memcontrol.c 149.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
80

81
/* Whether the swap controller is active */
A
Andrew Morton 已提交
82
#ifdef CONFIG_MEMCG_SWAP
83 84
int do_swap_account __read_mostly;
#else
85
#define do_swap_account		0
86 87
#endif

88 89 90
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
91
	"rss_huge",
92
	"mapped_file",
93
	"writeback",
94 95 96 97 98 99 100 101 102 103
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

104 105 106 107 108 109 110 111
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

112 113 114 115 116 117 118 119
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
120
	MEM_CGROUP_TARGET_SOFTLIMIT,
121
	MEM_CGROUP_TARGET_NUMAINFO,
122 123
	MEM_CGROUP_NTARGETS,
};
124 125 126
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
127

128
struct mem_cgroup_stat_cpu {
129
	long count[MEM_CGROUP_STAT_NSTATS];
130
	unsigned long events[MEMCG_NR_EVENTS];
131
	unsigned long nr_page_events;
132
	unsigned long targets[MEM_CGROUP_NTARGETS];
133 134
};

135 136
struct reclaim_iter {
	struct mem_cgroup *position;
137 138 139 140
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

141 142 143 144
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
145
	struct lruvec		lruvec;
146
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
147

148
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
149

150
	struct rb_node		tree_node;	/* RB tree node */
151
	unsigned long		usage_in_excess;/* Set to the value by which */
152 153
						/* the soft limit is exceeded*/
	bool			on_tree;
154
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
155
						/* use container_of	   */
156 157 158 159 160 161
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

182 183
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
184
	unsigned long threshold;
185 186
};

K
KAMEZAWA Hiroyuki 已提交
187
/* For threshold */
188
struct mem_cgroup_threshold_ary {
189
	/* An array index points to threshold just below or equal to usage. */
190
	int current_threshold;
191 192 193 194 195
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
196 197 198 199 200 201 202 203 204 205 206 207

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
208 209 210 211 212
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
213

214 215 216
/*
 * cgroup_event represents events which userspace want to receive.
 */
217
struct mem_cgroup_event {
218
	/*
219
	 * memcg which the event belongs to.
220
	 */
221
	struct mem_cgroup *memcg;
222 223 224 225 226 227 228 229
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
230 231 232 233 234
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
235
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
236
			      struct eventfd_ctx *eventfd, const char *args);
237 238 239 240 241
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
242
	void (*unregister_event)(struct mem_cgroup *memcg,
243
				 struct eventfd_ctx *eventfd);
244 245 246 247 248 249 250 251 252 253
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

254 255
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256

B
Balbir Singh 已提交
257 258 259 260 261 262 263
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
264 265 266
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
267 268 269
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
270 271 272 273 274 275

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

276 277 278 279
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

280
	unsigned long soft_limit;
281

282 283 284
	/* vmpressure notifications */
	struct vmpressure vmpressure;

285 286 287
	/* css_online() has been completed */
	int initialized;

288 289 290 291
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
292 293 294

	bool		oom_lock;
	atomic_t	under_oom;
295
	atomic_t	oom_wakeups;
296

297
	int	swappiness;
298 299
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
300

301 302 303 304
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
305
	struct mem_cgroup_thresholds thresholds;
306

307
	/* thresholds for mem+swap usage. RCU-protected */
308
	struct mem_cgroup_thresholds memsw_thresholds;
309

K
KAMEZAWA Hiroyuki 已提交
310 311
	/* For oom notifier event fd */
	struct list_head oom_notify;
312

313 314 315 316
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
317
	unsigned long move_charge_at_immigrate;
318 319 320
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
321
	atomic_t		moving_account;
322
	/* taken only while moving_account > 0 */
323 324 325
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
326
	/*
327
	 * percpu counter.
328
	 */
329
	struct mem_cgroup_stat_cpu __percpu *stat;
330 331 332 333 334 335
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
336

M
Michal Hocko 已提交
337
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
338
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
339
#endif
340
#if defined(CONFIG_MEMCG_KMEM)
341
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
342
	int kmemcg_id;
343
	bool kmem_acct_activated;
344
	bool kmem_acct_active;
345
#endif
346 347 348 349 350 351 352

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
353

354 355 356 357
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

358 359
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
360 361
};

362
#ifdef CONFIG_MEMCG_KMEM
363
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
364
{
365
	return memcg->kmem_acct_active;
366
}
367 368
#endif

369 370
/* Stuffs for move charges at task migration. */
/*
371
 * Types of charges to be moved.
372
 */
373 374 375
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
376

377 378
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
379
	spinlock_t	  lock; /* for from, to */
380 381
	struct mem_cgroup *from;
	struct mem_cgroup *to;
382
	unsigned long flags;
383
	unsigned long precharge;
384
	unsigned long moved_charge;
385
	unsigned long moved_swap;
386 387 388
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
389
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
390 391
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
392

393 394 395 396
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
397
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
398
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
399

400 401
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
402
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
403
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
404
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
405 406 407
	NR_CHARGE_TYPE,
};

408
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
409 410 411 412
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
413
	_KMEM,
G
Glauber Costa 已提交
414 415
};

416 417
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
418
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
419 420
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
421

422 423 424 425 426 427 428
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

429 430
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
431
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
432 433
}

434 435 436 437 438 439 440 441 442 443 444 445 446
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

447 448 449 450 451
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

452 453 454 455 456 457
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
458 459
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
460
	return memcg->css.id;
L
Li Zefan 已提交
461 462 463 464 465 466
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

467
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
468 469 470
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
471
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
472
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
473 474 475

void sock_update_memcg(struct sock *sk)
{
476
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
477
		struct mem_cgroup *memcg;
478
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
479 480 481

		BUG_ON(!sk->sk_prot->proto_cgroup);

482 483 484 485 486 487 488 489 490 491
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
492
			css_get(&sk->sk_cgrp->memcg->css);
493 494 495
			return;
		}

G
Glauber Costa 已提交
496 497
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
498
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
499
		if (!mem_cgroup_is_root(memcg) &&
500 501
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
502
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
503 504 505 506 507 508 509 510
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
511
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
512 513 514
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
515
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
516 517
	}
}
G
Glauber Costa 已提交
518 519 520 521 522 523

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

524
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
525 526
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
527

528 529
#endif

530
#ifdef CONFIG_MEMCG_KMEM
531
/*
532
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
533 534 535 536 537
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
538
 *
539 540
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
541
 */
542 543
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
544

545 546 547 548 549 550 551 552 553 554 555 556 557
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

558 559 560 561 562 563
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
564
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
565 566
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
567
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
568 569 570
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
571
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
572

573 574 575 576 577 578
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
579
struct static_key memcg_kmem_enabled_key;
580
EXPORT_SYMBOL(memcg_kmem_enabled_key);
581 582 583

#endif /* CONFIG_MEMCG_KMEM */

584
static struct mem_cgroup_per_zone *
585
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
586
{
587 588 589
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

590
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
591 592
}

593
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
594
{
595
	return &memcg->css;
596 597
}

598
static struct mem_cgroup_per_zone *
599
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
600
{
601 602
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
603

604
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
605 606
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

622 623
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
624
					 unsigned long new_usage_in_excess)
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

654 655
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
656 657 658 659 660 661 662
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

663 664
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
665
{
666 667 668
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
669
	__mem_cgroup_remove_exceeded(mz, mctz);
670
	spin_unlock_irqrestore(&mctz->lock, flags);
671 672
}

673 674 675 676 677 678 679 680 681 682 683
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
684 685 686

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
687
	unsigned long excess;
688 689 690
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

691
	mctz = soft_limit_tree_from_page(page);
692 693 694 695 696
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
697
		mz = mem_cgroup_page_zoneinfo(memcg, page);
698
		excess = soft_limit_excess(memcg);
699 700 701 702 703
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
704 705 706
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
707 708
			/* if on-tree, remove it */
			if (mz->on_tree)
709
				__mem_cgroup_remove_exceeded(mz, mctz);
710 711 712 713
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
714
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
715
			spin_unlock_irqrestore(&mctz->lock, flags);
716 717 718 719 720 721 722
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
723 724
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
725

726 727 728 729
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
730
			mem_cgroup_remove_exceeded(mz, mctz);
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
753
	__mem_cgroup_remove_exceeded(mz, mctz);
754
	if (!soft_limit_excess(mz->memcg) ||
755
	    !css_tryget_online(&mz->memcg->css))
756 757 758 759 760 761 762 763 764 765
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

766
	spin_lock_irq(&mctz->lock);
767
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
768
	spin_unlock_irq(&mctz->lock);
769 770 771
	return mz;
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
791
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
792
				 enum mem_cgroup_stat_index idx)
793
{
794
	long val = 0;
795 796
	int cpu;

797 798
	get_online_cpus();
	for_each_online_cpu(cpu)
799
		val += per_cpu(memcg->stat->count[idx], cpu);
800
#ifdef CONFIG_HOTPLUG_CPU
801 802 803
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
804 805
#endif
	put_online_cpus();
806 807 808
	return val;
}

809
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
810 811 812 813 814
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

815
	get_online_cpus();
816
	for_each_online_cpu(cpu)
817
		val += per_cpu(memcg->stat->events[idx], cpu);
818
#ifdef CONFIG_HOTPLUG_CPU
819 820 821
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
822
#endif
823
	put_online_cpus();
824 825 826
	return val;
}

827
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
828
					 struct page *page,
829
					 int nr_pages)
830
{
831 832 833 834
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
835
	if (PageAnon(page))
836
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
837
				nr_pages);
838
	else
839
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
840
				nr_pages);
841

