memcontrol.c 149.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99 100 101 102 103 104 105 106
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

107 108 109 110 111 112 113 114
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

115 116 117 118 119 120 121 122
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
123
	MEM_CGROUP_TARGET_SOFTLIMIT,
124
	MEM_CGROUP_TARGET_NUMAINFO,
125 126
	MEM_CGROUP_NTARGETS,
};
127 128 129
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
130

131
struct mem_cgroup_stat_cpu {
132
	long count[MEM_CGROUP_STAT_NSTATS];
133
	unsigned long events[MEMCG_NR_EVENTS];
134
	unsigned long nr_page_events;
135
	unsigned long targets[MEM_CGROUP_NTARGETS];
136 137
};

138 139
struct reclaim_iter {
	struct mem_cgroup *position;
140 141 142 143
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

144 145 146 147
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
148
	struct lruvec		lruvec;
149
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
150

151
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
152

153
	struct rb_node		tree_node;	/* RB tree node */
154
	unsigned long		usage_in_excess;/* Set to the value by which */
155 156
						/* the soft limit is exceeded*/
	bool			on_tree;
157
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
158
						/* use container_of	   */
159 160 161 162 163 164
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

185 186
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
187
	unsigned long threshold;
188 189
};

K
KAMEZAWA Hiroyuki 已提交
190
/* For threshold */
191
struct mem_cgroup_threshold_ary {
192
	/* An array index points to threshold just below or equal to usage. */
193
	int current_threshold;
194 195 196 197 198
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
199 200 201 202 203 204 205 206 207 208 209 210

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
211 212 213 214 215
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
216

217 218 219
/*
 * cgroup_event represents events which userspace want to receive.
 */
220
struct mem_cgroup_event {
221
	/*
222
	 * memcg which the event belongs to.
223
	 */
224
	struct mem_cgroup *memcg;
225 226 227 228 229 230 231 232
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
233 234 235 236 237
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
238
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
239
			      struct eventfd_ctx *eventfd, const char *args);
240 241 242 243 244
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
245
	void (*unregister_event)(struct mem_cgroup *memcg,
246
				 struct eventfd_ctx *eventfd);
247 248 249 250 251 252 253 254 255 256
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

257 258
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
259

B
Balbir Singh 已提交
260 261 262 263 264 265 266
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
267 268 269
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
270 271 272
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
273 274 275 276 277 278

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

279 280 281 282
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

283
	unsigned long soft_limit;
284

285 286 287
	/* vmpressure notifications */
	struct vmpressure vmpressure;

288 289 290
	/* css_online() has been completed */
	int initialized;

291 292 293 294
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
295 296 297

	bool		oom_lock;
	atomic_t	under_oom;
298
	atomic_t	oom_wakeups;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306 307
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
308
	struct mem_cgroup_thresholds thresholds;
309

310
	/* thresholds for mem+swap usage. RCU-protected */
311
	struct mem_cgroup_thresholds memsw_thresholds;
312

K
KAMEZAWA Hiroyuki 已提交
313 314
	/* For oom notifier event fd */
	struct list_head oom_notify;
315

316 317 318 319
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
320
	unsigned long move_charge_at_immigrate;
321 322 323
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
324
	atomic_t		moving_account;
325
	/* taken only while moving_account > 0 */
326 327 328
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
329
	/*
330
	 * percpu counter.
331
	 */
332
	struct mem_cgroup_stat_cpu __percpu *stat;
333 334 335 336 337 338
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
339

M
Michal Hocko 已提交
340
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
341
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
342
#endif
343 344 345 346
#if defined(CONFIG_MEMCG_KMEM)
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
347 348 349 350 351 352 353

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
354

355 356 357 358
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

359 360
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
361 362
};

363
#ifdef CONFIG_MEMCG_KMEM
364 365
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
V
Vladimir Davydov 已提交
366
	return memcg->kmemcg_id >= 0;
367
}
368 369
#endif

370 371
/* Stuffs for move charges at task migration. */
/*
372 373
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
374 375
 */
enum move_type {
376
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
377
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
378 379 380
	NR_MOVE_TYPE,
};

381 382
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
383
	spinlock_t	  lock; /* for from, to */
384 385
	struct mem_cgroup *from;
	struct mem_cgroup *to;
386
	unsigned long immigrate_flags;
387
	unsigned long precharge;
388
	unsigned long moved_charge;
389
	unsigned long moved_swap;
390 391 392
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
393
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
394 395
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
396

D
Daisuke Nishimura 已提交
397 398
static bool move_anon(void)
{
399
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
400 401
}

402 403
static bool move_file(void)
{
404
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
405 406
}

407 408 409 410
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
411
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
412
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
413

414 415
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
416
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
417
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
418
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
419 420 421
	NR_CHARGE_TYPE,
};

422
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
423 424 425 426
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
427
	_KMEM,
G
Glauber Costa 已提交
428 429
};

430 431
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
432
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
433 434
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
435

436 437 438 439 440 441 442
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

443 444
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
445
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
446 447
}

448 449 450 451 452 453 454 455 456 457 458 459 460
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

461 462 463 464 465
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

466 467 468 469 470 471
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
472 473
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
474
	return memcg->css.id;
L
Li Zefan 已提交
475 476 477 478 479 480
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

481
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
482 483 484
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
485
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
486
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
487 488 489

void sock_update_memcg(struct sock *sk)
{
490
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
491
		struct mem_cgroup *memcg;
492
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
493 494 495

		BUG_ON(!sk->sk_prot->proto_cgroup);

496 497 498 499 500 501 502 503 504 505
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
506
			css_get(&sk->sk_cgrp->memcg->css);
507 508 509
			return;
		}

G
Glauber Costa 已提交
510 511
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
512
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
513
		if (!mem_cgroup_is_root(memcg) &&
514 515
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
516
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
517 518 519 520 521 522 523 524
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
525
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
526 527 528
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
529
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
530 531
	}
}
G
Glauber Costa 已提交
532 533 534 535 536 537

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

538
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
539 540
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
541

542 543
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
544
	if (!memcg_proto_activated(&memcg->tcp_mem))
545 546 547 548 549 550 551 552 553
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

554
#ifdef CONFIG_MEMCG_KMEM
555 556
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
557 558 559 560 561
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
562 563 564 565 566 567
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
568 569
int memcg_limited_groups_array_size;

570 571 572 573 574 575
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
576
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
577 578
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
579
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
580 581 582
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
583
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
584

585 586 587 588 589 590
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
591
struct static_key memcg_kmem_enabled_key;
592
EXPORT_SYMBOL(memcg_kmem_enabled_key);
593

594 595
static void memcg_free_cache_id(int id);

596 597
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
598
	if (memcg_kmem_is_active(memcg)) {
599
		static_key_slow_dec(&memcg_kmem_enabled_key);
600
		memcg_free_cache_id(memcg->kmemcg_id);
601
	}
602 603 604 605
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
606
	WARN_ON(page_counter_read(&memcg->kmem));
607 608 609 610 611 612 613 614 615 616 617 618 619
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

620
static struct mem_cgroup_per_zone *
621
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
622
{
623 624 625
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

626
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
627 628
}

629
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
630
{
631
	return &memcg->css;
632 633
}

634
static struct mem_cgroup_per_zone *
635
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
636
{
637 638
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
639

640
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
641 642
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

658 659
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
660
					 unsigned long new_usage_in_excess)
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

690 691
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
692 693 694 695 696 697 698
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

699 700
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
701
{
702 703 704
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
705
	__mem_cgroup_remove_exceeded(mz, mctz);
706
	spin_unlock_irqrestore(&mctz->lock, flags);
707 708
}

709 710 711 712 713 714 715 716 717 718 719
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
720 721 722

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
723
	unsigned long excess;
724 725 726
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

727
	mctz = soft_limit_tree_from_page(page);
728 729 730 731 732
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
733
		mz = mem_cgroup_page_zoneinfo(memcg, page);
734
		excess = soft_limit_excess(memcg);
735 736 737 738 739
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
740 741 742
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
743 744
			/* if on-tree, remove it */
			if (mz->on_tree)
745
				__mem_cgroup_remove_exceeded(mz, mctz);
746 747 748 749
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
750
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
751
			spin_unlock_irqrestore(&mctz->lock, flags);
752 753 754 755 756 757 758
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
759 760
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
761

762 763 764 765
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
766
			mem_cgroup_remove_exceeded(mz, mctz);
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
789
	__mem_cgroup_remove_exceeded(mz, mctz);
790
	if (!soft_limit_excess(mz->memcg) ||
791
	    !css_tryget_online(&mz->memcg->css))
792 793 794 795 796 797 798 799 800 801
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

802
	spin_lock_irq(&mctz->lock);
803
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
804
	spin_unlock_irq(&mctz->lock);
805 806 807
	return mz;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
827
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
828
				 enum mem_cgroup_stat_index idx)
829
{
830
	long val = 0;
831 832
	int cpu;

833 834
	get_online_cpus();
	for_each_online_cpu(cpu)
835
		val += per_cpu(memcg->stat->count[idx], cpu);
836
#ifdef CONFIG_HOTPLUG_CPU
837 838 839
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
840 841
#endif
	put_online_cpus();
842 843 844
	return val;
}

845
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
846 847 848 849 850
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

851
	get_online_cpus();
852
	for_each_online_cpu(cpu)
853
		val += per_cpu(memcg->stat->events[idx], cpu);
854
#ifdef CONFIG_HOTPLUG_CPU
855 856 857
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
858
#endif
859
	put_online_cpus();
860 861 862
	return val;
}

863
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
864
					 struct page *page,
865
					 int nr_pages)
866
{
867 868 869 870
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
871
	if (PageAnon(page))
872
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
873
				nr_pages);
874
	else
875
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
876
				nr_pages);
877

