1364
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1365
	return inactive * inactive_ratio < active;
1366 1367
}

1368
#define mem_cgroup_from_counter(counter, member)	\
1369 1370
	container_of(counter, struct mem_cgroup, member)

1371
/**
1372
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1373
 * @memcg: the memory cgroup
1374
 *
1375
 * Returns the maximum amount of memory @mem can be charged with, in
1376
 * pages.
1377
 */
1378
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1379
{
1380 1381 1382
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1397 1398
}

1399
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1400 1401
{
	/* root ? */
1402
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1403 1404
		return vm_swappiness;

1405
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1406 1407
}

1408
/*
Q
Qiang Huang 已提交
1409
 * A routine for checking "mem" is under move_account() or not.
1410
 *
Q
Qiang Huang 已提交
1411 1412 1413
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1414
 */
1415
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1416
{
1417 1418
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1419
	bool ret = false;
1420 1421 1422 1423 1424 1425 1426 1427 1428
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1429

1430 1431
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1432 1433
unlock:
	spin_unlock(&mc.lock);
1434 1435 1436
	return ret;
}

1437
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1438 1439
{
	if (mc.moving_task && current != mc.moving_task) {
1440
		if (mem_cgroup_under_move(memcg)) {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1453
#define K(x) ((x) << (PAGE_SHIFT-10))
1454
/**
1455
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1456 1457 1458 1459 1460 1461 1462 1463
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1464
	/* oom_info_lock ensures that parallel ooms do not interleave */
1465
	static DEFINE_MUTEX(oom_info_lock);
1466 1467
	struct mem_cgroup *iter;
	unsigned int i;
1468

1469
	if (!p)
1470 1471
		return;

1472
	mutex_lock(&oom_info_lock);
1473 1474
	rcu_read_lock();

T
Tejun Heo 已提交
1475 1476
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1477
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1478
	pr_cont_cgroup_path(memcg->css.cgroup);
1479
	pr_cont("\n");
1480 1481 1482

	rcu_read_unlock();

1483 1484 1485 1486 1487 1488 1489 1490 1491
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1492 1493

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1494 1495
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1511
	mutex_unlock(&oom_info_lock);
1512 1513
}

1514 1515 1516 1517
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1518
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1519 1520
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1521 1522
	struct mem_cgroup *iter;

1523
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1524
		num++;
1525 1526 1527
	return num;
}

D
David Rientjes 已提交
1528 1529 1530
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1531
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1532
{
1533
	unsigned long limit;
1534

1535
	limit = memcg->memory.limit;
1536
	if (mem_cgroup_swappiness(memcg)) {
1537
		unsigned long memsw_limit;
1538

1539 1540
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1541 1542
	}
	return limit;
D
David Rientjes 已提交
1543 1544
}

1545 1546
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1547 1548 1549 1550 1551 1552 1553
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1554
	/*
1555 1556 1557
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1558
	 */
1559
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1560 1561 1562 1563 1564
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1565
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1566
	for_each_mem_cgroup_tree(iter, memcg) {
1567
		struct css_task_iter it;
1568 1569
		struct task_struct *task;

1570 1571
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1584
				css_task_iter_end(&it);
1585 1586 1587 1588 1589 1590 1591 1592
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1605
		}
1606
		css_task_iter_end(&it);
1607 1608 1609 1610 1611 1612 1613 1614 1615
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1616 1617
#if MAX_NUMNODES > 1

1618 1619
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1620
 * @memcg: the target memcg
1621 1622 1623 1624 1625 1626 1627
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1628
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1629 1630
		int nid, bool noswap)
{
1631
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1632 1633 1634
		return true;
	if (noswap || !total_swap_pages)
		return false;
1635
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1636 1637 1638 1639
		return true;
	return false;

}
1640 1641 1642 1643 1644 1645 1646

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1647
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1648 1649
{
	int nid;
1650 1651 1652 1653
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1654
	if (!atomic_read(&memcg->numainfo_events))
1655
		return;
1656
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1657 1658 1659
		return;

	/* make a nodemask where this memcg uses memory from */
1660
	memcg->scan_nodes = node_states[N_MEMORY];
1661

1662
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1663

1664 1665
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1666
	}
1667

1668 1669
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1684
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1685 1686 1687
{
	int node;

1688 1689
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1690

1691
	node = next_node(node, memcg->scan_nodes);
1692
	if (node == MAX_NUMNODES)
1693
		node = first_node(memcg->scan_nodes);
1694 1695 1696 1697 1698 1699 1700 1701 1702
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1703
	memcg->last_scanned_node = node;
1704 1705 1706
	return node;
}
#else
1707
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1708 1709 1710 1711 1712
{
	return 0;
}
#endif

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1728
	excess = soft_limit_excess(root_memcg);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1757
		if (!soft_limit_excess(root_memcg))
1758
			break;
1759
	}
1760 1761
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1762 1763
}

1764 1765 1766 1767 1768 1769
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1770 1771
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1772 1773 1774 1775
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1776
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1777
{
1778
	struct mem_cgroup *iter, *failed = NULL;
1779

1780 1781
	spin_lock(&memcg_oom_lock);

1782
	for_each_mem_cgroup_tree(iter, memcg) {
1783
		if (iter->oom_lock) {
1784 1785 1786 1787 1788
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1789 1790
			mem_cgroup_iter_break(memcg, iter);
			break;
1791 1792
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1793
	}
K
KAMEZAWA Hiroyuki 已提交
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1806
		}
1807 1808
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1809 1810 1811 1812

	spin_unlock(&memcg_oom_lock);

	return !failed;
1813
}
1814

1815
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1816
{
K
KAMEZAWA Hiroyuki 已提交
1817 1818
	struct mem_cgroup *iter;

1819
	spin_lock(&memcg_oom_lock);
1820
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1821
	for_each_mem_cgroup_tree(iter, memcg)
1822
		iter->oom_lock = false;
1823
	spin_unlock(&memcg_oom_lock);
1824 1825
}

1826
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1827 1828 1829
{
	struct mem_cgroup *iter;

1830
	for_each_mem_cgroup_tree(iter, memcg)
1831 1832 1833
		atomic_inc(&iter->under_oom);
}

1834
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1835 1836 1837
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840 1841 1842
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1843
	for_each_mem_cgroup_tree(iter, memcg)
1844
		atomic_add_unless(&iter->under_oom, -1, 0);
1845 1846
}

K
KAMEZAWA Hiroyuki 已提交
1847 1848
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1849
struct oom_wait_info {
1850
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1851 1852 1853 1854 1855 1856
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1857 1858
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1859 1860 1861
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1862
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1863

1864 1865
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1866 1867 1868 1869
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1870
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1871
{
1872
	atomic_inc(&memcg->oom_wakeups);
1873 1874
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1875 1876
}

1877
static void memcg_oom_recover(struct mem_cgroup *memcg)
1878
{
1879 1880
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1881 1882
}

1883
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1884
{
1885 1886
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1887
	/*
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1900
	 */
1901 1902 1903 1904
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1905 1906 1907 1908
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1909
 * @handle: actually kill/wait or just clean up the OOM state
1910
 *
1911 1912
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1913
 *
1914
 * Memcg supports userspace OOM handling where failed allocations must
1915 1916 1917 1918
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1919
 * the end of the page fault to complete the OOM handling.
1920 1921
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1922
 * completed, %false otherwise.
1923
 */
1924
bool mem_cgroup_oom_synchronize(bool handle)
1925
{
1926
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1927
	struct oom_wait_info owait;
1928
	bool locked;
1929 1930 1931