842 843 844 845
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

846 847
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
848
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
849
	else {
850
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
851 852
		nr_pages = -nr_pages; /* for event */
	}
853

854
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
855 856
}

857
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
858 859 860 861 862 863 864
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

865 866 867
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
868
{
869
	unsigned long nr = 0;
870 871
	int zid;

872
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
873

874 875 876 877 878 879 880 881 882 883 884 885
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
886
}
887

888
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
889
			unsigned int lru_mask)
890
{
891
	unsigned long nr = 0;
892
	int nid;
893

894
	for_each_node_state(nid, N_MEMORY)
895 896
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
897 898
}

899 900
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
901 902 903
{
	unsigned long val, next;

904
	val = __this_cpu_read(memcg->stat->nr_page_events);
905
	next = __this_cpu_read(memcg->stat->targets[target]);
906
	/* from time_after() in jiffies.h */
907 908 909 910 911
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
912 913 914
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
915 916 917 918 919 920 921 922
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
923
	}
924
	return false;
925 926 927 928 929 930
}

/*
 * Check events in order.
 *
 */
931
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
932 933
{
	/* threshold event is triggered in finer grain than soft limit */
934 935
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
936
		bool do_softlimit;
937
		bool do_numainfo __maybe_unused;
938

939 940
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
941 942 943 944
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
945
		mem_cgroup_threshold(memcg);
946 947
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
948
#if MAX_NUMNODES > 1
949
		if (unlikely(do_numainfo))
950
			atomic_inc(&memcg->numainfo_events);
951
#endif
952
	}
953 954
}

955
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
956
{
957 958 959 960 961 962 963 964
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

965
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
966 967
}

968
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
969
{
970
	struct mem_cgroup *memcg = NULL;
971

972 973
	rcu_read_lock();
	do {
974 975 976 977 978 979
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
980
			memcg = root_mem_cgroup;
981 982 983 984 985
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
986
	} while (!css_tryget_online(&memcg->css));
987
	rcu_read_unlock();
988
	return memcg;
989 990
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1008
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1009
				   struct mem_cgroup *prev,
1010
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1011
{
1012 1013
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1014
	struct mem_cgroup *memcg = NULL;
1015
	struct mem_cgroup *pos = NULL;
1016

1017 1018
	if (mem_cgroup_disabled())
		return NULL;
1019

1020 1021
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1022

1023
	if (prev && !reclaim)
1024
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1025

1026 1027
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1028
			goto out;
1029
		return root;
1030
	}
K
KAMEZAWA Hiroyuki 已提交
1031

1032
	rcu_read_lock();
M
Michal Hocko 已提交
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1068
		}
K
KAMEZAWA Hiroyuki 已提交
1069

1070 1071 1072 1073 1074 1075
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1076

1077 1078
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1079

1080
		if (css_tryget(css)) {
1081 1082 1083 1084 1085 1086 1087
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1088

1089
			css_put(css);
1090
		}
1091

1092
		memcg = NULL;
1093
	}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1114
	}
1115

1116 1117
out_unlock:
	rcu_read_unlock();
1118
out:
1119 1120 1121
	if (prev && prev != root)
		css_put(&prev->css);

1122
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1123
}
K
KAMEZAWA Hiroyuki 已提交
1124

1125 1126 1127 1128 1129 1130 1131
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1132 1133 1134 1135 1136 1137
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1138

1139 1140 1141 1142 1143 1144
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1145
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1146
	     iter != NULL;				\
1147
	     iter = mem_cgroup_iter(root, iter, NULL))
1148

1149
#define for_each_mem_cgroup(iter)			\
1150
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1151
	     iter != NULL;				\
1152
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1153

1154
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1155
{
1156
	struct mem_cgroup *memcg;
1157 1158

	rcu_read_lock();
1159 1160
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1161 1162 1163 1164
		goto out;

	switch (idx) {
	case PGFAULT:
1165 1166 1167 1168
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1169 1170 1171 1172 1173 1174 1175
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1176
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1177

1178 1179 1180
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1181
 * @memcg: memcg of the wanted lruvec
1182 1183 1184 1185 1186 1187 1188 1189 1190
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1191
	struct lruvec *lruvec;
1192

1193 1194 1195 1196
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1197

1198
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1209 1210 1211
}

/**
1212
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1213
 * @page: the page
1214
 * @zone: zone of the page
1215 1216 1217 1218
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1219
 */
1220
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1221 1222
{
	struct mem_cgroup_per_zone *mz;
1223
	struct mem_cgroup *memcg;
1224
	struct lruvec *lruvec;
1225

1226 1227 1228 1229
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1230

1231
	memcg = page->mem_cgroup;
1232
	/*
1233
	 * Swapcache readahead pages are added to the LRU - and
1234
	 * possibly migrated - before they are charged.
1235
	 */
1236 1237
	if (!memcg)
		memcg = root_mem_cgroup;
1238

1239
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1250
}
1251

1252
/**
1253 1254 1255 1256
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1257
 *
1258 1259
 * This function must be called when a page is added to or removed from an
 * lru list.
1260
 */
1261 1262
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1263 1264
{
	struct mem_cgroup_per_zone *mz;
1265
	unsigned long *lru_size;
1266 1267 1268 1269

	if (mem_cgroup_disabled())
		return;

1270 1271 1272 1273
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1274
}
1275

1276
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1277
{
1278
	if (root == memcg)
1279
		return true;
1280
	if (!root->use_hierarchy)
1281
		return false;
1282
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1283 1284
}

1285
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1286
{
1287
	struct mem_cgroup *task_memcg;
1288
	struct task_struct *p;
1289
	bool ret;
1290

1291
	p = find_lock_task_mm(task);
1292
	if (p) {
1293
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1294 1295 1296 1297 1298 1299 1300
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1301
		rcu_read_lock();
1302 1303
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1304
		rcu_read_unlock();
1305
	}
1306 1307
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1308 1309 1310
	return ret;
}

1311
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1312
{
1313
	unsigned long inactive_ratio;
1314
	unsigned long inactive;
1315
	unsigned long active;
1316
	unsigned long gb;
1317

1318 1319
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1320

1321 1322 1323 1324 1325 1326
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1327
	return inactive * inactive_ratio < active;
1328 1329
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1344
#define mem_cgroup_from_counter(counter, member)	\
1345 1346
	container_of(counter, struct mem_cgroup, member)

1347
/**
1348
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1349
 * @memcg: the memory cgroup
1350
 *
1351
 * Returns the maximum amount of memory @mem can be charged with, in
1352
 * pages.
1353
 */
1354
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1355
{
1356 1357 1358
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1373 1374
}

1375
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1376 1377
{
	/* root ? */
1378
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1379 1380
		return vm_swappiness;

1381
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1382 1383
}

1384
/*
Q
Qiang Huang 已提交
1385
 * A routine for checking "mem" is under move_account() or not.
1386
 *
Q
Qiang Huang 已提交
1387 1388 1389
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1390
 */
1391
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1392
{
1393 1394
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1395
	bool ret = false;
1396 1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1405

1406 1407
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1408 1409
unlock:
	spin_unlock(&mc.lock);
1410 1411 1412
	return ret;
}

1413
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1414 1415
{
	if (mc.moving_task && current != mc.moving_task) {
1416
		if (mem_cgroup_under_move(memcg)) {
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1429
#define K(x) ((x) << (PAGE_SHIFT-10))
1430
/**
1431
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1432 1433 1434 1435 1436 1437 1438 1439
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1440
	/* oom_info_lock ensures that parallel ooms do not interleave */
1441
	static DEFINE_MUTEX(oom_info_lock);
1442 1443
	struct mem_cgroup *iter;
	unsigned int i;
1444

1445
	mutex_lock(&oom_info_lock);
1446 1447
	rcu_read_lock();

1448 1449 1450 1451 1452 1453 1454 1455
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1456
	pr_cont_cgroup_path(memcg->css.cgroup);
1457
	pr_cont("\n");
1458 1459 1460

	rcu_read_unlock();

1461 1462 1463 1464 1465 1466 1467 1468 1469
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1470 1471

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1472 1473
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1489
	mutex_unlock(&oom_info_lock);
1490 1491
}

1492 1493 1494 1495
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1496
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1497 1498
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1499 1500
	struct mem_cgroup *iter;

1501
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1502
		num++;
1503 1504 1505
	return num;
}

D
David Rientjes 已提交
1506 1507 1508
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1509
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1510
{
1511
	unsigned long limit;
1512

1513
	limit = memcg->memory.limit;
1514
	if (mem_cgroup_swappiness(memcg)) {
1515
		unsigned long memsw_limit;
1516

1517 1518
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1519 1520
	}
	return limit;
D
David Rientjes 已提交
1521 1522
}

1523 1524
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1525 1526 1527 1528 1529 1530 1531
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1532
	/*
1533 1534 1535
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1536
	 */
1537
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1538
		mark_tsk_oom_victim(current);
1539 1540 1541
		return;
	}

1542
	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1543
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1544
	for_each_mem_cgroup_tree(iter, memcg) {
1545
		struct css_task_iter it;
1546 1547
		struct task_struct *task;

1548 1549
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1562
				css_task_iter_end(&it);
1563 1564 1565 1566 1567 1568 1569 1570
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1583
		}
1584
		css_task_iter_end(&it);
1585 1586 1587 1588 1589 1590 1591 1592 1593
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1594 1595
#if MAX_NUMNODES > 1