878 879 880 881
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

882 883
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
884
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
885
	else {
886
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
887 888
		nr_pages = -nr_pages; /* for event */
	}
889

890
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
891 892
}

893
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
894 895 896 897 898 899 900
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

901 902 903
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
904
{
905
	unsigned long nr = 0;
906 907
	int zid;

908
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
909

910 911 912 913 914 915 916 917 918 919 920 921
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
922
}
923

924
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
925
			unsigned int lru_mask)
926
{
927
	unsigned long nr = 0;
928
	int nid;
929

930
	for_each_node_state(nid, N_MEMORY)
931 932
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
933 934
}

935 936
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
937 938 939
{
	unsigned long val, next;

940
	val = __this_cpu_read(memcg->stat->nr_page_events);
941
	next = __this_cpu_read(memcg->stat->targets[target]);
942
	/* from time_after() in jiffies.h */
943 944 945 946 947
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
948 949 950
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
951 952 953 954 955 956 957 958
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
959
	}
960
	return false;
961 962 963 964 965 966
}

/*
 * Check events in order.
 *
 */
967
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
968 969
{
	/* threshold event is triggered in finer grain than soft limit */
970 971
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
972
		bool do_softlimit;
973
		bool do_numainfo __maybe_unused;
974

975 976
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
977 978 979 980
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
981
		mem_cgroup_threshold(memcg);
982 983
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
984
#if MAX_NUMNODES > 1
985
		if (unlikely(do_numainfo))
986
			atomic_inc(&memcg->numainfo_events);
987
#endif
988
	}
989 990
}

991
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
992
{
993 994 995 996 997 998 999 1000
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1001
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1002 1003
}

1004
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1005
{
1006
	struct mem_cgroup *memcg = NULL;
1007

1008 1009
	rcu_read_lock();
	do {
1010 1011 1012 1013 1014 1015
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1016
			memcg = root_mem_cgroup;
1017 1018 1019 1020 1021
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1022
	} while (!css_tryget_online(&memcg->css));
1023
	rcu_read_unlock();
1024
	return memcg;
1025 1026
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1044
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1045
				   struct mem_cgroup *prev,
1046
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1047
{
1048 1049
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1050
	struct mem_cgroup *memcg = NULL;
1051
	struct mem_cgroup *pos = NULL;
1052

1053 1054
	if (mem_cgroup_disabled())
		return NULL;
1055

1056 1057
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1058

1059
	if (prev && !reclaim)
1060
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1061

1062 1063
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1064
			goto out;
1065
		return root;
1066
	}
K
KAMEZAWA Hiroyuki 已提交
1067

1068
	rcu_read_lock();
M
Michal Hocko 已提交
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1104
		}
K
KAMEZAWA Hiroyuki 已提交
1105

1106 1107 1108 1109 1110 1111
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1112

1113 1114
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1115

1116
		if (css_tryget(css)) {
1117 1118 1119 1120 1121 1122 1123
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1124

1125
			css_put(css);
1126
		}
1127

1128
		memcg = NULL;
1129
	}
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1150
	}
1151

1152 1153
out_unlock:
	rcu_read_unlock();
1154
out:
1155 1156 1157
	if (prev && prev != root)
		css_put(&prev->css);

1158
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1159
}
K
KAMEZAWA Hiroyuki 已提交
1160

1161 1162 1163 1164 1165 1166 1167
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1168 1169 1170 1171 1172 1173
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1174

1175 1176 1177 1178 1179 1180
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1181
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1182
	     iter != NULL;				\
1183
	     iter = mem_cgroup_iter(root, iter, NULL))
1184

1185
#define for_each_mem_cgroup(iter)			\
1186
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1187
	     iter != NULL;				\
1188
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1189

1190
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1191
{
1192
	struct mem_cgroup *memcg;
1193 1194

	rcu_read_lock();
1195 1196
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1197 1198 1199 1200
		goto out;

	switch (idx) {
	case PGFAULT:
1201 1202 1203 1204
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1205 1206 1207 1208 1209 1210 1211
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1212
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1213

1214 1215 1216
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1217
 * @memcg: memcg of the wanted lruvec
1218 1219 1220 1221 1222 1223 1224 1225 1226
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1227
	struct lruvec *lruvec;
1228

1229 1230 1231 1232
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1233

1234
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1245 1246 1247
}

/**
1248
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1249
 * @page: the page
1250
 * @zone: zone of the page
1251 1252 1253 1254
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1255
 */
1256
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1257 1258
{
	struct mem_cgroup_per_zone *mz;
1259
	struct mem_cgroup *memcg;
1260
	struct lruvec *lruvec;
1261

1262 1263 1264 1265
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1266

1267
	memcg = page->mem_cgroup;
1268
	/*
1269
	 * Swapcache readahead pages are added to the LRU - and
1270
	 * possibly migrated - before they are charged.
1271
	 */
1272 1273
	if (!memcg)
		memcg = root_mem_cgroup;
1274

1275
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1286
}
1287

1288
/**
1289 1290 1291 1292
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1293
 *
1294 1295
 * This function must be called when a page is added to or removed from an
 * lru list.
1296
 */
1297 1298
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1299 1300
{
	struct mem_cgroup_per_zone *mz;
1301
	unsigned long *lru_size;
1302 1303 1304 1305

	if (mem_cgroup_disabled())
		return;

1306 1307 1308 1309
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1310
}
1311

1312
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1313
{
1314
	if (root == memcg)
1315
		return true;
1316
	if (!root->use_hierarchy)
1317
		return false;
1318
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1319 1320
}

1321
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1322
{
1323
	struct mem_cgroup *task_memcg;
1324
	struct task_struct *p;
1325
	bool ret;
1326

1327
	p = find_lock_task_mm(task);
1328
	if (p) {
1329
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1330 1331 1332 1333 1334 1335 1336
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1337
		rcu_read_lock();
1338 1339
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1340
		rcu_read_unlock();
1341
	}
1342 1343
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1344 1345 1346
	return ret;
}

1347
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1348
{
1349
	unsigned long inactive_ratio;
1350
	unsigned long inactive;
1351
	unsigned long active;
1352
	unsigned long gb;
1353

1354 1355
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1356

1357 1358 1359 1360 1361 1362
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1363
	return inactive * inactive_ratio < active;
1364 1365
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1380
#define mem_cgroup_from_counter(counter, member)	\
1381 1382
	container_of(counter, struct mem_cgroup, member)

1383
/**
1384
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1385
 * @memcg: the memory cgroup
1386
 *
1387
 * Returns the maximum amount of memory @mem can be charged with, in
1388
 * pages.
1389
 */
1390
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1391
{
1392 1393 1394
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1409 1410
}

1411
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1412 1413
{
	/* root ? */
1414
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1415 1416
		return vm_swappiness;

1417
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1418 1419
}

1420
/*
Q
Qiang Huang 已提交
1421
 * A routine for checking "mem" is under move_account() or not.
1422
 *
Q
Qiang Huang 已提交
1423 1424 1425
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1426
 */
1427
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1428
{
1429 1430
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1431
	bool ret = false;
1432 1433 1434 1435 1436 1437 1438 1439 1440
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1441

1442 1443
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1444 1445
unlock:
	spin_unlock(&mc.lock);
1446 1447 1448
	return ret;
}

1449
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1450 1451
{
	if (mc.moving_task && current != mc.moving_task) {
1452
		if (mem_cgroup_under_move(memcg)) {
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1465
#define K(x) ((x) << (PAGE_SHIFT-10))
1466
/**
1467
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1468 1469 1470 1471 1472 1473 1474 1475
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1476
	/* oom_info_lock ensures that parallel ooms do not interleave */
1477
	static DEFINE_MUTEX(oom_info_lock);
1478 1479
	struct mem_cgroup *iter;
	unsigned int i;
1480

1481
	if (!p)
1482 1483
		return;

1484
	mutex_lock(&oom_info_lock);
1485 1486
	rcu_read_lock();

T
Tejun Heo 已提交
1487 1488
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1489
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1490
	pr_cont_cgroup_path(memcg->css.cgroup);
1491
	pr_cont("\n");
1492 1493 1494

	rcu_read_unlock();

1495 1496 1497 1498 1499 1500 1501 1502 1503
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1504 1505

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1506 1507
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1523
	mutex_unlock(&oom_info_lock);
1524 1525
}

1526 1527 1528 1529
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1530
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1531 1532
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1533 1534
	struct mem_cgroup *iter;

1535
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1536
		num++;
1537 1538 1539
	return num;
}

D
David Rientjes 已提交
1540 1541 1542
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1543
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1544
{
1545
	unsigned long limit;
1546

1547
	limit = memcg->memory.limit;
1548
	if (mem_cgroup_swappiness(memcg)) {
1549
		unsigned long memsw_limit;
1550

1551 1552
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1553 1554
	}
	return limit;
D
David Rientjes 已提交
1555 1556
}

1557 1558
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1559 1560 1561 1562 1563 1564 1565
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1566
	/*
1567 1568 1569
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1570
	 */
1571
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1572 1573 1574 1575 1576
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1577
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1578
	for_each_mem_cgroup_tree(iter, memcg) {
1579
		struct css_task_iter it;
1580 1581
		struct task_struct *task;

1582 1583
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1596
				css_task_iter_end(&it);
1597 1598 1599 1600 1601 1602 1603 1604
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1617
		}
1618
		css_task_iter_end(&it);
1619 1620 1621 1622 1623 1624 1625 1626 1627
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1628 1629
#if MAX_NUMNODES > 1

1630 1631
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1632
 * @memcg: the target memcg
1633 1634 1635 1636 1637 1638 1639
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1640
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1641 1642
		int nid, bool noswap)
{
1643
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1644 1645 1646
		return true;
	if (noswap || !total_swap_pages)
		return false;
1647
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1648 1649 1650 1651
		return true;
	return false;