	/* OOM is global, do not handle */
	if (!memcg)
1932
		return false;
1933

1934 1935
	if (!handle)
		goto cleanup;
1936 1937 1938 1939 1940 1941

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1942

1943
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1957
		schedule();
1958 1959 1960 1961 1962
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1963 1964 1965 1966 1967 1968 1969 1970
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1971 1972
cleanup:
	current->memcg_oom.memcg = NULL;
1973
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1974
	return true;
1975 1976
}

1977 1978 1979 1980 1981
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
1982
 *
1983 1984 1985
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1986
 *
1987 1988 1989 1990
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
1991
 *
1992 1993 1994
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
1995
 *
1996 1997 1998 1999 2000
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2001
 */
2002 2003 2004
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2005 2006 2007
{
	struct mem_cgroup *memcg;

2008 2009 2010 2011
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2012
again:
2013
	memcg = page->mem_cgroup;
2014
	if (unlikely(!memcg))
2015 2016 2017
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2018
	if (atomic_read(&memcg->moving_account) <= 0)
2019
		return memcg;
2020

2021
	spin_lock_irqsave(&memcg->move_lock, *flags);
2022
	if (memcg != page->mem_cgroup) {
2023
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2024 2025 2026
		goto again;
	}
	*locked = true;
2027 2028

	return memcg;
2029 2030
}

2031 2032 2033 2034 2035 2036
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
2037 2038
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
			      unsigned long *flags)
2039
{
2040 2041
	if (memcg && *locked)
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2042

2043
	rcu_read_unlock();
2044 2045
}

2046 2047 2048 2049 2050 2051 2052 2053 2054
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2055
				 enum mem_cgroup_stat_index idx, int val)
2056
{
2057
	VM_BUG_ON(!rcu_read_lock_held());
2058

2059 2060
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2061
}
2062

2063 2064 2065 2066
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2067
#define CHARGE_BATCH	32U
2068 2069
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2070
	unsigned int nr_pages;
2071
	struct work_struct work;
2072
	unsigned long flags;
2073
#define FLUSHING_CACHED_CHARGE	0
2074 2075
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2076
static DEFINE_MUTEX(percpu_charge_mutex);
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2088
 */
2089
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2090 2091
{
	struct memcg_stock_pcp *stock;
2092
	bool ret = false;
2093

2094
	if (nr_pages > CHARGE_BATCH)
2095
		return ret;
2096

2097
	stock = &get_cpu_var(memcg_stock);
2098
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2099
		stock->nr_pages -= nr_pages;
2100 2101
		ret = true;
	}
2102 2103 2104 2105 2106
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2107
 * Returns stocks cached in percpu and reset cached information.
2108 2109 2110 2111 2112
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2113
	if (stock->nr_pages) {
2114
		page_counter_uncharge(&old->memory, stock->nr_pages);
2115
		if (do_swap_account)
2116
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2117
		css_put_many(&old->css, stock->nr_pages);
2118
		stock->nr_pages = 0;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2129
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2130
	drain_stock(stock);
2131
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2132 2133
}

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2145
/*
2146
 * Cache charges(val) to local per_cpu area.
2147
 * This will be consumed by consume_stock() function, later.
2148
 */
2149
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2150 2151 2152
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2153
	if (stock->cached != memcg) { /* reset if necessary */
2154
		drain_stock(stock);
2155
		stock->cached = memcg;
2156
	}
2157
	stock->nr_pages += nr_pages;
2158 2159 2160 2161
	put_cpu_var(memcg_stock);
}

/*
2162
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2163
 * of the hierarchy under it.
2164
 */
2165
static void drain_all_stock(struct mem_cgroup *root_memcg)
2166
{
2167
	int cpu, curcpu;
2168

2169 2170 2171
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2172 2173
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2174
	curcpu = get_cpu();
2175 2176
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2177
		struct mem_cgroup *memcg;
2178

2179 2180
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2181
			continue;
2182
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2183
			continue;
2184 2185 2186 2187 2188 2189
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2190
	}
2191
	put_cpu();
A
Andrew Morton 已提交
2192
	put_online_cpus();
2193
	mutex_unlock(&percpu_charge_mutex);
2194 2195
}

2196 2197 2198 2199
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2200
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2201 2202 2203
{
	int i;

2204
	spin_lock(&memcg->pcp_counter_lock);
2205
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2206
		long x = per_cpu(memcg->stat->count[i], cpu);
2207

2208 2209
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2210
	}
2211
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2212
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2213

2214 2215
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2216
	}
2217
	spin_unlock(&memcg->pcp_counter_lock);
2218 2219
}

2220
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2221 2222 2223 2224 2225
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2226
	struct mem_cgroup *iter;
2227

2228
	if (action == CPU_ONLINE)
2229 2230
		return NOTIFY_OK;

2231
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2232
		return NOTIFY_OK;
2233

2234
	for_each_mem_cgroup(iter)
2235 2236
		mem_cgroup_drain_pcp_counter(iter, cpu);

2237 2238 2239 2240 2241
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2242 2243
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2244
{
2245
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2246
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2247
	struct mem_cgroup *mem_over_limit;
2248
	struct page_counter *counter;
2249
	unsigned long nr_reclaimed;
2250 2251
	bool may_swap = true;
	bool drained = false;
2252
	int ret = 0;
2253

2254 2255
	if (mem_cgroup_is_root(memcg))
		goto done;
2256
retry:
2257 2258
	if (consume_stock(memcg, nr_pages))
		goto done;
2259

2260
	if (!do_swap_account ||
2261 2262
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2263
			goto done_restock;
2264
		if (do_swap_account)
2265 2266
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2267
	} else {
2268
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2269
		may_swap = false;
2270
	}
2271

2272 2273 2274 2275
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2291 2292
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2293

2294 2295
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2296

2297
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2298
		goto retry;
2299

2300
	if (!drained) {
2301
		drain_all_stock(mem_over_limit);
2302 2303 2304 2305
		drained = true;
		goto retry;
	}

2306 2307
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2308 2309 2310 2311 2312 2313 2314 2315 2316
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2317
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2318 2319 2320 2321 2322 2323 2324 2325
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2326 2327 2328
	if (nr_retries--)
		goto retry;

2329 2330 2331
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2332 2333 2334
	if (fatal_signal_pending(current))
		goto bypass;

2335
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2336
nomem:
2337
	if (!(gfp_mask & __GFP_NOFAIL))
2338
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2339
bypass:
2340
	return -EINTR;
2341 2342

done_restock:
2343
	css_get_many(&memcg->css, batch);
2344 2345 2346
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2347
	return ret;
2348
}
2349

2350
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2351
{
2352 2353 2354
	if (mem_cgroup_is_root(memcg))
		return;

2355
	page_counter_uncharge(&memcg->memory, nr_pages);
2356
	if (do_swap_account)
2357
		page_counter_uncharge(&memcg->memsw, nr_pages);
2358

2359
	css_put_many(&memcg->css, nr_pages);
2360 2361
}

2362 2363
/*
 * A helper function to get mem_cgroup from ID. must be called under
2364 2365 2366
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2367 2368 2369 2370 2371 2372
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2373
	return mem_cgroup_from_id(id);
2374 2375
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2386
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2387
{
2388
	struct mem_cgroup *memcg;
2389
	unsigned short id;
2390 2391
	swp_entry_t ent;

2392
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2393

2394
	memcg = page->mem_cgroup;
2395 2396
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2397
			memcg = NULL;
2398
	} else if (PageSwapCache(page)) {
2399
		ent.val = page_private(page);
2400
		id = lookup_swap_cgroup_id(ent);
2401
		rcu_read_lock();
2402
		memcg = mem_cgroup_lookup(id);
2403
		if (memcg && !css_tryget_online(&memcg->css))
2404
			memcg = NULL;
2405
		rcu_read_unlock();
2406
	}
2407
	return memcg;
2408 2409
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2441
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2442
			  bool lrucare)
2443
{
2444
	int isolated;
2445