1596 1597
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1598
 * @memcg: the target memcg
1599 1600 1601 1602 1603 1604 1605
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1606
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1607 1608
		int nid, bool noswap)
{
1609
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1610 1611 1612
		return true;
	if (noswap || !total_swap_pages)
		return false;
1613
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1614 1615 1616 1617
		return true;
	return false;

}
1618 1619 1620 1621 1622 1623 1624

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1625
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1626 1627
{
	int nid;
1628 1629 1630 1631
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1632
	if (!atomic_read(&memcg->numainfo_events))
1633
		return;
1634
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1635 1636 1637
		return;

	/* make a nodemask where this memcg uses memory from */
1638
	memcg->scan_nodes = node_states[N_MEMORY];
1639

1640
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1641

1642 1643
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1644
	}
1645

1646 1647
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1662
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1663 1664 1665
{
	int node;

1666 1667
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1668

1669
	node = next_node(node, memcg->scan_nodes);
1670
	if (node == MAX_NUMNODES)
1671
		node = first_node(memcg->scan_nodes);
1672 1673 1674 1675 1676 1677 1678 1679 1680
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1681
	memcg->last_scanned_node = node;
1682 1683 1684
	return node;
}
#else
1685
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1686 1687 1688 1689 1690
{
	return 0;
}
#endif

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1706
	excess = soft_limit_excess(root_memcg);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1735
		if (!soft_limit_excess(root_memcg))
1736
			break;
1737
	}
1738 1739
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1740 1741
}

1742 1743 1744 1745 1746 1747
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1748 1749
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1750 1751 1752 1753
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1754
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1755
{
1756
	struct mem_cgroup *iter, *failed = NULL;
1757

1758 1759
	spin_lock(&memcg_oom_lock);

1760
	for_each_mem_cgroup_tree(iter, memcg) {
1761
		if (iter->oom_lock) {
1762 1763 1764 1765 1766
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1767 1768
			mem_cgroup_iter_break(memcg, iter);
			break;
1769 1770
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1771
	}
K
KAMEZAWA Hiroyuki 已提交
1772

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1784
		}
1785 1786
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1787 1788 1789 1790

	spin_unlock(&memcg_oom_lock);

	return !failed;
1791
}
1792

1793
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1794
{
K
KAMEZAWA Hiroyuki 已提交
1795 1796
	struct mem_cgroup *iter;

1797
	spin_lock(&memcg_oom_lock);
1798
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1799
	for_each_mem_cgroup_tree(iter, memcg)
1800
		iter->oom_lock = false;
1801
	spin_unlock(&memcg_oom_lock);
1802 1803
}

1804
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1805 1806 1807
{
	struct mem_cgroup *iter;

1808
	for_each_mem_cgroup_tree(iter, memcg)
1809 1810 1811
		atomic_inc(&iter->under_oom);
}

1812
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1813 1814 1815
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1816 1817 1818 1819 1820
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1821
	for_each_mem_cgroup_tree(iter, memcg)
1822
		atomic_add_unless(&iter->under_oom, -1, 0);
1823 1824
}

K
KAMEZAWA Hiroyuki 已提交
1825 1826
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1827
struct oom_wait_info {
1828
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1829 1830 1831 1832 1833 1834
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1835 1836
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1837 1838 1839
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1840
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1841

1842 1843
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1844 1845 1846 1847
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1848
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1849
{
1850
	atomic_inc(&memcg->oom_wakeups);
1851 1852
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1853 1854
}

1855
static void memcg_oom_recover(struct mem_cgroup *memcg)
1856
{
1857 1858
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1859 1860
}

1861
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1862
{
1863 1864
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1865
	/*
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1878
	 */
1879 1880 1881 1882
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1883 1884 1885 1886
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1887
 * @handle: actually kill/wait or just clean up the OOM state
1888
 *
1889 1890
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1891
 *
1892
 * Memcg supports userspace OOM handling where failed allocations must
1893 1894 1895 1896
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1897
 * the end of the page fault to complete the OOM handling.
1898 1899
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1900
 * completed, %false otherwise.
1901
 */
1902
bool mem_cgroup_oom_synchronize(bool handle)
1903
{
1904
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1905
	struct oom_wait_info owait;
1906
	bool locked;
1907 1908 1909

	/* OOM is global, do not handle */
	if (!memcg)
1910
		return false;
1911

1912
	if (!handle || oom_killer_disabled)
1913
		goto cleanup;
1914 1915 1916 1917 1918 1919

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1920

1921
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1935
		schedule();
1936 1937 1938 1939 1940
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1941 1942 1943 1944 1945 1946 1947 1948
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1949 1950
cleanup:
	current->memcg_oom.memcg = NULL;
1951
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1952
	return true;
1953 1954
}

1955 1956 1957
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1958
 *
1959 1960 1961
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1962
 *
1963
 *   memcg = mem_cgroup_begin_page_stat(page);
1964 1965
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1966
 *   mem_cgroup_end_page_stat(memcg);
1967
 */
1968
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1969 1970
{
	struct mem_cgroup *memcg;
1971
	unsigned long flags;
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1985 1986 1987 1988
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1989
again:
1990
	memcg = page->mem_cgroup;
1991
	if (unlikely(!memcg))
1992 1993
		return NULL;

Q
Qiang Huang 已提交
1994
	if (atomic_read(&memcg->moving_account) <= 0)
1995
		return memcg;
1996

1997
	spin_lock_irqsave(&memcg->move_lock, flags);
1998
	if (memcg != page->mem_cgroup) {
1999
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2000 2001
		goto again;
	}
2002 2003 2004 2005 2006 2007 2008 2009

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2010 2011

	return memcg;
2012 2013
}

2014 2015 2016 2017
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2018
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2019
{
2020 2021 2022 2023 2024 2025 2026 2027
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2028

2029
	rcu_read_unlock();
2030 2031
}

2032 2033 2034 2035 2036 2037 2038 2039 2040
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2041
				 enum mem_cgroup_stat_index idx, int val)
2042
{
2043
	VM_BUG_ON(!rcu_read_lock_held());
2044

2045 2046
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2047
}
2048

2049 2050 2051 2052
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2053
#define CHARGE_BATCH	32U
2054 2055
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2056
	unsigned int nr_pages;
2057
	struct work_struct work;
2058
	unsigned long flags;
2059
#define FLUSHING_CACHED_CHARGE	0
2060 2061
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2062
static DEFINE_MUTEX(percpu_charge_mutex);
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2074
 */
2075
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2076 2077
{
	struct memcg_stock_pcp *stock;
2078
	bool ret = false;
2079

2080
	if (nr_pages > CHARGE_BATCH)
2081
		return ret;
2082

2083
	stock = &get_cpu_var(memcg_stock);
2084
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2085
		stock->nr_pages -= nr_pages;
2086 2087
		ret = true;
	}
2088 2089 2090 2091 2092
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2093
 * Returns stocks cached in percpu and reset cached information.
2094 2095 2096 2097 2098
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2099
	if (stock->nr_pages) {
2100
		page_counter_uncharge(&old->memory, stock->nr_pages);
2101
		if (do_swap_account)
2102
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2103
		css_put_many(&old->css, stock->nr_pages);
2104
		stock->nr_pages = 0;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2115
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2116
	drain_stock(stock);
2117
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2118 2119 2120
}

/*
2121
 * Cache charges(val) to local per_cpu area.
2122
 * This will be consumed by consume_stock() function, later.
2123
 */
2124
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2125 2126 2127
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2128
	if (stock->cached != memcg) { /* reset if necessary */
2129
		drain_stock(stock);
2130
		stock->cached = memcg;
2131
	}
2132
	stock->nr_pages += nr_pages;
2133 2134 2135 2136
	put_cpu_var(memcg_stock);
}

/*
2137
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138
 * of the hierarchy under it.
2139
 */
2140
static void drain_all_stock(struct mem_cgroup *root_memcg)
2141
{
2142
	int cpu, curcpu;
2143

2144 2145 2146
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2147 2148
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2149
	curcpu = get_cpu();
2150 2151
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2152
		struct mem_cgroup *memcg;
2153

2154 2155
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2156
			continue;
2157
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2158
			continue;
2159 2160 2161 2162 2163 2164
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2165
	}
2166
	put_cpu();
A
Andrew Morton 已提交
2167
	put_online_cpus();
2168
	mutex_unlock(&percpu_charge_mutex);
2169 2170
}

2171 2172 2173 2174
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2175
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2176 2177 2178
{
	int i;

2179
	spin_lock(&memcg->pcp_counter_lock);
2180
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2181
		long x = per_cpu(memcg->stat->count[i], cpu);
2182

2183 2184
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2185
	}
2186
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2187
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2188

2189 2190
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2191
	}
2192
	spin_unlock(&memcg->pcp_counter_lock);
2193 2194
}

2195
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2196 2197 2198 2199 2200
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2201
	struct mem_cgroup *iter;
2202

2203
	if (action == CPU_ONLINE)
2204 2205
		return NOTIFY_OK;

2206
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2207
		return NOTIFY_OK;
2208

2209
	for_each_mem_cgroup(iter)
2210 2211
		mem_cgroup_drain_pcp_counter(iter, cpu);

2212 2213 2214 2215 2216
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2217 2218
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2219
{
2220
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2221
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2222
	struct mem_cgroup *mem_over_limit;
2223
	struct page_counter *counter;
2224
	unsigned long nr_reclaimed;
2225 2226
	bool may_swap = true;
	bool drained = false;
2227
	int ret = 0;
2228

2229 2230
	if (mem_cgroup_is_root(memcg))
		goto done;
2231
retry:
2232 2233
	if (consume_stock(memcg, nr_pages))
		goto done;
2234

2235
	if (!do_swap_account ||
2236 2237
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2238
			goto done_restock;
2239
		if (do_swap_account)
2240 2241
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2242
	} else {
2243
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2244
		may_swap = false;
2245
	}
2246

2247 2248 2249 2250
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2251

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2266 2267
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2268

2269 2270
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2271 2272
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2273

2274
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2275
		goto retry;
2276

2277
	if (!drained) {
2278
		drain_all_stock(mem_over_limit);
2279 2280 2281 2282
		drained = true;
		goto retry;
	}

2283 2284
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2285 2286 2287 2288 2289 2290 2291 2292 2293
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2294
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2295 2296 2297 2298 2299 2300 2301 2302
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2303 2304 2305
	if (nr_retries--)
		goto retry;

2306 2307 2308
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2309 2310 2311
	if (fatal_signal_pending(current))
		goto bypass;

2312 2313
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2314
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2315
nomem:
2316
	if (!(gfp_mask & __GFP_NOFAIL))
2317
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2318
bypass:
2319
	return -EINTR;
2320 2321

done_restock:
2322
	css_get_many(&memcg->css, batch);
2323 2324
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2335
done:
2336
	return ret;
2337
}
2338

2339
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2340
{
2341 2342 2343
	if (mem_cgroup_is_root(memcg))
		return;

2344
	page_counter_uncharge(&memcg->memory, nr_pages);
2345
	if (do_swap_account)
2346
		page_counter_uncharge(&memcg->memsw, nr_pages);
2347

2348
	css_put_many(&memcg->css, nr_pages);
2349 2350
}

2351 2352
/*
 * A helper function to get mem_cgroup from ID. must be called under
2353 2354 2355
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2356 2357 2358 2359 2360 2361
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2362
	return mem_cgroup_from_id(id);
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2375
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2376
{
2377
	struct mem_cgroup *memcg;
2378
	unsigned short id;
2379 2380
	swp_entry_t ent;

2381
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2382

2383
	memcg = page->mem_cgroup;
2384 2385
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2386
			memcg = NULL;
2387
	} else if (PageSwapCache(page)) {
2388
		ent.val = page_private(page);
2389
		id = lookup_swap_cgroup_id(ent);
2390
		rcu_read_lock();
2391
		memcg = mem_cgroup_lookup(id);
2392
		if (memcg && !css_tryget_online(&memcg->css))
2393
			memcg = NULL;
2394
		rcu_read_unlock();
2395
	}
2396
	return memcg;
2397 2398
}

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2430
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2431
			  bool lrucare)
2432
{
2433
	int isolated;
2434

2435
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2436 2437 2438 2439 2440

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2441 2442
	if (lrucare)
		lock_page_lru(page, &isolated);
2443

2444 2445
	/*
	 * Nobody should be changing or seriously looking at
2446
	 * page->mem_cgroup at this point:
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2458
	page->mem_cgroup = memcg;
2459

2460 2461
	if (lrucare)
		unlock_page_lru(page, isolated);
2462
}
2463

2464
#ifdef CONFIG_MEMCG_KMEM
2465 2466
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2467
{
2468
	struct page_counter *counter;
2469 2470
	int ret = 0;

2471 2472
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2473 2474
		return ret;

2475
	ret = try_charge(memcg, gfp, nr_pages);
2476 2477
	if (ret == -EINTR)  {
		/*
2478 2479 2480 2481 2482 2483
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2484 2485 2486
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2487 2488 2489
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2490 2491
		 * directed to the root cgroup in memcontrol.h
		 */
2492
		page_counter_charge(&memcg->memory, nr_pages);
2493
		if (do_swap_account)
2494
			page_counter_charge(&memcg->memsw, nr_pages);
2495
		css_get_many(&memcg->css, nr_pages);
2496 2497
		ret = 0;
	} else if (ret)
2498
		page_counter_uncharge(&memcg->kmem, nr_pages);
2499 2500 2501 2502

	return ret;
}

2503
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2504
{
2505
	page_counter_uncharge(&memcg->memory, nr_pages);
2506
	if (do_swap_account)
2507
		page_counter_uncharge(&memcg->memsw, nr_pages);
2508

2509
	page_counter_uncharge(&memcg->kmem, nr_pages);
2510

2511
	css_put_many(&memcg->css, nr_pages);
2512 2513
}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2524
static int memcg_alloc_cache_id(void)
2525
{
2526 2527 2528
	int id, size;
	int err;

2529
	id = ida_simple_get(&memcg_cache_ida,
2530 2531 2532
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2533

2534
	if (id < memcg_nr_cache_ids)
2535 2536 2537 2538 2539 2540
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2541
	down_write(&memcg_cache_ids_sem);
2542 2543

	size = 2 * (id + 1);
2544 2545 2546 2547 2548
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2549
	err = memcg_update_all_caches(size);
2550 2551
	if (!err)
		err = memcg_update_all_list_lrus(size);
2552 2553 2554 2555 2556
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2557
	if (err) {
2558
		ida_simple_remove(&memcg_cache_ida, id);
2559 2560 2561 2562 2563 2564 2565
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2566
	ida_simple_remove(&memcg_cache_ida, id);
2567 2568
}

2569
struct memcg_kmem_cache_create_work {
2570 2571 2572 2573 2574
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2575
static void memcg_kmem_cache_create_func(struct work_struct *w)
2576
{
2577 2578
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2579 2580
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2581

2582
	memcg_create_kmem_cache(memcg, cachep);
2583

2584
	css_put(&memcg->css);
2585 2586 2587 2588 2589 2590
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2591 2592
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2593
{
2594
	struct memcg_kmem_cache_create_work *cw;
2595

2596
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2597
	if (!cw)
2598
		return;
2599 2600

	css_get(&memcg->css);
2601 2602 2603

	cw->memcg = memcg;
	cw->cachep = cachep;
2604
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2605 2606 2607 2608

	schedule_work(&cw->work);
}

2609 2610
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2611 2612 2613 2614
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2615
	 * in __memcg_schedule_kmem_cache_create will recurse.
2616 2617 2618 2619 2620 2621 2622
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2623
	current->memcg_kmem_skip_account = 1;
2624
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2625
	current->memcg_kmem_skip_account = 0;
2626
}
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2641
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2642 2643
{
	struct mem_cgroup *memcg;
2644
	struct kmem_cache *memcg_cachep;
2645
	int kmemcg_id;
2646

2647
	VM_BUG_ON(!is_root_cache(cachep));
2648

2649
	if (current->memcg_kmem_skip_account)
2650 2651
		return cachep;

2652
	memcg = get_mem_cgroup_from_mm(current->mm);
2653 2654
	kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
	if (kmemcg_id < 0)
2655
		goto out;
2656

2657
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2658 2659
	if (likely(memcg_cachep))
		return memcg_cachep;
2660 2661 2662 2663 2664 2665 2666 2667 2668

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2669 2670 2671
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2672
	 */
2673
	memcg_schedule_kmem_cache_create(memcg, cachep);
2674
out:
2675
	css_put(&memcg->css);
2676
	return cachep;
2677 2678
}

2679 2680 2681
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2682
		css_put(&cachep->memcg_params.memcg->css);
2683 2684
}

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2706

2707
	memcg = get_mem_cgroup_from_mm(current->mm);
2708

2709
	if (!memcg_kmem_is_active(memcg)) {
2710 2711 2712 2713
		css_put(&memcg->css);
		return true;
	}

2714
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2729
		memcg_uncharge_kmem(memcg, 1 << order);
2730 2731
		return;
	}
2732
	page->mem_cgroup = memcg;
2733 2734 2735 2736
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2737
	struct mem_cgroup *memcg = page->mem_cgroup;
2738 2739 2740 2741

	if (!memcg)
		return;

2742
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2743

2744
	memcg_uncharge_kmem(memcg, 1 << order);
2745
	page->mem_cgroup = NULL;
2746
}
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2758
			memcg = cachep->memcg_params.memcg;
2759 2760 2761 2762 2763 2764
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2765 2766
#endif /* CONFIG_MEMCG_KMEM */

2767 2768 2769 2770
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2771 2772 2773
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2774
 */
2775
void mem_cgroup_split_huge_fixup(struct page *head)
2776
{
2777
	int i;
2778

2779 2780
	if (mem_cgroup_disabled())
		return;
2781

2782
	for (i = 1; i < HPAGE_PMD_NR; i++)
2783
		head[i].mem_cgroup = head->mem_cgroup;
2784

2785
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2786
		       HPAGE_PMD_NR);
2787
}
2788
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2789

A
Andrew Morton 已提交
2790
#ifdef CONFIG_MEMCG_SWAP
2791 2792
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2793
{
2794 2795
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2796
}
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2809
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2810 2811 2812
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2813
				struct mem_cgroup *from, struct mem_cgroup *to)
2814 2815 2816
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2817 2818
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2819 2820 2821

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2822
		mem_cgroup_swap_statistics(to, true);
2823 2824 2825 2826 2827 2828
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2829
				struct mem_cgroup *from, struct mem_cgroup *to)
2830 2831 2832
{
	return -EINVAL;
}
2833
#endif
K
KAMEZAWA Hiroyuki 已提交
2834

2835
static DEFINE_MUTEX(memcg_limit_mutex);
2836

2837
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2838
				   unsigned long limit)
2839
{
2840 2841 2842
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2843
	int retry_count;
2844
	int ret;
2845 2846 2847 2848 2849 2850

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2851 2852
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2853

2854
	oldusage = page_counter_read(&memcg->memory);
2855

2856
	do {
2857 2858 2859 2860
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2861 2862 2863 2864

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2865
			ret = -EINVAL;
2866 2867
			break;
		}
2868 2869 2870 2871
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2872 2873 2874 2875

		if (!ret)
			break;

2876 2877
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2878
		curusage = page_counter_read(&memcg->memory);
2879
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2880
		if (curusage >= oldusage)
2881 2882 2883
			retry_count--;
		else
			oldusage = curusage;
2884 2885
	} while (retry_count);

2886 2887
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2888

2889 2890 2891
	return ret;
}

L
Li Zefan 已提交
2892
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2893
					 unsigned long limit)
2894
{
2895 2896 2897
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2898
	int retry_count;
2899
	int ret;
2900

2901
	/* see mem_cgroup_resize_res_limit */
2902 2903 2904 2905 2906 2907
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2908 2909 2910 2911
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2912 2913 2914 2915

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2916 2917 2918
			ret = -EINVAL;
			break;
		}
2919 2920 2921 2922
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2923 2924 2925 2926

		if (!ret)
			break;

2927 2928
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2929
		curusage = page_counter_read(&memcg->memsw);
2930
		/* Usage is reduced ? */
2931
		if (curusage >= oldusage)
2932
			retry_count--;
2933 2934
		else
			oldusage = curusage;
2935 2936
	} while (retry_count);

2937 2938
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2939

2940 2941 2942
	return ret;
}

2943 2944 2945 2946 2947 2948 2949 2950 2951
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2952
	unsigned long excess;
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2977
		spin_lock_irq(&mctz->lock);
2978
		__mem_cgroup_remove_exceeded(mz, mctz);
2979 2980 2981 2982 2983 2984

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2985 2986 2987
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2988
		excess = soft_limit_excess(mz->memcg);
2989 2990 2991 2992 2993 2994 2995 2996 2997
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2998
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2999
		spin_unlock_irq(&mctz->lock);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3017 3018 3019 3020 3021 3022
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3023 3024
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3025 3026
	bool ret;

3027
	/*
3028 3029 3030 3031
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3032
	 */
3033 3034 3035 3036 3037 3038
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3039 3040
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3051 3052
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3053
	/* try to free all pages in this cgroup */
3054
	while (nr_retries && page_counter_read(&memcg->memory)) {
3055
		int progress;
3056

3057 3058 3059
		if (signal_pending(current))
			return -EINTR;

3060 3061
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3062
		if (!progress) {
3063
			nr_retries--;
3064
			/* maybe some writeback is necessary */
3065
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3066
		}
3067 3068

	}
3069 3070

	return 0;
3071 3072
}

3073 3074 3075
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3076
{
3077
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3078

3079 3080
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3081
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3082 3083
}

3084 3085
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3086
{
3087
	return mem_cgroup_from_css(css)->use_hierarchy;
3088 3089
}

3090 3091
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3092 3093
{
	int retval = 0;
3094
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3095
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3096

3097
	mutex_lock(&memcg_create_mutex);
3098 3099 3100 3101

	if (memcg->use_hierarchy == val)
		goto out;

3102
	/*
3103
	 * If parent's use_hierarchy is set, we can't make any modifications
3104 3105 3106 3107 3108 3109
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3110
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3111
				(val == 1 || val == 0)) {
3112
		if (!memcg_has_children(memcg))
3113
			memcg->use_hierarchy = val;
3114 3115 3116 3117
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3118 3119

out:
3120
	mutex_unlock(&memcg_create_mutex);
3121 3122 3123 3124

	return retval;
}

3125 3126
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3144 3145 3146 3147 3148 3149
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3150
		if (!swap)
3151
			val = page_counter_read(&memcg->memory);
3152
		else
3153
			val = page_counter_read(&memcg->memsw);
3154 3155 3156 3157
	}
	return val << PAGE_SHIFT;
}

3158 3159 3160 3161 3162 3163 3164
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3165

3166
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3167
			       struct cftype *cft)
B
Balbir Singh 已提交
3168
{
3169
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3170
	struct page_counter *counter;
3171

3172
	switch (MEMFILE_TYPE(cft->private)) {
3173
	case _MEM:
3174 3175
		counter = &memcg->memory;
		break;
3176
	case _MEMSWAP:
3177 3178
		counter = &memcg->memsw;
		break;
3179
	case _KMEM:
3180
		counter = &memcg->kmem;
3181
		break;
3182 3183 3184
	default:
		BUG();
	}
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3204
}
3205 3206

#ifdef CONFIG_MEMCG_KMEM
3207 3208
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3209 3210 3211 3212
{
	int err = 0;
	int memcg_id;

3213
	BUG_ON(memcg->kmemcg_id >= 0);
3214
	BUG_ON(memcg->kmem_acct_activated);
3215
	BUG_ON(memcg->kmem_acct_active);
3216

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3229
	mutex_lock(&memcg_create_mutex);
3230 3231
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3232 3233 3234 3235
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3236

3237
	memcg_id = memcg_alloc_cache_id();
3238 3239 3240 3241 3242 3243
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3244 3245
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3246
	 */
3247
	err = page_counter_limit(&memcg->kmem, nr_pages);
3248 3249 3250 3251
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3252 3253
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3254 3255 3256
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3257
	memcg->kmemcg_id = memcg_id;
3258
	memcg->kmem_acct_activated = true;
3259
	memcg->kmem_acct_active = true;
3260
out:
3261 3262 3263 3264
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3265
				   unsigned long limit)
3266 3267 3268
{
	int ret;

3269
	mutex_lock(&memcg_limit_mutex);
3270
	if (!memcg_kmem_is_active(memcg))
3271
		ret = memcg_activate_kmem(memcg, limit);
3272
	else
3273 3274
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3275 3276 3277
	return ret;
}

3278
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3279
{
3280
	int ret = 0;
3281
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3282

3283 3284
	if (!parent)
		return 0;
3285

3286
	mutex_lock(&memcg_limit_mutex);
3287
	/*
3288 3289
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3290
	 */
3291
	if (memcg_kmem_is_active(parent))
3292 3293
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3294
	return ret;
3295
}
3296 3297
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3298
				   unsigned long limit)
3299 3300 3301
{
	return -EINVAL;
}
3302
#endif /* CONFIG_MEMCG_KMEM */
3303

3304 3305 3306 3307
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3308 3309
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3310
{
3311
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3312
	unsigned long nr_pages;
3313 3314
	int ret;

3315
	buf = strstrip(buf);
3316
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3317 3318
	if (ret)
		return ret;
3319

3320
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3321
	case RES_LIMIT:
3322 3323 3324 3325
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3326 3327 3328
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3329
			break;
3330 3331
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3332
			break;
3333 3334 3335 3336
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3337
		break;
3338 3339 3340
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3341 3342
		break;
	}
3343
	return ret ?: nbytes;
B
Balbir Singh 已提交
3344 3345
}

3346 3347
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3348
{
3349
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3350
	struct page_counter *counter;
3351

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3365

3366
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3367
	case RES_MAX_USAGE:
3368
		page_counter_reset_watermark(counter);
3369 3370
		break;
	case RES_FAILCNT:
3371
		counter->failcnt = 0;
3372
		break;
3373 3374
	default:
		BUG();
3375
	}
3376

3377
	return nbytes;
3378 3379
}

3380
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3381 3382
					struct cftype *cft)
{
3383
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3384 3385
}

3386
#ifdef CONFIG_MMU
3387
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3388 3389
					struct cftype *cft, u64 val)
{
3390
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3391

3392
	if (val & ~MOVE_MASK)
3393
		return -EINVAL;
3394

3395
	/*
3396 3397 3398 3399
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3400
	 */
3401
	memcg->move_charge_at_immigrate = val;
3402 3403
	return 0;
}
3404
#else
3405
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3406 3407 3408 3409 3410
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3411

3412
#ifdef CONFIG_NUMA
3413
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3414
{
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3427
	int nid;
3428
	unsigned long nr;
3429
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3430

3431 3432 3433 3434 3435 3436 3437 3438 3439
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3440 3441
	}

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3457 3458 3459 3460 3461 3462
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3463
static int memcg_stat_show(struct seq_file *m, void *v)
3464
{
3465
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3466
	unsigned long memory, memsw;
3467 3468
	struct mem_cgroup *mi;
	unsigned int i;
3469

3470 3471 3472 3473
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3474 3475
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3476
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3477
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3478
			continue;
3479 3480
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3481
	}
L
Lee Schermerhorn 已提交
3482

3483 3484 3485 3486 3487 3488 3489 3490
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3491
	/* Hierarchical information */
3492 3493 3494 3495
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3496
	}
3497 3498 3499 3500 3501
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3502

3503 3504 3505
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3506
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3507
			continue;
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3528
	}
K
KAMEZAWA Hiroyuki 已提交
3529

K
KOSAKI Motohiro 已提交
3530 3531 3532 3533
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3534
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3535 3536 3537 3538 3539
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3540
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3541
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3542

3543 3544 3545 3546
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3547
			}
3548 3549 3550 3551
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3552 3553 3554
	}
#endif

3555 3556 3557
	return 0;
}

3558 3559
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3560
{
3561
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3562

3563
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3564 3565
}

3566 3567
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3568
{
3569
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3570

3571
	if (val > 100)
K
KOSAKI Motohiro 已提交
3572 3573
		return -EINVAL;

3574
	if (css->parent)
3575 3576 3577
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3578

K
KOSAKI Motohiro 已提交
3579 3580 3581
	return 0;
}

3582 3583 3584
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3585
	unsigned long usage;
3586 3587 3588 3589
	int i;

	rcu_read_lock();
	if (!swap)
3590
		t = rcu_dereference(memcg->thresholds.primary);
3591
	else
3592
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3593 3594 3595 3596

	if (!t)
		goto unlock;

3597
	usage = mem_cgroup_usage(memcg, swap);
3598 3599

	/*
3600
	 * current_threshold points to threshold just below or equal to usage.
3601 3602 3603
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3604
	i = t->current_threshold;
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3628
	t->current_threshold = i - 1;
3629 3630 3631 3632 3633 3634
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3635 3636 3637 3638 3639 3640 3641
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3642 3643 3644 3645 3646 3647 3648
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3649 3650 3651 3652 3653 3654 3655
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3656 3657
}

3658
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3659 3660 3661
{
	struct mem_cgroup_eventfd_list *ev;

3662 3663
	spin_lock(&memcg_oom_lock);

3664
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3665
		eventfd_signal(ev->eventfd, 1);
3666 3667

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3668 3669 3670
	return 0;
}

3671
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3672
{
K
KAMEZAWA Hiroyuki 已提交
3673 3674
	struct mem_cgroup *iter;

3675
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3676
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3677 3678
}

3679
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3680
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3681
{
3682 3683
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3684 3685
	unsigned long threshold;
	unsigned long usage;
3686
	int i, size, ret;
3687

3688
	ret = page_counter_memparse(args, "-1", &threshold);
3689 3690 3691 3692
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3693

3694
	if (type == _MEM) {
3695
		thresholds = &memcg->thresholds;
3696
		usage = mem_cgroup_usage(memcg, false);
3697
	} else if (type == _MEMSWAP) {
3698
		thresholds = &memcg->memsw_thresholds;
3699
		usage = mem_cgroup_usage(memcg, true);
3700
	} else
3701 3702 3703
		BUG();

	/* Check if a threshold crossed before adding a new one */
3704
	if (thresholds->primary)
3705 3706
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3707
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3708 3709

	/* Allocate memory for new array of thresholds */
3710
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3711
			GFP_KERNEL);
3712
	if (!new) {
3713 3714 3715
		ret = -ENOMEM;
		goto unlock;
	}
3716
	new->size = size;
3717 3718

	/* Copy thresholds (if any) to new array */
3719 3720
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3721
				sizeof(struct mem_cgroup_threshold));
3722 3723
	}

3724
	/* Add new threshold */
3725 3726
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3727 3728

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3729
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3730 3731 3732
			compare_thresholds, NULL);

	/* Find current threshold */
3733
	new->current_threshold = -1;
3734
	for (i = 0; i < size; i++) {
3735
		if (new->entries[i].threshold <= usage) {
3736
			/*
3737 3738
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3739 3740
			 * it here.
			 */
3741
			++new->current_threshold;
3742 3743
		} else
			break;
3744 3745
	}

3746 3747 3748 3749 3750
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3751

3752
	/* To be sure that nobody uses thresholds */
3753 3754 3755 3756 3757 3758 3759 3760
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3761
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3762 3763
	struct eventfd_ctx *eventfd, const char *args)
{
3764
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3765 3766
}

3767
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3768 3769
	struct eventfd_ctx *eventfd, const char *args)
{
3770
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3771 3772
}

3773
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3774
	struct eventfd_ctx *eventfd, enum res_type type)
3775
{
3776 3777
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3778
	unsigned long usage;
3779
	int i, j, size;
3780 3781

	mutex_lock(&memcg->thresholds_lock);
3782 3783

	if (type == _MEM) {
3784
		thresholds = &memcg->thresholds;
3785
		usage = mem_cgroup_usage(memcg, false);
3786
	} else if (type == _MEMSWAP) {
3787
		thresholds = &memcg->memsw_thresholds;
3788
		usage = mem_cgroup_usage(memcg, true);
3789
	} else
3790 3791
		BUG();

3792 3793 3794
	if (!thresholds->primary)
		goto unlock;

3795 3796 3797 3798
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3799 3800 3801
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3802 3803 3804
			size++;
	}

3805
	new = thresholds->spare;
3806

3807 3808
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3809 3810
		kfree(new);
		new = NULL;
3811
		goto swap_buffers;
3812 3813
	}

3814
	new->size = size;
3815 3816

	/* Copy thresholds and find current threshold */
3817 3818 3819
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3820 3821
			continue;

3822
		new->entries[j] = thresholds->primary->entries[i];
3823
		if (new->entries[j].threshold <= usage) {
3824
			/*
3825
			 * new->current_threshold will not be used
3826 3827 3828
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3829
			++new->current_threshold;
3830 3831 3832 3833
		}
		j++;
	}

3834
swap_buffers:
3835 3836
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3837 3838 3839 3840 3841 3842
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3843
	rcu_assign_pointer(thresholds->primary, new);
3844

3845
	/* To be sure that nobody uses thresholds */
3846
	synchronize_rcu();
3847
unlock:
3848 3849
	mutex_unlock(&memcg->thresholds_lock);
}
3850

3851
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3852 3853
	struct eventfd_ctx *eventfd)
{
3854
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3855 3856
}

3857
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3858 3859
	struct eventfd_ctx *eventfd)
{
3860
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3861 3862
}

3863
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3864
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3865 3866 3867 3868 3869 3870 3871
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3872
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3873 3874 3875 3876 3877

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3878
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3879
		eventfd_signal(eventfd, 1);
3880
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3881 3882 3883 3884

	return 0;
}

3885
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3886
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3887 3888 3889
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3890
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3891

3892
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3893 3894 3895 3896 3897 3898
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3899
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3900 3901
}

3902
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3903
{
3904
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3905

3906 3907
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3908 3909 3910
	return 0;
}

3911
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3912 3913
	struct cftype *cft, u64 val)
{
3914
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3915 3916

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3917
	if (!css->parent || !((val == 0) || (val == 1)))
3918 3919
		return -EINVAL;

3920
	memcg->oom_kill_disable = val;
3921
	if (!val)
3922
		memcg_oom_recover(memcg);
3923

3924 3925 3926
	return 0;
}

A
Andrew Morton 已提交
3927
#ifdef CONFIG_MEMCG_KMEM
3928
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3929
{
3930 3931 3932 3933 3934
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3935

3936
	return mem_cgroup_sockets_init(memcg, ss);
3937
}
3938

3939 3940
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3941 3942 3943 3944
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3983 3984
}

3985
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3986
{
3987 3988 3989 3990 3991
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3992
	mem_cgroup_sockets_destroy(memcg);
3993
}
3994
#else
3995
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3996 3997 3998
{
	return 0;
}
G
Glauber Costa 已提交
3999

4000 4001 4002 4003
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

4004 4005 4006
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4007 4008
#endif

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4022 4023 4024 4025 4026
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4027
static void memcg_event_remove(struct work_struct *work)
4028
{
4029 4030
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4031
	struct mem_cgroup *memcg = event->memcg;
4032 4033 4034

	remove_wait_queue(event->wqh, &event->wait);

4035
	event->unregister_event(memcg, event->eventfd);
4036 4037 4038 4039 4040 4041

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4042
	css_put(&memcg->css);
4043 4044 4045 4046 4047 4048 4049
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4050 4051
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4052
{
4053 4054
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4055
	struct mem_cgroup *memcg = event->memcg;
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4068
		spin_lock(&memcg->event_list_lock);
4069 4070 4071 4072 4073 4074 4075 4076
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4077
		spin_unlock(&memcg->event_list_lock);
4078 4079 4080 4081 4082
	}

	return 0;
}

4083
static void memcg_event_ptable_queue_proc(struct file *file,
4084 4085
		wait_queue_head_t *wqh, poll_table *pt)
{
4086 4087
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4088 4089 4090 4091 4092 4093

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4094 4095
 * DO NOT USE IN NEW FILES.
 *
4096 4097 4098 4099 4100
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4101 4102
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4103
{
4104
	struct cgroup_subsys_state *css = of_css(of);
4105
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4106
	struct mem_cgroup_event *event;
4107 4108 4109 4110
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4111
	const char *name;
4112 4113 4114
	char *endp;
	int ret;

4115 4116 4117
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4118 4119
	if (*endp != ' ')
		return -EINVAL;
4120
	buf = endp + 1;
4121

4122
	cfd = simple_strtoul(buf, &endp, 10);
4123 4124
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4125
	buf = endp + 1;
4126 4127 4128 4129 4130

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4131
	event->memcg = memcg;
4132
	INIT_LIST_HEAD(&event->list);
4133 4134 4135
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4161 4162 4163 4164 4165
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4166 4167
	 *
	 * DO NOT ADD NEW FILES.
4168
	 */
A
Al Viro 已提交
4169
	name = cfile.file->f_path.dentry->d_name.name;
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4181 4182
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4183 4184 4185 4186 4187
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4188
	/*
4189 4190 4191
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4192
	 */
A
Al Viro 已提交
4193
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4194
					       &memory_cgrp_subsys);
4195
	ret = -EINVAL;
4196
	if (IS_ERR(cfile_css))
4197
		goto out_put_cfile;
4198 4199
	if (cfile_css != css) {
		css_put(cfile_css);
4200
		goto out_put_cfile;
4201
	}
4202

4203
	ret = event->register_event(memcg, event->eventfd, buf);
4204 4205 4206 4207 4208
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4209 4210 4211
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4212 4213 4214 4215

	fdput(cfile);
	fdput(efile);

4216
	return nbytes;
4217 4218

out_put_css:
4219
	css_put(css);
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4232
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4233
	{
4234
		.name = "usage_in_bytes",
4235
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4236
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4237
	},
4238 4239
	{
		.name = "max_usage_in_bytes",
4240
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4241
		.write = mem_cgroup_reset,
4242
		.read_u64 = mem_cgroup_read_u64,
4243
	},
B
Balbir Singh 已提交
4244
	{
4245
		.name = "limit_in_bytes",
4246
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4247
		.write = mem_cgroup_write,
4248
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4249
	},
4250 4251 4252
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4253
		.write = mem_cgroup_write,
4254
		.read_u64 = mem_cgroup_read_u64,
4255
	},
B
Balbir Singh 已提交
4256 4257
	{
		.name = "failcnt",
4258
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4259
		.write = mem_cgroup_reset,
4260
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4261
	},
4262 4263
	{
		.name = "stat",
4264
		.seq_show = memcg_stat_show,
4265
	},
4266 4267
	{
		.name = "force_empty",
4268
		.write = mem_cgroup_force_empty_write,
4269
	},
4270 4271 4272 4273 4274
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4275
	{
4276
		.name = "cgroup.event_control",		/* XXX: for compat */
4277
		.write = memcg_write_event_control,
4278 4279 4280
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4281 4282 4283 4284 4285
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4286 4287 4288 4289 4290
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4291 4292
	{
		.name = "oom_control",
4293
		.seq_show = mem_cgroup_oom_control_read,
4294
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4295 4296
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4297 4298 4299
	{
		.name = "pressure_level",
	},
4300 4301 4302
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4303
		.seq_show = memcg_numa_stat_show,
4304 4305
	},
#endif
4306 4307 4308 4309
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4310
		.write = mem_cgroup_write,
4311
		.read_u64 = mem_cgroup_read_u64,
4312 4313 4314 4315
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4316
		.read_u64 = mem_cgroup_read_u64,
4317 4318 4319 4320
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4321
		.write = mem_cgroup_reset,
4322
		.read_u64 = mem_cgroup_read_u64,
4323 4324 4325 4326
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4327
		.write = mem_cgroup_reset,
4328
		.read_u64 = mem_cgroup_read_u64,
4329
	},
4330 4331 4332
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4333 4334 4335 4336
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4337 4338
	},
#endif
4339
#endif
4340
	{ },	/* terminate */
4341
};
4342

4343
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4344 4345
{
	struct mem_cgroup_per_node *pn;
4346
	struct mem_cgroup_per_zone *mz;
4347
	int zone, tmp = node;
4348 4349 4350 4351 4352 4353 4354 4355
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4356 4357
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4358
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4359 4360
	if (!pn)
		return 1;
4361 4362 4363

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4364
		lruvec_init(&mz->lruvec);
4365 4366
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4367
		mz->memcg = memcg;
4368
	}
4369
	memcg->nodeinfo[node] = pn;
4370 4371 4372
	return 0;
}

4373
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4374
{
4375
	kfree(memcg->nodeinfo[node]);
4376 4377
}

4378 4379
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4380
	struct mem_cgroup *memcg;
4381
	size_t size;
4382

4383 4384
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4385

4386
	memcg = kzalloc(size, GFP_KERNEL);
4387
	if (!memcg)
4388 4389
		return NULL;

4390 4391
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4392
		goto out_free;
4393 4394
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4395 4396

out_free:
4397
	kfree(memcg);
4398
	return NULL;
4399 4400
}

4401
/*
4402 4403 4404 4405 4406 4407 4408 4409
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4410
 */
4411 4412

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4413
{
4414
	int node;
4415

4416
	mem_cgroup_remove_from_trees(memcg);
4417 4418 4419 4420 4421

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
4422
	kfree(memcg);
4423
}
4424

4425 4426 4427
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4428
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4429
{
4430
	if (!memcg->memory.parent)
4431
		return NULL;
4432
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4433
}
G
Glauber Costa 已提交
4434
EXPORT_SYMBOL(parent_mem_cgroup);
4435

L
Li Zefan 已提交
4436
static struct cgroup_subsys_state * __ref
4437
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4438
{
4439
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4440
	long error = -ENOMEM;
4441
	int node;
B
Balbir Singh 已提交
4442

4443 4444
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4445
		return ERR_PTR(error);
4446

B
Bob Liu 已提交
4447
	for_each_node(node)
4448
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4449
			goto free_out;
4450

4451
	/* root ? */
4452
	if (parent_css == NULL) {
4453
		root_mem_cgroup = memcg;
4454
		page_counter_init(&memcg->memory, NULL);
4455
		memcg->high = PAGE_COUNTER_MAX;
4456
		memcg->soft_limit = PAGE_COUNTER_MAX;
4457 4458
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4459
	}
4460

4461 4462 4463 4464 4465
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4466
	vmpressure_init(&memcg->vmpressure);
4467 4468
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4469 4470 4471
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4472 4473 4474 4475 4476 4477 4478 4479 4480

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4481
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4482
{
4483
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4484
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4485
	int ret;
4486

4487
	if (css->id > MEM_CGROUP_ID_MAX)
4488 4489
		return -ENOSPC;

T
Tejun Heo 已提交
4490
	if (!parent)
4491 4492
		return 0;

4493
	mutex_lock(&memcg_create_mutex);
4494 4495 4496 4497 4498 4499

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4500
		page_counter_init(&memcg->memory, &parent->memory);
4501
		memcg->high = PAGE_COUNTER_MAX;
4502
		memcg->soft_limit = PAGE_COUNTER_MAX;
4503 4504
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4505

4506
		/*
4507 4508
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4509
		 */
4510
	} else {
4511
		page_counter_init(&memcg->memory, NULL);
4512
		memcg->high = PAGE_COUNTER_MAX;
4513
		memcg->soft_limit = PAGE_COUNTER_MAX;
4514 4515
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4516 4517 4518 4519 4520
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4521
		if (parent != root_mem_cgroup)
4522
			memory_cgrp_subsys.broken_hierarchy = true;
4523
	}
4524
	mutex_unlock(&memcg_create_mutex);
4525

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4538 4539
}

4540
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4541
{
4542
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4543
	struct mem_cgroup_event *event, *tmp;
4544 4545 4546 4547 4548 4549

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4550 4551
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4552 4553 4554
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4555
	spin_unlock(&memcg->event_list_lock);
4556

4557
	vmpressure_cleanup(&memcg->vmpressure);
4558 4559

	memcg_deactivate_kmem(memcg);
4560 4561
}

4562
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4563
{
4564
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4565

4566
	memcg_destroy_kmem(memcg);
4567
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4568 4569
}

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4587 4588 4589
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4590 4591
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4592
	memcg->soft_limit = PAGE_COUNTER_MAX;
4593 4594
}

4595
#ifdef CONFIG_MMU
4596
/* Handlers for move charge at task migration. */
4597
static int mem_cgroup_do_precharge(unsigned long count)
4598
{
4599
	int ret;
4600 4601

	/* Try a single bulk charge without reclaim first */
4602
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4603
	if (!ret) {
4604 4605 4606
		mc.precharge += count;
		return ret;
	}
4607
	if (ret == -EINTR) {
4608
		cancel_charge(root_mem_cgroup, count);
4609 4610
		return ret;
	}
4611 4612

	/* Try charges one by one with reclaim */
4613
	while (count--) {
4614
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4615 4616 4617
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4618 4619
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4620
		 */
4621
		if (ret == -EINTR)
4622
			cancel_charge(root_mem_cgroup, 1);
4623 4624
		if (ret)
			return ret;
4625
		mc.precharge++;
4626
		cond_resched();
4627
	}
4628
	return 0;
4629 4630 4631
}

/**
4632
 * get_mctgt_type - get target type of moving charge
4633 4634 4635
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4636
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4637 4638 4639 4640 4641 4642
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4643 4644 4645
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4646 4647 4648 4649 4650
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4651
	swp_entry_t	ent;
4652 4653 4654
};

enum mc_target_type {
4655
	MC_TARGET_NONE = 0,
4656
	MC_TARGET_PAGE,
4657
	MC_TARGET_SWAP,
4658 4659
};

D
Daisuke Nishimura 已提交
4660 4661
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4662
{
D
Daisuke Nishimura 已提交
4663
	struct page *page = vm_normal_page(vma, addr, ptent);
4664

D
Daisuke Nishimura 已提交
4665 4666 4667
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4668
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4669
			return NULL;
4670 4671 4672 4673
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4674 4675 4676 4677 4678 4679
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4680
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4681 4682 4683 4684 4685 4686
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4687
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4688
		return NULL;
4689 4690 4691 4692
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4693
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4694 4695 4696 4697 4698
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4699 4700 4701 4702 4703 4704 4705
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4706

4707 4708 4709 4710 4711 4712 4713 4714 4715
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4716
	if (!(mc.flags & MOVE_FILE))
4717 4718 4719
		return NULL;

	mapping = vma->vm_file->f_mapping;
4720
	pgoff = linear_page_index(vma, addr);
4721 4722

	/* page is moved even if it's not RSS of this task(page-faulted). */
4723 4724
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4737
#endif
4738 4739 4740
	return page;
}

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

	spin_lock_irqsave(&from->move_lock, flags);

	if (!PageAnon(page) && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4827
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4828 4829 4830
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4831
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4832 4833 4834 4835 4836 4837
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4838
	else if (pte_none(ptent))
4839
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4840 4841

	if (!page && !ent.val)
4842
		return ret;
4843 4844
	if (page) {
		/*
4845
		 * Do only loose check w/o serialization.
4846
		 * mem_cgroup_move_account() checks the page is valid or
4847
		 * not under LRU exclusion.
4848
		 */
4849
		if (page->mem_cgroup == mc.from) {
4850 4851 4852 4853 4854 4855 4856
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4857 4858
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4859
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4860 4861 4862
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4863 4864 4865 4866
	}
	return ret;
}

4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4880
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4881
	if (!(mc.flags & MOVE_ANON))
4882
		return ret;
4883
	if (page->mem_cgroup == mc.from) {
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4900 4901 4902 4903
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4904
	struct vm_area_struct *vma = walk->vma;
4905 4906 4907
	pte_t *pte;
	spinlock_t *ptl;

4908
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4909 4910
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4911
		spin_unlock(ptl);
4912
		return 0;
4913
	}
4914

4915 4916
	if (pmd_trans_unstable(pmd))
		return 0;
4917 4918
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4919
		if (get_mctgt_type(vma, addr, *pte, NULL))
4920 4921 4922 4923
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4924 4925 4926
	return 0;
}

4927 4928 4929 4930
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4931 4932 4933 4934
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4935
	down_read(&mm->mmap_sem);
4936
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4937
	up_read(&mm->mmap_sem);
4938 4939 4940 4941 4942 4943 4944 4945 4946

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4947 4948 4949 4950 4951
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4952 4953
}

4954 4955
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4956
{
4957 4958 4959
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4960
	/* we must uncharge all the leftover precharges from mc.to */
4961
	if (mc.precharge) {
4962
		cancel_charge(mc.to, mc.precharge);
4963 4964 4965 4966 4967 4968 4969
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4970
		cancel_charge(mc.from, mc.moved_charge);
4971
		mc.moved_charge = 0;
4972
	}
4973 4974 4975
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4976
		if (!mem_cgroup_is_root(mc.from))
4977
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4978

4979
		/*
4980 4981
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4982
		 */
4983
		if (!mem_cgroup_is_root(mc.to))
4984 4985
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4986
		css_put_many(&mc.from->css, mc.moved_swap);
4987

L
Li Zefan 已提交
4988
		/* we've already done css_get(mc.to) */
4989 4990
		mc.moved_swap = 0;
	}
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5004
	spin_lock(&mc.lock);
5005 5006
	mc.from = NULL;
	mc.to = NULL;
5007
	spin_unlock(&mc.lock);
5008 5009
}

5010
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5011
				 struct cgroup_taskset *tset)
5012
{
5013
	struct task_struct *p = cgroup_taskset_first(tset);
5014
	int ret = 0;
5015
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5016
	unsigned long move_flags;
5017

5018 5019 5020 5021 5022
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5023 5024
	move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
	if (move_flags) {
5025 5026 5027
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5028
		VM_BUG_ON(from == memcg);
5029 5030 5031 5032 5033

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5034 5035 5036 5037
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5038
			VM_BUG_ON(mc.moved_charge);
5039
			VM_BUG_ON(mc.moved_swap);
5040

5041
			spin_lock(&mc.lock);
5042
			mc.from = from;
5043
			mc.to = memcg;
5044
			mc.flags = move_flags;
5045
			spin_unlock(&mc.lock);
5046
			/* We set mc.moving_task later */
5047 5048 5049 5050

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5051 5052
		}
		mmput(mm);
5053 5054 5055 5056
	}
	return ret;
}

5057
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5058
				     struct cgroup_taskset *tset)
5059
{
5060 5061
	if (mc.to)
		mem_cgroup_clear_mc();
5062 5063
}

5064 5065 5066
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5067
{
5068
	int ret = 0;
5069
	struct vm_area_struct *vma = walk->vma;
5070 5071
	pte_t *pte;
	spinlock_t *ptl;
5072 5073 5074
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5075

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5086
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5087
		if (mc.precharge < HPAGE_PMD_NR) {
5088
			spin_unlock(ptl);
5089 5090 5091 5092 5093 5094 5095
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5096
							     mc.from, mc.to)) {
5097 5098 5099 5100 5101 5102 5103
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5104
		spin_unlock(ptl);
5105
		return 0;
5106 5107
	}

5108 5109
	if (pmd_trans_unstable(pmd))
		return 0;
5110 5111 5112 5113
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5114
		swp_entry_t ent;
5115 5116 5117 5118

		if (!mc.precharge)
			break;

5119
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5120 5121 5122 5123
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5124
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5125
				mc.precharge--;
5126 5127
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5128 5129
			}
			putback_lru_page(page);
5130
put:			/* get_mctgt_type() gets the page */
5131 5132
			put_page(page);
			break;
5133 5134
		case MC_TARGET_SWAP:
			ent = target.ent;
5135
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5136
				mc.precharge--;
5137 5138 5139
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5140
			break;
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5155
		ret = mem_cgroup_do_precharge(1);
5156 5157 5158 5159 5160 5161 5162 5163 5164
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5165 5166 5167 5168
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5169 5170

	lru_add_drain_all();
5171 5172 5173 5174 5175 5176 5177
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5191 5192 5193 5194 5195
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5196
	up_read(&mm->mmap_sem);
5197
	atomic_dec(&mc.from->moving_account);
5198 5199
}

5200
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5201
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5202
{
5203
	struct task_struct *p = cgroup_taskset_first(tset);
5204
	struct mm_struct *mm = get_task_mm(p);
5205 5206

	if (mm) {
5207 5208
		if (mc.to)
			mem_cgroup_move_charge(mm);
5209 5210
		mmput(mm);
	}
5211 5212
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5213
}
5214
#else	/* !CONFIG_MMU */
5215
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5216
				 struct cgroup_taskset *tset)
5217 5218 5219
{
	return 0;
}
5220
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5221
				     struct cgroup_taskset *tset)
5222 5223
{
}
5224
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5225
				 struct cgroup_taskset *tset)
5226 5227 5228
{
}
#endif
B
Balbir Singh 已提交
5229

5230 5231
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5232 5233
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5234
 */
5235
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5236 5237
{
	/*
5238
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5239 5240 5241
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5242
	if (cgroup_on_dfl(root_css->cgroup))
5243 5244 5245
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5246 5247
}

5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
5260
		seq_puts(m, "max\n");
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5275
	err = page_counter_memparse(buf, "max", &low);
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
5290
		seq_puts(m, "max\n");
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5305
	err = page_counter_memparse(buf, "max", &high);
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
5320
		seq_puts(m, "max\n");
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5335
	err = page_counter_memparse(buf, "max", &max);
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5389
struct cgroup_subsys memory_cgrp_subsys = {
5390
	.css_alloc = mem_cgroup_css_alloc,
5391
	.css_online = mem_cgroup_css_online,
5392 5393
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5394
	.css_reset = mem_cgroup_css_reset,
5395 5396
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5397
	.attach = mem_cgroup_move_task,
5398
	.bind = mem_cgroup_bind,
5399 5400
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5401
	.early_init = 0,
B
Balbir Singh 已提交
5402
};
5403

5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5439
	if (page_counter_read(&memcg->memory) >= memcg->low)
5440 5441 5442 5443 5444 5445 5446 5447
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5448
		if (page_counter_read(&memcg->memory) >= memcg->low)
5449 5450 5451 5452 5453
			return false;
	}
	return true;
}

5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5489
		if (page->mem_cgroup)
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5550 5551
	commit_charge(page, memcg, lrucare);

5552 5553 5554 5555 5556
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5557 5558 5559 5560
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5602 5603 5604 5605
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5606
	unsigned long nr_pages = nr_anon + nr_file;
5607 5608
	unsigned long flags;

5609
	if (!mem_cgroup_is_root(memcg)) {
5610 5611 5612
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5613 5614
		memcg_oom_recover(memcg);
	}
5615 5616 5617 5618 5619 5620

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5621
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5622 5623
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5624 5625

	if (!mem_cgroup_is_root(memcg))
5626
		css_put_many(&memcg->css, nr_pages);
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5649
		if (!page->mem_cgroup)
5650 5651 5652 5653
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5654
		 * page->mem_cgroup at this point, we have fully
5655
		 * exclusive access to the page.
5656 5657
		 */

5658
		if (memcg != page->mem_cgroup) {
5659
			if (memcg) {
5660 5661 5662
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5663
			}
5664
			memcg = page->mem_cgroup;
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5678
		page->mem_cgroup = NULL;
5679 5680 5681 5682 5683

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5684 5685
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5686 5687
}

5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5700
	/* Don't touch page->lru of any random page, pre-check: */
5701
	if (!page->mem_cgroup)
5702 5703
		return;

5704 5705 5706
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5707

5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5719

5720 5721
	if (!list_empty(page_list))
		uncharge_list(page_list);
5722 5723 5724 5725 5726 5727
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5728
 * @lrucare: either or both pages might be on the LRU already
5729 5730 5731 5732 5733 5734 5735 5736
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5737
	struct mem_cgroup *memcg;
5738 5739 5740 5741 5742 5743 5744
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5745 5746
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5747 5748 5749 5750 5751

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5752
	if (newpage->mem_cgroup)
5753 5754
		return;

5755 5756 5757 5758 5759 5760
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5761
	memcg = oldpage->mem_cgroup;
5762
	if (!memcg)
5763 5764 5765 5766 5767
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5768
	oldpage->mem_cgroup = NULL;
5769 5770 5771 5772

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5773
	commit_charge(newpage, memcg, lrucare);
5774 5775
}

5776
/*
5777 5778 5779 5780 5781 5782
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5783 5784 5785
 */
static int __init mem_cgroup_init(void)
{
5786 5787
	int cpu, node;

5788
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5811 5812 5813
	return 0;
}
subsys_initcall(mem_cgroup_init);
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */