memcontrol.c 146.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
130 131 132
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
133 134
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
135 136

	struct zone_reclaim_stat reclaim_stat;
137 138 139 140
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
141 142
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
143 144 145 146 147 148 149 150 151 152 153 154
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

175 176 177 178 179
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
180
/* For threshold */
181 182
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
183
	int current_threshold;
184 185 186 187 188
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
189 190 191 192 193 194 195 196 197 198 199 200

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
201 202 203 204 205
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
206

207 208
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
209

B
Balbir Singh 已提交
210 211 212 213 214 215 216
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
217 218 219
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
220 221 222 223 224 225 226
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
227 228 229 230
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
231 232 233 234
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
235
	struct mem_cgroup_lru_info info;
236
	/*
237
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
238
	 * reclaimed from.
239
	 */
K
KAMEZAWA Hiroyuki 已提交
240
	int last_scanned_child;
241 242 243
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
244 245
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
246
#endif
247 248 249 250
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
251 252 253 254

	bool		oom_lock;
	atomic_t	under_oom;

255
	atomic_t	refcnt;
256

257
	int	swappiness;
258 259
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
260

261 262 263
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

264 265 266 267
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
268
	struct mem_cgroup_thresholds thresholds;
269

270
	/* thresholds for mem+swap usage. RCU-protected */
271
	struct mem_cgroup_thresholds memsw_thresholds;
272

K
KAMEZAWA Hiroyuki 已提交
273 274
	/* For oom notifier event fd */
	struct list_head oom_notify;
275

276 277 278 279 280
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
281
	/*
282
	 * percpu counter.
283
	 */
284
	struct mem_cgroup_stat_cpu *stat;
285 286 287 288 289 290
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
291 292 293 294

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
295 296
};

297 298 299 300 301 302
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
303
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
304
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
305 306 307
	NR_MOVE_TYPE,
};

308 309
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
310
	spinlock_t	  lock; /* for from, to */
311 312 313
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
314
	unsigned long moved_charge;
315
	unsigned long moved_swap;
316 317 318
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
319
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
320 321
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
322

D
Daisuke Nishimura 已提交
323 324 325 326 327 328
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

329 330 331 332 333 334
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

335 336 337 338 339 340 341
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

342 343 344
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
345
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
346
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
347
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
349 350 351
	NR_CHARGE_TYPE,
};

352
/* for encoding cft->private value on file */
353 354 355
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
356 357 358
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
359 360
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
361

362 363 364 365 366 367 368
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
369 370
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
371

372 373
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
374 375 376 377 378

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
379
#include <net/ip.h>
G
Glauber Costa 已提交
380 381 382 383 384 385 386 387 388

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

389 390 391 392 393 394 395 396 397 398 399 400 401 402
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
423 424 425 426 427 428 429 430 431

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
432 433 434
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

435
static void drain_all_stock_async(struct mem_cgroup *memcg);
436

437
static struct mem_cgroup_per_zone *
438
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
439
{
440
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
441 442
}

443
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
444
{
445
	return &memcg->css;
446 447
}

448
static struct mem_cgroup_per_zone *
449
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
450
{
451 452
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
453

454
	return mem_cgroup_zoneinfo(memcg, nid, zid);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
473
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
474
				struct mem_cgroup_per_zone *mz,
475 476
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
477 478 479 480 481 482 483 484
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

485 486 487
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
504 505 506
}

static void
507
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
508 509 510 511 512 513 514 515 516
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

517
static void
518
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
519 520 521 522
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
523
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
524 525 526 527
	spin_unlock(&mctz->lock);
}


528
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
529
{
530
	unsigned long long excess;
531 532
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
533 534
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
535 536 537
	mctz = soft_limit_tree_from_page(page);

	/*
538 539
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
540
	 */
541 542 543
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
544 545 546 547
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
548
		if (excess || mz->on_tree) {
549 550 551
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
552
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
553
			/*
554 555
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
556
			 */
557
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
558 559
			spin_unlock(&mctz->lock);
		}
560 561 562
	}
}

563
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
564 565 566 567 568 569 570
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
571
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
572
			mctz = soft_limit_tree_node_zone(node, zone);
573
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 575 576 577
		}
	}
}

578 579 580 581
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
582
	struct mem_cgroup_per_zone *mz;
583 584

retry:
585
	mz = NULL;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
634
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
635
				 enum mem_cgroup_stat_index idx)
636
{
637
	long val = 0;
638 639
	int cpu;

640 641
	get_online_cpus();
	for_each_online_cpu(cpu)
642
		val += per_cpu(memcg->stat->count[idx], cpu);
643
#ifdef CONFIG_HOTPLUG_CPU
644 645 646
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
647 648
#endif
	put_online_cpus();
649 650 651
	return val;
}

652
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
653 654 655
					 bool charge)
{
	int val = (charge) ? 1 : -1;
656
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
657 658
}

659
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
660
{
661
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
662 663
}

664
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
665
{
666
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
667 668
}

669
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
670 671 672 673 674 675
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
676
		val += per_cpu(memcg->stat->events[idx], cpu);
677
#ifdef CONFIG_HOTPLUG_CPU
678 679 680
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
681 682 683 684
#endif
	return val;
}

685
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
686
					 bool file, int nr_pages)
687
{
688 689
	preempt_disable();

690
	if (file)
691 692
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
693
	else
694 695
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
696

697 698
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
699
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
700
	else {
701
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
702 703
		nr_pages = -nr_pages; /* for event */
	}
704

705
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
706

707
	preempt_enable();
708 709
}

710
unsigned long
711
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
712
			unsigned int lru_mask)
713 714
{
	struct mem_cgroup_per_zone *mz;
715 716 717
	enum lru_list l;
	unsigned long ret = 0;

718
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
719 720 721 722 723 724 725 726 727

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
728
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729 730
			int nid, unsigned int lru_mask)
{
731 732 733
	u64 total = 0;
	int zid;

734
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
735 736
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
737

738 739
	return total;
}
740

741
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
742
			unsigned int lru_mask)
743
{
744
	int nid;
745 746
	u64 total = 0;

747
	for_each_node_state(nid, N_HIGH_MEMORY)
748
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
749
	return total;
750 751
}

752
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
753 754 755
{
	unsigned long val, next;

756 757
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
758 759 760 761
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

762
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
763
{
764
	unsigned long val, next;
765

766
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
767

768 769 770 771 772 773 774
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
775 776 777
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
778 779 780 781
	default:
		return;
	}

782
	__this_cpu_write(memcg->stat->targets[target], next);
783 784 785 786 787 788
}

/*
 * Check events in order.
 *
 */
789
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
790
{
791
	preempt_disable();
792
	/* threshold event is triggered in finer grain than soft limit */
793 794 795 796
	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
		mem_cgroup_threshold(memcg);
		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(memcg,
797
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
798 799
			mem_cgroup_update_tree(memcg, page);
			__mem_cgroup_target_update(memcg,
800 801 802
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
803
		if (unlikely(__memcg_event_check(memcg,
804
			MEM_CGROUP_TARGET_NUMAINFO))) {
805 806
			atomic_inc(&memcg->numainfo_events);
			__mem_cgroup_target_update(memcg,
807
				MEM_CGROUP_TARGET_NUMAINFO);
808
		}
809
#endif
810
	}
811
	preempt_enable();
812 813
}

G
Glauber Costa 已提交
814
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
815 816 817 818 819 820
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

821
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
822
{
823 824 825 826 827 828 829 830
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

831 832 833 834
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

835
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
836
{
837
	struct mem_cgroup *memcg = NULL;
838 839 840

	if (!mm)
		return NULL;
841 842 843 844 845 846 847
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
848 849
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
850
			break;
851
	} while (!css_tryget(&memcg->css));
852
	rcu_read_unlock();
853
	return memcg;
854 855
}

K
KAMEZAWA Hiroyuki 已提交
856
/* The caller has to guarantee "mem" exists before calling this */
857
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
858
{
859 860 861
	struct cgroup_subsys_state *css;
	int found;

862
	if (!memcg) /* ROOT cgroup has the smallest ID */
863
		return root_mem_cgroup; /*css_put/get against root is ignored*/
864 865 866
	if (!memcg->use_hierarchy) {
		if (css_tryget(&memcg->css))
			return memcg;
867 868 869 870 871 872 873
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
874
	css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
875
	if (css && css_tryget(css))
876
		memcg = container_of(css, struct mem_cgroup, css);
877
	else
878
		memcg = NULL;
879
	rcu_read_unlock();
880
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
881 882 883 884 885 886 887 888 889
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
890 891
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
892
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
893

K
KAMEZAWA Hiroyuki 已提交
894
	css_put(&iter->css);
895 896
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
897
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
898

899 900 901
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
902 903
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
904
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
905 906 907

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
908
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
909
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
910
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
911
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
912
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
913
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
914

K
KAMEZAWA Hiroyuki 已提交
915
	return iter;
K
KAMEZAWA Hiroyuki 已提交
916
}
K
KAMEZAWA Hiroyuki 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

930 931 932
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
933

934
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
935
{
936
	return (memcg == root_mem_cgroup);
937 938
}

939 940
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
941
	struct mem_cgroup *memcg;
942 943 944 945 946

	if (!mm)
		return;

	rcu_read_lock();
947 948
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
949 950 951 952
		goto out;

	switch (idx) {
	case PGMAJFAULT:
953
		mem_cgroup_pgmajfault(memcg, 1);
954 955
		break;
	case PGFAULT:
956
		mem_cgroup_pgfault(memcg, 1);
957 958 959 960 961 962 963 964 965
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
979

K
KAMEZAWA Hiroyuki 已提交
980 981 982 983
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
984

985
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
986 987 988
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
989
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
990
		return;
991
	VM_BUG_ON(!pc->mem_cgroup);
992 993 994 995
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
996
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
997 998
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
999 1000 1001
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
1002
	list_del_init(&pc->lru);
1003 1004
}

K
KAMEZAWA Hiroyuki 已提交
1005
void mem_cgroup_del_lru(struct page *page)
1006
{
K
KAMEZAWA Hiroyuki 已提交
1007 1008
	mem_cgroup_del_lru_list(page, page_lru(page));
}
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
1032
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1033 1034 1035
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1036 1037 1038 1039
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1040

1041
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1042
		return;
1043

K
KAMEZAWA Hiroyuki 已提交
1044
	pc = lookup_page_cgroup(page);
1045
	/* unused or root page is not rotated. */
1046 1047 1048 1049 1050
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
1051
		return;
1052
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1053
	list_move(&pc->lru, &mz->lists[lru]);
1054 1055
}

K
KAMEZAWA Hiroyuki 已提交
1056
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1057
{
K
KAMEZAWA Hiroyuki 已提交
1058 1059
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1060

1061
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1062 1063
		return;
	pc = lookup_page_cgroup(page);
1064
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
K
KAMEZAWA Hiroyuki 已提交
1075
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1076
		return;
1077 1078
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1079
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1080 1081
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1082 1083 1084
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1085 1086
	list_add(&pc->lru, &mz->lists[lru]);
}
1087

K
KAMEZAWA Hiroyuki 已提交
1088
/*
1089 1090 1091 1092
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1093
 */
1094
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1095
{
1096 1097 1098 1099
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1111 1112 1113 1114 1115 1116 1117 1118
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1119 1120
}

1121
static void mem_cgroup_lru_add_after_commit(struct page *page)
1122 1123 1124 1125
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1136 1137 1138
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1139 1140
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1141
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1142 1143 1144 1145 1146
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1147 1148 1149
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1150
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1151 1152 1153
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1154 1155
}

1156
/*
1157
 * Checks whether given mem is same or in the root_mem_cgroup's
1158 1159
 * hierarchy subtree
 */
1160 1161
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1162
{
1163 1164 1165
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1166 1167 1168 1169 1170
	}

	return true;
}

1171
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1172 1173
{
	int ret;
1174
	struct mem_cgroup *curr = NULL;
1175
	struct task_struct *p;
1176

1177 1178 1179 1180 1181
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1182 1183
	if (!curr)
		return 0;
1184
	/*
1185
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1186
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1187 1188
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1189
	 */
1190
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1191
	css_put(&curr->css);
1192 1193 1194
	return ret;
}

1195
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1196
{
1197 1198 1199
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1200
	unsigned long inactive;
1201
	unsigned long active;
1202
	unsigned long gb;
1203

1204 1205 1206 1207
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1208

1209 1210 1211 1212 1213 1214
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1215
	return inactive * inactive_ratio < active;
1216 1217
}

1218
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1219 1220 1221
{
	unsigned long active;
	unsigned long inactive;
1222 1223
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1224

1225 1226 1227 1228
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1229 1230 1231 1232

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1233 1234 1235
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1236
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1253 1254
	if (!PageCgroupUsed(pc))
		return NULL;
1255 1256
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1257
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1258 1259 1260
	return &mz->reclaim_stat;
}

1261 1262 1263
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1264 1265
					isolate_mode_t mode,
					struct zone *z,
1266
					struct mem_cgroup *mem_cont,
1267
					int active, int file)
1268 1269 1270 1271 1272 1273
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1274
	struct page_cgroup *pc, *tmp;
1275
	int nid = zone_to_nid(z);
1276 1277
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1278
	int lru = LRU_FILE * file + active;
1279
	int ret;
1280

1281
	BUG_ON(!mem_cont);
1282
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1283
	src = &mz->lists[lru];
1284

1285 1286
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1287
		if (scan >= nr_to_scan)
1288
			break;
K
KAMEZAWA Hiroyuki 已提交
1289

1290 1291
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1292

1293
		page = lookup_cgroup_page(pc);
1294

H
Hugh Dickins 已提交
1295
		if (unlikely(!PageLRU(page)))
1296 1297
			continue;

H
Hugh Dickins 已提交
1298
		scan++;
1299 1300 1301
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1302
			list_move(&page->lru, dst);
1303
			mem_cgroup_del_lru(page);
1304
			nr_taken += hpage_nr_pages(page);
1305 1306 1307 1308 1309 1310 1311
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1312 1313 1314 1315
		}
	}

	*scanned = scan;
1316 1317 1318 1319

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1320 1321 1322
	return nr_taken;
}

1323 1324 1325
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1326
/**
1327 1328
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1329
 *
1330
 * Returns the maximum amount of memory @mem can be charged with, in
1331
 * pages.
1332
 */
1333
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1334
{
1335 1336
	unsigned long long margin;

1337
	margin = res_counter_margin(&memcg->res);
1338
	if (do_swap_account)
1339
		margin = min(margin, res_counter_margin(&memcg->memsw));
1340
	return margin >> PAGE_SHIFT;
1341 1342
}

1343
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1344 1345 1346 1347 1348 1349 1350
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1351
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1352 1353
}

1354
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1355 1356
{
	int cpu;
1357 1358

	get_online_cpus();
1359
	spin_lock(&memcg->pcp_counter_lock);
1360
	for_each_online_cpu(cpu)
1361 1362 1363
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1364
	put_online_cpus();
1365 1366 1367 1368

	synchronize_rcu();
}

1369
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1370 1371 1372
{
	int cpu;

1373
	if (!memcg)
1374
		return;
1375
	get_online_cpus();
1376
	spin_lock(&memcg->pcp_counter_lock);
1377
	for_each_online_cpu(cpu)
1378 1379 1380
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1381
	put_online_cpus();
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1395
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1396 1397
{
	VM_BUG_ON(!rcu_read_lock_held());
1398
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1399
}
1400

1401
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1402
{
1403 1404
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1405
	bool ret = false;
1406 1407 1408 1409 1410 1411 1412 1413 1414
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1415

1416 1417
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1418 1419
unlock:
	spin_unlock(&mc.lock);
1420 1421 1422
	return ret;
}

1423
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1424 1425
{
	if (mc.moving_task && current != mc.moving_task) {
1426
		if (mem_cgroup_under_move(memcg)) {
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1439
/**
1440
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1459
	if (!memcg || !p)
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1506 1507 1508 1509
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1510
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1511 1512
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1513 1514
	struct mem_cgroup *iter;

1515
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1516
		num++;
1517 1518 1519
	return num;
}

D
David Rientjes 已提交
1520 1521 1522 1523 1524 1525 1526 1527
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1528 1529 1530
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1531 1532 1533 1534 1535 1536 1537 1538
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1539
/*
K
KAMEZAWA Hiroyuki 已提交
1540 1541 1542 1543 1544
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
1545
mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
K
KAMEZAWA Hiroyuki 已提交
1546 1547 1548 1549 1550
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

1551 1552 1553
	if (!root_memcg->use_hierarchy) {
		css_get(&root_memcg->css);
		ret = root_memcg;
K
KAMEZAWA Hiroyuki 已提交
1554 1555 1556 1557
	}

	while (!ret) {
		rcu_read_lock();
1558 1559
		nextid = root_memcg->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
K
KAMEZAWA Hiroyuki 已提交
1560 1561 1562 1563 1564 1565 1566 1567
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
1568
			root_memcg->last_scanned_child = 0;
K
KAMEZAWA Hiroyuki 已提交
1569
		} else
1570
			root_memcg->last_scanned_child = found;
K
KAMEZAWA Hiroyuki 已提交
1571 1572 1573 1574 1575
	}

	return ret;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1586
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1587 1588
		int nid, bool noswap)
{
1589
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1590 1591 1592
		return true;
	if (noswap || !total_swap_pages)
		return false;
1593
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1594 1595 1596 1597
		return true;
	return false;

}
1598 1599 1600 1601 1602 1603 1604 1605
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1606
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1607 1608
{
	int nid;
1609 1610 1611 1612
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1613
	if (!atomic_read(&memcg->numainfo_events))
1614
		return;
1615
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1616 1617 1618
		return;

	/* make a nodemask where this memcg uses memory from */
1619
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1620 1621 1622

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1623 1624
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1625
	}
1626

1627 1628
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1643
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1644 1645 1646
{
	int node;

1647 1648
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1649

1650
	node = next_node(node, memcg->scan_nodes);
1651
	if (node == MAX_NUMNODES)
1652
		node = first_node(memcg->scan_nodes);
1653 1654 1655 1656 1657 1658 1659 1660 1661
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1662
	memcg->last_scanned_node = node;
1663 1664 1665
	return node;
}

1666 1667 1668 1669 1670 1671
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1672
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673 1674 1675 1676 1677 1678 1679
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1680 1681
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1682
		     nid < MAX_NUMNODES;
1683
		     nid = next_node(nid, memcg->scan_nodes)) {
1684

1685
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1686 1687 1688 1689 1690 1691 1692
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1693
		if (node_isset(nid, memcg->scan_nodes))
1694
			continue;
1695
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1696 1697 1698 1699 1700
			return true;
	}
	return false;
}

1701
#else
1702
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1703 1704 1705
{
	return 0;
}
1706

1707
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1708
{
1709
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1710
}
1711 1712
#endif

K
KAMEZAWA Hiroyuki 已提交
1713 1714 1715 1716
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1717
 *
1718
 * root_memcg is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1719
 *
1720
 * We give up and return to the caller when we visit root_memcg twice.
K
KAMEZAWA Hiroyuki 已提交
1721
 * (other groups can be removed while we're walking....)
1722 1723
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1724
 */
1725
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1726
						struct zone *zone,
1727
						gfp_t gfp_mask,
1728 1729
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1730
{
K
KAMEZAWA Hiroyuki 已提交
1731 1732 1733
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1734 1735
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1736
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1737
	unsigned long excess;
1738
	unsigned long nr_scanned;
1739

1740
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1741

1742
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1743
	if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1744 1745
		noswap = true;

1746
	while (1) {
1747 1748
		victim = mem_cgroup_select_victim(root_memcg);
		if (victim == root_memcg) {
K
KAMEZAWA Hiroyuki 已提交
1749
			loop++;
1750 1751 1752 1753 1754 1755 1756
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1757
				drain_all_stock_async(root_memcg);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1769
				 * We want to do more targeted reclaim.
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1781
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1782 1783
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1784 1785
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1786
		/* we use swappiness of local cgroup */
1787
		if (check_soft) {
1788
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1789 1790
				noswap, zone, &nr_scanned);
			*total_scanned += nr_scanned;
1791
		} else
1792
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1793
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1794
		css_put(&victim->css);
1795 1796 1797 1798 1799 1800 1801
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1802
		total += ret;
1803
		if (check_soft) {
1804
			if (!res_counter_soft_limit_excess(&root_memcg->res))
1805
				return total;
1806
		} else if (mem_cgroup_margin(root_memcg))
1807
			return total;
1808
	}
K
KAMEZAWA Hiroyuki 已提交
1809
	return total;
1810 1811
}

K
KAMEZAWA Hiroyuki 已提交
1812 1813 1814
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1815
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1816
 */
1817
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1818
{
1819 1820
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1821

1822
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1823
		if (iter->oom_lock) {
1824 1825 1826 1827 1828 1829
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			cond = false;
1830 1831
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1832
	}
K
KAMEZAWA Hiroyuki 已提交
1833

1834
	if (!failed)
1835
		return true;
1836 1837 1838 1839 1840 1841

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
1842
	for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1843 1844 1845 1846 1847 1848
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
1849
	return false;
1850
}
1851

1852
/*
1853
 * Has to be called with memcg_oom_lock
1854
 */
1855
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1856
{
K
KAMEZAWA Hiroyuki 已提交
1857 1858
	struct mem_cgroup *iter;

1859
	for_each_mem_cgroup_tree(iter, memcg)
1860 1861 1862 1863
		iter->oom_lock = false;
	return 0;
}

1864
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1865 1866 1867
{
	struct mem_cgroup *iter;

1868
	for_each_mem_cgroup_tree(iter, memcg)
1869 1870 1871
		atomic_inc(&iter->under_oom);
}

1872
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1873 1874 1875
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1876 1877 1878 1879 1880
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1881
	for_each_mem_cgroup_tree(iter, memcg)
1882
		atomic_add_unless(&iter->under_oom, -1, 0);
1883 1884
}

1885
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1886 1887
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1888 1889 1890 1891 1892 1893 1894 1895
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1896 1897
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1898 1899 1900
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1901
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1902 1903 1904 1905 1906

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1907 1908
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1909 1910 1911 1912
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1913
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1914
{
1915 1916
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1917 1918
}

1919
static void memcg_oom_recover(struct mem_cgroup *memcg)
1920
{
1921 1922
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1923 1924
}

K
KAMEZAWA Hiroyuki 已提交
1925 1926 1927
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1928
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1929
{
K
KAMEZAWA Hiroyuki 已提交
1930
	struct oom_wait_info owait;
1931
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1932

1933
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1934 1935 1936 1937
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1938
	need_to_kill = true;
1939
	mem_cgroup_mark_under_oom(memcg);
1940

1941
	/* At first, try to OOM lock hierarchy under memcg.*/
1942
	spin_lock(&memcg_oom_lock);
1943
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1944 1945 1946 1947 1948
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1949
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1950
	if (!locked || memcg->oom_kill_disable)
1951 1952
		need_to_kill = false;
	if (locked)
1953
		mem_cgroup_oom_notify(memcg);
1954
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1955

1956 1957
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1958
		mem_cgroup_out_of_memory(memcg, mask);
1959
	} else {
K
KAMEZAWA Hiroyuki 已提交
1960
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1961
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1962
	}
1963
	spin_lock(&memcg_oom_lock);
1964
	if (locked)
1965 1966
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1967
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1968

1969
	mem_cgroup_unmark_under_oom(memcg);
1970

K
KAMEZAWA Hiroyuki 已提交
1971 1972 1973
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1974
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1975
	return true;
1976 1977
}

1978 1979 1980
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
2000
 */
2001

2002 2003
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2004
{
2005
	struct mem_cgroup *memcg;
2006 2007
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
2008
	unsigned long uninitialized_var(flags);
2009 2010 2011 2012

	if (unlikely(!pc))
		return;

2013
	rcu_read_lock();
2014 2015
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2016 2017
		goto out;
	/* pc->mem_cgroup is unstable ? */
2018
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2019
		/* take a lock against to access pc->mem_cgroup */
2020
		move_lock_page_cgroup(pc, &flags);
2021
		need_unlock = true;
2022 2023
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
2024 2025
			goto out;
	}
2026 2027

	switch (idx) {
2028
	case MEMCG_NR_FILE_MAPPED:
2029 2030 2031
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2032
			ClearPageCgroupFileMapped(pc);
2033
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2034 2035 2036
		break;
	default:
		BUG();
2037
	}
2038

2039
	this_cpu_add(memcg->stat->count[idx], val);
2040

2041 2042
out:
	if (unlikely(need_unlock))
2043
		move_unlock_page_cgroup(pc, &flags);
2044 2045
	rcu_read_unlock();
	return;
2046
}
2047
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2048

2049 2050 2051 2052
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2053
#define CHARGE_BATCH	32U
2054 2055
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2056
	unsigned int nr_pages;
2057
	struct work_struct work;
2058 2059
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2060 2061
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2062
static DEFINE_MUTEX(percpu_charge_mutex);
2063 2064

/*
2065
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2066 2067 2068 2069
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2070
static bool consume_stock(struct mem_cgroup *memcg)
2071 2072 2073 2074 2075
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2076
	if (memcg == stock->cached && stock->nr_pages)
2077
		stock->nr_pages--;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2091 2092 2093 2094
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2095
		if (do_swap_account)
2096 2097
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2110
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2111 2112 2113 2114
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2115
 * This will be consumed by consume_stock() function, later.
2116
 */
2117
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 2119 2120
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2121
	if (stock->cached != memcg) { /* reset if necessary */
2122
		drain_stock(stock);
2123
		stock->cached = memcg;
2124
	}
2125
	stock->nr_pages += nr_pages;
2126 2127 2128 2129
	put_cpu_var(memcg_stock);
}

/*
2130
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2131 2132
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2133
 */
2134
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2135
{
2136
	int cpu, curcpu;
2137

2138 2139
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2140
	curcpu = get_cpu();
2141 2142
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2143
		struct mem_cgroup *memcg;
2144

2145 2146
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2147
			continue;
2148
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2149
			continue;
2150 2151 2152 2153 2154 2155
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2156
	}
2157
	put_cpu();
2158 2159 2160 2161 2162 2163

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2164
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2165 2166 2167
			flush_work(&stock->work);
	}
out:
2168
 	put_online_cpus();
2169 2170 2171 2172 2173 2174 2175 2176
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2177
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2178
{
2179 2180 2181 2182 2183
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2184
	drain_all_stock(root_memcg, false);
2185
	mutex_unlock(&percpu_charge_mutex);
2186 2187 2188
}

/* This is a synchronous drain interface. */
2189
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2190 2191
{
	/* called when force_empty is called */
2192
	mutex_lock(&percpu_charge_mutex);
2193
	drain_all_stock(root_memcg, true);
2194
	mutex_unlock(&percpu_charge_mutex);
2195 2196
}

2197 2198 2199 2200
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2201
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2202 2203 2204
{
	int i;

2205
	spin_lock(&memcg->pcp_counter_lock);
2206
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2207
		long x = per_cpu(memcg->stat->count[i], cpu);
2208

2209 2210
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2211
	}
2212
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2213
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2214

2215 2216
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2217
	}
2218
	/* need to clear ON_MOVE value, works as a kind of lock. */
2219 2220
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2221 2222
}

2223
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2224 2225 2226
{
	int idx = MEM_CGROUP_ON_MOVE;

2227 2228 2229
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2230 2231 2232
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2233 2234 2235 2236 2237
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2238
	struct mem_cgroup *iter;
2239

2240 2241 2242 2243 2244 2245
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2246
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2247
		return NOTIFY_OK;
2248 2249 2250 2251

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2252 2253 2254 2255 2256
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2267
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2268
				unsigned int nr_pages, bool oom_check)
2269
{
2270
	unsigned long csize = nr_pages * PAGE_SIZE;
2271 2272 2273 2274 2275
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2276
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2277 2278 2279 2280

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2281
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2282 2283 2284
		if (likely(!ret))
			return CHARGE_OK;

2285
		res_counter_uncharge(&memcg->res, csize);
2286 2287 2288 2289
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2290
	/*
2291 2292
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2293 2294 2295 2296
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2297
	if (nr_pages == CHARGE_BATCH)
2298 2299 2300 2301 2302 2303
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2304
					      gfp_mask, flags, NULL);
2305
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2306
		return CHARGE_RETRY;
2307
	/*
2308 2309 2310 2311 2312 2313 2314
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2315
	 */
2316
	if (nr_pages == 1 && ret)
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2336 2337 2338
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2339
 */
2340
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2341
				   gfp_t gfp_mask,
2342
				   unsigned int nr_pages,
2343
				   struct mem_cgroup **ptr,
2344
				   bool oom)
2345
{
2346
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2347
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2348
	struct mem_cgroup *memcg = NULL;
2349
	int ret;
2350

K
KAMEZAWA Hiroyuki 已提交
2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2359

2360
	/*
2361 2362
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2363 2364 2365
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2366
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2367 2368
		goto bypass;
again:
2369 2370 2371 2372
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2373
			goto done;
2374
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2375
			goto done;
2376
		css_get(&memcg->css);
2377
	} else {
K
KAMEZAWA Hiroyuki 已提交
2378
		struct task_struct *p;
2379

K
KAMEZAWA Hiroyuki 已提交
2380 2381 2382
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2383
		 * Because we don't have task_lock(), "p" can exit.
2384
		 * In that case, "memcg" can point to root or p can be NULL with
2385 2386 2387 2388 2389 2390
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2391
		 */
2392 2393
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2394 2395 2396
			rcu_read_unlock();
			goto done;
		}
2397
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2410
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2411 2412 2413 2414 2415
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2416

2417 2418
	do {
		bool oom_check;
2419

2420
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2421
		if (fatal_signal_pending(current)) {
2422
			css_put(&memcg->css);
2423
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2424
		}
2425

2426 2427 2428 2429
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2430
		}
2431

2432
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2433 2434 2435 2436
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2437
			batch = nr_pages;
2438 2439
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2440
			goto again;
2441
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2442
			css_put(&memcg->css);
2443 2444
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2445
			if (!oom) {
2446
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2447
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2448
			}
2449 2450 2451 2452
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2453
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2454
			goto bypass;
2455
		}
2456 2457
	} while (ret != CHARGE_OK);

2458
	if (batch > nr_pages)
2459 2460
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2461
done:
2462
	*ptr = memcg;
2463 2464
	return 0;
nomem:
2465
	*ptr = NULL;
2466
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2467
bypass:
2468
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2469
	return 0;
2470
}
2471

2472 2473 2474 2475 2476
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2477
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2478
				       unsigned int nr_pages)
2479
{
2480
	if (!mem_cgroup_is_root(memcg)) {
2481 2482
		unsigned long bytes = nr_pages * PAGE_SIZE;

2483
		res_counter_uncharge(&memcg->res, bytes);
2484
		if (do_swap_account)
2485
			res_counter_uncharge(&memcg->memsw, bytes);
2486
	}
2487 2488
}

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2508
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2509
{
2510
	struct mem_cgroup *memcg = NULL;
2511
	struct page_cgroup *pc;
2512
	unsigned short id;
2513 2514
	swp_entry_t ent;

2515 2516 2517
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2518
	lock_page_cgroup(pc);
2519
	if (PageCgroupUsed(pc)) {
2520 2521 2522
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2523
	} else if (PageSwapCache(page)) {
2524
		ent.val = page_private(page);
2525 2526
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2527 2528 2529
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2530
		rcu_read_unlock();
2531
	}
2532
	unlock_page_cgroup(pc);
2533
	return memcg;
2534 2535
}

2536
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2537
				       struct page *page,
2538
				       unsigned int nr_pages,
2539
				       struct page_cgroup *pc,
2540
				       enum charge_type ctype)
2541
{
2542 2543 2544
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2545
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2546 2547 2548 2549 2550 2551
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2552
	pc->mem_cgroup = memcg;
2553 2554 2555 2556 2557 2558 2559
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2560
	smp_wmb();
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2574

2575
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2576
	unlock_page_cgroup(pc);
2577 2578 2579 2580 2581
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2582
	memcg_check_events(memcg, page);
2583
}
2584

2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2599 2600
	if (mem_cgroup_disabled())
		return;
2601
	/*
2602
	 * We have no races with charge/uncharge but will have races with
2603 2604 2605 2606 2607 2608
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2619
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2620 2621
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2622 2623 2624 2625 2626
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2627
/**
2628
 * mem_cgroup_move_account - move account of the page
2629
 * @page: the page
2630
 * @nr_pages: number of regular pages (>1 for huge pages)
2631 2632 2633
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2634
 * @uncharge: whether we should call uncharge and css_put against @from.
2635 2636
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2637
 * - page is not on LRU (isolate_page() is useful.)
2638
 * - compound_lock is held when nr_pages > 1
2639
 *
2640
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2641
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2642 2643
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2644
 */
2645 2646 2647 2648 2649 2650
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2651
{
2652 2653
	unsigned long flags;
	int ret;
2654

2655
	VM_BUG_ON(from == to);
2656
	VM_BUG_ON(PageLRU(page));
2657 2658 2659 2660 2661 2662 2663
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2664
	if (nr_pages > 1 && !PageTransHuge(page))
2665 2666 2667 2668 2669 2670 2671 2672 2673
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2674

2675
	if (PageCgroupFileMapped(pc)) {
2676 2677 2678 2679 2680
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2681
	}
2682
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2683 2684
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2685
		__mem_cgroup_cancel_charge(from, nr_pages);
2686

2687
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2688
	pc->mem_cgroup = to;
2689
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2690 2691 2692
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2693
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2694
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2695
	 * status here.
2696
	 */
2697 2698 2699
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2700
	unlock_page_cgroup(pc);
2701 2702 2703
	/*
	 * check events
	 */
2704 2705
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2706
out:
2707 2708 2709 2710 2711 2712 2713
	return ret;
}

/*
 * move charges to its parent.
 */

2714 2715
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2716 2717 2718 2719 2720 2721
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2722
	unsigned int nr_pages;
2723
	unsigned long uninitialized_var(flags);
2724 2725 2726 2727 2728 2729
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2730 2731 2732 2733 2734
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2735

2736
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2737

2738
	parent = mem_cgroup_from_cont(pcg);
2739
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2740
	if (ret || !parent)
2741
		goto put_back;
2742

2743
	if (nr_pages > 1)
2744 2745
		flags = compound_lock_irqsave(page);

2746
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2747
	if (ret)
2748
		__mem_cgroup_cancel_charge(parent, nr_pages);
2749

2750
	if (nr_pages > 1)
2751
		compound_unlock_irqrestore(page, flags);
2752
put_back:
K
KAMEZAWA Hiroyuki 已提交
2753
	putback_lru_page(page);
2754
put:
2755
	put_page(page);
2756
out:
2757 2758 2759
	return ret;
}

2760 2761 2762 2763 2764 2765 2766
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2767
				gfp_t gfp_mask, enum charge_type ctype)
2768
{
2769
	struct mem_cgroup *memcg = NULL;
2770
	unsigned int nr_pages = 1;
2771
	struct page_cgroup *pc;
2772
	bool oom = true;
2773
	int ret;
A
Andrea Arcangeli 已提交
2774

A
Andrea Arcangeli 已提交
2775
	if (PageTransHuge(page)) {
2776
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2777
		VM_BUG_ON(!PageTransHuge(page));
2778 2779 2780 2781 2782
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2783
	}
2784 2785

	pc = lookup_page_cgroup(page);
2786
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2787

2788 2789
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2790 2791
		return ret;

2792
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2793 2794 2795
	return 0;
}

2796 2797
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2798
{
2799
	if (mem_cgroup_disabled())
2800
		return 0;
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2812
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2813
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2814 2815
}

D
Daisuke Nishimura 已提交
2816 2817 2818 2819
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2820
static void
2821
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2822 2823 2824 2825 2826 2827 2828 2829 2830
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2831
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2832 2833 2834 2835
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2836 2837
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2838
{
2839
	struct mem_cgroup *memcg = NULL;
2840 2841
	int ret;

2842
	if (mem_cgroup_disabled())
2843
		return 0;
2844 2845
	if (PageCompound(page))
		return 0;
2846

2847
	if (unlikely(!mm))
2848
		mm = &init_mm;
2849

2850
	if (page_is_file_cache(page)) {
2851 2852
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2853
			return ret;
2854

2855 2856 2857 2858 2859
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2860
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2861 2862 2863
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2864 2865
	/* shmem */
	if (PageSwapCache(page)) {
2866
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2867
		if (!ret)
2868
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2869 2870 2871
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2872
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2873 2874

	return ret;
2875 2876
}

2877 2878 2879
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2880
 * struct page_cgroup is acquired. This refcnt will be consumed by
2881 2882
 * "commit()" or removed by "cancel()"
 */
2883 2884 2885 2886
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
2887
	struct mem_cgroup *memcg;
2888
	int ret;
2889

2890 2891
	*ptr = NULL;

2892
	if (mem_cgroup_disabled())
2893 2894 2895 2896 2897 2898
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2899 2900 2901
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2902 2903
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2904
		goto charge_cur_mm;
2905 2906
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2907
		goto charge_cur_mm;
2908
	*ptr = memcg;
2909
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2910
	css_put(&memcg->css);
2911
	return ret;
2912 2913 2914
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2915
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2916 2917
}

D
Daisuke Nishimura 已提交
2918 2919 2920
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2921
{
2922
	if (mem_cgroup_disabled())
2923 2924 2925
		return;
	if (!ptr)
		return;
2926
	cgroup_exclude_rmdir(&ptr->css);
2927 2928

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2929 2930 2931
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2932 2933 2934
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2935
	 */
2936
	if (do_swap_account && PageSwapCache(page)) {
2937
		swp_entry_t ent = {.val = page_private(page)};
2938
		unsigned short id;
2939
		struct mem_cgroup *memcg;
2940 2941 2942 2943

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2944
		if (memcg) {
2945 2946 2947 2948
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2949
			if (!mem_cgroup_is_root(memcg))
2950
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2951
			mem_cgroup_swap_statistics(memcg, false);
2952 2953
			mem_cgroup_put(memcg);
		}
2954
		rcu_read_unlock();
2955
	}
2956 2957 2958 2959 2960 2961
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2962 2963
}

D
Daisuke Nishimura 已提交
2964 2965 2966 2967 2968 2969
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2970
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2971
{
2972
	if (mem_cgroup_disabled())
2973
		return;
2974
	if (!memcg)
2975
		return;
2976
	__mem_cgroup_cancel_charge(memcg, 1);
2977 2978
}

2979
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2980 2981
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2982 2983 2984
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2985

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2997
		batch->memcg = memcg;
2998 2999
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3000
	 * In those cases, all pages freed continuously can be expected to be in
3001 3002 3003 3004 3005 3006 3007 3008
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3009
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3010 3011
		goto direct_uncharge;

3012 3013 3014 3015 3016
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3017
	if (batch->memcg != memcg)
3018 3019
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3020
	batch->nr_pages++;
3021
	if (uncharge_memsw)
3022
		batch->memsw_nr_pages++;
3023 3024
	return;
direct_uncharge:
3025
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3026
	if (uncharge_memsw)
3027 3028 3029
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3030 3031
	return;
}
3032

3033
/*
3034
 * uncharge if !page_mapped(page)
3035
 */
3036
static struct mem_cgroup *
3037
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3038
{
3039
	struct mem_cgroup *memcg = NULL;
3040 3041
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3042

3043
	if (mem_cgroup_disabled())
3044
		return NULL;
3045

K
KAMEZAWA Hiroyuki 已提交
3046
	if (PageSwapCache(page))
3047
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3048

A
Andrea Arcangeli 已提交
3049
	if (PageTransHuge(page)) {
3050
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3051 3052
		VM_BUG_ON(!PageTransHuge(page));
	}
3053
	/*
3054
	 * Check if our page_cgroup is valid
3055
	 */
3056 3057
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3058
		return NULL;
3059

3060
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3061

3062
	memcg = pc->mem_cgroup;
3063

K
KAMEZAWA Hiroyuki 已提交
3064 3065 3066 3067 3068
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3069
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3070 3071
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3083
	}
K
KAMEZAWA Hiroyuki 已提交
3084

3085
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3086

3087
	ClearPageCgroupUsed(pc);
3088 3089 3090 3091 3092 3093
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3094

3095
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3096
	/*
3097
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3098 3099
	 * will never be freed.
	 */
3100
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3101
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3102 3103
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3104
	}
3105 3106
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3107

3108
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3109 3110 3111

unlock_out:
	unlock_page_cgroup(pc);
3112
	return NULL;
3113 3114
}

3115 3116
void mem_cgroup_uncharge_page(struct page *page)
{
3117 3118 3119 3120 3121
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3122 3123 3124 3125 3126 3127
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3128
	VM_BUG_ON(page->mapping);
3129 3130 3131
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3146 3147
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3168 3169 3170 3171 3172 3173
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3174
	memcg_oom_recover(batch->memcg);
3175 3176 3177 3178
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3179
#ifdef CONFIG_SWAP
3180
/*
3181
 * called after __delete_from_swap_cache() and drop "page" account.
3182 3183
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3184 3185
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3186 3187
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3188 3189 3190 3191 3192 3193
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3194

K
KAMEZAWA Hiroyuki 已提交
3195 3196 3197 3198 3199
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3200
		swap_cgroup_record(ent, css_id(&memcg->css));
3201
}
3202
#endif
3203 3204 3205 3206 3207 3208 3209

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3210
{
3211
	struct mem_cgroup *memcg;
3212
	unsigned short id;
3213 3214 3215 3216

	if (!do_swap_account)
		return;

3217 3218 3219
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3220
	if (memcg) {
3221 3222 3223 3224
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3225
		if (!mem_cgroup_is_root(memcg))
3226
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3227
		mem_cgroup_swap_statistics(memcg, false);
3228 3229
		mem_cgroup_put(memcg);
	}
3230
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3231
}
3232 3233 3234 3235 3236 3237

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3238
 * @need_fixup: whether we should fixup res_counters and refcounts.
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3249
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3250 3251 3252 3253 3254 3255 3256 3257
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3258
		mem_cgroup_swap_statistics(to, true);
3259
		/*
3260 3261 3262 3263 3264 3265
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3266 3267
		 */
		mem_cgroup_get(to);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3279 3280 3281 3282 3283 3284
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3285
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3286 3287 3288
{
	return -EINVAL;
}
3289
#endif
K
KAMEZAWA Hiroyuki 已提交
3290

3291
/*
3292 3293
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3294
 */
3295
int mem_cgroup_prepare_migration(struct page *page,
3296
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3297
{
3298
	struct mem_cgroup *memcg = NULL;
3299
	struct page_cgroup *pc;
3300
	enum charge_type ctype;
3301
	int ret = 0;
3302

3303 3304
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3305
	VM_BUG_ON(PageTransHuge(page));
3306
	if (mem_cgroup_disabled())
3307 3308
		return 0;

3309 3310 3311
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3312 3313
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3345
	}
3346
	unlock_page_cgroup(pc);
3347 3348 3349 3350
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3351
	if (!memcg)
3352
		return 0;
3353

3354
	*ptr = memcg;
3355
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3356
	css_put(&memcg->css);/* drop extra refcnt */
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3368
	}
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3382
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3383
	return ret;
3384
}
3385

3386
/* remove redundant charge if migration failed*/
3387
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3388
	struct page *oldpage, struct page *newpage, bool migration_ok)
3389
{
3390
	struct page *used, *unused;
3391 3392
	struct page_cgroup *pc;

3393
	if (!memcg)
3394
		return;
3395
	/* blocks rmdir() */
3396
	cgroup_exclude_rmdir(&memcg->css);
3397
	if (!migration_ok) {
3398 3399
		used = oldpage;
		unused = newpage;
3400
	} else {
3401
		used = newpage;
3402 3403
		unused = oldpage;
	}
3404
	/*
3405 3406 3407
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3408
	 */
3409 3410 3411 3412
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3413

3414 3415
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3416
	/*
3417 3418 3419 3420 3421 3422
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3423
	 */
3424 3425
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3426
	/*
3427 3428
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3429 3430 3431
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3432
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3433
}
3434

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	struct zone *zone;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	unsigned long flags;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	zone = page_zone(newpage);
	pc = lookup_page_cgroup(newpage);
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(newpage))
		del_page_from_lru_list(zone, newpage, page_lru(newpage));
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
	if (PageLRU(newpage))
		add_page_to_lru_list(zone, newpage, page_lru(newpage));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3525 3526
static DEFINE_MUTEX(set_limit_mutex);

3527
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3528
				unsigned long long val)
3529
{
3530
	int retry_count;
3531
	u64 memswlimit, memlimit;
3532
	int ret = 0;
3533 3534
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3535
	int enlarge;
3536 3537 3538 3539 3540 3541 3542 3543 3544

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3545

3546
	enlarge = 0;
3547
	while (retry_count) {
3548 3549 3550 3551
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3552 3553 3554
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3555
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3556 3557 3558 3559 3560 3561
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3562 3563
			break;
		}
3564 3565 3566 3567 3568

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3569
		ret = res_counter_set_limit(&memcg->res, val);
3570 3571 3572 3573 3574 3575
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3576 3577 3578 3579 3580
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3581
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3582 3583
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3584 3585 3586 3587 3588 3589
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3590
	}
3591 3592
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3593

3594 3595 3596
	return ret;
}

L
Li Zefan 已提交
3597 3598
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3599
{
3600
	int retry_count;
3601
	u64 memlimit, memswlimit, oldusage, curusage;
3602 3603
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3604
	int enlarge = 0;
3605

3606 3607 3608
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3609 3610 3611 3612 3613 3614 3615 3616
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3617
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3618 3619 3620 3621 3622 3623 3624 3625
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3626 3627 3628
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3629
		ret = res_counter_set_limit(&memcg->memsw, val);
3630 3631 3632 3633 3634 3635
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3636 3637 3638 3639 3640
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3641
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3642
						MEM_CGROUP_RECLAIM_NOSWAP |
3643 3644
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3645
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3646
		/* Usage is reduced ? */
3647
		if (curusage >= oldusage)
3648
			retry_count--;
3649 3650
		else
			oldusage = curusage;
3651
	}
3652 3653
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3654 3655 3656
	return ret;
}

3657
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3658 3659
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3660 3661 3662 3663 3664 3665
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3666
	unsigned long long excess;
3667
	unsigned long nr_scanned;
3668 3669 3670 3671

	if (order > 0)
		return 0;

3672
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3686
		nr_scanned = 0;
3687 3688
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3689 3690
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3691
		nr_reclaimed += reclaimed;
3692
		*total_scanned += nr_scanned;
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3715
				if (next_mz == mz)
3716
					css_put(&next_mz->mem->css);
3717
				else /* next_mz == NULL or other memcg */
3718 3719 3720 3721
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3722
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3723 3724 3725 3726 3727 3728 3729 3730
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3731 3732
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3751 3752 3753 3754
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3755
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3756
				int node, int zid, enum lru_list lru)
3757
{
K
KAMEZAWA Hiroyuki 已提交
3758 3759
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3760
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3761
	unsigned long flags, loop;
3762
	struct list_head *list;
3763
	int ret = 0;
3764

K
KAMEZAWA Hiroyuki 已提交
3765
	zone = &NODE_DATA(node)->node_zones[zid];
3766
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3767
	list = &mz->lists[lru];
3768

3769 3770 3771 3772 3773
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3774 3775
		struct page *page;

3776
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3777
		spin_lock_irqsave(&zone->lru_lock, flags);
3778
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3779
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3780
			break;
3781 3782 3783 3784
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3785
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3786
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3787 3788
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3789
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3790

3791
		page = lookup_cgroup_page(pc);
3792

3793
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3794
		if (ret == -ENOMEM)
3795
			break;
3796 3797 3798 3799 3800 3801 3802

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3803
	}
K
KAMEZAWA Hiroyuki 已提交
3804

3805 3806 3807
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3808 3809 3810 3811 3812 3813
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3814
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3815
{
3816 3817 3818
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3819
	struct cgroup *cgrp = memcg->css.cgroup;
3820

3821
	css_get(&memcg->css);
3822 3823

	shrink = 0;
3824 3825 3826
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3827
move_account:
3828
	do {
3829
		ret = -EBUSY;
3830 3831 3832 3833
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3834
			goto out;
3835 3836
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3837
		drain_all_stock_sync(memcg);
3838
		ret = 0;
3839
		mem_cgroup_start_move(memcg);
3840
		for_each_node_state(node, N_HIGH_MEMORY) {
3841
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3842
				enum lru_list l;
3843
				for_each_lru(l) {
3844
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3845
							node, zid, l);
3846 3847 3848
					if (ret)
						break;
				}
3849
			}
3850 3851 3852
			if (ret)
				break;
		}
3853 3854
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3855 3856 3857
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3858
		cond_resched();
3859
	/* "ret" should also be checked to ensure all lists are empty. */
3860
	} while (memcg->res.usage > 0 || ret);
3861
out:
3862
	css_put(&memcg->css);
3863
	return ret;
3864 3865

try_to_free:
3866 3867
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3868 3869 3870
		ret = -EBUSY;
		goto out;
	}
3871 3872
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3873 3874
	/* try to free all pages in this cgroup */
	shrink = 1;
3875
	while (nr_retries && memcg->res.usage > 0) {
3876
		int progress;
3877 3878 3879 3880 3881

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3882
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3883
						false);
3884
		if (!progress) {
3885
			nr_retries--;
3886
			/* maybe some writeback is necessary */
3887
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3888
		}
3889 3890

	}
K
KAMEZAWA Hiroyuki 已提交
3891
	lru_add_drain();
3892
	/* try move_account...there may be some *locked* pages. */
3893
	goto move_account;
3894 3895
}

3896 3897 3898 3899 3900 3901
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3902 3903 3904 3905 3906 3907 3908 3909 3910
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3911
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3912
	struct cgroup *parent = cont->parent;
3913
	struct mem_cgroup *parent_memcg = NULL;
3914 3915

	if (parent)
3916
		parent_memcg = mem_cgroup_from_cont(parent);
3917 3918 3919

	cgroup_lock();
	/*
3920
	 * If parent's use_hierarchy is set, we can't make any modifications
3921 3922 3923 3924 3925 3926
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3927
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3928 3929
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3930
			memcg->use_hierarchy = val;
3931 3932 3933 3934 3935 3936 3937 3938 3939
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3940

3941
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3942
					       enum mem_cgroup_stat_index idx)
3943
{
K
KAMEZAWA Hiroyuki 已提交
3944
	struct mem_cgroup *iter;
3945
	long val = 0;
3946

3947
	/* Per-cpu values can be negative, use a signed accumulator */
3948
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3949 3950 3951 3952 3953
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3954 3955
}

3956
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3957
{
K
KAMEZAWA Hiroyuki 已提交
3958
	u64 val;
3959

3960
	if (!mem_cgroup_is_root(memcg)) {
3961
		if (!swap)
3962
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3963
		else
3964
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3965 3966
	}

3967 3968
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3969

K
KAMEZAWA Hiroyuki 已提交
3970
	if (swap)
3971
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3972 3973 3974 3975

	return val << PAGE_SHIFT;
}

3976
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3977
{
3978
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3979
	u64 val;
3980 3981 3982 3983 3984 3985
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3986
		if (name == RES_USAGE)
3987
			val = mem_cgroup_usage(memcg, false);
3988
		else
3989
			val = res_counter_read_u64(&memcg->res, name);
3990 3991
		break;
	case _MEMSWAP:
3992
		if (name == RES_USAGE)
3993
			val = mem_cgroup_usage(memcg, true);
3994
		else
3995
			val = res_counter_read_u64(&memcg->memsw, name);
3996 3997 3998 3999 4000 4001
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
4002
}
4003 4004 4005 4006
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4007 4008
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4009
{
4010
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4011
	int type, name;
4012 4013 4014
	unsigned long long val;
	int ret;

4015 4016 4017
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
4018
	case RES_LIMIT:
4019 4020 4021 4022
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4023 4024
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4025 4026 4027
		if (ret)
			break;
		if (type == _MEM)
4028
			ret = mem_cgroup_resize_limit(memcg, val);
4029 4030
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4031
		break;
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4046 4047 4048 4049 4050
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4051 4052
}

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4081
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4082
{
4083
	struct mem_cgroup *memcg;
4084
	int type, name;
4085

4086
	memcg = mem_cgroup_from_cont(cont);
4087 4088 4089
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4090
	case RES_MAX_USAGE:
4091
		if (type == _MEM)
4092
			res_counter_reset_max(&memcg->res);
4093
		else
4094
			res_counter_reset_max(&memcg->memsw);
4095 4096
		break;
	case RES_FAILCNT:
4097
		if (type == _MEM)
4098
			res_counter_reset_failcnt(&memcg->res);
4099
		else
4100
			res_counter_reset_failcnt(&memcg->memsw);
4101 4102
		break;
	}
4103

4104
	return 0;
4105 4106
}

4107 4108 4109 4110 4111 4112
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4113
#ifdef CONFIG_MMU
4114 4115 4116
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4117
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4118 4119 4120 4121 4122 4123 4124 4125 4126

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4127
	memcg->move_charge_at_immigrate = val;
4128 4129 4130 4131
	cgroup_unlock();

	return 0;
}
4132 4133 4134 4135 4136 4137 4138
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4139

K
KAMEZAWA Hiroyuki 已提交
4140 4141 4142 4143 4144

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4145
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4146 4147
	MCS_PGPGIN,
	MCS_PGPGOUT,
4148
	MCS_SWAP,
4149 4150
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4161 4162
};

K
KAMEZAWA Hiroyuki 已提交
4163 4164 4165 4166 4167 4168
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4169
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4170 4171
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4172
	{"swap", "total_swap"},
4173 4174
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4175 4176 4177 4178 4179 4180 4181 4182
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4183
static void
4184
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4185 4186 4187 4188
{
	s64 val;

	/* per cpu stat */
4189
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4190
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4191
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4192
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4193
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4194
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4195
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4196
	s->stat[MCS_PGPGIN] += val;
4197
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4198
	s->stat[MCS_PGPGOUT] += val;
4199
	if (do_swap_account) {
4200
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4201 4202
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4203
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4204
	s->stat[MCS_PGFAULT] += val;
4205
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4206
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4207 4208

	/* per zone stat */
4209
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4210
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4211
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4212
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4213
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4214
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4215
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4216
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4217
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4218 4219 4220 4221
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4222
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4223
{
K
KAMEZAWA Hiroyuki 已提交
4224 4225
	struct mem_cgroup *iter;

4226
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4227
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4228 4229
}

4230 4231 4232 4233 4234 4235 4236 4237 4238
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4239
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4240 4241
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4242
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4243 4244 4245 4246
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4247
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4248 4249
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4250 4251
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4252 4253 4254 4255
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4256
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4257 4258
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4259 4260
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4261 4262 4263 4264
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4265
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4266 4267
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4268 4269
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4270 4271 4272 4273 4274 4275 4276
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4277 4278
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4279 4280
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4281
	struct mcs_total_stat mystat;
4282 4283
	int i;

K
KAMEZAWA Hiroyuki 已提交
4284 4285
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4286

4287

4288 4289 4290
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4291
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4292
	}
L
Lee Schermerhorn 已提交
4293

K
KAMEZAWA Hiroyuki 已提交
4294
	/* Hierarchical information */
4295 4296 4297 4298 4299 4300 4301
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4302

K
KAMEZAWA Hiroyuki 已提交
4303 4304
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4305 4306 4307
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4308
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4309
	}
K
KAMEZAWA Hiroyuki 已提交
4310

K
KOSAKI Motohiro 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4338 4339 4340
	return 0;
}

K
KOSAKI Motohiro 已提交
4341 4342 4343 4344
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4345
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4346 4347 4348 4349 4350 4351 4352
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4353

K
KOSAKI Motohiro 已提交
4354 4355 4356 4357 4358 4359 4360
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4361 4362 4363

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4364 4365
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4366 4367
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4368
		return -EINVAL;
4369
	}
K
KOSAKI Motohiro 已提交
4370 4371 4372

	memcg->swappiness = val;

4373 4374
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4375 4376 4377
	return 0;
}

4378 4379 4380 4381 4382 4383 4384 4385
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4386
		t = rcu_dereference(memcg->thresholds.primary);
4387
	else
4388
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4400
	i = t->current_threshold;
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4424
	t->current_threshold = i - 1;
4425 4426 4427 4428 4429 4430
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4431 4432 4433 4434 4435 4436 4437
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4448
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4449 4450 4451
{
	struct mem_cgroup_eventfd_list *ev;

4452
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4453 4454 4455 4456
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4457
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4458
{
K
KAMEZAWA Hiroyuki 已提交
4459 4460
	struct mem_cgroup *iter;

4461
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4462
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4463 4464 4465 4466
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4467 4468
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4469 4470
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4471 4472
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4473
	int i, size, ret;
4474 4475 4476 4477 4478 4479

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4480

4481
	if (type == _MEM)
4482
		thresholds = &memcg->thresholds;
4483
	else if (type == _MEMSWAP)
4484
		thresholds = &memcg->memsw_thresholds;
4485 4486 4487 4488 4489 4490
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4491
	if (thresholds->primary)
4492 4493
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4494
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4495 4496

	/* Allocate memory for new array of thresholds */
4497
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4498
			GFP_KERNEL);
4499
	if (!new) {
4500 4501 4502
		ret = -ENOMEM;
		goto unlock;
	}
4503
	new->size = size;
4504 4505

	/* Copy thresholds (if any) to new array */
4506 4507
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4508
				sizeof(struct mem_cgroup_threshold));
4509 4510
	}

4511
	/* Add new threshold */
4512 4513
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4514 4515

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4516
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4517 4518 4519
			compare_thresholds, NULL);

	/* Find current threshold */
4520
	new->current_threshold = -1;
4521
	for (i = 0; i < size; i++) {
4522
		if (new->entries[i].threshold < usage) {
4523
			/*
4524 4525
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4526 4527
			 * it here.
			 */
4528
			++new->current_threshold;
4529 4530 4531
		}
	}

4532 4533 4534 4535 4536
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4537

4538
	/* To be sure that nobody uses thresholds */
4539 4540 4541 4542 4543 4544 4545 4546
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4547
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4548
	struct cftype *cft, struct eventfd_ctx *eventfd)
4549 4550
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4551 4552
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4553 4554
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4555
	int i, j, size;
4556 4557 4558

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4559
		thresholds = &memcg->thresholds;
4560
	else if (type == _MEMSWAP)
4561
		thresholds = &memcg->memsw_thresholds;
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4577 4578 4579
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4580 4581 4582
			size++;
	}

4583
	new = thresholds->spare;
4584

4585 4586
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4587 4588
		kfree(new);
		new = NULL;
4589
		goto swap_buffers;
4590 4591
	}

4592
	new->size = size;
4593 4594

	/* Copy thresholds and find current threshold */
4595 4596 4597
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4598 4599
			continue;

4600 4601
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4602
			/*
4603
			 * new->current_threshold will not be used
4604 4605 4606
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4607
			++new->current_threshold;
4608 4609 4610 4611
		}
		j++;
	}

4612
swap_buffers:
4613 4614 4615
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4616

4617
	/* To be sure that nobody uses thresholds */
4618 4619 4620 4621
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4622

K
KAMEZAWA Hiroyuki 已提交
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4635
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4636 4637 4638 4639 4640

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4641
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4642
		eventfd_signal(eventfd, 1);
4643
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4644 4645 4646 4647

	return 0;
}

4648
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4649 4650
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4651
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4652 4653 4654 4655 4656
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4657
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4658

4659
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4660 4661 4662 4663 4664 4665
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4666
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4667 4668
}

4669 4670 4671
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4672
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4673

4674
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4675

4676
	if (atomic_read(&memcg->under_oom))
4677 4678 4679 4680 4681 4682 4683 4684 4685
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4686
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4698
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4699 4700 4701
		cgroup_unlock();
		return -EINVAL;
	}
4702
	memcg->oom_kill_disable = val;
4703
	if (!val)
4704
		memcg_oom_recover(memcg);
4705 4706 4707 4708
	cgroup_unlock();
	return 0;
}

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4725 4726 4727
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4728 4729 4730 4731 4732 4733 4734
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4735
	return mem_cgroup_sockets_init(cont, ss);
4736 4737
};

G
Glauber Costa 已提交
4738 4739 4740 4741 4742
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4743 4744 4745 4746 4747
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4748 4749 4750 4751 4752

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4753 4754
#endif

B
Balbir Singh 已提交
4755 4756
static struct cftype mem_cgroup_files[] = {
	{
4757
		.name = "usage_in_bytes",
4758
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4759
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4760 4761
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4762
	},
4763 4764
	{
		.name = "max_usage_in_bytes",
4765
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4766
		.trigger = mem_cgroup_reset,
4767 4768
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4769
	{
4770
		.name = "limit_in_bytes",
4771
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4772
		.write_string = mem_cgroup_write,
4773
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4774
	},
4775 4776 4777 4778 4779 4780
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4781 4782
	{
		.name = "failcnt",
4783
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4784
		.trigger = mem_cgroup_reset,
4785
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4786
	},
4787 4788
	{
		.name = "stat",
4789
		.read_map = mem_control_stat_show,
4790
	},
4791 4792 4793 4794
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4795 4796 4797 4798 4799
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4800 4801 4802 4803 4804
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4805 4806 4807 4808 4809
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4810 4811
	{
		.name = "oom_control",
4812 4813
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4814 4815 4816 4817
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4818 4819 4820 4821
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4822
		.mode = S_IRUGO,
4823 4824
	},
#endif
B
Balbir Singh 已提交
4825 4826
};

4827 4828 4829 4830 4831 4832
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4833 4834
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4870
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4871 4872
{
	struct mem_cgroup_per_node *pn;
4873
	struct mem_cgroup_per_zone *mz;
4874
	enum lru_list l;
4875
	int zone, tmp = node;
4876 4877 4878 4879 4880 4881 4882 4883
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4884 4885
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4886
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4887 4888
	if (!pn)
		return 1;
4889 4890 4891

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4892 4893
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4894
		mz->usage_in_excess = 0;
4895
		mz->on_tree = false;
4896
		mz->mem = memcg;
4897
	}
4898
	memcg->info.nodeinfo[node] = pn;
4899 4900 4901
	return 0;
}

4902
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4903
{
4904
	kfree(memcg->info.nodeinfo[node]);
4905 4906
}

4907 4908 4909
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4910
	int size = sizeof(struct mem_cgroup);
4911

4912
	/* Can be very big if MAX_NUMNODES is very big */
4913
	if (size < PAGE_SIZE)
4914
		mem = kzalloc(size, GFP_KERNEL);
4915
	else
4916
		mem = vzalloc(size);
4917

4918 4919 4920
	if (!mem)
		return NULL;

4921
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4922 4923
	if (!mem->stat)
		goto out_free;
4924
	spin_lock_init(&mem->pcp_counter_lock);
4925
	return mem;
4926 4927 4928 4929 4930 4931 4932

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4933 4934
}

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4946
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4947
{
K
KAMEZAWA Hiroyuki 已提交
4948 4949
	int node;

4950 4951
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4952

K
KAMEZAWA Hiroyuki 已提交
4953
	for_each_node_state(node, N_POSSIBLE)
4954
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4955

4956
	free_percpu(memcg->stat);
4957
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4958
		kfree(memcg);
4959
	else
4960
		vfree(memcg);
4961 4962
}

4963
static void mem_cgroup_get(struct mem_cgroup *memcg)
4964
{
4965
	atomic_inc(&memcg->refcnt);
4966 4967
}

4968
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4969
{
4970 4971 4972
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4973 4974 4975
		if (parent)
			mem_cgroup_put(parent);
	}
4976 4977
}

4978
static void mem_cgroup_put(struct mem_cgroup *memcg)
4979
{
4980
	__mem_cgroup_put(memcg, 1);
4981 4982
}

4983 4984 4985
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4986
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4987
{
4988
	if (!memcg->res.parent)
4989
		return NULL;
4990
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4991
}
G
Glauber Costa 已提交
4992
EXPORT_SYMBOL(parent_mem_cgroup);
4993

4994 4995 4996
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4997
	if (!mem_cgroup_disabled() && really_do_swap_account)
4998 4999 5000 5001 5002 5003 5004 5005
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5031
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5032 5033
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5034
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5035
	long error = -ENOMEM;
5036
	int node;
B
Balbir Singh 已提交
5037

5038 5039
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5040
		return ERR_PTR(error);
5041

5042
	for_each_node_state(node, N_POSSIBLE)
5043
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5044
			goto free_out;
5045

5046
	/* root ? */
5047
	if (cont->parent == NULL) {
5048
		int cpu;
5049
		enable_swap_cgroup();
5050
		parent = NULL;
5051 5052
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5053
		root_mem_cgroup = memcg;
5054 5055 5056 5057 5058
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5059
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5060
	} else {
5061
		parent = mem_cgroup_from_cont(cont->parent);
5062 5063
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5064
	}
5065

5066
	if (parent && parent->use_hierarchy) {
5067 5068
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5069 5070 5071 5072 5073 5074 5075
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5076
	} else {
5077 5078
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5079
	}
5080 5081 5082
	memcg->last_scanned_child = 0;
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5083

K
KOSAKI Motohiro 已提交
5084
	if (parent)
5085 5086 5087 5088 5089
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5090
free_out:
5091
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5092
	return ERR_PTR(error);
B
Balbir Singh 已提交
5093 5094
}

5095
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5096 5097
					struct cgroup *cont)
{
5098
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5099

5100
	return mem_cgroup_force_empty(memcg, false);
5101 5102
}

B
Balbir Singh 已提交
5103 5104 5105
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5106
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5107

G
Glauber Costa 已提交
5108 5109
	kmem_cgroup_destroy(ss, cont);

5110
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5111 5112 5113 5114 5115
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5116 5117 5118 5119 5120 5121 5122
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5123 5124 5125 5126

	if (!ret)
		ret = register_kmem_files(cont, ss);

5127
	return ret;
B
Balbir Singh 已提交
5128 5129
}

5130
#ifdef CONFIG_MMU
5131
/* Handlers for move charge at task migration. */
5132 5133
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5134
{
5135 5136
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5137
	struct mem_cgroup *memcg = mc.to;
5138

5139
	if (mem_cgroup_is_root(memcg)) {
5140 5141 5142 5143 5144 5145 5146 5147
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5148
		 * "memcg" cannot be under rmdir() because we've already checked
5149 5150 5151 5152
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5153
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5154
			goto one_by_one;
5155
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5156
						PAGE_SIZE * count, &dummy)) {
5157
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5174 5175 5176
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5177 5178 5179 5180
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5181 5182 5183 5184 5185 5186 5187 5188
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5189
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5190 5191 5192 5193 5194 5195
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5196 5197 5198
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5199 5200 5201 5202 5203
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5204
	swp_entry_t	ent;
5205 5206 5207 5208 5209
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5210
	MC_TARGET_SWAP,
5211 5212
};

D
Daisuke Nishimura 已提交
5213 5214
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5215
{
D
Daisuke Nishimura 已提交
5216
	struct page *page = vm_normal_page(vma, addr, ptent);
5217

D
Daisuke Nishimura 已提交
5218 5219 5220 5221 5222 5223
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5224 5225
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5244 5245
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5246
		return NULL;
5247
	}
D
Daisuke Nishimura 已提交
5248 5249 5250 5251 5252 5253
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5275 5276 5277 5278 5279 5280
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5281
		if (do_swap_account)
5282 5283
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5284
	}
5285
#endif
5286 5287 5288
	return page;
}

D
Daisuke Nishimura 已提交
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5301 5302
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5303 5304 5305

	if (!page && !ent.val)
		return 0;
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5321 5322
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5323 5324 5325 5326
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5339 5340
	split_huge_page_pmd(walk->mm, pmd);

5341 5342 5343 5344 5345 5346 5347
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5348 5349 5350
	return 0;
}

5351 5352 5353 5354 5355
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5356
	down_read(&mm->mmap_sem);
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5368
	up_read(&mm->mmap_sem);
5369 5370 5371 5372 5373 5374 5375 5376 5377

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5378 5379 5380 5381 5382
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5383 5384
}

5385 5386
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5387
{
5388 5389 5390
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5391
	/* we must uncharge all the leftover precharges from mc.to */
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5403
	}
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5438
	spin_lock(&mc.lock);
5439 5440
	mc.from = NULL;
	mc.to = NULL;
5441
	spin_unlock(&mc.lock);
5442
	mem_cgroup_end_move(from);
5443 5444
}

5445 5446
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5447
				struct cgroup_taskset *tset)
5448
{
5449
	struct task_struct *p = cgroup_taskset_first(tset);
5450
	int ret = 0;
5451
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5452

5453
	if (memcg->move_charge_at_immigrate) {
5454 5455 5456
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5457
		VM_BUG_ON(from == memcg);
5458 5459 5460 5461 5462

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5463 5464 5465 5466
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5467
			VM_BUG_ON(mc.moved_charge);
5468
			VM_BUG_ON(mc.moved_swap);
5469
			mem_cgroup_start_move(from);
5470
			spin_lock(&mc.lock);
5471
			mc.from = from;
5472
			mc.to = memcg;
5473
			spin_unlock(&mc.lock);
5474
			/* We set mc.moving_task later */
5475 5476 5477 5478

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5479 5480
		}
		mmput(mm);
5481 5482 5483 5484 5485 5486
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5487
				struct cgroup_taskset *tset)
5488
{
5489
	mem_cgroup_clear_mc();
5490 5491
}

5492 5493 5494
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5495
{
5496 5497 5498 5499 5500
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5501
	split_huge_page_pmd(walk->mm, pmd);
5502 5503 5504 5505 5506 5507 5508 5509
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5510
		swp_entry_t ent;
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5522 5523
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5524
				mc.precharge--;
5525 5526
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5527 5528 5529 5530 5531
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5532 5533
		case MC_TARGET_SWAP:
			ent = target.ent;
5534 5535
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5536
				mc.precharge--;
5537 5538 5539
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5540
			break;
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5555
		ret = mem_cgroup_do_precharge(1);
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5599
	up_read(&mm->mmap_sem);
5600 5601
}

B
Balbir Singh 已提交
5602 5603
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5604
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5605
{
5606
	struct task_struct *p = cgroup_taskset_first(tset);
5607
	struct mm_struct *mm = get_task_mm(p);
5608 5609

	if (mm) {
5610 5611 5612
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5613 5614
		mmput(mm);
	}
5615 5616
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5617
}
5618 5619 5620
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5621
				struct cgroup_taskset *tset)
5622 5623 5624 5625 5626
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5627
				struct cgroup_taskset *tset)
5628 5629 5630 5631
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5632
				struct cgroup_taskset *tset)
5633 5634 5635
{
}
#endif
B
Balbir Singh 已提交
5636

B
Balbir Singh 已提交
5637 5638 5639 5640
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5641
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5642 5643
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5644 5645
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5646
	.attach = mem_cgroup_move_task,
5647
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5648
	.use_id = 1,
B
Balbir Singh 已提交
5649
};
5650 5651

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5652 5653 5654
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5655
	if (!strcmp(s, "1"))
5656
		really_do_swap_account = 1;
5657
	else if (!strcmp(s, "0"))
5658 5659 5660
		really_do_swap_account = 0;
	return 1;
}
5661
__setup("swapaccount=", enable_swap_account);
5662 5663

#endif