memcontrol.c 154.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103 104 105
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
106
	"rss_huge",
107
	"mapped_file",
108
	"dirty",
109
	"writeback",
110 111 112 113 114 115 116 117 118 119
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

120 121 122 123 124 125 126 127
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

128 129 130
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
131

132 133 134 135 136
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

137
struct mem_cgroup_tree_per_node {
138 139 140 141 142 143 144 145 146 147
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
148 149 150 151 152
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
153

154 155 156
/*
 * cgroup_event represents events which userspace want to receive.
 */
157
struct mem_cgroup_event {
158
	/*
159
	 * memcg which the event belongs to.
160
	 */
161
	struct mem_cgroup *memcg;
162 163 164 165 166 167 168 169
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
170 171 172 173 174
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
175
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
176
			      struct eventfd_ctx *eventfd, const char *args);
177 178 179 180 181
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
182
	void (*unregister_event)(struct mem_cgroup *memcg,
183
				 struct eventfd_ctx *eventfd);
184 185 186 187 188 189 190 191 192 193
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

194 195
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196

197 198
/* Stuffs for move charges at task migration. */
/*
199
 * Types of charges to be moved.
200
 */
201 202 203
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
204

205 206
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
207
	spinlock_t	  lock; /* for from, to */
208
	struct mm_struct  *mm;
209 210
	struct mem_cgroup *from;
	struct mem_cgroup *to;
211
	unsigned long flags;
212
	unsigned long precharge;
213
	unsigned long moved_charge;
214
	unsigned long moved_swap;
215 216 217
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
218
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
219 220
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
221

222 223 224 225
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
226
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
227
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
228

229 230
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
231
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
232
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
234 235 236
	NR_CHARGE_TYPE,
};

237
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
238 239 240 241
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
242
	_KMEM,
V
Vladimir Davydov 已提交
243
	_TCP,
G
Glauber Costa 已提交
244 245
};

246 247
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
248
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
249 250
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
251

252 253 254 255 256 257 258 259 260 261 262 263 264
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

265 266 267 268 269
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

270
#ifndef CONFIG_SLOB
271
/*
272
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
273 274 275 276 277
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
278
 *
279 280
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
281
 */
282 283
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
284

285 286 287 288 289 290 291 292 293 294 295 296 297
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

298 299 300 301 302 303
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
304
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305 306
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
307
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
308 309 310
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
311
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312

313 314 315 316 317 318
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
319
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320
EXPORT_SYMBOL(memcg_kmem_enabled_key);
321

322 323
struct workqueue_struct *memcg_kmem_cache_wq;

324
#endif /* !CONFIG_SLOB */
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

343
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
344 345 346 347 348
		memcg = root_mem_cgroup;

	return &memcg->css;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

377 378
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
379
{
380
	int nid = page_to_nid(page);
381

382
	return memcg->nodeinfo[nid];
383 384
}

385 386
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
387
{
388
	return soft_limit_tree.rb_tree_per_node[nid];
389 390
}

391
static struct mem_cgroup_tree_per_node *
392 393 394 395
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

396
	return soft_limit_tree.rb_tree_per_node[nid];
397 398
}

399 400
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
401
					 unsigned long new_usage_in_excess)
402 403 404
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
405
	struct mem_cgroup_per_node *mz_node;
406 407 408 409 410 411 412 413 414

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
415
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

431 432
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
433 434 435 436 437 438 439
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

440 441
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
442
{
443 444 445
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
446
	__mem_cgroup_remove_exceeded(mz, mctz);
447
	spin_unlock_irqrestore(&mctz->lock, flags);
448 449
}

450 451 452
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
453
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
454 455 456 457 458 459 460
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
461 462 463

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
464
	unsigned long excess;
465 466
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
467

468
	mctz = soft_limit_tree_from_page(page);
469 470
	if (!mctz)
		return;
471 472 473 474 475
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
476
		mz = mem_cgroup_page_nodeinfo(memcg, page);
477
		excess = soft_limit_excess(memcg);
478 479 480 481 482
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
483 484 485
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
486 487
			/* if on-tree, remove it */
			if (mz->on_tree)
488
				__mem_cgroup_remove_exceeded(mz, mctz);
489 490 491 492
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
493
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
494
			spin_unlock_irqrestore(&mctz->lock, flags);
495 496 497 498 499 500
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
501 502 503
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
504

505
	for_each_node(nid) {
506 507
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
508 509
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
510 511 512
	}
}

513 514
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
515 516
{
	struct rb_node *rightmost = NULL;
517
	struct mem_cgroup_per_node *mz;
518 519 520 521 522 523 524

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

525
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
526 527 528 529 530
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
531
	__mem_cgroup_remove_exceeded(mz, mctz);
532
	if (!soft_limit_excess(mz->memcg) ||
533
	    !css_tryget_online(&mz->memcg->css))
534 535 536 537 538
		goto retry;
done:
	return mz;
}

539 540
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
541
{
542
	struct mem_cgroup_per_node *mz;
543

544
	spin_lock_irq(&mctz->lock);
545
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
546
	spin_unlock_irq(&mctz->lock);
547 548 549
	return mz;
}

550
/*
551 552
 * Return page count for single (non recursive) @memcg.
 *
553 554 555 556 557
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
558
 * a periodic synchronization of counter in memcg's counter.
559 560 561 562 563 564 565 566 567
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
568
 * common workload, threshold and synchronization as vmstat[] should be
569 570
 * implemented.
 */
571 572
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
573
{
574
	long val = 0;
575 576
	int cpu;

577
	/* Per-cpu values can be negative, use a signed accumulator */
578
	for_each_possible_cpu(cpu)
579
		val += per_cpu(memcg->stat->count[idx], cpu);
580 581 582 583 584 585
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
586 587 588
	return val;
}

589
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
590 591 592 593 594
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

595
	for_each_possible_cpu(cpu)
596
		val += per_cpu(memcg->stat->events[idx], cpu);
597 598 599
	return val;
}

600
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
601
					 struct page *page,
602
					 bool compound, int nr_pages)
603
{
604 605 606 607
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
608
	if (PageAnon(page))
609
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
610
				nr_pages);
611
	else
612
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
613
				nr_pages);
614

615 616
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
617 618
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
619
	}
620

621 622
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
623
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
624
	else {
625
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
626 627
		nr_pages = -nr_pages; /* for event */
	}
628

629
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
630 631
}

632 633
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
634
{
635
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
636
	unsigned long nr = 0;
637
	enum lru_list lru;
638

639
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
640

641 642 643
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
644
		nr += mem_cgroup_get_lru_size(lruvec, lru);
645 646
	}
	return nr;
647
}
648

649
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
650
			unsigned int lru_mask)
651
{
652
	unsigned long nr = 0;
653
	int nid;
654

655
	for_each_node_state(nid, N_MEMORY)
656 657
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
658 659
}

660 661
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
662 663 664
{
	unsigned long val, next;

665
	val = __this_cpu_read(memcg->stat->nr_page_events);
666
	next = __this_cpu_read(memcg->stat->targets[target]);
667
	/* from time_after() in jiffies.h */
668 669 670 671 672
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
673 674 675
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
676 677 678 679 680 681 682 683
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
684
	}
685
	return false;
686 687 688 689 690 691
}

/*
 * Check events in order.
 *
 */
692
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
693 694
{
	/* threshold event is triggered in finer grain than soft limit */
695 696
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
697
		bool do_softlimit;
698
		bool do_numainfo __maybe_unused;
699

700 701
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
702 703 704 705
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
706
		mem_cgroup_threshold(memcg);
707 708
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
709
#if MAX_NUMNODES > 1
710
		if (unlikely(do_numainfo))
711
			atomic_inc(&memcg->numainfo_events);
712
#endif
713
	}
714 715
}

716
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
717
{
718 719 720 721 722 723 724 725
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

726
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
727
}
M
Michal Hocko 已提交
728
EXPORT_SYMBOL(mem_cgroup_from_task);
729

730
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
731
{
732
	struct mem_cgroup *memcg = NULL;
733

734 735
	rcu_read_lock();
	do {
736 737 738 739 740 741
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
742
			memcg = root_mem_cgroup;
743 744 745 746 747
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
748
	} while (!css_tryget_online(&memcg->css));
749
	rcu_read_unlock();
750
	return memcg;
751 752
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
770
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
771
				   struct mem_cgroup *prev,
772
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
773
{
M
Michal Hocko 已提交
774
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
775
	struct cgroup_subsys_state *css = NULL;
776
	struct mem_cgroup *memcg = NULL;
777
	struct mem_cgroup *pos = NULL;
778

779 780
	if (mem_cgroup_disabled())
		return NULL;
781

782 783
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
784

785
	if (prev && !reclaim)
786
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
787

788 789
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
790
			goto out;
791
		return root;
792
	}
K
KAMEZAWA Hiroyuki 已提交
793

794
	rcu_read_lock();
M
Michal Hocko 已提交
795

796
	if (reclaim) {
797
		struct mem_cgroup_per_node *mz;
798

799
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
800 801 802 803 804
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

805
		while (1) {
806
			pos = READ_ONCE(iter->position);
807 808
			if (!pos || css_tryget(&pos->css))
				break;
809
			/*
810 811 812 813 814 815
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
816
			 */
817 818
			(void)cmpxchg(&iter->position, pos, NULL);
		}
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
836
		}
K
KAMEZAWA Hiroyuki 已提交
837

838 839 840 841 842 843
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
844

845 846
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
847

848 849
		if (css_tryget(css))
			break;
850

851
		memcg = NULL;
852
	}
853 854 855

	if (reclaim) {
		/*
856 857 858
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
859
		 */
860 861
		(void)cmpxchg(&iter->position, pos, memcg);

862 863 864 865 866 867 868
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
869
	}
870

871 872
out_unlock:
	rcu_read_unlock();
873
out:
874 875 876
	if (prev && prev != root)
		css_put(&prev->css);

877
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
878
}
K
KAMEZAWA Hiroyuki 已提交
879

880 881 882 883 884 885 886
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
887 888 889 890 891 892
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
893

894 895 896 897
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
898 899
	struct mem_cgroup_per_node *mz;
	int nid;
900 901 902 903
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
904 905 906 907 908
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
909 910 911 912 913
			}
		}
	}
}

914 915 916 917 918 919
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
920
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
921
	     iter != NULL;				\
922
	     iter = mem_cgroup_iter(root, iter, NULL))
923

924
#define for_each_mem_cgroup(iter)			\
925
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
926
	     iter != NULL;				\
927
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
928

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

		css_task_iter_start(&iter->css, &it);
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

966
/**
967
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
968
 * @page: the page
969
 * @zone: zone of the page
970 971 972 973
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
974
 */
M
Mel Gorman 已提交
975
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
976
{
977
	struct mem_cgroup_per_node *mz;
978
	struct mem_cgroup *memcg;
979
	struct lruvec *lruvec;
980

981
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
982
		lruvec = &pgdat->lruvec;
983 984
		goto out;
	}
985

986
	memcg = page->mem_cgroup;
987
	/*
988
	 * Swapcache readahead pages are added to the LRU - and
989
	 * possibly migrated - before they are charged.
990
	 */
991 992
	if (!memcg)
		memcg = root_mem_cgroup;
993

994
	mz = mem_cgroup_page_nodeinfo(memcg, page);
995 996 997 998 999 1000 1001
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1002 1003
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1004
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1005
}
1006

1007
/**
1008 1009 1010
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1011
 * @zid: zone id of the accounted pages
1012
 * @nr_pages: positive when adding or negative when removing
1013
 *
1014 1015 1016
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1017
 */
1018
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1019
				int zid, int nr_pages)
1020
{
1021
	struct mem_cgroup_per_node *mz;
1022
	unsigned long *lru_size;
1023
	long size;
1024 1025 1026 1027

	if (mem_cgroup_disabled())
		return;

1028
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1029
	lru_size = &mz->lru_zone_size[zid][lru];
1030 1031 1032 1033 1034

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1035 1036 1037
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1038 1039 1040 1041 1042 1043
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1044
}
1045

1046
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1047
{
1048
	struct mem_cgroup *task_memcg;
1049
	struct task_struct *p;
1050
	bool ret;
1051

1052
	p = find_lock_task_mm(task);
1053
	if (p) {
1054
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1055 1056 1057 1058 1059 1060 1061
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1062
		rcu_read_lock();
1063 1064
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1065
		rcu_read_unlock();
1066
	}
1067 1068
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1069 1070 1071
	return ret;
}

1072
/**
1073
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1074
 * @memcg: the memory cgroup
1075
 *
1076
 * Returns the maximum amount of memory @mem can be charged with, in
1077
 * pages.
1078
 */
1079
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1080
{
1081 1082 1083
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1084

1085
	count = page_counter_read(&memcg->memory);
1086
	limit = READ_ONCE(memcg->memory.limit);
1087 1088 1089
	if (count < limit)
		margin = limit - count;

1090
	if (do_memsw_account()) {
1091
		count = page_counter_read(&memcg->memsw);
1092
		limit = READ_ONCE(memcg->memsw.limit);
1093 1094
		if (count <= limit)
			margin = min(margin, limit - count);
1095 1096
		else
			margin = 0;
1097 1098 1099
	}

	return margin;
1100 1101
}

1102
/*
Q
Qiang Huang 已提交
1103
 * A routine for checking "mem" is under move_account() or not.
1104
 *
Q
Qiang Huang 已提交
1105 1106 1107
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1108
 */
1109
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1110
{
1111 1112
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1113
	bool ret = false;
1114 1115 1116 1117 1118 1119 1120 1121 1122
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1123

1124 1125
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1126 1127
unlock:
	spin_unlock(&mc.lock);
1128 1129 1130
	return ret;
}

1131
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1132 1133
{
	if (mc.moving_task && current != mc.moving_task) {
1134
		if (mem_cgroup_under_move(memcg)) {
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1147
#define K(x) ((x) << (PAGE_SHIFT-10))
1148
/**
1149
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1150 1151 1152 1153 1154 1155 1156 1157
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1158 1159
	struct mem_cgroup *iter;
	unsigned int i;
1160 1161 1162

	rcu_read_lock();

1163 1164 1165 1166 1167 1168 1169 1170
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1171
	pr_cont_cgroup_path(memcg->css.cgroup);
1172
	pr_cont("\n");
1173 1174 1175

	rcu_read_unlock();

1176 1177 1178 1179 1180 1181 1182 1183 1184
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1185 1186

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1187 1188
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1189 1190 1191
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1192
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1193
				continue;
1194
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1195 1196 1197 1198 1199 1200 1201 1202 1203
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1204 1205
}

1206 1207 1208 1209
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1210
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211 1212
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1213 1214
	struct mem_cgroup *iter;

1215
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1216
		num++;
1217 1218 1219
	return num;
}

D
David Rientjes 已提交
1220 1221 1222
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1223
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1224
{
1225
	unsigned long limit;
1226

1227
	limit = memcg->memory.limit;
1228
	if (mem_cgroup_swappiness(memcg)) {
1229
		unsigned long memsw_limit;
1230
		unsigned long swap_limit;
1231

1232
		memsw_limit = memcg->memsw.limit;
1233 1234 1235
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1236 1237
	}
	return limit;
D
David Rientjes 已提交
1238 1239
}

1240
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241
				     int order)
1242
{
1243 1244 1245
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1246
		.memcg = memcg,
1247 1248 1249
		.gfp_mask = gfp_mask,
		.order = order,
	};
1250
	bool ret;
1251

1252
	mutex_lock(&oom_lock);
1253
	ret = out_of_memory(&oc);
1254
	mutex_unlock(&oom_lock);
1255
	return ret;
1256 1257
}

1258 1259
#if MAX_NUMNODES > 1

1260 1261
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1262
 * @memcg: the target memcg
1263 1264 1265 1266 1267 1268 1269
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1270
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1271 1272
		int nid, bool noswap)
{
1273
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1274 1275 1276
		return true;
	if (noswap || !total_swap_pages)
		return false;
1277
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1278 1279 1280 1281
		return true;
	return false;

}
1282 1283 1284 1285 1286 1287 1288

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1289
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1290 1291
{
	int nid;
1292 1293 1294 1295
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1296
	if (!atomic_read(&memcg->numainfo_events))
1297
		return;
1298
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1299 1300 1301
		return;

	/* make a nodemask where this memcg uses memory from */
1302
	memcg->scan_nodes = node_states[N_MEMORY];
1303

1304
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1305

1306 1307
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1308
	}
1309

1310 1311
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1326
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1327 1328 1329
{
	int node;

1330 1331
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1332

1333
	node = next_node_in(node, memcg->scan_nodes);
1334
	/*
1335 1336 1337
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1338 1339 1340 1341
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1342
	memcg->last_scanned_node = node;
1343 1344 1345
	return node;
}
#else
1346
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1347 1348 1349 1350 1351
{
	return 0;
}
#endif

1352
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1353
				   pg_data_t *pgdat,
1354 1355 1356 1357 1358 1359 1360 1361 1362
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1363
		.pgdat = pgdat,
1364 1365 1366
		.priority = 0,
	};

1367
	excess = soft_limit_excess(root_memcg);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1393
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1394
					pgdat, &nr_scanned);
1395
		*total_scanned += nr_scanned;
1396
		if (!soft_limit_excess(root_memcg))
1397
			break;
1398
	}
1399 1400
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1401 1402
}

1403 1404 1405 1406 1407 1408
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1409 1410
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1411 1412 1413 1414
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1415
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1416
{
1417
	struct mem_cgroup *iter, *failed = NULL;
1418

1419 1420
	spin_lock(&memcg_oom_lock);

1421
	for_each_mem_cgroup_tree(iter, memcg) {
1422
		if (iter->oom_lock) {
1423 1424 1425 1426 1427
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1428 1429
			mem_cgroup_iter_break(memcg, iter);
			break;
1430 1431
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1432
	}
K
KAMEZAWA Hiroyuki 已提交
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1445
		}
1446 1447
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1448 1449 1450 1451

	spin_unlock(&memcg_oom_lock);

	return !failed;
1452
}
1453

1454
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1455
{
K
KAMEZAWA Hiroyuki 已提交
1456 1457
	struct mem_cgroup *iter;

1458
	spin_lock(&memcg_oom_lock);
1459
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1460
	for_each_mem_cgroup_tree(iter, memcg)
1461
		iter->oom_lock = false;
1462
	spin_unlock(&memcg_oom_lock);
1463 1464
}

1465
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1466 1467 1468
{
	struct mem_cgroup *iter;

1469
	spin_lock(&memcg_oom_lock);
1470
	for_each_mem_cgroup_tree(iter, memcg)
1471 1472
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1473 1474
}

1475
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1476 1477 1478
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1479 1480
	/*
	 * When a new child is created while the hierarchy is under oom,
1481
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1482
	 */
1483
	spin_lock(&memcg_oom_lock);
1484
	for_each_mem_cgroup_tree(iter, memcg)
1485 1486 1487
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1488 1489
}

K
KAMEZAWA Hiroyuki 已提交
1490 1491
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1492
struct oom_wait_info {
1493
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1494 1495 1496 1497 1498 1499
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1500 1501
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1502 1503 1504
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1505
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1506

1507 1508
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1509 1510 1511 1512
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1513
static void memcg_oom_recover(struct mem_cgroup *memcg)
1514
{
1515 1516 1517 1518 1519 1520 1521 1522 1523
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1524
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1525 1526
}

1527
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1528
{
1529
	if (!current->memcg_may_oom)
1530
		return;
K
KAMEZAWA Hiroyuki 已提交
1531
	/*
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1544
	 */
1545
	css_get(&memcg->css);
T
Tejun Heo 已提交
1546 1547 1548
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1549 1550 1551 1552
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1553
 * @handle: actually kill/wait or just clean up the OOM state
1554
 *
1555 1556
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1557
 *
1558
 * Memcg supports userspace OOM handling where failed allocations must
1559 1560 1561 1562
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1563
 * the end of the page fault to complete the OOM handling.
1564 1565
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1566
 * completed, %false otherwise.
1567
 */
1568
bool mem_cgroup_oom_synchronize(bool handle)
1569
{
T
Tejun Heo 已提交
1570
	struct mem_cgroup *memcg = current->memcg_in_oom;
1571
	struct oom_wait_info owait;
1572
	bool locked;
1573 1574 1575

	/* OOM is global, do not handle */
	if (!memcg)
1576
		return false;
1577

1578
	if (!handle)
1579
		goto cleanup;
1580 1581 1582 1583 1584 1585

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1586

1587
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1598 1599
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1600
	} else {
1601
		schedule();
1602 1603 1604 1605 1606
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1607 1608 1609 1610 1611 1612 1613 1614
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1615
cleanup:
T
Tejun Heo 已提交
1616
	current->memcg_in_oom = NULL;
1617
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1618
	return true;
1619 1620
}

1621
/**
1622 1623
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1624
 *
1625 1626
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1627
 */
J
Johannes Weiner 已提交
1628
void lock_page_memcg(struct page *page)
1629 1630
{
	struct mem_cgroup *memcg;
1631
	unsigned long flags;
1632

1633 1634 1635 1636 1637
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1638 1639 1640
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1641
		return;
1642
again:
1643
	memcg = page->mem_cgroup;
1644
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1645
		return;
1646

Q
Qiang Huang 已提交
1647
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1648
		return;
1649

1650
	spin_lock_irqsave(&memcg->move_lock, flags);
1651
	if (memcg != page->mem_cgroup) {
1652
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1653 1654
		goto again;
	}
1655 1656 1657 1658

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1659
	 * the task who has the lock for unlock_page_memcg().
1660 1661 1662
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1663

J
Johannes Weiner 已提交
1664
	return;
1665
}
1666
EXPORT_SYMBOL(lock_page_memcg);
1667

1668
/**
1669
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1670
 * @page: the page
1671
 */
J
Johannes Weiner 已提交
1672
void unlock_page_memcg(struct page *page)
1673
{
J
Johannes Weiner 已提交
1674 1675
	struct mem_cgroup *memcg = page->mem_cgroup;

1676 1677 1678 1679 1680 1681 1682 1683
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1684

1685
	rcu_read_unlock();
1686
}
1687
EXPORT_SYMBOL(unlock_page_memcg);
1688

1689 1690 1691 1692
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1693
#define CHARGE_BATCH	32U
1694 1695
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1696
	unsigned int nr_pages;
1697
	struct work_struct work;
1698
	unsigned long flags;
1699
#define FLUSHING_CACHED_CHARGE	0
1700 1701
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1702
static DEFINE_MUTEX(percpu_charge_mutex);
1703

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1714
 */
1715
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1716 1717
{
	struct memcg_stock_pcp *stock;
1718
	unsigned long flags;
1719
	bool ret = false;
1720

1721
	if (nr_pages > CHARGE_BATCH)
1722
		return ret;
1723

1724 1725 1726
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1727
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1728
		stock->nr_pages -= nr_pages;
1729 1730
		ret = true;
	}
1731 1732 1733

	local_irq_restore(flags);

1734 1735 1736 1737
	return ret;
}

/*
1738
 * Returns stocks cached in percpu and reset cached information.
1739 1740 1741 1742 1743
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1744
	if (stock->nr_pages) {
1745
		page_counter_uncharge(&old->memory, stock->nr_pages);
1746
		if (do_memsw_account())
1747
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1748
		css_put_many(&old->css, stock->nr_pages);
1749
		stock->nr_pages = 0;
1750 1751 1752 1753 1754 1755
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1756 1757 1758 1759 1760 1761
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1762
	drain_stock(stock);
1763
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1764 1765

	local_irq_restore(flags);
1766 1767 1768
}

/*
1769
 * Cache charges(val) to local per_cpu area.
1770
 * This will be consumed by consume_stock() function, later.
1771
 */
1772
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1773
{
1774 1775 1776 1777
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1778

1779
	stock = this_cpu_ptr(&memcg_stock);
1780
	if (stock->cached != memcg) { /* reset if necessary */
1781
		drain_stock(stock);
1782
		stock->cached = memcg;
1783
	}
1784
	stock->nr_pages += nr_pages;
1785 1786

	local_irq_restore(flags);
1787 1788 1789
}

/*
1790
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1791
 * of the hierarchy under it.
1792
 */
1793
static void drain_all_stock(struct mem_cgroup *root_memcg)
1794
{
1795
	int cpu, curcpu;
1796

1797 1798 1799
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1800 1801
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1802
	curcpu = get_cpu();
1803 1804
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1805
		struct mem_cgroup *memcg;
1806

1807 1808
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1809
			continue;
1810
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1811
			continue;
1812 1813 1814 1815 1816 1817
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1818
	}
1819
	put_cpu();
A
Andrew Morton 已提交
1820
	put_online_cpus();
1821
	mutex_unlock(&percpu_charge_mutex);
1822 1823
}

1824
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1825 1826 1827 1828 1829
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1830
	return 0;
1831 1832
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1853 1854 1855 1856 1857 1858 1859
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1860
	struct mem_cgroup *memcg;
1861 1862 1863 1864

	if (likely(!nr_pages))
		return;

1865 1866
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1867 1868 1869 1870
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1871 1872
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1873
{
1874
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1875
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1876
	struct mem_cgroup *mem_over_limit;
1877
	struct page_counter *counter;
1878
	unsigned long nr_reclaimed;
1879 1880
	bool may_swap = true;
	bool drained = false;
1881

1882
	if (mem_cgroup_is_root(memcg))
1883
		return 0;
1884
retry:
1885
	if (consume_stock(memcg, nr_pages))
1886
		return 0;
1887

1888
	if (!do_memsw_account() ||
1889 1890
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1891
			goto done_restock;
1892
		if (do_memsw_account())
1893 1894
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1895
	} else {
1896
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1897
		may_swap = false;
1898
	}
1899

1900 1901 1902 1903
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1904

1905 1906 1907 1908 1909 1910 1911 1912 1913
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1914
		goto force;
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1925 1926 1927
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1928
	if (!gfpflags_allow_blocking(gfp_mask))
1929
		goto nomem;
1930

1931 1932
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1933 1934
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1935

1936
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1937
		goto retry;
1938

1939
	if (!drained) {
1940
		drain_all_stock(mem_over_limit);
1941 1942 1943 1944
		drained = true;
		goto retry;
	}

1945 1946
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1947 1948 1949 1950 1951 1952 1953 1954 1955
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1956
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1957 1958 1959 1960 1961 1962 1963 1964
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1965 1966 1967
	if (nr_retries--)
		goto retry;

1968
	if (gfp_mask & __GFP_NOFAIL)
1969
		goto force;
1970

1971
	if (fatal_signal_pending(current))
1972
		goto force;
1973

1974 1975
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

1976 1977
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1978
nomem:
1979
	if (!(gfp_mask & __GFP_NOFAIL))
1980
		return -ENOMEM;
1981 1982 1983 1984 1985 1986 1987
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
1988
	if (do_memsw_account())
1989 1990 1991 1992
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
1993 1994

done_restock:
1995
	css_get_many(&memcg->css, batch);
1996 1997
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
1998

1999
	/*
2000 2001
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2002
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2003 2004 2005 2006
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2007 2008
	 */
	do {
2009
		if (page_counter_read(&memcg->memory) > memcg->high) {
2010 2011 2012 2013 2014
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2015
			current->memcg_nr_pages_over_high += batch;
2016 2017 2018
			set_notify_resume(current);
			break;
		}
2019
	} while ((memcg = parent_mem_cgroup(memcg)));
2020 2021

	return 0;
2022
}
2023

2024
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2025
{
2026 2027 2028
	if (mem_cgroup_is_root(memcg))
		return;

2029
	page_counter_uncharge(&memcg->memory, nr_pages);
2030
	if (do_memsw_account())
2031
		page_counter_uncharge(&memcg->memsw, nr_pages);
2032

2033
	css_put_many(&memcg->css, nr_pages);
2034 2035
}

2036 2037 2038 2039
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2040
	spin_lock_irq(zone_lru_lock(zone));
2041 2042 2043
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2044
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2059
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2060 2061 2062 2063
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2064
	spin_unlock_irq(zone_lru_lock(zone));
2065 2066
}

2067
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2068
			  bool lrucare)
2069
{
2070
	int isolated;
2071

2072
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2073 2074 2075 2076 2077

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2078 2079
	if (lrucare)
		lock_page_lru(page, &isolated);
2080

2081 2082
	/*
	 * Nobody should be changing or seriously looking at
2083
	 * page->mem_cgroup at this point:
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2095
	page->mem_cgroup = memcg;
2096

2097 2098
	if (lrucare)
		unlock_page_lru(page, isolated);
2099
}
2100

2101
#ifndef CONFIG_SLOB
2102
static int memcg_alloc_cache_id(void)
2103
{
2104 2105 2106
	int id, size;
	int err;

2107
	id = ida_simple_get(&memcg_cache_ida,
2108 2109 2110
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2111

2112
	if (id < memcg_nr_cache_ids)
2113 2114 2115 2116 2117 2118
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2119
	down_write(&memcg_cache_ids_sem);
2120 2121

	size = 2 * (id + 1);
2122 2123 2124 2125 2126
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2127
	err = memcg_update_all_caches(size);
2128 2129
	if (!err)
		err = memcg_update_all_list_lrus(size);
2130 2131 2132 2133 2134
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2135
	if (err) {
2136
		ida_simple_remove(&memcg_cache_ida, id);
2137 2138 2139 2140 2141 2142 2143
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2144
	ida_simple_remove(&memcg_cache_ida, id);
2145 2146
}

2147
struct memcg_kmem_cache_create_work {
2148 2149 2150 2151 2152
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2153
static void memcg_kmem_cache_create_func(struct work_struct *w)
2154
{
2155 2156
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2157 2158
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2159

2160
	memcg_create_kmem_cache(memcg, cachep);
2161

2162
	css_put(&memcg->css);
2163 2164 2165 2166 2167 2168
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2169 2170
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2171
{
2172
	struct memcg_kmem_cache_create_work *cw;
2173

2174
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2175
	if (!cw)
2176
		return;
2177 2178

	css_get(&memcg->css);
2179 2180 2181

	cw->memcg = memcg;
	cw->cachep = cachep;
2182
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2183

2184
	queue_work(memcg_kmem_cache_wq, &cw->work);
2185 2186
}

2187 2188
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2189 2190 2191 2192
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2193
	 * in __memcg_schedule_kmem_cache_create will recurse.
2194 2195 2196 2197 2198 2199 2200
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2201
	current->memcg_kmem_skip_account = 1;
2202
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2203
	current->memcg_kmem_skip_account = 0;
2204
}
2205