2446
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2447 2448 2449 2450 2451

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2452 2453
	if (lrucare)
		lock_page_lru(page, &isolated);
2454

2455 2456
	/*
	 * Nobody should be changing or seriously looking at
2457
	 * page->mem_cgroup at this point:
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2469
	page->mem_cgroup = memcg;
2470

2471 2472
	if (lrucare)
		unlock_page_lru(page, isolated);
2473
}
2474

2475
#ifdef CONFIG_MEMCG_KMEM
2476 2477
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2478
{
2479
	struct page_counter *counter;
2480 2481
	int ret = 0;

2482 2483
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2484 2485
		return ret;

2486
	ret = try_charge(memcg, gfp, nr_pages);
2487 2488
	if (ret == -EINTR)  {
		/*
2489 2490 2491 2492 2493 2494
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2495 2496 2497
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2498 2499 2500
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2501 2502
		 * directed to the root cgroup in memcontrol.h
		 */
2503
		page_counter_charge(&memcg->memory, nr_pages);
2504
		if (do_swap_account)
2505
			page_counter_charge(&memcg->memsw, nr_pages);
2506
		css_get_many(&memcg->css, nr_pages);
2507 2508
		ret = 0;
	} else if (ret)
2509
		page_counter_uncharge(&memcg->kmem, nr_pages);
2510 2511 2512 2513

	return ret;
}

2514
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2515
{
2516
	page_counter_uncharge(&memcg->memory, nr_pages);
2517
	if (do_swap_account)
2518
		page_counter_uncharge(&memcg->memsw, nr_pages);
2519

2520
	page_counter_uncharge(&memcg->kmem, nr_pages);
2521

2522
	css_put_many(&memcg->css, nr_pages);
2523 2524
}

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2535
static int memcg_alloc_cache_id(void)
2536
{
2537 2538 2539 2540 2541 2542 2543
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2544

2545 2546 2547 2548 2549 2550 2551 2552 2553
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2554 2555 2556 2557 2558
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	err = memcg_update_all_caches(size);
	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2570 2571 2572 2573 2574 2575 2576 2577 2578
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2579
	memcg_limited_groups_array_size = num;
2580 2581
}

2582
struct memcg_kmem_cache_create_work {
2583 2584 2585 2586 2587
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2588
static void memcg_kmem_cache_create_func(struct work_struct *w)
2589
{
2590 2591
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2592 2593
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2594

2595
	memcg_create_kmem_cache(memcg, cachep);
2596

2597
	css_put(&memcg->css);
2598 2599 2600 2601 2602 2603
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2604 2605
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2606
{
2607
	struct memcg_kmem_cache_create_work *cw;
2608

2609
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2610
	if (!cw)
2611
		return;
2612 2613

	css_get(&memcg->css);
2614 2615 2616

	cw->memcg = memcg;
	cw->cachep = cachep;
2617
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2618 2619 2620 2621

	schedule_work(&cw->work);
}

2622 2623
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2624 2625 2626 2627
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2628
	 * in __memcg_schedule_kmem_cache_create will recurse.
2629 2630 2631 2632 2633 2634 2635
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2636
	current->memcg_kmem_skip_account = 1;
2637
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2638
	current->memcg_kmem_skip_account = 0;
2639
}
2640

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2654
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2655 2656
{
	struct mem_cgroup *memcg;
2657
	struct kmem_cache *memcg_cachep;
2658 2659 2660 2661

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2662
	if (current->memcg_kmem_skip_account)
2663 2664
		return cachep;

2665
	memcg = get_mem_cgroup_from_mm(current->mm);
2666
	if (!memcg_kmem_is_active(memcg))
2667
		goto out;
2668

2669
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2670 2671
	if (likely(memcg_cachep))
		return memcg_cachep;
2672 2673 2674 2675 2676 2677 2678 2679 2680

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2681 2682 2683
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2684
	 */
2685
	memcg_schedule_kmem_cache_create(memcg, cachep);
2686
out:
2687
	css_put(&memcg->css);
2688
	return cachep;
2689 2690
}

2691 2692 2693 2694 2695 2696
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
		css_put(&cachep->memcg_params->memcg->css);
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2718

2719
	memcg = get_mem_cgroup_from_mm(current->mm);
2720

2721
	if (!memcg_kmem_is_active(memcg)) {
2722 2723 2724 2725
		css_put(&memcg->css);
		return true;
	}

2726
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2741
		memcg_uncharge_kmem(memcg, 1 << order);
2742 2743
		return;
	}
2744
	page->mem_cgroup = memcg;
2745 2746 2747 2748
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2749
	struct mem_cgroup *memcg = page->mem_cgroup;
2750 2751 2752 2753

	if (!memcg)
		return;

2754
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2755

2756
	memcg_uncharge_kmem(memcg, 1 << order);
2757
	page->mem_cgroup = NULL;
2758 2759 2760
}
#endif /* CONFIG_MEMCG_KMEM */

2761 2762 2763 2764
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2765 2766 2767
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2768
 */
2769
void mem_cgroup_split_huge_fixup(struct page *head)
2770
{
2771
	int i;
2772

2773 2774
	if (mem_cgroup_disabled())
		return;
2775

2776
	for (i = 1; i < HPAGE_PMD_NR; i++)
2777
		head[i].mem_cgroup = head->mem_cgroup;
2778

2779
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2780
		       HPAGE_PMD_NR);
2781
}
2782
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2783

2784
/**
2785
 * mem_cgroup_move_account - move account of the page
2786
 * @page: the page
2787
 * @nr_pages: number of regular pages (>1 for huge pages)
2788 2789 2790 2791
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2792
 * - page is not on LRU (isolate_page() is useful.)
2793
 * - compound_lock is held when nr_pages > 1
2794
 *
2795 2796
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2797
 */
2798 2799 2800
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2801
				   struct mem_cgroup *to)
2802
{
2803 2804
	unsigned long flags;
	int ret;
2805

2806
	VM_BUG_ON(from == to);
2807
	VM_BUG_ON_PAGE(PageLRU(page), page);
2808 2809 2810 2811 2812 2813 2814
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2815
	if (nr_pages > 1 && !PageTransHuge(page))
2816 2817
		goto out;

2818
	/*
2819
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2820 2821 2822 2823 2824
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2825 2826

	ret = -EINVAL;
2827
	if (page->mem_cgroup != from)
2828
		goto out_unlock;
2829

2830
	spin_lock_irqsave(&from->move_lock, flags);
2831

2832
	if (!PageAnon(page) && page_mapped(page)) {
2833 2834 2835 2836 2837
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2838

2839 2840 2841 2842 2843 2844
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2845

2846
	/*
2847
	 * It is safe to change page->mem_cgroup here because the page
2848 2849 2850
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2851

2852
	/* caller should have done css_get */
2853
	page->mem_cgroup = to;
2854 2855
	spin_unlock_irqrestore(&from->move_lock, flags);

2856
	ret = 0;
2857 2858 2859

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2860
	memcg_check_events(to, page);
2861
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2862
	memcg_check_events(from, page);
2863 2864 2865
	local_irq_enable();
out_unlock:
	unlock_page(page);
2866
out:
2867 2868 2869
	return ret;
}

A
Andrew Morton 已提交
2870
#ifdef CONFIG_MEMCG_SWAP
2871 2872
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2873
{
2874 2875
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2876
}
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2889
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2890 2891 2892
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2893
				struct mem_cgroup *from, struct mem_cgroup *to)
2894 2895 2896
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2897 2898
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2899 2900 2901

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2902
		mem_cgroup_swap_statistics(to, true);
2903 2904 2905 2906 2907 2908
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2909
				struct mem_cgroup *from, struct mem_cgroup *to)
2910 2911 2912
{
	return -EINVAL;
}
2913
#endif
K
KAMEZAWA Hiroyuki 已提交
2914

2915
static DEFINE_MUTEX(memcg_limit_mutex);
2916

2917
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2918
				   unsigned long limit)
2919
{
2920 2921 2922
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2923
	int retry_count;
2924
	int ret;
2925 2926 2927 2928 2929 2930

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2931 2932
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2933

2934
	oldusage = page_counter_read(&memcg->memory);
2935

2936
	do {
2937 2938 2939 2940
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2941 2942 2943 2944

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2945
			ret = -EINVAL;
2946 2947
			break;
		}
2948 2949 2950 2951
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2952 2953 2954 2955

		if (!ret)
			break;

2956 2957
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2958
		curusage = page_counter_read(&memcg->memory);
2959
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2960
		if (curusage >= oldusage)
2961 2962 2963
			retry_count--;
		else
			oldusage = curusage;
2964 2965
	} while (retry_count);

2966 2967
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2968

2969 2970 2971
	return ret;
}

L
Li Zefan 已提交
2972
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2973
					 unsigned long limit)
2974
{
2975 2976 2977
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2978
	int retry_count;
2979
	int ret;
2980

2981
	/* see mem_cgroup_resize_res_limit */
2982 2983 2984 2985 2986 2987
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2988 2989 2990 2991
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2992 2993 2994 2995

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2996 2997 2998
			ret = -EINVAL;
			break;
		}
2999 3000 3001 3002
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3003 3004 3005 3006

		if (!ret)
			break;

3007 3008
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3009
		curusage = page_counter_read(&memcg->memsw);
3010
		/* Usage is reduced ? */
3011
		if (curusage >= oldusage)
3012
			retry_count--;
3013 3014
		else
			oldusage = curusage;
3015 3016
	} while (retry_count);

3017 3018
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3019

3020 3021 3022
	return ret;
}

3023 3024 3025 3026 3027 3028 3029 3030 3031
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3032
	unsigned long excess;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3057
		spin_lock_irq(&mctz->lock);
3058
		__mem_cgroup_remove_exceeded(mz, mctz);
3059 3060 3061 3062 3063 3064

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3065 3066 3067
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3068
		excess = soft_limit_excess(mz->memcg);
3069 3070 3071 3072 3073 3074 3075 3076 3077
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3078
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3079
		spin_unlock_irq(&mctz->lock);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3097 3098 3099 3100 3101 3102
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3103 3104
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3105 3106
	bool ret;

3107
	/*
3108 3109 3110 3111
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3112
	 */
3113 3114 3115 3116 3117 3118
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3119 3120
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3131 3132
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3133
	/* try to free all pages in this cgroup */
3134
	while (nr_retries && page_counter_read(&memcg->memory)) {
3135
		int progress;
3136

3137 3138 3139
		if (signal_pending(current))
			return -EINTR;

3140 3141
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3142
		if (!progress) {
3143
			nr_retries--;
3144
			/* maybe some writeback is necessary */
3145
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3146
		}
3147 3148

	}
3149 3150

	return 0;
3151 3152
}

3153 3154 3155
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3156
{
3157
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3158

3159 3160
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3161
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3162 3163
}

3164 3165
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3166
{
3167
	return mem_cgroup_from_css(css)->use_hierarchy;
3168 3169
}

3170 3171
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3172 3173
{
	int retval = 0;
3174
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3175
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3176

3177
	mutex_lock(&memcg_create_mutex);
3178 3179 3180 3181

	if (memcg->use_hierarchy == val)
		goto out;

3182
	/*
3183
	 * If parent's use_hierarchy is set, we can't make any modifications
3184 3185 3186 3187 3188 3189
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3190
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3191
				(val == 1 || val == 0)) {
3192
		if (!memcg_has_children(memcg))
3193
			memcg->use_hierarchy = val;
3194 3195 3196 3197
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3198 3199

out:
3200
	mutex_unlock(&memcg_create_mutex);
3201 3202 3203 3204

	return retval;
}

3205 3206
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3224 3225 3226 3227 3228 3229
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3230
		if (!swap)
3231
			val = page_counter_read(&memcg->memory);
3232
		else
3233
			val = page_counter_read(&memcg->memsw);
3234 3235 3236 3237
	}
	return val << PAGE_SHIFT;
}

3238 3239 3240 3241 3242 3243 3244
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3245

3246
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3247
			       struct cftype *cft)
B
Balbir Singh 已提交
3248
{
3249
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3250
	struct page_counter *counter;
3251

3252
	switch (MEMFILE_TYPE(cft->private)) {
3253
	case _MEM:
3254 3255
		counter = &memcg->memory;
		break;
3256
	case _MEMSWAP:
3257 3258
		counter = &memcg->memsw;
		break;
3259
	case _KMEM:
3260
		counter = &memcg->kmem;
3261
		break;
3262 3263 3264
	default:
		BUG();
	}
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3284
}
3285 3286

#ifdef CONFIG_MEMCG_KMEM
3287 3288
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3289 3290 3291 3292 3293 3294 3295
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3308
	mutex_lock(&memcg_create_mutex);
3309 3310
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3311 3312 3313 3314
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3315

3316
	memcg_id = memcg_alloc_cache_id();
3317 3318 3319 3320 3321 3322
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3323 3324
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3325
	 */
3326
	err = page_counter_limit(&memcg->kmem, nr_pages);
3327 3328 3329 3330
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3331 3332
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3333 3334 3335
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3336
	memcg->kmemcg_id = memcg_id;
3337
out:
3338 3339 3340 3341
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3342
				   unsigned long limit)
3343 3344 3345
{
	int ret;

3346
	mutex_lock(&memcg_limit_mutex);
3347
	if (!memcg_kmem_is_active(memcg))
3348
		ret = memcg_activate_kmem(memcg, limit);
3349
	else
3350 3351
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3352 3353 3354
	return ret;
}

3355
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3356
{
3357
	int ret = 0;
3358
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3359

3360 3361
	if (!parent)
		return 0;
3362

3363
	mutex_lock(&memcg_limit_mutex);
3364
	/*
3365 3366
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3367
	 */
3368
	if (memcg_kmem_is_active(parent))
3369 3370
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3371
	return ret;
3372
}
3373 3374
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3375
				   unsigned long limit)
3376 3377 3378
{
	return -EINVAL;
}
3379
#endif /* CONFIG_MEMCG_KMEM */
3380

3381 3382 3383 3384
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3385 3386
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3387
{
3388
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3389
	unsigned long nr_pages;
3390 3391
	int ret;

3392
	buf = strstrip(buf);
3393 3394 3395
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3396

3397
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3398
	case RES_LIMIT:
3399 3400 3401 3402
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3403 3404 3405
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3406
			break;
3407 3408
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3409
			break;
3410 3411 3412 3413
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3414
		break;
3415 3416 3417
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3418 3419
		break;
	}
3420
	return ret ?: nbytes;
B
Balbir Singh 已提交
3421 3422
}

3423 3424
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3425
{
3426
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3427
	struct page_counter *counter;
3428

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3442

3443
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3444
	case RES_MAX_USAGE:
3445
		page_counter_reset_watermark(counter);
3446 3447
		break;
	case RES_FAILCNT:
3448
		counter->failcnt = 0;
3449
		break;
3450 3451
	default:
		BUG();
3452
	}
3453

3454
	return nbytes;
3455 3456
}

3457
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3458 3459
					struct cftype *cft)
{
3460
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3461 3462
}

3463
#ifdef CONFIG_MMU
3464
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3465 3466
					struct cftype *cft, u64 val)
{
3467
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3468 3469 3470

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3471

3472
	/*
3473 3474 3475 3476
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3477
	 */
3478
	memcg->move_charge_at_immigrate = val;
3479 3480
	return 0;
}
3481
#else
3482
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3483 3484 3485 3486 3487
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3488

3489
#ifdef CONFIG_NUMA
3490
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3491
{
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3504
	int nid;
3505
	unsigned long nr;
3506
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3507

3508 3509 3510 3511 3512 3513 3514 3515 3516
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3517 3518
	}

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3534 3535 3536 3537 3538 3539
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3540
static int memcg_stat_show(struct seq_file *m, void *v)
3541
{
3542
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3543
	unsigned long memory, memsw;
3544 3545
	struct mem_cgroup *mi;
	unsigned int i;
3546

3547 3548
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3549
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3550
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3551
			continue;
3552 3553
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3554
	}
L
Lee Schermerhorn 已提交
3555

3556 3557 3558 3559 3560 3561 3562 3563
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3564
	/* Hierarchical information */
3565 3566 3567 3568
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3569
	}
3570 3571 3572 3573 3574
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3575

3576 3577 3578
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3579
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3580
			continue;
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3601
	}
K
KAMEZAWA Hiroyuki 已提交
3602

K
KOSAKI Motohiro 已提交
3603 3604 3605 3606
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3607
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3608 3609 3610 3611 3612
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3613
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3614
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3615

3616 3617 3618 3619
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3620
			}
3621 3622 3623 3624
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3625 3626 3627
	}
#endif

3628 3629 3630
	return 0;
}

3631 3632
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3633
{
3634
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3635

3636
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3637 3638
}

3639 3640
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3641
{
3642
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3643

3644
	if (val > 100)
K
KOSAKI Motohiro 已提交
3645 3646
		return -EINVAL;

3647
	if (css->parent)
3648 3649 3650
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3651

K
KOSAKI Motohiro 已提交
3652 3653 3654
	return 0;
}

3655 3656 3657
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3658
	unsigned long usage;
3659 3660 3661 3662
	int i;

	rcu_read_lock();
	if (!swap)
3663
		t = rcu_dereference(memcg->thresholds.primary);
3664
	else
3665
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3666 3667 3668 3669

	if (!t)
		goto unlock;

3670
	usage = mem_cgroup_usage(memcg, swap);
3671 3672

	/*
3673
	 * current_threshold points to threshold just below or equal to usage.
3674 3675 3676
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3677
	i = t->current_threshold;
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3701
	t->current_threshold = i - 1;
3702 3703 3704 3705 3706 3707
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3708 3709 3710 3711 3712 3713 3714
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3715 3716 3717 3718 3719 3720 3721
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3722 3723 3724 3725 3726 3727 3728
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3729 3730
}

3731
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3732 3733 3734
{
	struct mem_cgroup_eventfd_list *ev;

3735 3736
	spin_lock(&memcg_oom_lock);

3737
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3738
		eventfd_signal(ev->eventfd, 1);
3739 3740

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3741 3742 3743
	return 0;
}

3744
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3745
{
K
KAMEZAWA Hiroyuki 已提交
3746 3747
	struct mem_cgroup *iter;

3748
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3749
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3750 3751
}

3752
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3753
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3754
{
3755 3756
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3757 3758
	unsigned long threshold;
	unsigned long usage;
3759
	int i, size, ret;
3760

3761
	ret = page_counter_memparse(args, &threshold);
3762 3763 3764 3765
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3766

3767
	if (type == _MEM) {
3768
		thresholds = &memcg->thresholds;
3769
		usage = mem_cgroup_usage(memcg, false);
3770
	} else if (type == _MEMSWAP) {
3771
		thresholds = &memcg->memsw_thresholds;
3772
		usage = mem_cgroup_usage(memcg, true);
3773
	} else
3774 3775 3776
		BUG();

	/* Check if a threshold crossed before adding a new one */
3777
	if (thresholds->primary)
3778 3779
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3780
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3781 3782

	/* Allocate memory for new array of thresholds */
3783
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3784
			GFP_KERNEL);
3785
	if (!new) {
3786 3787 3788
		ret = -ENOMEM;
		goto unlock;
	}
3789
	new->size = size;
3790 3791

	/* Copy thresholds (if any) to new array */
3792 3793
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3794
				sizeof(struct mem_cgroup_threshold));
3795 3796
	}

3797
	/* Add new threshold */
3798 3799
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3800 3801

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3802
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3803 3804 3805
			compare_thresholds, NULL);

	/* Find current threshold */
3806
	new->current_threshold = -1;
3807
	for (i = 0; i < size; i++) {
3808
		if (new->entries[i].threshold <= usage) {
3809
			/*
3810 3811
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3812 3813
			 * it here.
			 */
3814
			++new->current_threshold;
3815 3816
		} else
			break;
3817 3818
	}

3819 3820 3821 3822 3823
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3824

3825
	/* To be sure that nobody uses thresholds */
3826 3827 3828 3829 3830 3831 3832 3833
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3834
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3835 3836
	struct eventfd_ctx *eventfd, const char *args)
{
3837
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3838 3839
}

3840
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3841 3842
	struct eventfd_ctx *eventfd, const char *args)
{
3843
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3844 3845
}

3846
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3847
	struct eventfd_ctx *eventfd, enum res_type type)
3848
{
3849 3850
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3851
	unsigned long usage;
3852
	int i, j, size;
3853 3854

	mutex_lock(&memcg->thresholds_lock);
3855 3856

	if (type == _MEM) {
3857
		thresholds = &memcg->thresholds;
3858
		usage = mem_cgroup_usage(memcg, false);
3859
	} else if (type == _MEMSWAP) {
3860
		thresholds = &memcg->memsw_thresholds;
3861
		usage = mem_cgroup_usage(memcg, true);
3862
	} else
3863 3864
		BUG();

3865 3866 3867
	if (!thresholds->primary)
		goto unlock;

3868 3869 3870 3871
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3872 3873 3874
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3875 3876 3877
			size++;
	}

3878
	new = thresholds->spare;
3879

3880 3881
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3882 3883
		kfree(new);
		new = NULL;
3884
		goto swap_buffers;
3885 3886
	}

3887
	new->size = size;
3888 3889

	/* Copy thresholds and find current threshold */
3890 3891 3892
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3893 3894
			continue;

3895
		new->entries[j] = thresholds->primary->entries[i];
3896
		if (new->entries[j].threshold <= usage) {
3897
			/*
3898
			 * new->current_threshold will not be used
3899 3900 3901
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3902
			++new->current_threshold;
3903 3904 3905 3906
		}
		j++;
	}

3907
swap_buffers:
3908 3909
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3910 3911 3912 3913 3914 3915
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3916
	rcu_assign_pointer(thresholds->primary, new);
3917

3918
	/* To be sure that nobody uses thresholds */
3919
	synchronize_rcu();
3920
unlock:
3921 3922
	mutex_unlock(&memcg->thresholds_lock);
}
3923

3924
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3925 3926
	struct eventfd_ctx *eventfd)
{
3927
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3928 3929
}

3930
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3931 3932
	struct eventfd_ctx *eventfd)
{
3933
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3934 3935
}

3936
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3937
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3938 3939 3940 3941 3942 3943 3944
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3945
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3946 3947 3948 3949 3950

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3951
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3952
		eventfd_signal(eventfd, 1);
3953
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3954 3955 3956 3957

	return 0;
}

3958
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3959
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3960 3961 3962
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3963
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3964

3965
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3966 3967 3968 3969 3970 3971
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3972
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3973 3974
}

3975
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3976
{
3977
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3978

3979 3980
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3981 3982 3983
	return 0;
}

3984
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3985 3986
	struct cftype *cft, u64 val)
{
3987
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3988 3989

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3990
	if (!css->parent || !((val == 0) || (val == 1)))
3991 3992
		return -EINVAL;

3993
	memcg->oom_kill_disable = val;
3994
	if (!val)
3995
		memcg_oom_recover(memcg);
3996

3997 3998 3999
	return 0;
}

A
Andrew Morton 已提交
4000
#ifdef CONFIG_MEMCG_KMEM
4001
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4002
{
4003 4004 4005 4006 4007
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4008

4009
	return mem_cgroup_sockets_init(memcg, ss);
4010
}
4011

4012
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4013
{
4014
	memcg_destroy_kmem_caches(memcg);
4015
	mem_cgroup_sockets_destroy(memcg);
4016
}
4017
#else
4018
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4019 4020 4021
{
	return 0;
}
G
Glauber Costa 已提交
4022

4023 4024 4025
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4026 4027
#endif

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4041 4042 4043 4044 4045
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4046
static void memcg_event_remove(struct work_struct *work)
4047
{
4048 4049
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4050
	struct mem_cgroup *memcg = event->memcg;
4051 4052 4053

	remove_wait_queue(event->wqh, &event->wait);

4054
	event->unregister_event(memcg, event->eventfd);
4055 4056 4057 4058 4059 4060

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4061
	css_put(&memcg->css);
4062 4063 4064 4065 4066 4067 4068
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4069 4070
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4071
{
4072 4073
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4074
	struct mem_cgroup *memcg = event->memcg;
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4087
		spin_lock(&memcg->event_list_lock);
4088 4089 4090 4091 4092 4093 4094 4095
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4096
		spin_unlock(&memcg->event_list_lock);
4097 4098 4099 4100 4101
	}

	return 0;
}

4102
static void memcg_event_ptable_queue_proc(struct file *file,
4103 4104
		wait_queue_head_t *wqh, poll_table *pt)
{
4105 4106
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4107 4108 4109 4110 4111 4112

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4113 4114
 * DO NOT USE IN NEW FILES.
 *
4115 4116 4117 4118 4119
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4120 4121
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4122
{
4123
	struct cgroup_subsys_state *css = of_css(of);
4124
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4125
	struct mem_cgroup_event *event;
4126 4127 4128 4129
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4130
	const char *name;
4131 4132 4133
	char *endp;
	int ret;

4134 4135 4136
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4137 4138
	if (*endp != ' ')
		return -EINVAL;
4139
	buf = endp + 1;
4140

4141
	cfd = simple_strtoul(buf, &endp, 10);
4142 4143
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4144
	buf = endp + 1;
4145 4146 4147 4148 4149

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4150
	event->memcg = memcg;
4151
	INIT_LIST_HEAD(&event->list);
4152 4153 4154
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4180 4181 4182 4183 4184
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4185 4186
	 *
	 * DO NOT ADD NEW FILES.
4187
	 */
A
Al Viro 已提交
4188
	name = cfile.file->f_path.dentry->d_name.name;
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4200 4201
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4202 4203 4204 4205 4206
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4207
	/*
4208 4209 4210
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4211
	 */
A
Al Viro 已提交
4212
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4213
					       &memory_cgrp_subsys);
4214
	ret = -EINVAL;
4215
	if (IS_ERR(cfile_css))
4216
		goto out_put_cfile;
4217 4218
	if (cfile_css != css) {
		css_put(cfile_css);
4219
		goto out_put_cfile;
4220
	}
4221

4222
	ret = event->register_event(memcg, event->eventfd, buf);
4223 4224 4225 4226 4227
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4228 4229 4230
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4231 4232 4233 4234

	fdput(cfile);
	fdput(efile);

4235
	return nbytes;
4236 4237

out_put_css:
4238
	css_put(css);
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4251 4252
static struct cftype mem_cgroup_files[] = {
	{
4253
		.name = "usage_in_bytes",
4254
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4255
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4256
	},
4257 4258
	{
		.name = "max_usage_in_bytes",
4259
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4260
		.write = mem_cgroup_reset,
4261
		.read_u64 = mem_cgroup_read_u64,
4262
	},
B
Balbir Singh 已提交
4263
	{
4264
		.name = "limit_in_bytes",
4265
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4266
		.write = mem_cgroup_write,
4267
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4268
	},
4269 4270 4271
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4272
		.write = mem_cgroup_write,
4273
		.read_u64 = mem_cgroup_read_u64,
4274
	},
B
Balbir Singh 已提交
4275 4276
	{
		.name = "failcnt",
4277
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4278
		.write = mem_cgroup_reset,
4279
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4280
	},
4281 4282
	{
		.name = "stat",
4283
		.seq_show = memcg_stat_show,
4284
	},
4285 4286
	{
		.name = "force_empty",
4287
		.write = mem_cgroup_force_empty_write,
4288
	},
4289 4290 4291 4292 4293
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4294
	{
4295
		.name = "cgroup.event_control",		/* XXX: for compat */
4296
		.write = memcg_write_event_control,
4297 4298 4299
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4300 4301 4302 4303 4304
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4305 4306 4307 4308 4309
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4310 4311
	{
		.name = "oom_control",
4312
		.seq_show = mem_cgroup_oom_control_read,
4313
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4314 4315
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4316 4317 4318
	{
		.name = "pressure_level",
	},
4319 4320 4321
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4322
		.seq_show = memcg_numa_stat_show,
4323 4324
	},
#endif
4325 4326 4327 4328
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4329
		.write = mem_cgroup_write,
4330
		.read_u64 = mem_cgroup_read_u64,
4331 4332 4333 4334
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4335
		.read_u64 = mem_cgroup_read_u64,
4336 4337 4338 4339
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4340
		.write = mem_cgroup_reset,
4341
		.read_u64 = mem_cgroup_read_u64,
4342 4343 4344 4345
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4346
		.write = mem_cgroup_reset,
4347
		.read_u64 = mem_cgroup_read_u64,
4348
	},
4349 4350 4351
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4352 4353 4354 4355
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4356 4357
	},
#endif
4358
#endif
4359
	{ },	/* terminate */
4360
};
4361

4362 4363 4364 4365 4366
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4367
		.read_u64 = mem_cgroup_read_u64,
4368 4369 4370 4371
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4372
		.write = mem_cgroup_reset,
4373
		.read_u64 = mem_cgroup_read_u64,
4374 4375 4376 4377
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4378
		.write = mem_cgroup_write,
4379
		.read_u64 = mem_cgroup_read_u64,
4380 4381 4382 4383
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4384
		.write = mem_cgroup_reset,
4385
		.read_u64 = mem_cgroup_read_u64,
4386 4387 4388 4389
	},
	{ },	/* terminate */
};
#endif
4390
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4391 4392
{
	struct mem_cgroup_per_node *pn;
4393
	struct mem_cgroup_per_zone *mz;
4394
	int zone, tmp = node;
4395 4396 4397 4398 4399 4400 4401 4402
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4403 4404
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4405
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4406 4407
	if (!pn)
		return 1;
4408 4409 4410

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4411
		lruvec_init(&mz->lruvec);
4412 4413
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4414
		mz->memcg = memcg;
4415
	}
4416
	memcg->nodeinfo[node] = pn;
4417 4418 4419
	return 0;
}

4420
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4421
{
4422
	kfree(memcg->nodeinfo[node]);
4423 4424
}

4425 4426
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4427
	struct mem_cgroup *memcg;
4428
	size_t size;
4429

4430 4431
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4432

4433
	memcg = kzalloc(size, GFP_KERNEL);
4434
	if (!memcg)
4435 4436
		return NULL;

4437 4438
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4439
		goto out_free;
4440 4441
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4442 4443

out_free:
4444
	kfree(memcg);
4445
	return NULL;
4446 4447
}

4448
/*
4449 4450 4451 4452 4453 4454 4455 4456
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4457
 */
4458 4459

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4460
{
4461
	int node;
4462

4463
	mem_cgroup_remove_from_trees(memcg);
4464 4465 4466 4467 4468 4469

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4470
	disarm_static_keys(memcg);
4471
	kfree(memcg);
4472
}
4473

4474 4475 4476
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4477
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4478
{
4479
	if (!memcg->memory.parent)
4480
		return NULL;
4481
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4482
}
G
Glauber Costa 已提交
4483
EXPORT_SYMBOL(parent_mem_cgroup);
4484

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4508
static struct cgroup_subsys_state * __ref
4509
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4510
{
4511
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4512
	long error = -ENOMEM;
4513
	int node;
B
Balbir Singh 已提交
4514

4515 4516
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4517
		return ERR_PTR(error);
4518

B
Bob Liu 已提交
4519
	for_each_node(node)
4520
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4521
			goto free_out;
4522

4523
	/* root ? */
4524
	if (parent_css == NULL) {
4525
		root_mem_cgroup = memcg;
4526
		page_counter_init(&memcg->memory, NULL);
4527
		memcg->soft_limit = PAGE_COUNTER_MAX;
4528 4529
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4530
	}
4531

4532 4533 4534 4535 4536
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4537
	vmpressure_init(&memcg->vmpressure);
4538 4539
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4540 4541 4542
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4543 4544 4545 4546 4547 4548 4549 4550 4551

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4552
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4553
{
4554
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4555
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4556
	int ret;
4557

4558
	if (css->id > MEM_CGROUP_ID_MAX)
4559 4560
		return -ENOSPC;

T
Tejun Heo 已提交
4561
	if (!parent)
4562 4563
		return 0;

4564
	mutex_lock(&memcg_create_mutex);
4565 4566 4567 4568 4569 4570

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4571
		page_counter_init(&memcg->memory, &parent->memory);
4572
		memcg->soft_limit = PAGE_COUNTER_MAX;
4573 4574
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4575

4576
		/*
4577 4578
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4579
		 */
4580
	} else {
4581
		page_counter_init(&memcg->memory, NULL);
4582
		memcg->soft_limit = PAGE_COUNTER_MAX;
4583 4584
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4585 4586 4587 4588 4589
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4590
		if (parent != root_mem_cgroup)
4591
			memory_cgrp_subsys.broken_hierarchy = true;
4592
	}
4593
	mutex_unlock(&memcg_create_mutex);
4594

4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4607 4608
}

4609
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4610
{
4611
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4612
	struct mem_cgroup_event *event, *tmp;
4613 4614 4615 4616 4617 4618

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4619 4620
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4621 4622 4623
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4624
	spin_unlock(&memcg->event_list_lock);
4625

4626
	vmpressure_cleanup(&memcg->vmpressure);
4627 4628
}

4629
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4630
{
4631
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4632

4633
	memcg_destroy_kmem(memcg);
4634
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4635 4636
}

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4654 4655 4656
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4657
	memcg->soft_limit = PAGE_COUNTER_MAX;
4658 4659
}

4660
#ifdef CONFIG_MMU
4661
/* Handlers for move charge at task migration. */
4662
static int mem_cgroup_do_precharge(unsigned long count)
4663
{
4664
	int ret;
4665 4666

	/* Try a single bulk charge without reclaim first */
4667
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4668
	if (!ret) {
4669 4670 4671
		mc.precharge += count;
		return ret;
	}
4672
	if (ret == -EINTR) {
4673
		cancel_charge(root_mem_cgroup, count);
4674 4675
		return ret;
	}
4676 4677

	/* Try charges one by one with reclaim */
4678
	while (count--) {
4679
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4680 4681 4682
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4683 4684
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4685
		 */
4686
		if (ret == -EINTR)
4687
			cancel_charge(root_mem_cgroup, 1);
4688 4689
		if (ret)
			return ret;
4690
		mc.precharge++;
4691
		cond_resched();
4692
	}
4693
	return 0;
4694 4695 4696
}

/**
4697
 * get_mctgt_type - get target type of moving charge
4698 4699 4700
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4701
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4702 4703 4704 4705 4706 4707
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4708 4709 4710
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4711 4712 4713 4714 4715
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4716
	swp_entry_t	ent;
4717 4718 4719
};

enum mc_target_type {
4720
	MC_TARGET_NONE = 0,
4721
	MC_TARGET_PAGE,
4722
	MC_TARGET_SWAP,
4723 4724
};

D
Daisuke Nishimura 已提交
4725 4726
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4727
{
D
Daisuke Nishimura 已提交
4728
	struct page *page = vm_normal_page(vma, addr, ptent);
4729

D
Daisuke Nishimura 已提交
4730 4731 4732 4733
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
4734
		if (!move_anon())
D
Daisuke Nishimura 已提交
4735
			return NULL;
4736 4737
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4738 4739 4740 4741 4742 4743 4744
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4745
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4746 4747 4748 4749 4750 4751 4752 4753
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
4754 4755 4756 4757
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4758
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4759 4760 4761 4762 4763
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4764 4765 4766 4767 4768 4769 4770
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4771

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
4785
	pgoff = linear_page_index(vma, addr);
4786 4787

	/* page is moved even if it's not RSS of this task(page-faulted). */
4788 4789
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4802
#endif
4803 4804 4805
	return page;
}

4806
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4807 4808 4809
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4810
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4811 4812 4813 4814 4815 4816
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4817
	else if (pte_none(ptent))
4818
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4819 4820

	if (!page && !ent.val)
4821
		return ret;
4822 4823
	if (page) {
		/*
4824
		 * Do only loose check w/o serialization.
4825
		 * mem_cgroup_move_account() checks the page is valid or
4826
		 * not under LRU exclusion.
4827
		 */
4828
		if (page->mem_cgroup == mc.from) {
4829 4830 4831 4832 4833 4834 4835
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4836 4837
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4838
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4839 4840 4841
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4842 4843 4844 4845
	}
	return ret;
}

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4859
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4860 4861
	if (!move_anon())
		return ret;
4862
	if (page->mem_cgroup == mc.from) {
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4879 4880 4881 4882 4883 4884 4885 4886
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4887
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4888 4889
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4890
		spin_unlock(ptl);
4891
		return 0;
4892
	}
4893

4894 4895
	if (pmd_trans_unstable(pmd))
		return 0;
4896 4897
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4898
		if (get_mctgt_type(vma, addr, *pte, NULL))
4899 4900 4901 4902
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4903 4904 4905
	return 0;
}

4906 4907 4908 4909 4910
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4911
	down_read(&mm->mmap_sem);
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4923
	up_read(&mm->mmap_sem);
4924 4925 4926 4927 4928 4929 4930 4931 4932

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4933 4934 4935 4936 4937
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4938 4939
}

4940 4941
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4942
{
4943 4944 4945
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4946
	/* we must uncharge all the leftover precharges from mc.to */
4947
	if (mc.precharge) {
4948
		cancel_charge(mc.to, mc.precharge);
4949 4950 4951 4952 4953 4954 4955
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4956
		cancel_charge(mc.from, mc.moved_charge);
4957
		mc.moved_charge = 0;
4958
	}
4959 4960 4961
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4962
		if (!mem_cgroup_is_root(mc.from))
4963
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4964

4965
		/*
4966 4967
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4968
		 */
4969
		if (!mem_cgroup_is_root(mc.to))
4970 4971
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4972
		css_put_many(&mc.from->css, mc.moved_swap);
4973

L
Li Zefan 已提交
4974
		/* we've already done css_get(mc.to) */
4975 4976
		mc.moved_swap = 0;
	}
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4990
	spin_lock(&mc.lock);
4991 4992
	mc.from = NULL;
	mc.to = NULL;
4993
	spin_unlock(&mc.lock);
4994 4995
}

4996
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4997
				 struct cgroup_taskset *tset)
4998
{
4999
	struct task_struct *p = cgroup_taskset_first(tset);
5000
	int ret = 0;
5001
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5002
	unsigned long move_charge_at_immigrate;
5003

5004 5005 5006 5007 5008 5009 5010
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5011 5012 5013
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5014
		VM_BUG_ON(from == memcg);
5015 5016 5017 5018 5019

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5020 5021 5022 5023
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5024
			VM_BUG_ON(mc.moved_charge);
5025
			VM_BUG_ON(mc.moved_swap);
5026

5027
			spin_lock(&mc.lock);
5028
			mc.from = from;
5029
			mc.to = memcg;
5030
			mc.immigrate_flags = move_charge_at_immigrate;
5031
			spin_unlock(&mc.lock);
5032
			/* We set mc.moving_task later */
5033 5034 5035 5036

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5037 5038
		}
		mmput(mm);
5039 5040 5041 5042
	}
	return ret;
}

5043
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5044
				     struct cgroup_taskset *tset)
5045
{
5046 5047
	if (mc.to)
		mem_cgroup_clear_mc();
5048 5049
}

5050 5051 5052
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5053
{
5054 5055 5056 5057
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5058 5059 5060
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5061

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5072
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5073
		if (mc.precharge < HPAGE_PMD_NR) {
5074
			spin_unlock(ptl);
5075 5076 5077 5078 5079 5080 5081
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5082
							     mc.from, mc.to)) {
5083 5084 5085 5086 5087 5088 5089
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5090
		spin_unlock(ptl);
5091
		return 0;
5092 5093
	}

5094 5095
	if (pmd_trans_unstable(pmd))
		return 0;
5096 5097 5098 5099
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5100
		swp_entry_t ent;
5101 5102 5103 5104

		if (!mc.precharge)
			break;

5105
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5106 5107 5108 5109
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5110
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5111
				mc.precharge--;
5112 5113
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5114 5115
			}
			putback_lru_page(page);
5116
put:			/* get_mctgt_type() gets the page */
5117 5118
			put_page(page);
			break;
5119 5120
		case MC_TARGET_SWAP:
			ent = target.ent;
5121
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5122
				mc.precharge--;
5123 5124 5125
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5126
			break;
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5141
		ret = mem_cgroup_do_precharge(1);
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5154 5155 5156 5157 5158 5159 5160
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5192
	up_read(&mm->mmap_sem);
5193
	atomic_dec(&mc.from->moving_account);
5194 5195
}

5196
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5197
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5198
{
5199
	struct task_struct *p = cgroup_taskset_first(tset);
5200
	struct mm_struct *mm = get_task_mm(p);
5201 5202

	if (mm) {
5203 5204
		if (mc.to)
			mem_cgroup_move_charge(mm);
5205 5206
		mmput(mm);
	}
5207 5208
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5209
}
5210
#else	/* !CONFIG_MMU */
5211
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5212
				 struct cgroup_taskset *tset)
5213 5214 5215
{
	return 0;
}
5216
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5217
				     struct cgroup_taskset *tset)
5218 5219
{
}
5220
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5221
				 struct cgroup_taskset *tset)
5222 5223 5224
{
}
#endif
B
Balbir Singh 已提交
5225

5226 5227
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5228 5229
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5230
 */
5231
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5232 5233
{
	/*
5234
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5235 5236 5237
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5238
	if (cgroup_on_dfl(root_css->cgroup))
5239
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5240 5241
}

5242
struct cgroup_subsys memory_cgrp_subsys = {
5243
	.css_alloc = mem_cgroup_css_alloc,
5244
	.css_online = mem_cgroup_css_online,
5245 5246
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5247
	.css_reset = mem_cgroup_css_reset,
5248 5249
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5250
	.attach = mem_cgroup_move_task,
5251
	.bind = mem_cgroup_bind,
5252
	.legacy_cftypes = mem_cgroup_files,
5253
	.early_init = 0,
B
Balbir Singh 已提交
5254
};
5255

A
Andrew Morton 已提交
5256
#ifdef CONFIG_MEMCG_SWAP
5257 5258
static int __init enable_swap_account(char *s)
{
5259
	if (!strcmp(s, "1"))
5260
		really_do_swap_account = 1;
5261
	else if (!strcmp(s, "0"))
5262 5263 5264
		really_do_swap_account = 0;
	return 1;
}
5265
__setup("swapaccount=", enable_swap_account);
5266

5267 5268
static void __init memsw_file_init(void)
{
5269 5270
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5271 5272 5273 5274 5275 5276 5277 5278
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5279
}
5280

5281
#else
5282
static void __init enable_swap_cgroup(void)
5283 5284
{
}
5285
#endif
5286

5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5297
	struct mem_cgroup *memcg;
5298 5299 5300 5301 5302 5303 5304 5305
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

5306
	memcg = page->mem_cgroup;
5307 5308

	/* Readahead page, never charged */
5309
	if (!memcg)
5310 5311
		return;

5312
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5313
	VM_BUG_ON_PAGE(oldid, page);
5314 5315
	mem_cgroup_swap_statistics(memcg, true);

5316
	page->mem_cgroup = NULL;
5317

5318 5319 5320 5321 5322
	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5323

5324 5325
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5346
		if (!mem_cgroup_is_root(memcg))
5347
			page_counter_uncharge(&memcg->memsw, 1);
5348 5349 5350 5351 5352 5353 5354
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5390
		if (page->mem_cgroup)
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5451 5452
	commit_charge(page, memcg, lrucare);

5453 5454 5455 5456 5457
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5458 5459 5460 5461
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5503 5504 5505 5506
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5507
	unsigned long nr_pages = nr_anon + nr_file;
5508 5509
	unsigned long flags;

5510
	if (!mem_cgroup_is_root(memcg)) {
5511 5512 5513
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5514 5515
		memcg_oom_recover(memcg);
	}
5516 5517 5518 5519 5520 5521

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5522
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5523 5524
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5525 5526

	if (!mem_cgroup_is_root(memcg))
5527
		css_put_many(&memcg->css, nr_pages);
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5550
		if (!page->mem_cgroup)
5551 5552 5553 5554
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5555
		 * page->mem_cgroup at this point, we have fully
5556
		 * exclusive access to the page.
5557 5558
		 */

5559
		if (memcg != page->mem_cgroup) {
5560
			if (memcg) {
5561 5562 5563
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5564
			}
5565
			memcg = page->mem_cgroup;
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5579
		page->mem_cgroup = NULL;
5580 5581 5582 5583 5584

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5585 5586
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5587 5588
}

5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5601
	/* Don't touch page->lru of any random page, pre-check: */
5602
	if (!page->mem_cgroup)
5603 5604
		return;

5605 5606 5607
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5608

5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5620

5621 5622
	if (!list_empty(page_list))
		uncharge_list(page_list);
5623 5624 5625 5626 5627 5628
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5629
 * @lrucare: either or both pages might be on the LRU already
5630 5631 5632 5633 5634 5635 5636 5637
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5638
	struct mem_cgroup *memcg;
5639 5640 5641 5642 5643 5644 5645
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5646 5647
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5648 5649 5650 5651 5652

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5653
	if (newpage->mem_cgroup)
5654 5655
		return;

5656 5657 5658 5659 5660 5661
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5662
	memcg = oldpage->mem_cgroup;
5663
	if (!memcg)
5664 5665 5666 5667 5668
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5669
	oldpage->mem_cgroup = NULL;
5670 5671 5672 5673

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5674
	commit_charge(newpage, memcg, lrucare);
5675 5676
}

5677
/*
5678 5679 5680 5681 5682 5683
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5684 5685 5686 5687
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5688
	enable_swap_cgroup();
5689
	mem_cgroup_soft_limit_tree_init();
5690
	memcg_stock_init();
5691 5692 5693
	return 0;
}
subsys_initcall(mem_cgroup_init);