}
1652 1653 1654 1655 1656 1657 1658

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1659
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1660 1661
{
	int nid;
1662 1663 1664 1665
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1666
	if (!atomic_read(&memcg->numainfo_events))
1667
		return;
1668
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1669 1670 1671
		return;

	/* make a nodemask where this memcg uses memory from */
1672
	memcg->scan_nodes = node_states[N_MEMORY];
1673

1674
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1675

1676 1677
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1678
	}
1679

1680 1681
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1696
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1697 1698 1699
{
	int node;

1700 1701
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1702

1703
	node = next_node(node, memcg->scan_nodes);
1704
	if (node == MAX_NUMNODES)
1705
		node = first_node(memcg->scan_nodes);
1706 1707 1708 1709 1710 1711 1712 1713 1714
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1715
	memcg->last_scanned_node = node;
1716 1717 1718
	return node;
}
#else
1719
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1720 1721 1722 1723 1724
{
	return 0;
}
#endif

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1740
	excess = soft_limit_excess(root_memcg);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1769
		if (!soft_limit_excess(root_memcg))
1770
			break;
1771
	}
1772 1773
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1774 1775
}

1776 1777 1778 1779 1780 1781
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1782 1783
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1784 1785 1786 1787
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1788
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1789
{
1790
	struct mem_cgroup *iter, *failed = NULL;
1791

1792 1793
	spin_lock(&memcg_oom_lock);

1794
	for_each_mem_cgroup_tree(iter, memcg) {
1795
		if (iter->oom_lock) {
1796 1797 1798 1799 1800
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1801 1802
			mem_cgroup_iter_break(memcg, iter);
			break;
1803 1804
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1805
	}
K
KAMEZAWA Hiroyuki 已提交
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1818
		}
1819 1820
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1821 1822 1823 1824

	spin_unlock(&memcg_oom_lock);

	return !failed;
1825
}
1826

1827
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1828
{
K
KAMEZAWA Hiroyuki 已提交
1829 1830
	struct mem_cgroup *iter;

1831
	spin_lock(&memcg_oom_lock);
1832
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1833
	for_each_mem_cgroup_tree(iter, memcg)
1834
		iter->oom_lock = false;
1835
	spin_unlock(&memcg_oom_lock);
1836 1837
}

1838
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1839 1840 1841
{
	struct mem_cgroup *iter;

1842
	for_each_mem_cgroup_tree(iter, memcg)
1843 1844 1845
		atomic_inc(&iter->under_oom);
}

1846
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1847 1848 1849
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1850 1851 1852 1853 1854
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1855
	for_each_mem_cgroup_tree(iter, memcg)
1856
		atomic_add_unless(&iter->under_oom, -1, 0);
1857 1858
}

K
KAMEZAWA Hiroyuki 已提交
1859 1860
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1861
struct oom_wait_info {
1862
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1863 1864 1865 1866 1867 1868
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1869 1870
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1871 1872 1873
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1874
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1875

1876 1877
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1878 1879 1880 1881
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1882
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1883
{
1884
	atomic_inc(&memcg->oom_wakeups);
1885 1886
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1887 1888
}

1889
static void memcg_oom_recover(struct mem_cgroup *memcg)
1890
{
1891 1892
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1893 1894
}

1895
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1896
{
1897 1898
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1899
	/*
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1912
	 */
1913 1914 1915 1916
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1917 1918 1919 1920
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1921
 * @handle: actually kill/wait or just clean up the OOM state
1922
 *
1923 1924
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1925
 *
1926
 * Memcg supports userspace OOM handling where failed allocations must
1927 1928 1929 1930
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1931
 * the end of the page fault to complete the OOM handling.
1932 1933
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1934
 * completed, %false otherwise.
1935
 */
1936
bool mem_cgroup_oom_synchronize(bool handle)
1937
{
1938
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1939
	struct oom_wait_info owait;
1940
	bool locked;
1941 1942 1943

	/* OOM is global, do not handle */
	if (!memcg)
1944
		return false;
1945

1946 1947
	if (!handle)
		goto cleanup;
1948 1949 1950 1951 1952 1953

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1954

1955
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1969
		schedule();
1970 1971 1972 1973 1974
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1975 1976 1977 1978 1979 1980 1981 1982
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1983 1984
cleanup:
	current->memcg_oom.memcg = NULL;
1985
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1986
	return true;
1987 1988
}

1989 1990 1991
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1992
 *
1993 1994 1995
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1996
 *
1997
 *   memcg = mem_cgroup_begin_page_stat(page);
1998 1999
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
2000
 *   mem_cgroup_end_page_stat(memcg);
2001
 */
2002
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
2003 2004
{
	struct mem_cgroup *memcg;
2005
	unsigned long flags;
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
2019 2020 2021 2022
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2023
again:
2024
	memcg = page->mem_cgroup;
2025
	if (unlikely(!memcg))
2026 2027
		return NULL;

Q
Qiang Huang 已提交
2028
	if (atomic_read(&memcg->moving_account) <= 0)
2029
		return memcg;
2030

2031
	spin_lock_irqsave(&memcg->move_lock, flags);
2032
	if (memcg != page->mem_cgroup) {
2033
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2034 2035
		goto again;
	}
2036 2037 2038 2039 2040 2041 2042 2043

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2044 2045

	return memcg;
2046 2047
}

2048 2049 2050 2051
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2052
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2053
{
2054 2055 2056 2057 2058 2059 2060 2061
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2062

2063
	rcu_read_unlock();
2064 2065
}

2066 2067 2068 2069 2070 2071 2072 2073 2074
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2075
				 enum mem_cgroup_stat_index idx, int val)
2076
{
2077
	VM_BUG_ON(!rcu_read_lock_held());
2078

2079 2080
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2081
}
2082

2083 2084 2085 2086
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2087
#define CHARGE_BATCH	32U
2088 2089
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2090
	unsigned int nr_pages;
2091
	struct work_struct work;
2092
	unsigned long flags;
2093
#define FLUSHING_CACHED_CHARGE	0
2094 2095
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2096
static DEFINE_MUTEX(percpu_charge_mutex);
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2108
 */
2109
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2110 2111
{
	struct memcg_stock_pcp *stock;
2112
	bool ret = false;
2113

2114
	if (nr_pages > CHARGE_BATCH)
2115
		return ret;
2116

2117
	stock = &get_cpu_var(memcg_stock);
2118
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2119
		stock->nr_pages -= nr_pages;
2120 2121
		ret = true;
	}
2122 2123 2124 2125 2126
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2127
 * Returns stocks cached in percpu and reset cached information.
2128 2129 2130 2131 2132
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2133
	if (stock->nr_pages) {
2134
		page_counter_uncharge(&old->memory, stock->nr_pages);
2135
		if (do_swap_account)
2136
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2137
		css_put_many(&old->css, stock->nr_pages);
2138
		stock->nr_pages = 0;
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2149
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2150
	drain_stock(stock);
2151
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2152 2153
}

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2165
/*
2166
 * Cache charges(val) to local per_cpu area.
2167
 * This will be consumed by consume_stock() function, later.
2168
 */
2169
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170 2171 2172
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2173
	if (stock->cached != memcg) { /* reset if necessary */
2174
		drain_stock(stock);
2175
		stock->cached = memcg;
2176
	}
2177
	stock->nr_pages += nr_pages;
2178 2179 2180 2181
	put_cpu_var(memcg_stock);
}

/*
2182
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2183
 * of the hierarchy under it.
2184
 */
2185
static void drain_all_stock(struct mem_cgroup *root_memcg)
2186
{
2187
	int cpu, curcpu;
2188

2189 2190 2191
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2192 2193
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2194
	curcpu = get_cpu();
2195 2196
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2197
		struct mem_cgroup *memcg;
2198

2199 2200
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2201
			continue;
2202
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2203
			continue;
2204 2205 2206 2207 2208 2209
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2210
	}
2211
	put_cpu();
A
Andrew Morton 已提交
2212
	put_online_cpus();
2213
	mutex_unlock(&percpu_charge_mutex);
2214 2215
}

2216 2217 2218 2219
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2220
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2221 2222 2223
{
	int i;

2224
	spin_lock(&memcg->pcp_counter_lock);
2225
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2226
		long x = per_cpu(memcg->stat->count[i], cpu);
2227

2228 2229
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2230
	}
2231
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2232
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2233

2234 2235
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2236
	}
2237
	spin_unlock(&memcg->pcp_counter_lock);
2238 2239
}

2240
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2241 2242 2243 2244 2245
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2246
	struct mem_cgroup *iter;
2247

2248
	if (action == CPU_ONLINE)
2249 2250
		return NOTIFY_OK;

2251
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2252
		return NOTIFY_OK;
2253

2254
	for_each_mem_cgroup(iter)
2255 2256
		mem_cgroup_drain_pcp_counter(iter, cpu);

2257 2258 2259 2260 2261
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2262 2263
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2264
{
2265
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2266
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2267
	struct mem_cgroup *mem_over_limit;
2268
	struct page_counter *counter;
2269
	unsigned long nr_reclaimed;
2270 2271
	bool may_swap = true;
	bool drained = false;
2272
	int ret = 0;
2273

2274 2275
	if (mem_cgroup_is_root(memcg))
		goto done;
2276
retry:
2277 2278
	if (consume_stock(memcg, nr_pages))
		goto done;
2279

2280
	if (!do_swap_account ||
2281 2282
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2283
			goto done_restock;
2284
		if (do_swap_account)
2285 2286
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2287
	} else {
2288
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2289
		may_swap = false;
2290
	}
2291

2292 2293 2294 2295
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2311 2312
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2313

2314 2315
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2316 2317
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2318

2319
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2320
		goto retry;
2321

2322
	if (!drained) {
2323
		drain_all_stock(mem_over_limit);
2324 2325 2326 2327
		drained = true;
		goto retry;
	}

2328 2329
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2330 2331 2332 2333 2334 2335 2336 2337 2338
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2339
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2340 2341 2342 2343 2344 2345 2346 2347
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2348 2349 2350
	if (nr_retries--)
		goto retry;

2351 2352 2353
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2354 2355 2356
	if (fatal_signal_pending(current))
		goto bypass;

2357 2358
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2359
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2360
nomem:
2361
	if (!(gfp_mask & __GFP_NOFAIL))
2362
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2363
bypass:
2364
	return -EINTR;
2365 2366

done_restock:
2367
	css_get_many(&memcg->css, batch);
2368 2369
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2380
done:
2381
	return ret;
2382
}
2383

2384
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2385
{
2386 2387 2388
	if (mem_cgroup_is_root(memcg))
		return;

2389
	page_counter_uncharge(&memcg->memory, nr_pages);
2390
	if (do_swap_account)
2391
		page_counter_uncharge(&memcg->memsw, nr_pages);
2392

2393
	css_put_many(&memcg->css, nr_pages);
2394 2395
}

2396 2397
/*
 * A helper function to get mem_cgroup from ID. must be called under
2398 2399 2400
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2401 2402 2403 2404 2405 2406
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2407
	return mem_cgroup_from_id(id);
2408 2409
}

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2420
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2421
{
2422
	struct mem_cgroup *memcg;
2423
	unsigned short id;
2424 2425
	swp_entry_t ent;

2426
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2427

2428
	memcg = page->mem_cgroup;
2429 2430
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2431
			memcg = NULL;
2432
	} else if (PageSwapCache(page)) {
2433
		ent.val = page_private(page);
2434
		id = lookup_swap_cgroup_id(ent);
2435
		rcu_read_lock();
2436
		memcg = mem_cgroup_lookup(id);
2437
		if (memcg && !css_tryget_online(&memcg->css))
2438
			memcg = NULL;
2439
		rcu_read_unlock();
2440
	}
2441
	return memcg;
2442 2443
}

2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2475
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2476
			  bool lrucare)
2477
{
2478
	int isolated;
2479

2480
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2481 2482 2483 2484 2485

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2486 2487
	if (lrucare)
		lock_page_lru(page, &isolated);
2488

2489 2490
	/*
	 * Nobody should be changing or seriously looking at
2491
	 * page->mem_cgroup at this point:
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2503
	page->mem_cgroup = memcg;
2504

2505 2506
	if (lrucare)
		unlock_page_lru(page, isolated);
2507
}
2508

2509
#ifdef CONFIG_MEMCG_KMEM
2510 2511
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2512
{
2513
	struct page_counter *counter;
2514 2515
	int ret = 0;

2516 2517
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2518 2519
		return ret;

2520
	ret = try_charge(memcg, gfp, nr_pages);
2521 2522
	if (ret == -EINTR)  {
		/*
2523 2524 2525 2526 2527 2528
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2529 2530 2531
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2532 2533 2534
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2535 2536
		 * directed to the root cgroup in memcontrol.h
		 */
2537
		page_counter_charge(&memcg->memory, nr_pages);
2538
		if (do_swap_account)
2539
			page_counter_charge(&memcg->memsw, nr_pages);
2540
		css_get_many(&memcg->css, nr_pages);
2541 2542
		ret = 0;
	} else if (ret)
2543
		page_counter_uncharge(&memcg->kmem, nr_pages);
2544 2545 2546 2547

	return ret;
}

2548
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2549
{
2550
	page_counter_uncharge(&memcg->memory, nr_pages);
2551
	if (do_swap_account)
2552
		page_counter_uncharge(&memcg->memsw, nr_pages);
2553

2554
	page_counter_uncharge(&memcg->kmem, nr_pages);
2555

2556
	css_put_many(&memcg->css, nr_pages);
2557 2558
}

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2569
static int memcg_alloc_cache_id(void)
2570
{
2571 2572 2573 2574 2575 2576 2577
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2578

2579 2580 2581 2582 2583 2584 2585 2586 2587
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2588 2589 2590 2591 2592
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
	err = memcg_update_all_caches(size);
	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2604 2605 2606 2607 2608 2609 2610 2611 2612
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2613
	memcg_limited_groups_array_size = num;
2614 2615
}

2616
struct memcg_kmem_cache_create_work {
2617 2618 2619 2620 2621
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2622
static void memcg_kmem_cache_create_func(struct work_struct *w)
2623
{
2624 2625
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2626 2627
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2628

2629
	memcg_create_kmem_cache(memcg, cachep);
2630

2631
	css_put(&memcg->css);
2632 2633 2634 2635 2636 2637
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2638 2639
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2640
{
2641
	struct memcg_kmem_cache_create_work *cw;
2642

2643
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2644
	if (!cw)
2645
		return;
2646 2647

	css_get(&memcg->css);
2648 2649 2650

	cw->memcg = memcg;
	cw->cachep = cachep;
2651
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2652 2653 2654 2655

	schedule_work(&cw->work);
}

2656 2657
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2658 2659 2660 2661
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2662
	 * in __memcg_schedule_kmem_cache_create will recurse.
2663 2664 2665 2666 2667 2668 2669
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2670
	current->memcg_kmem_skip_account = 1;
2671
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2672
	current->memcg_kmem_skip_account = 0;
2673
}
2674

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2688
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2689 2690
{
	struct mem_cgroup *memcg;
2691
	struct kmem_cache *memcg_cachep;
2692 2693 2694 2695

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2696
	if (current->memcg_kmem_skip_account)
2697 2698
		return cachep;

2699
	memcg = get_mem_cgroup_from_mm(current->mm);
2700
	if (!memcg_kmem_is_active(memcg))
2701
		goto out;
2702

2703
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2704 2705
	if (likely(memcg_cachep))
		return memcg_cachep;
2706 2707 2708 2709 2710 2711 2712 2713 2714

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2715 2716 2717
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2718
	 */
2719
	memcg_schedule_kmem_cache_create(memcg, cachep);
2720
out:
2721
	css_put(&memcg->css);
2722
	return cachep;
2723 2724
}

2725 2726 2727 2728 2729 2730
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
		css_put(&cachep->memcg_params->memcg->css);
}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2752

2753
	memcg = get_mem_cgroup_from_mm(current->mm);
2754

2755
	if (!memcg_kmem_is_active(memcg)) {
2756 2757 2758 2759
		css_put(&memcg->css);
		return true;
	}

2760
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2775
		memcg_uncharge_kmem(memcg, 1 << order);
2776 2777
		return;
	}
2778
	page->mem_cgroup = memcg;
2779 2780 2781 2782
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2783
	struct mem_cgroup *memcg = page->mem_cgroup;
2784 2785 2786 2787

	if (!memcg)
		return;

2788
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2789

2790
	memcg_uncharge_kmem(memcg, 1 << order);
2791
	page->mem_cgroup = NULL;
2792 2793 2794
}
#endif /* CONFIG_MEMCG_KMEM */

2795 2796 2797 2798
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2799 2800 2801
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2802
 */
2803
void mem_cgroup_split_huge_fixup(struct page *head)
2804
{
2805
	int i;
2806

2807 2808
	if (mem_cgroup_disabled())
		return;
2809

2810
	for (i = 1; i < HPAGE_PMD_NR; i++)
2811
		head[i].mem_cgroup = head->mem_cgroup;
2812

2813
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2814
		       HPAGE_PMD_NR);
2815
}
2816
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2817

2818
/**
2819
 * mem_cgroup_move_account - move account of the page
2820
 * @page: the page
2821
 * @nr_pages: number of regular pages (>1 for huge pages)
2822 2823 2824 2825
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2826
 * - page is not on LRU (isolate_page() is useful.)
2827
 * - compound_lock is held when nr_pages > 1
2828
 *
2829 2830
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2831
 */
2832 2833 2834
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2835
				   struct mem_cgroup *to)
2836
{
2837 2838
	unsigned long flags;
	int ret;
2839

2840
	VM_BUG_ON(from == to);
2841
	VM_BUG_ON_PAGE(PageLRU(page), page);
2842 2843 2844 2845 2846 2847 2848
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2849
	if (nr_pages > 1 && !PageTransHuge(page))
2850 2851
		goto out;

2852
	/*
2853
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2854 2855 2856 2857 2858
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2859 2860

	ret = -EINVAL;
2861
	if (page->mem_cgroup != from)
2862
		goto out_unlock;
2863

2864
	spin_lock_irqsave(&from->move_lock, flags);
2865

2866
	if (!PageAnon(page) && page_mapped(page)) {
2867 2868 2869 2870 2871
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2872

2873 2874 2875 2876 2877 2878
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2879

2880
	/*
2881
	 * It is safe to change page->mem_cgroup here because the page
2882 2883 2884
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2885

2886
	/* caller should have done css_get */
2887
	page->mem_cgroup = to;
2888 2889
	spin_unlock_irqrestore(&from->move_lock, flags);

2890
	ret = 0;
2891 2892 2893

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2894
	memcg_check_events(to, page);
2895
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2896
	memcg_check_events(from, page);
2897 2898 2899
	local_irq_enable();
out_unlock:
	unlock_page(page);
2900
out:
2901 2902 2903
	return ret;
}

A
Andrew Morton 已提交
2904
#ifdef CONFIG_MEMCG_SWAP
2905 2906
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2907
{
2908 2909
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2910
}
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2923
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2924 2925 2926
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2927
				struct mem_cgroup *from, struct mem_cgroup *to)
2928 2929 2930
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2931 2932
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2933 2934 2935

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2936
		mem_cgroup_swap_statistics(to, true);
2937 2938 2939 2940 2941 2942
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2943
				struct mem_cgroup *from, struct mem_cgroup *to)
2944 2945 2946
{
	return -EINVAL;
}
2947
#endif
K
KAMEZAWA Hiroyuki 已提交
2948

2949
static DEFINE_MUTEX(memcg_limit_mutex);
2950

2951
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2952
				   unsigned long limit)
2953
{
2954 2955 2956
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2957
	int retry_count;
2958
	int ret;
2959 2960 2961 2962 2963 2964

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2965 2966
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2967

2968
	oldusage = page_counter_read(&memcg->memory);
2969

2970
	do {
2971 2972 2973 2974
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2975 2976 2977 2978

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2979
			ret = -EINVAL;
2980 2981
			break;
		}
2982 2983 2984 2985
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2986 2987 2988 2989

		if (!ret)
			break;

2990 2991
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2992
		curusage = page_counter_read(&memcg->memory);
2993
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2994
		if (curusage >= oldusage)
2995 2996 2997
			retry_count--;
		else
			oldusage = curusage;
2998 2999
	} while (retry_count);

3000 3001
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3002

3003 3004 3005
	return ret;
}

L
Li Zefan 已提交
3006
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3007
					 unsigned long limit)
3008
{
3009 3010 3011
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3012
	int retry_count;
3013
	int ret;
3014

3015
	/* see mem_cgroup_resize_res_limit */
3016 3017 3018 3019 3020 3021
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3022 3023 3024 3025
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3026 3027 3028 3029

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3030 3031 3032
			ret = -EINVAL;
			break;
		}
3033 3034 3035 3036
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3037 3038 3039 3040

		if (!ret)
			break;

3041 3042
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3043
		curusage = page_counter_read(&memcg->memsw);
3044
		/* Usage is reduced ? */
3045
		if (curusage >= oldusage)
3046
			retry_count--;
3047 3048
		else
			oldusage = curusage;
3049 3050
	} while (retry_count);

3051 3052
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3053

3054 3055 3056
	return ret;
}

3057 3058 3059 3060 3061 3062 3063 3064 3065
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3066
	unsigned long excess;
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3091
		spin_lock_irq(&mctz->lock);
3092
		__mem_cgroup_remove_exceeded(mz, mctz);
3093 3094 3095 3096 3097 3098

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3099 3100 3101
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3102
		excess = soft_limit_excess(mz->memcg);
3103 3104 3105 3106 3107 3108 3109 3110 3111
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3112
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3113
		spin_unlock_irq(&mctz->lock);
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3131 3132 3133 3134 3135 3136
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3137 3138
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3139 3140
	bool ret;

3141
	/*
3142 3143 3144 3145
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3146
	 */
3147 3148 3149 3150 3151 3152
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3153 3154
}

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3165 3166
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3167
	/* try to free all pages in this cgroup */
3168
	while (nr_retries && page_counter_read(&memcg->memory)) {
3169
		int progress;
3170

3171 3172 3173
		if (signal_pending(current))
			return -EINTR;

3174 3175
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3176
		if (!progress) {
3177
			nr_retries--;
3178
			/* maybe some writeback is necessary */
3179
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3180
		}
3181 3182

	}
3183 3184

	return 0;
3185 3186
}

3187 3188 3189
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3190
{
3191
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3192

3193 3194
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3195
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3196 3197
}

3198 3199
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3200
{
3201
	return mem_cgroup_from_css(css)->use_hierarchy;
3202 3203
}

3204 3205
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3206 3207
{
	int retval = 0;
3208
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3209
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3210

3211
	mutex_lock(&memcg_create_mutex);
3212 3213 3214 3215

	if (memcg->use_hierarchy == val)
		goto out;

3216
	/*
3217
	 * If parent's use_hierarchy is set, we can't make any modifications
3218 3219 3220 3221 3222 3223
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3224
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3225
				(val == 1 || val == 0)) {
3226
		if (!memcg_has_children(memcg))
3227
			memcg->use_hierarchy = val;
3228 3229 3230 3231
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3232 3233

out:
3234
	mutex_unlock(&memcg_create_mutex);
3235 3236 3237 3238

	return retval;
}

3239 3240
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3258 3259 3260 3261 3262 3263
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3264
		if (!swap)
3265
			val = page_counter_read(&memcg->memory);
3266
		else
3267
			val = page_counter_read(&memcg->memsw);
3268 3269 3270 3271
	}
	return val << PAGE_SHIFT;
}

3272 3273 3274 3275 3276 3277 3278
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3279

3280
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3281
			       struct cftype *cft)
B
Balbir Singh 已提交
3282
{
3283
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3284
	struct page_counter *counter;
3285

3286
	switch (MEMFILE_TYPE(cft->private)) {
3287
	case _MEM:
3288 3289
		counter = &memcg->memory;
		break;
3290
	case _MEMSWAP:
3291 3292
		counter = &memcg->memsw;
		break;
3293
	case _KMEM:
3294
		counter = &memcg->kmem;
3295
		break;
3296 3297 3298
	default:
		BUG();
	}
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3318
}
3319 3320

#ifdef CONFIG_MEMCG_KMEM
3321 3322
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3323 3324 3325 3326 3327 3328 3329
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3342
	mutex_lock(&memcg_create_mutex);
3343 3344
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3345 3346 3347 3348
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3349

3350
	memcg_id = memcg_alloc_cache_id();
3351 3352 3353 3354 3355 3356
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3357 3358
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3359
	 */
3360
	err = page_counter_limit(&memcg->kmem, nr_pages);
3361 3362 3363 3364
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3365 3366
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3367 3368 3369
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3370
	memcg->kmemcg_id = memcg_id;
3371
out:
3372 3373 3374 3375
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3376
				   unsigned long limit)
3377 3378 3379
{
	int ret;

3380
	mutex_lock(&memcg_limit_mutex);
3381
	if (!memcg_kmem_is_active(memcg))
3382
		ret = memcg_activate_kmem(memcg, limit);
3383
	else
3384 3385
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3386 3387 3388
	return ret;
}

3389
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3390
{
3391
	int ret = 0;
3392
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3393

3394 3395
	if (!parent)
		return 0;
3396

3397
	mutex_lock(&memcg_limit_mutex);
3398
	/*
3399 3400
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3401
	 */
3402
	if (memcg_kmem_is_active(parent))
3403 3404
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3405
	return ret;
3406
}
3407 3408
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3409
				   unsigned long limit)
3410 3411 3412
{
	return -EINVAL;
}
3413
#endif /* CONFIG_MEMCG_KMEM */
3414

3415 3416 3417 3418
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3419 3420
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3421
{
3422
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3423
	unsigned long nr_pages;
3424 3425
	int ret;

3426
	buf = strstrip(buf);
3427
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3428 3429
	if (ret)
		return ret;
3430

3431
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3432
	case RES_LIMIT:
3433 3434 3435 3436
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3437 3438 3439
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3440
			break;
3441 3442
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3443
			break;
3444 3445 3446 3447
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3448
		break;
3449 3450 3451
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3452 3453
		break;
	}
3454
	return ret ?: nbytes;
B
Balbir Singh 已提交
3455 3456
}

3457 3458
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3459
{
3460
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3461
	struct page_counter *counter;
3462

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3476

3477
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3478
	case RES_MAX_USAGE:
3479
		page_counter_reset_watermark(counter);
3480 3481
		break;
	case RES_FAILCNT:
3482
		counter->failcnt = 0;
3483
		break;
3484 3485
	default:
		BUG();
3486
	}
3487

3488
	return nbytes;
3489 3490
}

3491
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3492 3493
					struct cftype *cft)
{
3494
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3495 3496
}

3497
#ifdef CONFIG_MMU
3498
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3499 3500
					struct cftype *cft, u64 val)
{
3501
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3502 3503 3504

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3505

3506
	/*
3507 3508 3509 3510
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3511
	 */
3512
	memcg->move_charge_at_immigrate = val;
3513 3514
	return 0;
}
3515
#else
3516
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3517 3518 3519 3520 3521
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3522

3523
#ifdef CONFIG_NUMA
3524
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3525
{
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3538
	int nid;
3539
	unsigned long nr;
3540
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3541

3542 3543 3544 3545 3546 3547 3548 3549 3550
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3551 3552
	}

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3568 3569 3570 3571 3572 3573
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3574
static int memcg_stat_show(struct seq_file *m, void *v)
3575
{
3576
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3577
	unsigned long memory, memsw;
3578 3579
	struct mem_cgroup *mi;
	unsigned int i;
3580

3581 3582 3583 3584
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3585 3586
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3587
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3588
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3589
			continue;
3590 3591
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3592
	}
L
Lee Schermerhorn 已提交
3593

3594 3595 3596 3597 3598 3599 3600 3601
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3602
	/* Hierarchical information */
3603 3604 3605 3606
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3607
	}
3608 3609 3610 3611 3612
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3613

3614 3615 3616
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3617
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3618
			continue;
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3639
	}
K
KAMEZAWA Hiroyuki 已提交
3640

K
KOSAKI Motohiro 已提交
3641 3642 3643 3644
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3645
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3646 3647 3648 3649 3650
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3651
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3652
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3653

3654 3655 3656 3657
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3658
			}
3659 3660 3661 3662
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3663 3664 3665
	}
#endif

3666 3667 3668
	return 0;
}

3669 3670
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3671
{
3672
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3673

3674
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3675 3676
}

3677 3678
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3679
{
3680
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3681

3682
	if (val > 100)
K
KOSAKI Motohiro 已提交
3683 3684
		return -EINVAL;

3685
	if (css->parent)
3686 3687 3688
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3689

K
KOSAKI Motohiro 已提交
3690 3691 3692
	return 0;
}

3693 3694 3695
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3696
	unsigned long usage;
3697 3698 3699 3700
	int i;

	rcu_read_lock();
	if (!swap)
3701
		t = rcu_dereference(memcg->thresholds.primary);
3702
	else
3703
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3704 3705 3706 3707

	if (!t)
		goto unlock;

3708
	usage = mem_cgroup_usage(memcg, swap);
3709 3710

	/*
3711
	 * current_threshold points to threshold just below or equal to usage.
3712 3713 3714
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3715
	i = t->current_threshold;
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3739
	t->current_threshold = i - 1;
3740 3741 3742 3743 3744 3745
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3746 3747 3748 3749 3750 3751 3752
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3753 3754 3755 3756 3757 3758 3759
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3760 3761 3762 3763 3764 3765 3766
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3767 3768
}

3769
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3770 3771 3772
{
	struct mem_cgroup_eventfd_list *ev;

3773 3774
	spin_lock(&memcg_oom_lock);

3775
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3776
		eventfd_signal(ev->eventfd, 1);
3777 3778

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3779 3780 3781
	return 0;
}

3782
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3783
{
K
KAMEZAWA Hiroyuki 已提交
3784 3785
	struct mem_cgroup *iter;

3786
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3787
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3788 3789
}

3790
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3791
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3792
{
3793 3794
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3795 3796
	unsigned long threshold;
	unsigned long usage;
3797
	int i, size, ret;
3798

3799
	ret = page_counter_memparse(args, "-1", &threshold);
3800 3801 3802 3803
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3804

3805
	if (type == _MEM) {
3806
		thresholds = &memcg->thresholds;
3807
		usage = mem_cgroup_usage(memcg, false);
3808
	} else if (type == _MEMSWAP) {
3809
		thresholds = &memcg->memsw_thresholds;
3810
		usage = mem_cgroup_usage(memcg, true);
3811
	} else
3812 3813 3814
		BUG();

	/* Check if a threshold crossed before adding a new one */
3815
	if (thresholds->primary)
3816 3817
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3818
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3819 3820

	/* Allocate memory for new array of thresholds */
3821
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3822
			GFP_KERNEL);
3823
	if (!new) {
3824 3825 3826
		ret = -ENOMEM;
		goto unlock;
	}
3827
	new->size = size;
3828 3829

	/* Copy thresholds (if any) to new array */
3830 3831
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3832
				sizeof(struct mem_cgroup_threshold));
3833 3834
	}

3835
	/* Add new threshold */
3836 3837
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3838 3839

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3840
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3841 3842 3843
			compare_thresholds, NULL);

	/* Find current threshold */
3844
	new->current_threshold = -1;
3845
	for (i = 0; i < size; i++) {
3846
		if (new->entries[i].threshold <= usage) {
3847
			/*
3848 3849
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3850 3851
			 * it here.
			 */
3852
			++new->current_threshold;
3853 3854
		} else
			break;
3855 3856
	}

3857 3858 3859 3860 3861
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3862

3863
	/* To be sure that nobody uses thresholds */
3864 3865 3866 3867 3868 3869 3870 3871
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3872
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3873 3874
	struct eventfd_ctx *eventfd, const char *args)
{
3875
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3876 3877
}

3878
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3879 3880
	struct eventfd_ctx *eventfd, const char *args)
{
3881
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3882 3883
}

3884
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3885
	struct eventfd_ctx *eventfd, enum res_type type)
3886
{
3887 3888
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3889
	unsigned long usage;
3890
	int i, j, size;
3891 3892

	mutex_lock(&memcg->thresholds_lock);
3893 3894

	if (type == _MEM) {
3895
		thresholds = &memcg->thresholds;
3896
		usage = mem_cgroup_usage(memcg, false);
3897
	} else if (type == _MEMSWAP) {
3898
		thresholds = &memcg->memsw_thresholds;
3899
		usage = mem_cgroup_usage(memcg, true);
3900
	} else
3901 3902
		BUG();

3903 3904 3905
	if (!thresholds->primary)
		goto unlock;

3906 3907 3908 3909
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3910 3911 3912
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3913 3914 3915
			size++;
	}

3916
	new = thresholds->spare;
3917

3918 3919
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3920 3921
		kfree(new);
		new = NULL;
3922
		goto swap_buffers;
3923 3924
	}

3925
	new->size = size;
3926 3927

	/* Copy thresholds and find current threshold */
3928 3929 3930
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3931 3932
			continue;

3933
		new->entries[j] = thresholds->primary->entries[i];
3934
		if (new->entries[j].threshold <= usage) {
3935
			/*
3936
			 * new->current_threshold will not be used
3937 3938 3939
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3940
			++new->current_threshold;
3941 3942 3943 3944
		}
		j++;
	}

3945
swap_buffers:
3946 3947
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3948 3949 3950 3951 3952 3953
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3954
	rcu_assign_pointer(thresholds->primary, new);
3955

3956
	/* To be sure that nobody uses thresholds */
3957
	synchronize_rcu();
3958
unlock:
3959 3960
	mutex_unlock(&memcg->thresholds_lock);
}
3961

3962
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3963 3964
	struct eventfd_ctx *eventfd)
{
3965
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3966 3967
}

3968
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3969 3970
	struct eventfd_ctx *eventfd)
{
3971
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3972 3973
}

3974
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3975
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3976 3977 3978 3979 3980 3981 3982
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3983
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3984 3985 3986 3987 3988

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3989
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3990
		eventfd_signal(eventfd, 1);
3991
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3992 3993 3994 3995

	return 0;
}

3996
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3997
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3998 3999 4000
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4001
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4002

4003
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4004 4005 4006 4007 4008 4009
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4010
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4011 4012
}

4013
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4014
{
4015
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4016

4017 4018
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4019 4020 4021
	return 0;
}

4022
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4023 4024
	struct cftype *cft, u64 val)
{
4025
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4026 4027

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4028
	if (!css->parent || !((val == 0) || (val == 1)))
4029 4030
		return -EINVAL;

4031
	memcg->oom_kill_disable = val;
4032
	if (!val)
4033
		memcg_oom_recover(memcg);
4034

4035 4036 4037
	return 0;
}

A
Andrew Morton 已提交
4038
#ifdef CONFIG_MEMCG_KMEM
4039
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4040
{
4041 4042 4043 4044 4045
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4046

4047
	return mem_cgroup_sockets_init(memcg, ss);
4048
}
4049

4050
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4051
{
4052
	memcg_destroy_kmem_caches(memcg);
4053
	mem_cgroup_sockets_destroy(memcg);
4054
}
4055
#else
4056
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4057 4058 4059
{
	return 0;
}
G
Glauber Costa 已提交
4060

4061 4062 4063
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4064 4065
#endif

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4079 4080 4081 4082 4083
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4084
static void memcg_event_remove(struct work_struct *work)
4085
{
4086 4087
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4088
	struct mem_cgroup *memcg = event->memcg;
4089 4090 4091

	remove_wait_queue(event->wqh, &event->wait);

4092
	event->unregister_event(memcg, event->eventfd);
4093 4094 4095 4096 4097 4098

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4099
	css_put(&memcg->css);
4100 4101 4102 4103 4104 4105 4106
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4107 4108
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4109
{
4110 4111
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4112
	struct mem_cgroup *memcg = event->memcg;
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4125
		spin_lock(&memcg->event_list_lock);
4126 4127 4128 4129 4130 4131 4132 4133
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4134
		spin_unlock(&memcg->event_list_lock);
4135 4136 4137 4138 4139
	}

	return 0;
}

4140
static void memcg_event_ptable_queue_proc(struct file *file,
4141 4142
		wait_queue_head_t *wqh, poll_table *pt)
{
4143 4144
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4145 4146 4147 4148 4149 4150

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4151 4152
 * DO NOT USE IN NEW FILES.
 *
4153 4154 4155 4156 4157
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4158 4159
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4160
{
4161
	struct cgroup_subsys_state *css = of_css(of);
4162
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4163
	struct mem_cgroup_event *event;
4164 4165 4166 4167
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4168
	const char *name;
4169 4170 4171
	char *endp;
	int ret;

4172 4173 4174
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4175 4176
	if (*endp != ' ')
		return -EINVAL;
4177
	buf = endp + 1;
4178

4179
	cfd = simple_strtoul(buf, &endp, 10);
4180 4181
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4182
	buf = endp + 1;
4183 4184 4185 4186 4187

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4188
	event->memcg = memcg;
4189
	INIT_LIST_HEAD(&event->list);
4190 4191 4192
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4218 4219 4220 4221 4222
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4223 4224
	 *
	 * DO NOT ADD NEW FILES.
4225
	 */
A
Al Viro 已提交
4226
	name = cfile.file->f_path.dentry->d_name.name;
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4238 4239
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4240 4241 4242 4243 4244
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4245
	/*
4246 4247 4248
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4249
	 */
A
Al Viro 已提交
4250
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4251
					       &memory_cgrp_subsys);
4252
	ret = -EINVAL;
4253
	if (IS_ERR(cfile_css))
4254
		goto out_put_cfile;
4255 4256
	if (cfile_css != css) {
		css_put(cfile_css);
4257
		goto out_put_cfile;
4258
	}
4259

4260
	ret = event->register_event(memcg, event->eventfd, buf);
4261 4262 4263 4264 4265
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4266 4267 4268
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4269 4270 4271 4272

	fdput(cfile);
	fdput(efile);

4273
	return nbytes;
4274 4275

out_put_css:
4276
	css_put(css);
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4289
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4290
	{
4291
		.name = "usage_in_bytes",
4292
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4293
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4294
	},
4295 4296
	{
		.name = "max_usage_in_bytes",
4297
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4298
		.write = mem_cgroup_reset,
4299
		.read_u64 = mem_cgroup_read_u64,
4300
	},
B
Balbir Singh 已提交
4301
	{
4302
		.name = "limit_in_bytes",
4303
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4304
		.write = mem_cgroup_write,
4305
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4306
	},
4307 4308 4309
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4310
		.write = mem_cgroup_write,
4311
		.read_u64 = mem_cgroup_read_u64,
4312
	},
B
Balbir Singh 已提交
4313 4314
	{
		.name = "failcnt",
4315
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4316
		.write = mem_cgroup_reset,
4317
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4318
	},
4319 4320
	{
		.name = "stat",
4321
		.seq_show = memcg_stat_show,
4322
	},
4323 4324
	{
		.name = "force_empty",
4325
		.write = mem_cgroup_force_empty_write,
4326
	},
4327 4328 4329 4330 4331
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4332
	{
4333
		.name = "cgroup.event_control",		/* XXX: for compat */
4334
		.write = memcg_write_event_control,
4335 4336 4337
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4338 4339 4340 4341 4342
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4343 4344 4345 4346 4347
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4348 4349
	{
		.name = "oom_control",
4350
		.seq_show = mem_cgroup_oom_control_read,
4351
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4352 4353
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4354 4355 4356
	{
		.name = "pressure_level",
	},
4357 4358 4359
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4360
		.seq_show = memcg_numa_stat_show,
4361 4362
	},
#endif
4363 4364 4365 4366
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4367
		.write = mem_cgroup_write,
4368
		.read_u64 = mem_cgroup_read_u64,
4369 4370 4371 4372
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4373
		.read_u64 = mem_cgroup_read_u64,
4374 4375 4376 4377
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4378
		.write = mem_cgroup_reset,
4379
		.read_u64 = mem_cgroup_read_u64,
4380 4381 4382 4383
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4384
		.write = mem_cgroup_reset,
4385
		.read_u64 = mem_cgroup_read_u64,
4386
	},
4387 4388 4389
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4390 4391 4392 4393
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4394 4395
	},
#endif
4396
#endif
4397
	{ },	/* terminate */
4398
};
4399

4400 4401 4402 4403 4404
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4405
		.read_u64 = mem_cgroup_read_u64,
4406 4407 4408 4409
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4410
		.write = mem_cgroup_reset,
4411
		.read_u64 = mem_cgroup_read_u64,
4412 4413 4414 4415
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4416
		.write = mem_cgroup_write,
4417
		.read_u64 = mem_cgroup_read_u64,
4418 4419 4420 4421
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4422
		.write = mem_cgroup_reset,
4423
		.read_u64 = mem_cgroup_read_u64,
4424 4425 4426 4427
	},
	{ },	/* terminate */
};
#endif
4428
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4429 4430
{
	struct mem_cgroup_per_node *pn;
4431
	struct mem_cgroup_per_zone *mz;
4432
	int zone, tmp = node;
4433 4434 4435 4436 4437 4438 4439 4440
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4441 4442
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4443
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4444 4445
	if (!pn)
		return 1;
4446 4447 4448

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4449
		lruvec_init(&mz->lruvec);
4450 4451
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4452
		mz->memcg = memcg;
4453
	}
4454
	memcg->nodeinfo[node] = pn;
4455 4456 4457
	return 0;
}

4458
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4459
{
4460
	kfree(memcg->nodeinfo[node]);
4461 4462
}

4463 4464
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4465
	struct mem_cgroup *memcg;
4466
	size_t size;
4467

4468 4469
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4470

4471
	memcg = kzalloc(size, GFP_KERNEL);
4472
	if (!memcg)
4473 4474
		return NULL;

4475 4476
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4477
		goto out_free;
4478 4479
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4480 4481

out_free:
4482
	kfree(memcg);
4483
	return NULL;
4484 4485
}

4486
/*
4487 4488 4489 4490 4491 4492 4493 4494
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4495
 */
4496 4497

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4498
{
4499
	int node;
4500

4501
	mem_cgroup_remove_from_trees(memcg);
4502 4503 4504 4505 4506 4507

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4508
	disarm_static_keys(memcg);
4509
	kfree(memcg);
4510
}
4511

4512 4513 4514
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4515
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4516
{
4517
	if (!memcg->memory.parent)
4518
		return NULL;
4519
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4520
}
G
Glauber Costa 已提交
4521
EXPORT_SYMBOL(parent_mem_cgroup);
4522

4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4546
static struct cgroup_subsys_state * __ref
4547
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4548
{
4549
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4550
	long error = -ENOMEM;
4551
	int node;
B
Balbir Singh 已提交
4552

4553 4554
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4555
		return ERR_PTR(error);
4556

B
Bob Liu 已提交
4557
	for_each_node(node)
4558
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4559
			goto free_out;
4560

4561
	/* root ? */
4562
	if (parent_css == NULL) {
4563
		root_mem_cgroup = memcg;
4564
		page_counter_init(&memcg->memory, NULL);
4565
		memcg->high = PAGE_COUNTER_MAX;
4566
		memcg->soft_limit = PAGE_COUNTER_MAX;
4567 4568
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4569
	}
4570

4571 4572 4573 4574 4575
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4576
	vmpressure_init(&memcg->vmpressure);
4577 4578
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4579 4580 4581
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4582 4583 4584 4585 4586 4587 4588 4589 4590

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4591
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4592
{
4593
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4594
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4595
	int ret;
4596

4597
	if (css->id > MEM_CGROUP_ID_MAX)
4598 4599
		return -ENOSPC;

T
Tejun Heo 已提交
4600
	if (!parent)
4601 4602
		return 0;

4603
	mutex_lock(&memcg_create_mutex);
4604 4605 4606 4607 4608 4609

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4610
		page_counter_init(&memcg->memory, &parent->memory);
4611
		memcg->high = PAGE_COUNTER_MAX;
4612
		memcg->soft_limit = PAGE_COUNTER_MAX;
4613 4614
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4615

4616
		/*
4617 4618
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4619
		 */
4620
	} else {
4621
		page_counter_init(&memcg->memory, NULL);
4622
		memcg->high = PAGE_COUNTER_MAX;
4623
		memcg->soft_limit = PAGE_COUNTER_MAX;
4624 4625
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4626 4627 4628 4629 4630
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4631
		if (parent != root_mem_cgroup)
4632
			memory_cgrp_subsys.broken_hierarchy = true;
4633
	}
4634
	mutex_unlock(&memcg_create_mutex);
4635

4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4648 4649
}

4650
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4651
{
4652
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4653
	struct mem_cgroup_event *event, *tmp;
4654 4655 4656 4657 4658 4659

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4660 4661
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4662 4663 4664
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4665
	spin_unlock(&memcg->event_list_lock);
4666

4667
	vmpressure_cleanup(&memcg->vmpressure);
4668 4669
}

4670
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4671
{
4672
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4673

4674
	memcg_destroy_kmem(memcg);
4675
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4676 4677
}

4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4695 4696 4697
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4698 4699
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4700
	memcg->soft_limit = PAGE_COUNTER_MAX;
4701 4702
}

4703
#ifdef CONFIG_MMU
4704
/* Handlers for move charge at task migration. */
4705
static int mem_cgroup_do_precharge(unsigned long count)
4706
{
4707
	int ret;
4708 4709

	/* Try a single bulk charge without reclaim first */
4710
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4711
	if (!ret) {
4712 4713 4714
		mc.precharge += count;
		return ret;
	}
4715
	if (ret == -EINTR) {
4716
		cancel_charge(root_mem_cgroup, count);
4717 4718
		return ret;
	}
4719 4720

	/* Try charges one by one with reclaim */
4721
	while (count--) {
4722
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4723 4724 4725
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4726 4727
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4728
		 */
4729
		if (ret == -EINTR)
4730
			cancel_charge(root_mem_cgroup, 1);
4731 4732
		if (ret)
			return ret;
4733
		mc.precharge++;
4734
		cond_resched();
4735
	}
4736
	return 0;
4737 4738 4739
}

/**
4740
 * get_mctgt_type - get target type of moving charge
4741 4742 4743
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4744
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4745 4746 4747 4748 4749 4750
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4751 4752 4753
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4754 4755 4756 4757 4758
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4759
	swp_entry_t	ent;
4760 4761 4762
};

enum mc_target_type {
4763
	MC_TARGET_NONE = 0,
4764
	MC_TARGET_PAGE,
4765
	MC_TARGET_SWAP,
4766 4767
};

D
Daisuke Nishimura 已提交
4768 4769
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4770
{
D
Daisuke Nishimura 已提交
4771
	struct page *page = vm_normal_page(vma, addr, ptent);
4772

D
Daisuke Nishimura 已提交
4773 4774 4775 4776
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
4777
		if (!move_anon())
D
Daisuke Nishimura 已提交
4778
			return NULL;
4779 4780
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4781 4782 4783 4784 4785 4786 4787
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4788
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4789 4790 4791 4792 4793 4794 4795 4796
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
4797 4798 4799 4800
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4801
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4802 4803 4804 4805 4806
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4807 4808 4809 4810 4811 4812 4813
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4814

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
4828
	pgoff = linear_page_index(vma, addr);
4829 4830

	/* page is moved even if it's not RSS of this task(page-faulted). */
4831 4832
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4845
#endif
4846 4847 4848
	return page;
}

4849
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4850 4851 4852
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4853
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4854 4855 4856 4857 4858 4859
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4860
	else if (pte_none(ptent))
4861
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4862 4863

	if (!page && !ent.val)
4864
		return ret;
4865 4866
	if (page) {
		/*
4867
		 * Do only loose check w/o serialization.
4868
		 * mem_cgroup_move_account() checks the page is valid or
4869
		 * not under LRU exclusion.
4870
		 */
4871
		if (page->mem_cgroup == mc.from) {
4872 4873 4874 4875 4876 4877 4878
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4879 4880
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4881
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4882 4883 4884
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4885 4886 4887 4888
	}
	return ret;
}

4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4902
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4903 4904
	if (!move_anon())
		return ret;
4905
	if (page->mem_cgroup == mc.from) {
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4922 4923 4924 4925 4926 4927 4928 4929
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4930
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4931 4932
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4933
		spin_unlock(ptl);
4934
		return 0;
4935
	}
4936

4937 4938
	if (pmd_trans_unstable(pmd))
		return 0;
4939 4940
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4941
		if (get_mctgt_type(vma, addr, *pte, NULL))
4942 4943 4944 4945
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4946 4947 4948
	return 0;
}

4949 4950 4951 4952 4953
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4954
	down_read(&mm->mmap_sem);
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4966
	up_read(&mm->mmap_sem);
4967 4968 4969 4970 4971 4972 4973 4974 4975

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4976 4977 4978 4979 4980
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4981 4982
}

4983 4984
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4985
{
4986 4987 4988
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4989
	/* we must uncharge all the leftover precharges from mc.to */
4990
	if (mc.precharge) {
4991
		cancel_charge(mc.to, mc.precharge);
4992 4993 4994 4995 4996 4997 4998
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4999
		cancel_charge(mc.from, mc.moved_charge);
5000
		mc.moved_charge = 0;
5001
	}
5002 5003 5004
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5005
		if (!mem_cgroup_is_root(mc.from))
5006
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5007

5008
		/*
5009 5010
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5011
		 */
5012
		if (!mem_cgroup_is_root(mc.to))
5013 5014
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5015
		css_put_many(&mc.from->css, mc.moved_swap);
5016

L
Li Zefan 已提交
5017
		/* we've already done css_get(mc.to) */
5018 5019
		mc.moved_swap = 0;
	}
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5033
	spin_lock(&mc.lock);
5034 5035
	mc.from = NULL;
	mc.to = NULL;
5036
	spin_unlock(&mc.lock);
5037 5038
}

5039
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5040
				 struct cgroup_taskset *tset)
5041
{
5042
	struct task_struct *p = cgroup_taskset_first(tset);
5043
	int ret = 0;
5044
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5045
	unsigned long move_charge_at_immigrate;
5046

5047 5048 5049 5050 5051 5052 5053
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5054 5055 5056
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5057
		VM_BUG_ON(from == memcg);
5058 5059 5060 5061 5062

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5063 5064 5065 5066
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5067
			VM_BUG_ON(mc.moved_charge);
5068
			VM_BUG_ON(mc.moved_swap);
5069

5070
			spin_lock(&mc.lock);
5071
			mc.from = from;
5072
			mc.to = memcg;
5073
			mc.immigrate_flags = move_charge_at_immigrate;
5074
			spin_unlock(&mc.lock);
5075
			/* We set mc.moving_task later */
5076 5077 5078 5079

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5080 5081
		}
		mmput(mm);
5082 5083 5084 5085
	}
	return ret;
}

5086
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5087
				     struct cgroup_taskset *tset)
5088
{
5089 5090
	if (mc.to)
		mem_cgroup_clear_mc();
5091 5092
}

5093 5094 5095
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5096
{
5097 5098 5099 5100
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5101 5102 5103
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5104

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5115
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5116
		if (mc.precharge < HPAGE_PMD_NR) {
5117
			spin_unlock(ptl);
5118 5119 5120 5121 5122 5123 5124
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5125
							     mc.from, mc.to)) {
5126 5127 5128 5129 5130 5131 5132
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5133
		spin_unlock(ptl);
5134
		return 0;
5135 5136
	}

5137 5138
	if (pmd_trans_unstable(pmd))
		return 0;
5139 5140 5141 5142
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5143
		swp_entry_t ent;
5144 5145 5146 5147

		if (!mc.precharge)
			break;

5148
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5149 5150 5151 5152
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5153
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5154
				mc.precharge--;
5155 5156
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5157 5158
			}
			putback_lru_page(page);
5159
put:			/* get_mctgt_type() gets the page */
5160 5161
			put_page(page);
			break;
5162 5163
		case MC_TARGET_SWAP:
			ent = target.ent;
5164
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5165
				mc.precharge--;
5166 5167 5168
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5169
			break;
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5184
		ret = mem_cgroup_do_precharge(1);
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5197 5198 5199 5200 5201 5202 5203
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5235
	up_read(&mm->mmap_sem);
5236
	atomic_dec(&mc.from->moving_account);
5237 5238
}

5239
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5240
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5241
{
5242
	struct task_struct *p = cgroup_taskset_first(tset);
5243
	struct mm_struct *mm = get_task_mm(p);
5244 5245

	if (mm) {
5246 5247
		if (mc.to)
			mem_cgroup_move_charge(mm);
5248 5249
		mmput(mm);
	}
5250 5251
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5252
}
5253
#else	/* !CONFIG_MMU */
5254
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5255
				 struct cgroup_taskset *tset)
5256 5257 5258
{
	return 0;
}
5259
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5260
				     struct cgroup_taskset *tset)
5261 5262
{
}
5263
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5264
				 struct cgroup_taskset *tset)
5265 5266 5267
{
}
#endif
B
Balbir Singh 已提交
5268

5269 5270
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5271 5272
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5273
 */
5274
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5275 5276
{
	/*
5277
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5278 5279 5280
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5281
	if (cgroup_on_dfl(root_css->cgroup))
5282
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5283 5284
}

5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &low);
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &high);
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &max);
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5426
struct cgroup_subsys memory_cgrp_subsys = {
5427
	.css_alloc = mem_cgroup_css_alloc,
5428
	.css_online = mem_cgroup_css_online,
5429 5430
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5431
	.css_reset = mem_cgroup_css_reset,
5432 5433
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5434
	.attach = mem_cgroup_move_task,
5435
	.bind = mem_cgroup_bind,
5436 5437
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5438
	.early_init = 0,
B
Balbir Singh 已提交
5439
};
5440

A
Andrew Morton 已提交
5441
#ifdef CONFIG_MEMCG_SWAP
5442 5443
static int __init enable_swap_account(char *s)
{
5444
	if (!strcmp(s, "1"))
5445
		really_do_swap_account = 1;
5446
	else if (!strcmp(s, "0"))
5447 5448 5449
		really_do_swap_account = 0;
	return 1;
}
5450
__setup("swapaccount=", enable_swap_account);
5451

5452 5453
static void __init memsw_file_init(void)
{
5454 5455
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5456 5457 5458 5459 5460 5461 5462 5463
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5464
}
5465

5466
#else
5467
static void __init enable_swap_cgroup(void)
5468 5469
{
}
5470
#endif
5471

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

	if (page_counter_read(&memcg->memory) > memcg->low)
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

		if (page_counter_read(&memcg->memory) > memcg->low)
			return false;
	}
	return true;
}

5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5532
	struct mem_cgroup *memcg;
5533 5534 5535 5536 5537 5538 5539 5540
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

5541
	memcg = page->mem_cgroup;
5542 5543

	/* Readahead page, never charged */
5544
	if (!memcg)
5545 5546
		return;

5547
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5548
	VM_BUG_ON_PAGE(oldid, page);
5549 5550
	mem_cgroup_swap_statistics(memcg, true);

5551
	page->mem_cgroup = NULL;
5552

5553 5554 5555 5556 5557
	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5558

5559 5560
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5581
		if (!mem_cgroup_is_root(memcg))
5582
			page_counter_uncharge(&memcg->memsw, 1);
5583 5584 5585 5586 5587 5588 5589
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5625
		if (page->mem_cgroup)
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5686 5687
	commit_charge(page, memcg, lrucare);

5688 5689 5690 5691 5692
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5693 5694 5695 5696
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5738 5739 5740 5741
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5742
	unsigned long nr_pages = nr_anon + nr_file;
5743 5744
	unsigned long flags;

5745
	if (!mem_cgroup_is_root(memcg)) {
5746 5747 5748
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5749 5750
		memcg_oom_recover(memcg);
	}
5751 5752 5753 5754 5755 5756

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5757
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5758 5759
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5760 5761

	if (!mem_cgroup_is_root(memcg))
5762
		css_put_many(&memcg->css, nr_pages);
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5785
		if (!page->mem_cgroup)
5786 5787 5788 5789
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5790
		 * page->mem_cgroup at this point, we have fully
5791
		 * exclusive access to the page.
5792 5793
		 */

5794
		if (memcg != page->mem_cgroup) {
5795
			if (memcg) {
5796 5797 5798
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5799
			}
5800
			memcg = page->mem_cgroup;
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5814
		page->mem_cgroup = NULL;
5815 5816 5817 5818 5819

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5820 5821
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5822 5823
}

5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5836
	/* Don't touch page->lru of any random page, pre-check: */
5837
	if (!page->mem_cgroup)
5838 5839
		return;

5840 5841 5842
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5843

5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5855

5856 5857
	if (!list_empty(page_list))
		uncharge_list(page_list);
5858 5859 5860 5861 5862 5863
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5864
 * @lrucare: either or both pages might be on the LRU already
5865 5866 5867 5868 5869 5870 5871 5872
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5873
	struct mem_cgroup *memcg;
5874 5875 5876 5877 5878 5879 5880
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5881 5882
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5883 5884 5885 5886 5887

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5888
	if (newpage->mem_cgroup)
5889 5890
		return;

5891 5892 5893 5894 5895 5896
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5897
	memcg = oldpage->mem_cgroup;
5898
	if (!memcg)
5899 5900 5901 5902 5903
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5904
	oldpage->mem_cgroup = NULL;
5905 5906 5907 5908

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5909
	commit_charge(newpage, memcg, lrucare);
5910 5911
}

5912
/*
5913 5914 5915 5916 5917 5918
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5919 5920 5921 5922
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5923
	enable_swap_cgroup();
5924
	mem_cgroup_soft_limit_tree_init();
5925
	memcg_stock_init();
5926 5927 5928
	return 0;
}
subsys_initcall(mem_cgroup_init);