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2217 2218 2219
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2220 2221 2222
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2223
 *
2224 2225 2226 2227
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2228
 */
2229
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2230 2231
{
	struct mem_cgroup *memcg;
2232
	struct kmem_cache *memcg_cachep;
2233
	int kmemcg_id;
2234

2235
	VM_BUG_ON(!is_root_cache(cachep));
2236

2237
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2238 2239
		return cachep;

2240
	if (current->memcg_kmem_skip_account)
2241 2242
		return cachep;

2243
	memcg = get_mem_cgroup_from_mm(current->mm);
2244
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2245
	if (kmemcg_id < 0)
2246
		goto out;
2247

2248
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2249 2250
	if (likely(memcg_cachep))
		return memcg_cachep;
2251 2252 2253 2254 2255 2256 2257 2258 2259

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2260 2261 2262
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2263
	 */
2264
	memcg_schedule_kmem_cache_create(memcg, cachep);
2265
out:
2266
	css_put(&memcg->css);
2267
	return cachep;
2268 2269
}

2270 2271 2272 2273 2274
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2275 2276
{
	if (!is_root_cache(cachep))
2277
		css_put(&cachep->memcg_params.memcg->css);
2278 2279
}

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2291
{
2292 2293
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2294 2295
	int ret;

2296
	ret = try_charge(memcg, gfp, nr_pages);
2297
	if (ret)
2298
		return ret;
2299 2300 2301 2302 2303

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2304 2305
	}

2306
	page->mem_cgroup = memcg;
2307

2308
	return 0;
2309 2310
}

2311 2312 2313 2314 2315 2316 2317 2318 2319
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2320
{
2321
	struct mem_cgroup *memcg;
2322
	int ret = 0;
2323

2324 2325 2326
	if (memcg_kmem_bypass())
		return 0;

2327
	memcg = get_mem_cgroup_from_mm(current->mm);
2328
	if (!mem_cgroup_is_root(memcg)) {
2329
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2330 2331 2332
		if (!ret)
			__SetPageKmemcg(page);
	}
2333
	css_put(&memcg->css);
2334
	return ret;
2335
}
2336 2337 2338 2339 2340 2341
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2342
{
2343
	struct mem_cgroup *memcg = page->mem_cgroup;
2344
	unsigned int nr_pages = 1 << order;
2345 2346 2347 2348

	if (!memcg)
		return;

2349
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2350

2351 2352 2353
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2354
	page_counter_uncharge(&memcg->memory, nr_pages);
2355
	if (do_memsw_account())
2356
		page_counter_uncharge(&memcg->memsw, nr_pages);
2357

2358
	page->mem_cgroup = NULL;
2359 2360 2361 2362 2363

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2364
	css_put_many(&memcg->css, nr_pages);
2365
}
2366
#endif /* !CONFIG_SLOB */
2367

2368 2369 2370 2371
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2372
 * zone_lru_lock and migration entries setup in all page mappings.
2373
 */
2374
void mem_cgroup_split_huge_fixup(struct page *head)
2375
{
2376
	int i;
2377

2378 2379
	if (mem_cgroup_disabled())
		return;
2380

2381
	for (i = 1; i < HPAGE_PMD_NR; i++)
2382
		head[i].mem_cgroup = head->mem_cgroup;
2383

2384
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2385
		       HPAGE_PMD_NR);
2386
}
2387
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2388

A
Andrew Morton 已提交
2389
#ifdef CONFIG_MEMCG_SWAP
2390 2391
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2392
{
2393 2394
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2395
}
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2408
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2409 2410 2411
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2412
				struct mem_cgroup *from, struct mem_cgroup *to)
2413 2414 2415
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2416 2417
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2418 2419 2420

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2421
		mem_cgroup_swap_statistics(to, true);
2422 2423 2424 2425 2426 2427
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2428
				struct mem_cgroup *from, struct mem_cgroup *to)
2429 2430 2431
{
	return -EINVAL;
}
2432
#endif
K
KAMEZAWA Hiroyuki 已提交
2433

2434
static DEFINE_MUTEX(memcg_limit_mutex);
2435

2436
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2437
				   unsigned long limit)
2438
{
2439 2440 2441
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2442
	int retry_count;
2443
	int ret;
2444 2445 2446 2447 2448 2449

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2450 2451
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2452

2453
	oldusage = page_counter_read(&memcg->memory);
2454

2455
	do {
2456 2457 2458 2459
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2460 2461 2462 2463

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2464
			ret = -EINVAL;
2465 2466
			break;
		}
2467 2468 2469 2470
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2471 2472 2473 2474

		if (!ret)
			break;

2475 2476
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2477
		curusage = page_counter_read(&memcg->memory);
2478
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2479
		if (curusage >= oldusage)
2480 2481 2482
			retry_count--;
		else
			oldusage = curusage;
2483 2484
	} while (retry_count);

2485 2486
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2487

2488 2489 2490
	return ret;
}

L
Li Zefan 已提交
2491
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2492
					 unsigned long limit)
2493
{
2494 2495 2496
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2497
	int retry_count;
2498
	int ret;
2499

2500
	/* see mem_cgroup_resize_res_limit */
2501 2502 2503 2504 2505 2506
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2507 2508 2509 2510
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2511 2512 2513 2514

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2515 2516 2517
			ret = -EINVAL;
			break;
		}
2518 2519 2520 2521
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2522 2523 2524 2525

		if (!ret)
			break;

2526 2527
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2528
		curusage = page_counter_read(&memcg->memsw);
2529
		/* Usage is reduced ? */
2530
		if (curusage >= oldusage)
2531
			retry_count--;
2532 2533
		else
			oldusage = curusage;
2534 2535
	} while (retry_count);

2536 2537
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2538

2539 2540 2541
	return ret;
}

2542
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2543 2544 2545 2546
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2547
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2548 2549
	unsigned long reclaimed;
	int loop = 0;
2550
	struct mem_cgroup_tree_per_node *mctz;
2551
	unsigned long excess;
2552 2553 2554 2555 2556
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2557
	mctz = soft_limit_tree_node(pgdat->node_id);
2558 2559 2560 2561 2562 2563

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2564
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2565 2566
		return 0;

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2581
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2582 2583 2584
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2585
		spin_lock_irq(&mctz->lock);
2586
		__mem_cgroup_remove_exceeded(mz, mctz);
2587 2588 2589 2590 2591 2592

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2593 2594 2595
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2596
		excess = soft_limit_excess(mz->memcg);
2597 2598 2599 2600 2601 2602 2603 2604 2605
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2606
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2607
		spin_unlock_irq(&mctz->lock);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2625 2626 2627 2628 2629 2630
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2631 2632
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2633 2634 2635 2636 2637 2638
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2639 2640
}

2641
/*
2642
 * Reclaims as many pages from the given memcg as possible.
2643 2644 2645 2646 2647 2648 2649
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2650 2651
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2652
	/* try to free all pages in this cgroup */
2653
	while (nr_retries && page_counter_read(&memcg->memory)) {
2654
		int progress;
2655

2656 2657 2658
		if (signal_pending(current))
			return -EINTR;

2659 2660
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2661
		if (!progress) {
2662
			nr_retries--;
2663
			/* maybe some writeback is necessary */
2664
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2665
		}
2666 2667

	}
2668 2669

	return 0;
2670 2671
}

2672 2673 2674
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2675
{
2676
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2677

2678 2679
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2680
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2681 2682
}

2683 2684
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2685
{
2686
	return mem_cgroup_from_css(css)->use_hierarchy;
2687 2688
}

2689 2690
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2691 2692
{
	int retval = 0;
2693
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2694
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2695

2696
	if (memcg->use_hierarchy == val)
2697
		return 0;
2698

2699
	/*
2700
	 * If parent's use_hierarchy is set, we can't make any modifications
2701 2702 2703 2704 2705 2706
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2707
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2708
				(val == 1 || val == 0)) {
2709
		if (!memcg_has_children(memcg))
2710
			memcg->use_hierarchy = val;
2711 2712 2713 2714
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2715

2716 2717 2718
	return retval;
}

2719
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2720 2721
{
	struct mem_cgroup *iter;
2722
	int i;
2723

2724
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2725

2726 2727 2728 2729
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2730 2731
}

2732
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2733 2734
{
	struct mem_cgroup *iter;
2735
	int i;
2736

2737
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2738

2739 2740 2741 2742
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2743 2744
}

2745
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2746
{
2747
	unsigned long val = 0;
2748

2749
	if (mem_cgroup_is_root(memcg)) {
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2761
	} else {
2762
		if (!swap)
2763
			val = page_counter_read(&memcg->memory);
2764
		else
2765
			val = page_counter_read(&memcg->memsw);
2766
	}
2767
	return val;
2768 2769
}

2770 2771 2772 2773 2774 2775 2776
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2777

2778
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2779
			       struct cftype *cft)
B
Balbir Singh 已提交
2780
{
2781
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2782
	struct page_counter *counter;
2783

2784
	switch (MEMFILE_TYPE(cft->private)) {
2785
	case _MEM:
2786 2787
		counter = &memcg->memory;
		break;
2788
	case _MEMSWAP:
2789 2790
		counter = &memcg->memsw;
		break;
2791
	case _KMEM:
2792
		counter = &memcg->kmem;
2793
		break;
V
Vladimir Davydov 已提交
2794
	case _TCP:
2795
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2796
		break;
2797 2798 2799
	default:
		BUG();
	}
2800 2801 2802 2803

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2804
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2805
		if (counter == &memcg->memsw)
2806
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2819
}
2820

2821
#ifndef CONFIG_SLOB
2822
static int memcg_online_kmem(struct mem_cgroup *memcg)
2823 2824 2825
{
	int memcg_id;

2826 2827 2828
	if (cgroup_memory_nokmem)
		return 0;

2829
	BUG_ON(memcg->kmemcg_id >= 0);
2830
	BUG_ON(memcg->kmem_state);
2831

2832
	memcg_id = memcg_alloc_cache_id();
2833 2834
	if (memcg_id < 0)
		return memcg_id;
2835

2836
	static_branch_inc(&memcg_kmem_enabled_key);
2837
	/*
2838
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2839
	 * kmemcg_id. Setting the id after enabling static branching will
2840 2841 2842
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2843
	memcg->kmemcg_id = memcg_id;
2844
	memcg->kmem_state = KMEM_ONLINE;
2845
	INIT_LIST_HEAD(&memcg->kmem_caches);
2846 2847

	return 0;
2848 2849
}

2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2883
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2884 2885 2886 2887 2888 2889 2890
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2891 2892
	rcu_read_unlock();

2893 2894 2895 2896 2897 2898 2899
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2900 2901 2902 2903
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2904 2905 2906 2907 2908 2909
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2910
#else
2911
static int memcg_online_kmem(struct mem_cgroup *memcg)
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2923
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2924
				   unsigned long limit)
2925
{
2926
	int ret;
2927 2928 2929 2930 2931

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2932
}
2933

V
Vladimir Davydov 已提交
2934 2935 2936 2937 2938 2939
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2940
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2941 2942 2943
	if (ret)
		goto out;

2944
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2945 2946 2947
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2948 2949 2950
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2951 2952 2953 2954 2955 2956
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2957
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2958 2959 2960 2961
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2962
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2963 2964 2965 2966 2967 2968
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2969 2970 2971 2972
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2973 2974
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2975
{
2976
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2977
	unsigned long nr_pages;
2978 2979
	int ret;

2980
	buf = strstrip(buf);
2981
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2982 2983
	if (ret)
		return ret;
2984

2985
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2986
	case RES_LIMIT:
2987 2988 2989 2990
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2991 2992 2993
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2994
			break;
2995 2996
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2997
			break;
2998 2999 3000
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3001 3002 3003
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3004
		}
3005
		break;
3006 3007 3008
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3009 3010
		break;
	}
3011
	return ret ?: nbytes;
B
Balbir Singh 已提交
3012 3013
}

3014 3015
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3016
{
3017
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3018
	struct page_counter *counter;
3019

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3030
	case _TCP:
3031
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3032
		break;
3033 3034 3035
	default:
		BUG();
	}
3036

3037
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3038
	case RES_MAX_USAGE:
3039
		page_counter_reset_watermark(counter);
3040 3041
		break;
	case RES_FAILCNT:
3042
		counter->failcnt = 0;
3043
		break;
3044 3045
	default:
		BUG();
3046
	}
3047

3048
	return nbytes;
3049 3050
}

3051
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3052 3053
					struct cftype *cft)
{
3054
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3055 3056
}

3057
#ifdef CONFIG_MMU
3058
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3059 3060
					struct cftype *cft, u64 val)
{
3061
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3062

3063
	if (val & ~MOVE_MASK)
3064
		return -EINVAL;
3065

3066
	/*
3067 3068 3069 3070
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3071
	 */
3072
	memcg->move_charge_at_immigrate = val;
3073 3074
	return 0;
}
3075
#else
3076
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3077 3078 3079 3080 3081
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3082

3083
#ifdef CONFIG_NUMA
3084
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3085
{
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3098
	int nid;
3099
	unsigned long nr;
3100
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3101

3102 3103 3104 3105 3106 3107 3108 3109 3110
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3111 3112
	}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3128 3129 3130 3131 3132 3133
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3134
static int memcg_stat_show(struct seq_file *m, void *v)
3135
{
3136
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3137
	unsigned long memory, memsw;
3138 3139
	struct mem_cgroup *mi;
	unsigned int i;
3140

3141 3142 3143 3144
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3145 3146
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3147
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3148
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3149
			continue;
3150
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3151
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3152
	}
L
Lee Schermerhorn 已提交
3153

3154 3155 3156 3157 3158 3159 3160 3161
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3162
	/* Hierarchical information */
3163 3164 3165 3166
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3167
	}
3168 3169
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3170
	if (do_memsw_account())
3171 3172
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3173

3174
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3175
		unsigned long long val = 0;
3176

3177
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3178
			continue;
3179 3180
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3181
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3199
	}
K
KAMEZAWA Hiroyuki 已提交
3200

K
KOSAKI Motohiro 已提交
3201 3202
#ifdef CONFIG_DEBUG_VM
	{
3203 3204
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3205
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3206 3207 3208
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3209 3210 3211
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3212

3213 3214 3215 3216 3217
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3218 3219 3220 3221
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3222 3223 3224
	}
#endif

3225 3226 3227
	return 0;
}

3228 3229
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3230
{
3231
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3232

3233
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3234 3235
}

3236 3237
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3238
{
3239
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3240

3241
	if (val > 100)
K
KOSAKI Motohiro 已提交
3242 3243
		return -EINVAL;

3244
	if (css->parent)
3245 3246 3247
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3248

K
KOSAKI Motohiro 已提交
3249 3250 3251
	return 0;
}

3252 3253 3254
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3255
	unsigned long usage;
3256 3257 3258 3259
	int i;

	rcu_read_lock();
	if (!swap)
3260
		t = rcu_dereference(memcg->thresholds.primary);
3261
	else
3262
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3263 3264 3265 3266

	if (!t)
		goto unlock;

3267
	usage = mem_cgroup_usage(memcg, swap);
3268 3269

	/*
3270
	 * current_threshold points to threshold just below or equal to usage.
3271 3272 3273
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3274
	i = t->current_threshold;
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3298
	t->current_threshold = i - 1;
3299 3300 3301 3302 3303 3304
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3305 3306
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3307
		if (do_memsw_account())
3308 3309 3310 3311
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3312 3313 3314 3315 3316 3317 3318
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3319 3320 3321 3322 3323 3324 3325
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3326 3327
}

3328
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3329 3330 3331
{
	struct mem_cgroup_eventfd_list *ev;

3332 3333
	spin_lock(&memcg_oom_lock);

3334
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3335
		eventfd_signal(ev->eventfd, 1);
3336 3337

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3338 3339 3340
	return 0;
}

3341
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3342
{
K
KAMEZAWA Hiroyuki 已提交
3343 3344
	struct mem_cgroup *iter;

3345
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3346
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3347 3348
}

3349
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3350
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3351
{
3352 3353
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3354 3355
	unsigned long threshold;
	unsigned long usage;
3356
	int i, size, ret;
3357

3358
	ret = page_counter_memparse(args, "-1", &threshold);
3359 3360 3361 3362
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3363

3364
	if (type == _MEM) {
3365
		thresholds = &memcg->thresholds;
3366
		usage = mem_cgroup_usage(memcg, false);
3367
	} else if (type == _MEMSWAP) {
3368
		thresholds = &memcg->memsw_thresholds;
3369
		usage = mem_cgroup_usage(memcg, true);
3370
	} else
3371 3372 3373
		BUG();

	/* Check if a threshold crossed before adding a new one */
3374
	if (thresholds->primary)
3375 3376
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3377
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3378 3379

	/* Allocate memory for new array of thresholds */
3380
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3381
			GFP_KERNEL);
3382
	if (!new) {
3383 3384 3385
		ret = -ENOMEM;
		goto unlock;
	}
3386
	new->size = size;
3387 3388

	/* Copy thresholds (if any) to new array */
3389 3390
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3391
				sizeof(struct mem_cgroup_threshold));
3392 3393
	}

3394
	/* Add new threshold */
3395 3396
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3397 3398

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3399
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3400 3401 3402
			compare_thresholds, NULL);

	/* Find current threshold */
3403
	new->current_threshold = -1;
3404
	for (i = 0; i < size; i++) {
3405
		if (new->entries[i].threshold <= usage) {
3406
			/*
3407 3408
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3409 3410
			 * it here.
			 */
3411
			++new->current_threshold;
3412 3413
		} else
			break;
3414 3415
	}

3416 3417 3418 3419 3420
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3421

3422
	/* To be sure that nobody uses thresholds */
3423 3424 3425 3426 3427 3428 3429 3430
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3431
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3432 3433
	struct eventfd_ctx *eventfd, const char *args)
{
3434
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3435 3436
}

3437
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3438 3439
	struct eventfd_ctx *eventfd, const char *args)
{
3440
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3441 3442
}

3443
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3444
	struct eventfd_ctx *eventfd, enum res_type type)
3445
{
3446 3447
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3448
	unsigned long usage;
3449
	int i, j, size;
3450 3451

	mutex_lock(&memcg->thresholds_lock);
3452 3453

	if (type == _MEM) {
3454
		thresholds = &memcg->thresholds;
3455
		usage = mem_cgroup_usage(memcg, false);
3456
	} else if (type == _MEMSWAP) {
3457
		thresholds = &memcg->memsw_thresholds;
3458
		usage = mem_cgroup_usage(memcg, true);
3459
	} else
3460 3461
		BUG();

3462 3463 3464
	if (!thresholds->primary)
		goto unlock;

3465 3466 3467 3468
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3469 3470 3471
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3472 3473 3474
			size++;
	}

3475
	new = thresholds->spare;
3476

3477 3478
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3479 3480
		kfree(new);
		new = NULL;
3481
		goto swap_buffers;
3482 3483
	}

3484
	new->size = size;
3485 3486

	/* Copy thresholds and find current threshold */
3487 3488 3489
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3490 3491
			continue;

3492
		new->entries[j] = thresholds->primary->entries[i];
3493
		if (new->entries[j].threshold <= usage) {
3494
			/*
3495
			 * new->current_threshold will not be used
3496 3497 3498
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3499
			++new->current_threshold;
3500 3501 3502 3503
		}
		j++;
	}

3504
swap_buffers:
3505 3506
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3507

3508
	rcu_assign_pointer(thresholds->primary, new);
3509

3510
	/* To be sure that nobody uses thresholds */
3511
	synchronize_rcu();
3512 3513 3514 3515 3516 3517

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3518
unlock:
3519 3520
	mutex_unlock(&memcg->thresholds_lock);
}
3521

3522
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3523 3524
	struct eventfd_ctx *eventfd)
{
3525
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3526 3527
}

3528
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3529 3530
	struct eventfd_ctx *eventfd)
{
3531
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3532 3533
}

3534
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3535
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3536 3537 3538 3539 3540 3541 3542
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3543
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3544 3545 3546 3547 3548

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3549
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3550
		eventfd_signal(eventfd, 1);
3551
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3552 3553 3554 3555

	return 0;
}

3556
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3557
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3558 3559 3560
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3561
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3562

3563
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3564 3565 3566 3567 3568 3569
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3570
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3571 3572
}

3573
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3574
{
3575
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3576

3577
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3578
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3579 3580 3581
	return 0;
}

3582
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3583 3584
	struct cftype *cft, u64 val)
{
3585
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3586 3587

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3588
	if (!css->parent || !((val == 0) || (val == 1)))
3589 3590
		return -EINVAL;

3591
	memcg->oom_kill_disable = val;
3592
	if (!val)
3593
		memcg_oom_recover(memcg);
3594

3595 3596 3597
	return 0;
}

3598 3599 3600 3601 3602 3603 3604
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3615 3616 3617 3618 3619
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3630 3631 3632
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3633 3634
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3635 3636 3637
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3638 3639 3640
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3641
 *
3642 3643 3644 3645 3646
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3647
 */
3648 3649 3650
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3651 3652 3653 3654 3655 3656 3657 3658
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3659 3660 3661
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3662 3663 3664 3665 3666

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3667
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3668 3669 3670 3671
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3683 3684 3685 3686
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3687 3688
#endif	/* CONFIG_CGROUP_WRITEBACK */

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3702 3703 3704 3705 3706
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3707
static void memcg_event_remove(struct work_struct *work)
3708
{
3709 3710
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3711
	struct mem_cgroup *memcg = event->memcg;
3712 3713 3714

	remove_wait_queue(event->wqh, &event->wait);

3715
	event->unregister_event(memcg, event->eventfd);
3716 3717 3718 3719 3720 3721

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3722
	css_put(&memcg->css);
3723 3724 3725 3726 3727 3728 3729
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3730 3731
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3732
{
3733 3734
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3735
	struct mem_cgroup *memcg = event->memcg;
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3748
		spin_lock(&memcg->event_list_lock);
3749 3750 3751 3752 3753 3754 3755 3756
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3757
		spin_unlock(&memcg->event_list_lock);
3758 3759 3760 3761 3762
	}

	return 0;
}

3763
static void memcg_event_ptable_queue_proc(struct file *file,
3764 3765
		wait_queue_head_t *wqh, poll_table *pt)
{
3766 3767
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3768 3769 3770 3771 3772 3773

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3774 3775
 * DO NOT USE IN NEW FILES.
 *
3776 3777 3778 3779 3780
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3781 3782
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3783
{
3784
	struct cgroup_subsys_state *css = of_css(of);
3785
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3786
	struct mem_cgroup_event *event;
3787 3788 3789 3790
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3791
	const char *name;
3792 3793 3794
	char *endp;
	int ret;

3795 3796 3797
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3798 3799
	if (*endp != ' ')
		return -EINVAL;
3800
	buf = endp + 1;
3801

3802
	cfd = simple_strtoul(buf, &endp, 10);
3803 3804
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3805
	buf = endp + 1;
3806 3807 3808 3809 3810

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3811
	event->memcg = memcg;
3812
	INIT_LIST_HEAD(&event->list);
3813 3814 3815
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3841 3842 3843 3844 3845
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3846 3847
	 *
	 * DO NOT ADD NEW FILES.
3848
	 */
A
Al Viro 已提交
3849
	name = cfile.file->f_path.dentry->d_name.name;
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3861 3862
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3863 3864 3865 3866 3867
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3868
	/*
3869 3870 3871
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3872
	 */
A
Al Viro 已提交
3873
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3874
					       &memory_cgrp_subsys);
3875
	ret = -EINVAL;
3876
	if (IS_ERR(cfile_css))
3877
		goto out_put_cfile;
3878 3879
	if (cfile_css != css) {
		css_put(cfile_css);
3880
		goto out_put_cfile;
3881
	}
3882

3883
	ret = event->register_event(memcg, event->eventfd, buf);
3884 3885 3886 3887 3888
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3889 3890 3891
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3892 3893 3894 3895

	fdput(cfile);
	fdput(efile);

3896
	return nbytes;
3897 3898

out_put_css:
3899
	css_put(css);
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3912
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3913
	{
3914
		.name = "usage_in_bytes",
3915
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3916
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3917
	},
3918 3919
	{
		.name = "max_usage_in_bytes",
3920
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3921
		.write = mem_cgroup_reset,
3922
		.read_u64 = mem_cgroup_read_u64,
3923
	},
B
Balbir Singh 已提交
3924
	{
3925
		.name = "limit_in_bytes",
3926
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3927
		.write = mem_cgroup_write,
3928
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3929
	},
3930 3931 3932
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3933
		.write = mem_cgroup_write,
3934
		.read_u64 = mem_cgroup_read_u64,
3935
	},
B
Balbir Singh 已提交
3936 3937
	{
		.name = "failcnt",
3938
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3939
		.write = mem_cgroup_reset,
3940
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3941
	},
3942 3943
	{
		.name = "stat",
3944
		.seq_show = memcg_stat_show,
3945
	},
3946 3947
	{
		.name = "force_empty",
3948
		.write = mem_cgroup_force_empty_write,
3949
	},
3950 3951 3952 3953 3954
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3955
	{
3956
		.name = "cgroup.event_control",		/* XXX: for compat */
3957
		.write = memcg_write_event_control,
3958
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3959
	},
K
KOSAKI Motohiro 已提交
3960 3961 3962 3963 3964
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3965 3966 3967 3968 3969
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3970 3971
	{
		.name = "oom_control",
3972
		.seq_show = mem_cgroup_oom_control_read,
3973
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3974 3975
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3976 3977 3978
	{
		.name = "pressure_level",
	},
3979 3980 3981
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3982
		.seq_show = memcg_numa_stat_show,
3983 3984
	},
#endif
3985 3986 3987
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3988
		.write = mem_cgroup_write,
3989
		.read_u64 = mem_cgroup_read_u64,
3990 3991 3992 3993
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3994
		.read_u64 = mem_cgroup_read_u64,
3995 3996 3997 3998
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3999
		.write = mem_cgroup_reset,
4000
		.read_u64 = mem_cgroup_read_u64,
4001 4002 4003 4004
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4005
		.write = mem_cgroup_reset,
4006
		.read_u64 = mem_cgroup_read_u64,
4007
	},
4008 4009 4010
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4011 4012 4013
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4014
		.seq_show = memcg_slab_show,
4015 4016
	},
#endif
V
Vladimir Davydov 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4040
	{ },	/* terminate */
4041
};
4042

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4069
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4070
{
4071
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4072
	atomic_add(n, &memcg->id.ref);
4073 4074
}

4075
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4076
{
4077
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4078
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4079 4080 4081 4082 4083 4084 4085 4086
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4109
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4110 4111
{
	struct mem_cgroup_per_node *pn;
4112
	int tmp = node;
4113 4114 4115 4116 4117 4118 4119 4120
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4121 4122
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4123
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4124 4125
	if (!pn)
		return 1;
4126

4127 4128 4129 4130 4131
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4132
	memcg->nodeinfo[node] = pn;
4133 4134 4135
	return 0;
}

4136
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4137
{
4138
	kfree(memcg->nodeinfo[node]);
4139 4140
}

4141
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4142
{
4143
	int node;
4144

4145
	for_each_node(node)
4146
		free_mem_cgroup_per_node_info(memcg, node);
4147
	free_percpu(memcg->stat);
4148
	kfree(memcg);
4149
}
4150

4151 4152 4153 4154 4155 4156
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4157
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4158
{
4159
	struct mem_cgroup *memcg;
4160
	size_t size;
4161
	int node;
B
Balbir Singh 已提交
4162

4163 4164 4165 4166
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4167
	if (!memcg)
4168 4169
		return NULL;

4170 4171 4172 4173 4174 4175
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4176 4177 4178
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4179

B
Bob Liu 已提交
4180
	for_each_node(node)
4181
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4182
			goto fail;
4183

4184 4185
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4186

4187
	INIT_WORK(&memcg->high_work, high_work_func);
4188 4189 4190 4191
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4192
	vmpressure_init(&memcg->vmpressure);
4193 4194
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4195
	memcg->socket_pressure = jiffies;
4196
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4197 4198
	memcg->kmemcg_id = -1;
#endif
4199 4200 4201
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4202
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4203 4204
	return memcg;
fail:
4205 4206
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4207
	__mem_cgroup_free(memcg);
4208
	return NULL;
4209 4210
}

4211 4212
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4213
{
4214 4215 4216
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4217

4218 4219 4220
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4221

4222 4223 4224 4225 4226 4227 4228 4229
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4230
		page_counter_init(&memcg->memory, &parent->memory);
4231
		page_counter_init(&memcg->swap, &parent->swap);
4232 4233
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4234
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4235
	} else {
4236
		page_counter_init(&memcg->memory, NULL);
4237
		page_counter_init(&memcg->swap, NULL);
4238 4239
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4240
		page_counter_init(&memcg->tcpmem, NULL);
4241 4242 4243 4244 4245
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4246
		if (parent != root_mem_cgroup)
4247
			memory_cgrp_subsys.broken_hierarchy = true;
4248
	}
4249

4250 4251 4252 4253 4254 4255
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4256
	error = memcg_online_kmem(memcg);
4257 4258
	if (error)
		goto fail;
4259

4260
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4261
		static_branch_inc(&memcg_sockets_enabled_key);
4262

4263 4264 4265
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4266
	return ERR_PTR(-ENOMEM);
4267 4268
}

4269
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4270
{
4271 4272
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4273
	/* Online state pins memcg ID, memcg ID pins CSS */
4274
	atomic_set(&memcg->id.ref, 1);
4275
	css_get(css);
4276
	return 0;
B
Balbir Singh 已提交
4277 4278
}

4279
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4280
{
4281
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4282
	struct mem_cgroup_event *event, *tmp;
4283 4284 4285 4286 4287 4288

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4289 4290
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4291 4292 4293
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4294
	spin_unlock(&memcg->event_list_lock);
4295

4296
	memcg_offline_kmem(memcg);
4297
	wb_memcg_offline(memcg);
4298 4299

	mem_cgroup_id_put(memcg);
4300 4301
}

4302 4303 4304 4305 4306 4307 4308
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4309
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4310
{
4311
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4312

4313
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4314
		static_branch_dec(&memcg_sockets_enabled_key);
4315

4316
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4317
		static_branch_dec(&memcg_sockets_enabled_key);
4318

4319 4320 4321
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4322
	memcg_free_kmem(memcg);
4323
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4324 4325
}

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4343 4344 4345 4346 4347
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4348 4349
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4350
	memcg->soft_limit = PAGE_COUNTER_MAX;
4351
	memcg_wb_domain_size_changed(memcg);
4352 4353
}

4354
#ifdef CONFIG_MMU
4355
/* Handlers for move charge at task migration. */
4356
static int mem_cgroup_do_precharge(unsigned long count)
4357
{
4358
	int ret;
4359

4360 4361
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4362
	if (!ret) {
4363 4364 4365
		mc.precharge += count;
		return ret;
	}
4366

4367
	/* Try charges one by one with reclaim, but do not retry */
4368
	while (count--) {
4369
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4370 4371
		if (ret)
			return ret;
4372
		mc.precharge++;
4373
		cond_resched();
4374
	}
4375
	return 0;
4376 4377 4378 4379
}

union mc_target {
	struct page	*page;
4380
	swp_entry_t	ent;
4381 4382 4383
};

enum mc_target_type {
4384
	MC_TARGET_NONE = 0,
4385
	MC_TARGET_PAGE,
4386
	MC_TARGET_SWAP,
4387 4388
};

D
Daisuke Nishimura 已提交
4389 4390
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4391
{
D
Daisuke Nishimura 已提交
4392
	struct page *page = vm_normal_page(vma, addr, ptent);
4393

D
Daisuke Nishimura 已提交
4394 4395 4396
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4397
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4398
			return NULL;
4399 4400 4401 4402
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4403 4404 4405 4406 4407 4408
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4409
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4410
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4411
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4412 4413 4414 4415
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4416
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4417
		return NULL;
4418 4419 4420 4421
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4422
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4423
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4424 4425 4426 4427
		entry->val = ent.val;

	return page;
}
4428 4429
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4430
			pte_t ptent, swp_entry_t *entry)
4431 4432 4433 4434
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4435

4436 4437 4438 4439 4440 4441 4442 4443 4444
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4445
	if (!(mc.flags & MOVE_FILE))
4446 4447 4448
		return NULL;

	mapping = vma->vm_file->f_mapping;
4449
	pgoff = linear_page_index(vma, addr);
4450 4451

	/* page is moved even if it's not RSS of this task(page-faulted). */
4452 4453
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4454 4455 4456 4457
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4458
			if (do_memsw_account())
4459
				*entry = swp;
4460 4461
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4462 4463 4464 4465 4466
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4467
#endif
4468 4469 4470
	return page;
}

4471 4472 4473
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4474
 * @compound: charge the page as compound or small page
4475 4476 4477
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4478
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4479 4480 4481 4482 4483
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4484
				   bool compound,
4485 4486 4487 4488
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4489
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4490
	int ret;
4491
	bool anon;
4492 4493 4494

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4495
	VM_BUG_ON(compound && !PageTransHuge(page));
4496 4497

	/*
4498
	 * Prevent mem_cgroup_migrate() from looking at
4499
	 * page->mem_cgroup of its source page while we change it.
4500
	 */
4501
	ret = -EBUSY;
4502 4503 4504 4505 4506 4507 4508
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4509 4510
	anon = PageAnon(page);

4511 4512
	spin_lock_irqsave(&from->move_lock, flags);

4513
	if (!anon && page_mapped(page)) {
4514 4515 4516 4517 4518 4519
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4556
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4557
	memcg_check_events(to, page);
4558
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4559 4560 4561 4562 4563 4564 4565 4566
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4586
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4587 4588 4589
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4590
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4591 4592 4593 4594 4595
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4596
		page = mc_handle_swap_pte(vma, ptent, &ent);
4597
	else if (pte_none(ptent))
4598
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4599 4600

	if (!page && !ent.val)
4601
		return ret;
4602 4603
	if (page) {
		/*
4604
		 * Do only loose check w/o serialization.
4605
		 * mem_cgroup_move_account() checks the page is valid or
4606
		 * not under LRU exclusion.
4607
		 */
4608
		if (page->mem_cgroup == mc.from) {
4609 4610 4611 4612 4613 4614 4615
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4616 4617
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4618
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4619 4620 4621
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4622 4623 4624 4625
	}
	return ret;
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4639
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4640
	if (!(mc.flags & MOVE_ANON))
4641
		return ret;
4642
	if (page->mem_cgroup == mc.from) {
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4659 4660 4661 4662
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4663
	struct vm_area_struct *vma = walk->vma;
4664 4665 4666
	pte_t *pte;
	spinlock_t *ptl;

4667 4668
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4669 4670
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4671
		spin_unlock(ptl);
4672
		return 0;
4673
	}
4674

4675 4676
	if (pmd_trans_unstable(pmd))
		return 0;
4677 4678
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4679
		if (get_mctgt_type(vma, addr, *pte, NULL))
4680 4681 4682 4683
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4684 4685 4686
	return 0;
}

4687 4688 4689 4690
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4691 4692 4693 4694
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4695
	down_read(&mm->mmap_sem);
4696 4697
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4698
	up_read(&mm->mmap_sem);
4699 4700 4701 4702 4703 4704 4705 4706 4707

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4708 4709 4710 4711 4712
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4713 4714
}

4715 4716
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4717
{
4718 4719 4720
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4721
	/* we must uncharge all the leftover precharges from mc.to */
4722
	if (mc.precharge) {
4723
		cancel_charge(mc.to, mc.precharge);
4724 4725 4726 4727 4728 4729 4730
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4731
		cancel_charge(mc.from, mc.moved_charge);
4732
		mc.moved_charge = 0;
4733
	}
4734 4735 4736
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4737
		if (!mem_cgroup_is_root(mc.from))
4738
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4739

4740 4741
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4742
		/*
4743 4744
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4745
		 */
4746
		if (!mem_cgroup_is_root(mc.to))
4747 4748
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4749 4750
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4751

4752 4753
		mc.moved_swap = 0;
	}
4754 4755 4756 4757 4758 4759 4760
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4761 4762
	struct mm_struct *mm = mc.mm;

4763 4764 4765 4766 4767 4768
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4769
	spin_lock(&mc.lock);
4770 4771
	mc.from = NULL;
	mc.to = NULL;
4772
	mc.mm = NULL;
4773
	spin_unlock(&mc.lock);
4774 4775

	mmput(mm);
4776 4777
}

4778
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4779
{
4780
	struct cgroup_subsys_state *css;
4781
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4782
	struct mem_cgroup *from;
4783
	struct task_struct *leader, *p;
4784
	struct mm_struct *mm;
4785
	unsigned long move_flags;
4786
	int ret = 0;
4787

4788 4789
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4790 4791
		return 0;

4792 4793 4794 4795 4796 4797 4798
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4799
	cgroup_taskset_for_each_leader(leader, css, tset) {
4800 4801
		WARN_ON_ONCE(p);
		p = leader;
4802
		memcg = mem_cgroup_from_css(css);
4803 4804 4805 4806
	}
	if (!p)
		return 0;

4807 4808 4809 4810 4811 4812 4813 4814 4815
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4832
		mc.mm = mm;
4833 4834 4835 4836 4837 4838 4839 4840 4841
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4842 4843
	} else {
		mmput(mm);
4844 4845 4846 4847
	}
	return ret;
}

4848
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4849
{
4850 4851
	if (mc.to)
		mem_cgroup_clear_mc();
4852 4853
}

4854 4855 4856
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4857
{
4858
	int ret = 0;
4859
	struct vm_area_struct *vma = walk->vma;
4860 4861
	pte_t *pte;
	spinlock_t *ptl;
4862 4863 4864
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4865

4866 4867
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4868
		if (mc.precharge < HPAGE_PMD_NR) {
4869
			spin_unlock(ptl);
4870 4871 4872 4873 4874 4875
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4876
				if (!mem_cgroup_move_account(page, true,
4877
							     mc.from, mc.to)) {
4878 4879 4880 4881 4882 4883 4884
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4885
		spin_unlock(ptl);
4886
		return 0;
4887 4888
	}

4889 4890
	if (pmd_trans_unstable(pmd))
		return 0;
4891 4892 4893 4894
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4895
		swp_entry_t ent;
4896 4897 4898 4899

		if (!mc.precharge)
			break;

4900
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4901 4902
		case MC_TARGET_PAGE:
			page = target.page;
4903 4904 4905 4906 4907 4908 4909 4910
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4911 4912
			if (isolate_lru_page(page))
				goto put;
4913 4914
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4915
				mc.precharge--;
4916 4917
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4918 4919
			}
			putback_lru_page(page);
4920
put:			/* get_mctgt_type() gets the page */
4921 4922
			put_page(page);
			break;
4923 4924
		case MC_TARGET_SWAP:
			ent = target.ent;
4925
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4926
				mc.precharge--;
4927 4928 4929
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4930
			break;
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4945
		ret = mem_cgroup_do_precharge(1);
4946 4947 4948 4949 4950 4951 4952
		if (!ret)
			goto retry;
	}

	return ret;
}

4953
static void mem_cgroup_move_charge(void)
4954
{
4955 4956
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4957
		.mm = mc.mm,
4958
	};
4959 4960

	lru_add_drain_all();
4961
	/*
4962 4963 4964
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4965 4966 4967
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4968
retry:
4969
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4981 4982 4983 4984
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
4985 4986
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

4987
	up_read(&mc.mm->mmap_sem);
4988
	atomic_dec(&mc.from->moving_account);
4989 4990
}

4991
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4992
{
4993 4994
	if (mc.to) {
		mem_cgroup_move_charge();
4995
		mem_cgroup_clear_mc();
4996
	}
B
Balbir Singh 已提交
4997
}
4998
#else	/* !CONFIG_MMU */
4999
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5000 5001 5002
{
	return 0;
}
5003
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5004 5005
{
}
5006
static void mem_cgroup_move_task(void)
5007 5008 5009
{
}
#endif
B
Balbir Singh 已提交
5010

5011 5012
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5013 5014
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5015
 */
5016
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5017 5018
{
	/*
5019
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5020 5021 5022
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5023
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5024 5025 5026
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5027 5028
}

5029 5030 5031
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5032 5033 5034
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5035 5036 5037 5038 5039
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5040
	unsigned long low = READ_ONCE(memcg->low);
5041 5042

	if (low == PAGE_COUNTER_MAX)
5043
		seq_puts(m, "max\n");
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5058
	err = page_counter_memparse(buf, "max", &low);
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5070
	unsigned long high = READ_ONCE(memcg->high);
5071 5072

	if (high == PAGE_COUNTER_MAX)
5073
		seq_puts(m, "max\n");
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5084
	unsigned long nr_pages;
5085 5086 5087 5088
	unsigned long high;
	int err;

	buf = strstrip(buf);
5089
	err = page_counter_memparse(buf, "max", &high);
5090 5091 5092 5093 5094
	if (err)
		return err;

	memcg->high = high;

5095 5096 5097 5098 5099
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5100
	memcg_wb_domain_size_changed(memcg);
5101 5102 5103 5104 5105 5106
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5107
	unsigned long max = READ_ONCE(memcg->memory.limit);
5108 5109

	if (max == PAGE_COUNTER_MAX)
5110
		seq_puts(m, "max\n");
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5121 5122
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5123 5124 5125 5126
	unsigned long max;
	int err;

	buf = strstrip(buf);
5127
	err = page_counter_memparse(buf, "max", &max);
5128 5129 5130
	if (err)
		return err;

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5161

5162
	memcg_wb_domain_size_changed(memcg);
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5178 5179 5180
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5181 5182
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5196 5197 5198
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5199
	seq_printf(m, "anon %llu\n",
5200
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5201
	seq_printf(m, "file %llu\n",
5202
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5203
	seq_printf(m, "kernel_stack %llu\n",
5204
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5205 5206 5207
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5208
	seq_printf(m, "sock %llu\n",
5209
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5210 5211

	seq_printf(m, "file_mapped %llu\n",
5212
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5213
	seq_printf(m, "file_dirty %llu\n",
5214
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5215
	seq_printf(m, "file_writeback %llu\n",
5216
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5228 5229 5230 5231 5232
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5233 5234 5235
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5236
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5237
	seq_printf(m, "pgmajfault %lu\n",
5238
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5239 5240 5241 5242

	return 0;
}

5243 5244 5245
static struct cftype memory_files[] = {
	{
		.name = "current",
5246
		.flags = CFTYPE_NOT_ON_ROOT,
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5270
		.file_offset = offsetof(struct mem_cgroup, events_file),
5271 5272
		.seq_show = memory_events_show,
	},
5273 5274 5275 5276 5277
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5278 5279 5280
	{ }	/* terminate */
};

5281
struct cgroup_subsys memory_cgrp_subsys = {
5282
	.css_alloc = mem_cgroup_css_alloc,
5283
	.css_online = mem_cgroup_css_online,
5284
	.css_offline = mem_cgroup_css_offline,
5285
	.css_released = mem_cgroup_css_released,
5286
	.css_free = mem_cgroup_css_free,
5287
	.css_reset = mem_cgroup_css_reset,
5288 5289
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5290
	.post_attach = mem_cgroup_move_task,
5291
	.bind = mem_cgroup_bind,
5292 5293
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5294
	.early_init = 0,
B
Balbir Singh 已提交
5295
};
5296

5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5319
	if (page_counter_read(&memcg->memory) >= memcg->low)
5320 5321 5322 5323 5324 5325 5326 5327
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5328
		if (page_counter_read(&memcg->memory) >= memcg->low)
5329 5330 5331 5332 5333
			return false;
	}
	return true;
}

5334 5335 5336 5337 5338 5339
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5340
 * @compound: charge the page as compound or small page
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5353 5354
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5355 5356
{
	struct mem_cgroup *memcg = NULL;
5357
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5371
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5372
		if (page->mem_cgroup)
5373
			goto out;
5374

5375
		if (do_swap_account) {
5376 5377 5378 5379 5380 5381 5382 5383 5384
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5403
 * @compound: charge the page as compound or small page
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5416
			      bool lrucare, bool compound)
5417
{
5418
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5433 5434 5435
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5436
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5437 5438
	memcg_check_events(memcg, page);
	local_irq_enable();
5439

5440
	if (do_memsw_account() && PageSwapCache(page)) {
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5455
 * @compound: charge the page as compound or small page
5456 5457 5458
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5459 5460
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5461
{
5462
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5477 5478
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5479 5480
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5481
{
5482
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5483 5484
	unsigned long flags;

5485
	if (!mem_cgroup_is_root(memcg)) {
5486
		page_counter_uncharge(&memcg->memory, nr_pages);
5487
		if (do_memsw_account())
5488
			page_counter_uncharge(&memcg->memsw, nr_pages);
5489 5490
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5491 5492
		memcg_oom_recover(memcg);
	}
5493 5494 5495 5496 5497 5498

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5499
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5500 5501
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5502 5503

	if (!mem_cgroup_is_root(memcg))
5504
		css_put_many(&memcg->css, nr_pages);
5505 5506 5507 5508 5509 5510 5511 5512
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5513
	unsigned long nr_kmem = 0;
5514 5515 5516 5517
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5518 5519 5520 5521
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5522 5523 5524 5525 5526 5527 5528 5529
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5530
		if (!page->mem_cgroup)
5531 5532 5533 5534
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5535
		 * page->mem_cgroup at this point, we have fully
5536
		 * exclusive access to the page.
5537 5538
		 */

5539
		if (memcg != page->mem_cgroup) {
5540
			if (memcg) {
5541
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5542 5543 5544
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5545
			}
5546
			memcg = page->mem_cgroup;
5547 5548
		}

5549 5550
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5551

5552 5553 5554 5555 5556 5557 5558 5559 5560
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
5561
		} else {
5562
			nr_kmem += 1 << compound_order(page);
5563 5564
			__ClearPageKmemcg(page);
		}
5565

5566
		page->mem_cgroup = NULL;
5567 5568 5569
	} while (next != page_list);

	if (memcg)
5570
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5571
			       nr_huge, nr_kmem, page);
5572 5573
}

5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5586
	/* Don't touch page->lru of any random page, pre-check: */
5587
	if (!page->mem_cgroup)
5588 5589
		return;

5590 5591 5592
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5593

5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5605

5606 5607
	if (!list_empty(page_list))
		uncharge_list(page_list);
5608 5609 5610
}

/**
5611 5612 5613
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5614
 *
5615 5616
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5617 5618 5619
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5620
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5621
{
5622
	struct mem_cgroup *memcg;
5623 5624
	unsigned int nr_pages;
	bool compound;
5625
	unsigned long flags;
5626 5627 5628 5629

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5630 5631
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5632 5633 5634 5635 5636

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5637
	if (newpage->mem_cgroup)
5638 5639
		return;

5640
	/* Swapcache readahead pages can get replaced before being charged */
5641
	memcg = oldpage->mem_cgroup;
5642
	if (!memcg)
5643 5644
		return;

5645 5646 5647 5648 5649 5650 5651 5652
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5653

5654
	commit_charge(newpage, memcg, false);
5655

5656
	local_irq_save(flags);
5657 5658
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5659
	local_irq_restore(flags);
5660 5661
}

5662
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5663 5664
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5665
void mem_cgroup_sk_alloc(struct sock *sk)
5666 5667 5668
{
	struct mem_cgroup *memcg;

5669 5670 5671 5672 5673
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5689 5690
	if (memcg == root_mem_cgroup)
		goto out;
5691
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5692 5693
		goto out;
	if (css_tryget_online(&memcg->css))
5694
		sk->sk_memcg = memcg;
5695
out:
5696 5697 5698
	rcu_read_unlock();
}

5699
void mem_cgroup_sk_free(struct sock *sk)
5700
{
5701 5702
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5715
	gfp_t gfp_mask = GFP_KERNEL;
5716

5717
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5718
		struct page_counter *fail;
5719

5720 5721
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5722 5723
			return true;
		}
5724 5725
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5726
		return false;
5727
	}
5728

5729 5730 5731 5732
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5733 5734
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5735 5736 5737 5738
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5749
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5750
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5751 5752
		return;
	}
5753

5754 5755
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5756 5757
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5758 5759
}

5760 5761 5762 5763 5764 5765 5766 5767 5768
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5769 5770
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5771 5772 5773 5774
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5775

5776
/*
5777 5778
 * subsys_initcall() for memory controller.
 *
5779 5780 5781 5782
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5783 5784 5785
 */
static int __init mem_cgroup_init(void)
{
5786 5787
	int cpu, node;

5788 5789 5790
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5791 5792 5793
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5794
	 */
5795 5796
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5797 5798
#endif

5799 5800
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5812 5813
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5814 5815 5816
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5817 5818 5819
	return 0;
}
subsys_initcall(mem_cgroup_init);
5820 5821

#ifdef CONFIG_MEMCG_SWAP
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5840 5841 5842 5843 5844 5845 5846 5847 5848
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5849
	struct mem_cgroup *memcg, *swap_memcg;
5850 5851 5852 5853 5854
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5855
	if (!do_memsw_account())
5856 5857 5858 5859 5860 5861 5862 5863
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5864 5865 5866 5867 5868 5869 5870
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5871
	VM_BUG_ON_PAGE(oldid, page);
5872
	mem_cgroup_swap_statistics(swap_memcg, true);
5873 5874 5875 5876 5877 5878

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5879 5880 5881 5882 5883 5884
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
			page_counter_charge(&swap_memcg->memsw, 1);
		page_counter_uncharge(&memcg->memsw, 1);
	}

5885 5886 5887 5888 5889 5890 5891
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5892
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5893
	memcg_check_events(memcg, page);
5894 5895 5896

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5897 5898
}

5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

5923 5924
	memcg = mem_cgroup_id_get_online(memcg);

5925
	if (!mem_cgroup_is_root(memcg) &&
5926 5927
	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
		mem_cgroup_id_put(memcg);
5928
		return -ENOMEM;
5929
	}
5930 5931 5932 5933 5934 5935 5936 5937

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5938 5939 5940 5941
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5942
 * Drop the swap charge associated with @entry.
5943 5944 5945 5946 5947 5948
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5949
	if (!do_swap_account)
5950 5951 5952 5953
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5954
	memcg = mem_cgroup_from_id(id);
5955
	if (memcg) {
5956 5957 5958 5959 5960 5961
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5962
		mem_cgroup_swap_statistics(memcg, false);
5963
		mem_cgroup_id_put(memcg);
5964 5965 5966 5967
	}
	rcu_read_unlock();
}

5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6108 6109
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6110 6111 6112 6113 6114 6115 6116 6117
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */