memcontrol.c 150.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210 211
	struct mem_cgroup *from;
	struct mem_cgroup *to;
212
	unsigned long flags;
213
	unsigned long precharge;
214
	unsigned long moved_charge;
215
	unsigned long moved_swap;
216 217 218
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
219
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 221
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
222

223 224 225 226
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
227
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
228
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
229

230 231
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
233
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
235 236 237
	NR_CHARGE_TYPE,
};

238
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
239 240 241 242
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
243
	_KMEM,
V
Vladimir Davydov 已提交
244
	_TCP,
G
Glauber Costa 已提交
245 246
};

247 248
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
250 251
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
252

253 254 255 256 257 258 259 260 261 262 263 264 265
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

266 267 268 269 270
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

271
#ifndef CONFIG_SLOB
272
/*
273
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
274 275 276 277 278
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
279
 *
280 281
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
282
 */
283 284
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
285

286 287 288 289 290 291 292 293 294 295 296 297 298
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

299 300 301 302 303 304
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
305
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 307
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
308
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 310 311
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
312
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313

314 315 316 317 318 319
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
320
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321
EXPORT_SYMBOL(memcg_kmem_enabled_key);
322

323
#endif /* !CONFIG_SLOB */
324

325
static struct mem_cgroup_per_zone *
326
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327
{
328 329 330
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

331
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

351
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 353 354 355 356
		memcg = root_mem_cgroup;

	return &memcg->css;
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

385
static struct mem_cgroup_per_zone *
386
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387
{
388 389
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
390

391
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 393
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

409 410
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
411
					 unsigned long new_usage_in_excess)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

441 442
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
443 444 445 446 447 448 449
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

450 451
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
452
{
453 454 455
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
456
	__mem_cgroup_remove_exceeded(mz, mctz);
457
	spin_unlock_irqrestore(&mctz->lock, flags);
458 459
}

460 461 462
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
463
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 465 466 467 468 469 470
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
471 472 473

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
474
	unsigned long excess;
475 476 477
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

478
	mctz = soft_limit_tree_from_page(page);
479 480 481 482 483
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484
		mz = mem_cgroup_page_zoneinfo(memcg, page);
485
		excess = soft_limit_excess(memcg);
486 487 488 489 490
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
491 492 493
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
494 495
			/* if on-tree, remove it */
			if (mz->on_tree)
496
				__mem_cgroup_remove_exceeded(mz, mctz);
497 498 499 500
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
501
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
502
			spin_unlock_irqrestore(&mctz->lock, flags);
503 504 505 506 507 508 509
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
510 511
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
512

513 514 515 516
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
517
			mem_cgroup_remove_exceeded(mz, mctz);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
540
	__mem_cgroup_remove_exceeded(mz, mctz);
541
	if (!soft_limit_excess(mz->memcg) ||
542
	    !css_tryget_online(&mz->memcg->css))
543 544 545 546 547 548 549 550 551 552
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

553
	spin_lock_irq(&mctz->lock);
554
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
555
	spin_unlock_irq(&mctz->lock);
556 557 558
	return mz;
}

559
/*
560 561
 * Return page count for single (non recursive) @memcg.
 *
562 563 564 565 566
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
567
 * a periodic synchronization of counter in memcg's counter.
568 569 570 571 572 573 574 575 576
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
577
 * common workload, threshold and synchronization as vmstat[] should be
578 579
 * implemented.
 */
580 581
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582
{
583
	long val = 0;
584 585
	int cpu;

586
	/* Per-cpu values can be negative, use a signed accumulator */
587
	for_each_possible_cpu(cpu)
588
		val += per_cpu(memcg->stat->count[idx], cpu);
589 590 591 592 593 594
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
595 596 597
	return val;
}

598
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 600 601 602 603
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

604
	for_each_possible_cpu(cpu)
605
		val += per_cpu(memcg->stat->events[idx], cpu);
606 607 608
	return val;
}

609
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610
					 struct page *page,
611
					 bool compound, int nr_pages)
612
{
613 614 615 616
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
617
	if (PageAnon(page))
618
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619
				nr_pages);
620
	else
621
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622
				nr_pages);
623

624 625
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 627
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
628
	}
629

630 631
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
632
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633
	else {
634
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 636
		nr_pages = -nr_pages; /* for event */
	}
637

638
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 640
}

641 642
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
643
{
644
	unsigned long nr = 0;
645 646
	int zid;

647
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
648

649 650 651 652 653 654 655 656 657 658 659 660
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
661
}
662

663
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
664
			unsigned int lru_mask)
665
{
666
	unsigned long nr = 0;
667
	int nid;
668

669
	for_each_node_state(nid, N_MEMORY)
670 671
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
672 673
}

674 675
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
676 677 678
{
	unsigned long val, next;

679
	val = __this_cpu_read(memcg->stat->nr_page_events);
680
	next = __this_cpu_read(memcg->stat->targets[target]);
681
	/* from time_after() in jiffies.h */
682 683 684 685 686
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
687 688 689
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
690 691 692 693 694 695 696 697
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
698
	}
699
	return false;
700 701 702 703 704 705
}

/*
 * Check events in order.
 *
 */
706
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
707 708
{
	/* threshold event is triggered in finer grain than soft limit */
709 710
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
711
		bool do_softlimit;
712
		bool do_numainfo __maybe_unused;
713

714 715
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
716 717 718 719
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
720
		mem_cgroup_threshold(memcg);
721 722
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
723
#if MAX_NUMNODES > 1
724
		if (unlikely(do_numainfo))
725
			atomic_inc(&memcg->numainfo_events);
726
#endif
727
	}
728 729
}

730
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
731
{
732 733 734 735 736 737 738 739
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

740
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
741
}
M
Michal Hocko 已提交
742
EXPORT_SYMBOL(mem_cgroup_from_task);
743

744
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
745
{
746
	struct mem_cgroup *memcg = NULL;
747

748 749
	rcu_read_lock();
	do {
750 751 752 753 754 755
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
756
			memcg = root_mem_cgroup;
757 758 759 760 761
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
762
	} while (!css_tryget_online(&memcg->css));
763
	rcu_read_unlock();
764
	return memcg;
765 766
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
784
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
785
				   struct mem_cgroup *prev,
786
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
787
{
M
Michal Hocko 已提交
788
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
789
	struct cgroup_subsys_state *css = NULL;
790
	struct mem_cgroup *memcg = NULL;
791
	struct mem_cgroup *pos = NULL;
792

793 794
	if (mem_cgroup_disabled())
		return NULL;
795

796 797
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
798

799
	if (prev && !reclaim)
800
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
801

802 803
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
804
			goto out;
805
		return root;
806
	}
K
KAMEZAWA Hiroyuki 已提交
807

808
	rcu_read_lock();
M
Michal Hocko 已提交
809

810 811 812 813 814 815 816 817 818
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

819
		while (1) {
820
			pos = READ_ONCE(iter->position);
821 822
			if (!pos || css_tryget(&pos->css))
				break;
823
			/*
824 825 826 827 828 829
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
830
			 */
831 832
			(void)cmpxchg(&iter->position, pos, NULL);
		}
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
850
		}
K
KAMEZAWA Hiroyuki 已提交
851

852 853 854 855 856 857
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
858

859 860
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
861

862 863
		if (css_tryget(css))
			break;
864

865
		memcg = NULL;
866
	}
867 868 869

	if (reclaim) {
		/*
870 871 872
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
873
		 */
874 875
		(void)cmpxchg(&iter->position, pos, memcg);

876 877 878 879 880 881 882
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
883
	}
884

885 886
out_unlock:
	rcu_read_unlock();
887
out:
888 889 890
	if (prev && prev != root)
		css_put(&prev->css);

891
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
892
}
K
KAMEZAWA Hiroyuki 已提交
893

894 895 896 897 898 899 900
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
901 902 903 904 905 906
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
907

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

930 931 932 933 934 935
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
936
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
937
	     iter != NULL;				\
938
	     iter = mem_cgroup_iter(root, iter, NULL))
939

940
#define for_each_mem_cgroup(iter)			\
941
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
942
	     iter != NULL;				\
943
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
944

945 946 947
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
948
 * @memcg: memcg of the wanted lruvec
949 950 951 952 953 954 955 956 957
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
958
	struct lruvec *lruvec;
959

960 961 962 963
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
964

965
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
966 967 968 969 970 971 972 973 974 975
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
976 977 978
}

/**
979
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
980
 * @page: the page
981
 * @zone: zone of the page
982 983 984 985
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
986
 */
987
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
988 989
{
	struct mem_cgroup_per_zone *mz;
990
	struct mem_cgroup *memcg;
991
	struct lruvec *lruvec;
992

993 994 995 996
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
997

998
	memcg = page->mem_cgroup;
999
	/*
1000
	 * Swapcache readahead pages are added to the LRU - and
1001
	 * possibly migrated - before they are charged.
1002
	 */
1003 1004
	if (!memcg)
		memcg = root_mem_cgroup;
1005

1006
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1017
}
1018

1019
/**
1020 1021 1022 1023
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1024
 *
1025 1026
 * This function must be called when a page is added to or removed from an
 * lru list.
1027
 */
1028 1029
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1030 1031
{
	struct mem_cgroup_per_zone *mz;
1032
	unsigned long *lru_size;
1033 1034 1035 1036

	if (mem_cgroup_disabled())
		return;

1037 1038 1039 1040
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1041
}
1042

1043
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1044
{
1045
	struct mem_cgroup *task_memcg;
1046
	struct task_struct *p;
1047
	bool ret;
1048

1049
	p = find_lock_task_mm(task);
1050
	if (p) {
1051
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1052 1053 1054 1055 1056 1057 1058
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1059
		rcu_read_lock();
1060 1061
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1062
		rcu_read_unlock();
1063
	}
1064 1065
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1066 1067 1068
	return ret;
}

1069
/**
1070
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1071
 * @memcg: the memory cgroup
1072
 *
1073
 * Returns the maximum amount of memory @mem can be charged with, in
1074
 * pages.
1075
 */
1076
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1077
{
1078 1079 1080
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1081

1082
	count = page_counter_read(&memcg->memory);
1083
	limit = READ_ONCE(memcg->memory.limit);
1084 1085 1086
	if (count < limit)
		margin = limit - count;

1087
	if (do_memsw_account()) {
1088
		count = page_counter_read(&memcg->memsw);
1089
		limit = READ_ONCE(memcg->memsw.limit);
1090 1091 1092 1093 1094
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1095 1096
}

1097
/*
Q
Qiang Huang 已提交
1098
 * A routine for checking "mem" is under move_account() or not.
1099
 *
Q
Qiang Huang 已提交
1100 1101 1102
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1103
 */
1104
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105
{
1106 1107
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1108
	bool ret = false;
1109 1110 1111 1112 1113 1114 1115 1116 1117
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1118

1119 1120
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1121 1122
unlock:
	spin_unlock(&mc.lock);
1123 1124 1125
	return ret;
}

1126
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 1128
{
	if (mc.moving_task && current != mc.moving_task) {
1129
		if (mem_cgroup_under_move(memcg)) {
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1142
#define K(x) ((x) << (PAGE_SHIFT-10))
1143
/**
1144
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145 1146 1147 1148 1149 1150 1151 1152
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1153 1154
	struct mem_cgroup *iter;
	unsigned int i;
1155 1156 1157

	rcu_read_lock();

1158 1159 1160 1161 1162 1163 1164 1165
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1166
	pr_cont_cgroup_path(memcg->css.cgroup);
1167
	pr_cont("\n");
1168 1169 1170

	rcu_read_unlock();

1171 1172 1173 1174 1175 1176 1177 1178 1179
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180 1181

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1182 1183
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1184 1185 1186
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188
				continue;
1189
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190 1191 1192 1193 1194 1195 1196 1197 1198
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1199 1200
}

1201 1202 1203 1204
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1205
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 1207
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1208 1209
	struct mem_cgroup *iter;

1210
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1211
		num++;
1212 1213 1214
	return num;
}

D
David Rientjes 已提交
1215 1216 1217
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1218
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1219
{
1220
	unsigned long limit;
1221

1222
	limit = memcg->memory.limit;
1223
	if (mem_cgroup_swappiness(memcg)) {
1224
		unsigned long memsw_limit;
1225
		unsigned long swap_limit;
1226

1227
		memsw_limit = memcg->memsw.limit;
1228 1229 1230
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1231 1232
	}
	return limit;
D
David Rientjes 已提交
1233 1234
}

1235
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236
				     int order)
1237
{
1238 1239 1240 1241 1242 1243
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1244 1245 1246 1247 1248 1249
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1250 1251
	mutex_lock(&oom_lock);

1252
	/*
1253 1254 1255
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1256
	 */
1257
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1258
		mark_oom_victim(current);
1259
		goto unlock;
1260 1261
	}

1262
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1263
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1264
	for_each_mem_cgroup_tree(iter, memcg) {
1265
		struct css_task_iter it;
1266 1267
		struct task_struct *task;

1268 1269
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1270
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1281
				css_task_iter_end(&it);
1282 1283 1284
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1285
				goto unlock;
1286 1287 1288 1289
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1302
		}
1303
		css_task_iter_end(&it);
1304 1305
	}

1306 1307
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1308 1309
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1310 1311 1312
	}
unlock:
	mutex_unlock(&oom_lock);
1313
	return chosen;
1314 1315
}

1316 1317
#if MAX_NUMNODES > 1

1318 1319
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1320
 * @memcg: the target memcg
1321 1322 1323 1324 1325 1326 1327
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1328
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1329 1330
		int nid, bool noswap)
{
1331
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1332 1333 1334
		return true;
	if (noswap || !total_swap_pages)
		return false;
1335
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1336 1337 1338 1339
		return true;
	return false;

}
1340 1341 1342 1343 1344 1345 1346

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1347
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1348 1349
{
	int nid;
1350 1351 1352 1353
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1354
	if (!atomic_read(&memcg->numainfo_events))
1355
		return;
1356
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1357 1358 1359
		return;

	/* make a nodemask where this memcg uses memory from */
1360
	memcg->scan_nodes = node_states[N_MEMORY];
1361

1362
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1363

1364 1365
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1366
	}
1367

1368 1369
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1384
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1385 1386 1387
{
	int node;

1388 1389
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1390

1391
	node = next_node(node, memcg->scan_nodes);
1392
	if (node == MAX_NUMNODES)
1393
		node = first_node(memcg->scan_nodes);
1394 1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1403
	memcg->last_scanned_node = node;
1404 1405 1406
	return node;
}
#else
1407
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1408 1409 1410 1411 1412
{
	return 0;
}
#endif

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1428
	excess = soft_limit_excess(root_memcg);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1457
		if (!soft_limit_excess(root_memcg))
1458
			break;
1459
	}
1460 1461
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1462 1463
}

1464 1465 1466 1467 1468 1469
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1470 1471
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1472 1473 1474 1475
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1476
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1477
{
1478
	struct mem_cgroup *iter, *failed = NULL;
1479

1480 1481
	spin_lock(&memcg_oom_lock);

1482
	for_each_mem_cgroup_tree(iter, memcg) {
1483
		if (iter->oom_lock) {
1484 1485 1486 1487 1488
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1489 1490
			mem_cgroup_iter_break(memcg, iter);
			break;
1491 1492
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1493
	}
K
KAMEZAWA Hiroyuki 已提交
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1506
		}
1507 1508
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1509 1510 1511 1512

	spin_unlock(&memcg_oom_lock);

	return !failed;
1513
}
1514

1515
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1516
{
K
KAMEZAWA Hiroyuki 已提交
1517 1518
	struct mem_cgroup *iter;

1519
	spin_lock(&memcg_oom_lock);
1520
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1521
	for_each_mem_cgroup_tree(iter, memcg)
1522
		iter->oom_lock = false;
1523
	spin_unlock(&memcg_oom_lock);
1524 1525
}

1526
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1527 1528 1529
{
	struct mem_cgroup *iter;

1530
	spin_lock(&memcg_oom_lock);
1531
	for_each_mem_cgroup_tree(iter, memcg)
1532 1533
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1534 1535
}

1536
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1537 1538 1539
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1540 1541
	/*
	 * When a new child is created while the hierarchy is under oom,
1542
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1543
	 */
1544
	spin_lock(&memcg_oom_lock);
1545
	for_each_mem_cgroup_tree(iter, memcg)
1546 1547 1548
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1549 1550
}

K
KAMEZAWA Hiroyuki 已提交
1551 1552
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1553
struct oom_wait_info {
1554
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1555 1556 1557 1558 1559 1560
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1561 1562
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1563 1564 1565
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1566
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1567

1568 1569
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1570 1571 1572 1573
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1574
static void memcg_oom_recover(struct mem_cgroup *memcg)
1575
{
1576 1577 1578 1579 1580 1581 1582 1583 1584
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1585
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1586 1587
}

1588
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1589
{
T
Tejun Heo 已提交
1590
	if (!current->memcg_may_oom)
1591
		return;
K
KAMEZAWA Hiroyuki 已提交
1592
	/*
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1605
	 */
1606
	css_get(&memcg->css);
T
Tejun Heo 已提交
1607 1608 1609
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1610 1611 1612 1613
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1614
 * @handle: actually kill/wait or just clean up the OOM state
1615
 *
1616 1617
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1618
 *
1619
 * Memcg supports userspace OOM handling where failed allocations must
1620 1621 1622 1623
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1624
 * the end of the page fault to complete the OOM handling.
1625 1626
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1627
 * completed, %false otherwise.
1628
 */
1629
bool mem_cgroup_oom_synchronize(bool handle)
1630
{
T
Tejun Heo 已提交
1631
	struct mem_cgroup *memcg = current->memcg_in_oom;
1632
	struct oom_wait_info owait;
1633
	bool locked;
1634 1635 1636

	/* OOM is global, do not handle */
	if (!memcg)
1637
		return false;
1638

1639
	if (!handle || oom_killer_disabled)
1640
		goto cleanup;
1641 1642 1643 1644 1645 1646

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1647

1648
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1659 1660
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1661
	} else {
1662
		schedule();
1663 1664 1665 1666 1667
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1668 1669 1670 1671 1672 1673 1674 1675
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1676
cleanup:
T
Tejun Heo 已提交
1677
	current->memcg_in_oom = NULL;
1678
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1679
	return true;
1680 1681
}

1682
/**
1683 1684
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1685
 *
1686 1687
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1688
 */
J
Johannes Weiner 已提交
1689
void lock_page_memcg(struct page *page)
1690 1691
{
	struct mem_cgroup *memcg;
1692
	unsigned long flags;
1693

1694 1695 1696 1697 1698
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1699 1700 1701
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1702
		return;
1703
again:
1704
	memcg = page->mem_cgroup;
1705
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1706
		return;
1707

Q
Qiang Huang 已提交
1708
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1709
		return;
1710

1711
	spin_lock_irqsave(&memcg->move_lock, flags);
1712
	if (memcg != page->mem_cgroup) {
1713
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1714 1715
		goto again;
	}
1716 1717 1718 1719

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1720
	 * the task who has the lock for unlock_page_memcg().
1721 1722 1723
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1724

J
Johannes Weiner 已提交
1725
	return;
1726
}
1727
EXPORT_SYMBOL(lock_page_memcg);
1728

1729
/**
1730
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1731
 * @page: the page
1732
 */
J
Johannes Weiner 已提交
1733
void unlock_page_memcg(struct page *page)
1734
{
J
Johannes Weiner 已提交
1735 1736
	struct mem_cgroup *memcg = page->mem_cgroup;

1737 1738 1739 1740 1741 1742 1743 1744
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1745

1746
	rcu_read_unlock();
1747
}
1748
EXPORT_SYMBOL(unlock_page_memcg);
1749

1750 1751 1752 1753
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1754
#define CHARGE_BATCH	32U
1755 1756
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1757
	unsigned int nr_pages;
1758
	struct work_struct work;
1759
	unsigned long flags;
1760
#define FLUSHING_CACHED_CHARGE	0
1761 1762
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1763
static DEFINE_MUTEX(percpu_charge_mutex);
1764

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1775
 */
1776
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1777 1778
{
	struct memcg_stock_pcp *stock;
1779
	bool ret = false;
1780

1781
	if (nr_pages > CHARGE_BATCH)
1782
		return ret;
1783

1784
	stock = &get_cpu_var(memcg_stock);
1785
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1786
		stock->nr_pages -= nr_pages;
1787 1788
		ret = true;
	}
1789 1790 1791 1792 1793
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1794
 * Returns stocks cached in percpu and reset cached information.
1795 1796 1797 1798 1799
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1800
	if (stock->nr_pages) {
1801
		page_counter_uncharge(&old->memory, stock->nr_pages);
1802
		if (do_memsw_account())
1803
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1804
		css_put_many(&old->css, stock->nr_pages);
1805
		stock->nr_pages = 0;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1816
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1817
	drain_stock(stock);
1818
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1819 1820 1821
}

/*
1822
 * Cache charges(val) to local per_cpu area.
1823
 * This will be consumed by consume_stock() function, later.
1824
 */
1825
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1826 1827 1828
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1829
	if (stock->cached != memcg) { /* reset if necessary */
1830
		drain_stock(stock);
1831
		stock->cached = memcg;
1832
	}
1833
	stock->nr_pages += nr_pages;
1834 1835 1836 1837
	put_cpu_var(memcg_stock);
}

/*
1838
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1839
 * of the hierarchy under it.
1840
 */
1841
static void drain_all_stock(struct mem_cgroup *root_memcg)
1842
{
1843
	int cpu, curcpu;
1844

1845 1846 1847
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1848 1849
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1850
	curcpu = get_cpu();
1851 1852
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1853
		struct mem_cgroup *memcg;
1854

1855 1856
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1857
			continue;
1858
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1859
			continue;
1860 1861 1862 1863 1864 1865
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1866
	}
1867
	put_cpu();
A
Andrew Morton 已提交
1868
	put_online_cpus();
1869
	mutex_unlock(&percpu_charge_mutex);
1870 1871
}

1872
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1873 1874 1875 1876 1877 1878
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1879
	if (action == CPU_ONLINE)
1880 1881
		return NOTIFY_OK;

1882
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1883
		return NOTIFY_OK;
1884

1885 1886 1887 1888 1889
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1910 1911 1912 1913 1914 1915 1916
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1917
	struct mem_cgroup *memcg;
1918 1919 1920 1921

	if (likely(!nr_pages))
		return;

1922 1923
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1924 1925 1926 1927
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1928 1929
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1930
{
1931
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1932
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1933
	struct mem_cgroup *mem_over_limit;
1934
	struct page_counter *counter;
1935
	unsigned long nr_reclaimed;
1936 1937
	bool may_swap = true;
	bool drained = false;
1938

1939
	if (mem_cgroup_is_root(memcg))
1940
		return 0;
1941
retry:
1942
	if (consume_stock(memcg, nr_pages))
1943
		return 0;
1944

1945
	if (!do_memsw_account() ||
1946 1947
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1948
			goto done_restock;
1949
		if (do_memsw_account())
1950 1951
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1952
	} else {
1953
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1954
		may_swap = false;
1955
	}
1956

1957 1958 1959 1960
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1961

1962 1963 1964 1965 1966 1967 1968 1969 1970
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1971
		goto force;
1972 1973 1974 1975

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1976
	if (!gfpflags_allow_blocking(gfp_mask))
1977
		goto nomem;
1978

1979 1980
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1981 1982
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1983

1984
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1985
		goto retry;
1986

1987
	if (!drained) {
1988
		drain_all_stock(mem_over_limit);
1989 1990 1991 1992
		drained = true;
		goto retry;
	}

1993 1994
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1995 1996 1997 1998 1999 2000 2001 2002 2003
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2004
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2005 2006 2007 2008 2009 2010 2011 2012
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2013 2014 2015
	if (nr_retries--)
		goto retry;

2016
	if (gfp_mask & __GFP_NOFAIL)
2017
		goto force;
2018

2019
	if (fatal_signal_pending(current))
2020
		goto force;
2021

2022 2023
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2024 2025
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2026
nomem:
2027
	if (!(gfp_mask & __GFP_NOFAIL))
2028
		return -ENOMEM;
2029 2030 2031 2032 2033 2034 2035
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2036
	if (do_memsw_account())
2037 2038 2039 2040
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2041 2042

done_restock:
2043
	css_get_many(&memcg->css, batch);
2044 2045
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2046

2047
	/*
2048 2049
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2050
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2051 2052 2053 2054
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2055 2056
	 */
	do {
2057
		if (page_counter_read(&memcg->memory) > memcg->high) {
2058 2059 2060 2061 2062
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2063
			current->memcg_nr_pages_over_high += batch;
2064 2065 2066
			set_notify_resume(current);
			break;
		}
2067
	} while ((memcg = parent_mem_cgroup(memcg)));
2068 2069

	return 0;
2070
}
2071

2072
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2073
{
2074 2075 2076
	if (mem_cgroup_is_root(memcg))
		return;

2077
	page_counter_uncharge(&memcg->memory, nr_pages);
2078
	if (do_memsw_account())
2079
		page_counter_uncharge(&memcg->memsw, nr_pages);
2080

2081
	css_put_many(&memcg->css, nr_pages);
2082 2083
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2115
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2116
			  bool lrucare)
2117
{
2118
	int isolated;
2119

2120
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2121 2122 2123 2124 2125

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2126 2127
	if (lrucare)
		lock_page_lru(page, &isolated);
2128

2129 2130
	/*
	 * Nobody should be changing or seriously looking at
2131
	 * page->mem_cgroup at this point:
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2143
	page->mem_cgroup = memcg;
2144

2145 2146
	if (lrucare)
		unlock_page_lru(page, isolated);
2147
}
2148

2149
#ifndef CONFIG_SLOB
2150
static int memcg_alloc_cache_id(void)
2151
{
2152 2153 2154
	int id, size;
	int err;

2155
	id = ida_simple_get(&memcg_cache_ida,
2156 2157 2158
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2159

2160
	if (id < memcg_nr_cache_ids)
2161 2162 2163 2164 2165 2166
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2167
	down_write(&memcg_cache_ids_sem);
2168 2169

	size = 2 * (id + 1);
2170 2171 2172 2173 2174
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2175
	err = memcg_update_all_caches(size);
2176 2177
	if (!err)
		err = memcg_update_all_list_lrus(size);
2178 2179 2180 2181 2182
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2183
	if (err) {
2184
		ida_simple_remove(&memcg_cache_ida, id);
2185 2186 2187 2188 2189 2190 2191
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2192
	ida_simple_remove(&memcg_cache_ida, id);
2193 2194
}

2195
struct memcg_kmem_cache_create_work {
2196 2197 2198 2199 2200
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2201
static void memcg_kmem_cache_create_func(struct work_struct *w)
2202
{
2203 2204
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2205 2206
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2207

2208
	memcg_create_kmem_cache(memcg, cachep);
2209

2210
	css_put(&memcg->css);
2211 2212 2213 2214 2215 2216
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2217 2218
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2219
{
2220
	struct memcg_kmem_cache_create_work *cw;
2221

2222
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2223
	if (!cw)
2224
		return;
2225 2226

	css_get(&memcg->css);
2227 2228 2229

	cw->memcg = memcg;
	cw->cachep = cachep;
2230
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2231 2232 2233 2234

	schedule_work(&cw->work);
}

2235 2236
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2237 2238 2239 2240
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2241
	 * in __memcg_schedule_kmem_cache_create will recurse.
2242 2243 2244 2245 2246 2247 2248
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2249
	current->memcg_kmem_skip_account = 1;
2250
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2251
	current->memcg_kmem_skip_account = 0;
2252
}
2253

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2267
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2268 2269
{
	struct mem_cgroup *memcg;
2270
	struct kmem_cache *memcg_cachep;
2271
	int kmemcg_id;
2272

2273
	VM_BUG_ON(!is_root_cache(cachep));
2274

V
Vladimir Davydov 已提交
2275 2276 2277 2278 2279 2280
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2281
	if (current->memcg_kmem_skip_account)
2282 2283
		return cachep;

2284
	memcg = get_mem_cgroup_from_mm(current->mm);
2285
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2286
	if (kmemcg_id < 0)
2287
		goto out;
2288

2289
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2290 2291
	if (likely(memcg_cachep))
		return memcg_cachep;
2292 2293 2294 2295 2296 2297 2298 2299 2300

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2301 2302 2303
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2304
	 */
2305
	memcg_schedule_kmem_cache_create(memcg, cachep);
2306
out:
2307
	css_put(&memcg->css);
2308
	return cachep;
2309 2310
}

2311 2312 2313
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2314
		css_put(&cachep->memcg_params.memcg->css);
2315 2316
}

2317 2318
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2319
{
2320 2321
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2322 2323
	int ret;

2324
	ret = try_charge(memcg, gfp, nr_pages);
2325
	if (ret)
2326
		return ret;
2327 2328 2329 2330 2331

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2332 2333
	}

2334
	page->mem_cgroup = memcg;
2335

2336
	return 0;
2337 2338
}

2339
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2340
{
2341
	struct mem_cgroup *memcg;
2342
	int ret = 0;
2343

2344
	memcg = get_mem_cgroup_from_mm(current->mm);
2345
	if (!mem_cgroup_is_root(memcg))
2346
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2347
	css_put(&memcg->css);
2348
	return ret;
2349 2350
}

2351
void __memcg_kmem_uncharge(struct page *page, int order)
2352
{
2353
	struct mem_cgroup *memcg = page->mem_cgroup;
2354
	unsigned int nr_pages = 1 << order;
2355 2356 2357 2358

	if (!memcg)
		return;

2359
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2360

2361 2362 2363
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2364
	page_counter_uncharge(&memcg->memory, nr_pages);
2365
	if (do_memsw_account())
2366
		page_counter_uncharge(&memcg->memsw, nr_pages);
2367

2368
	page->mem_cgroup = NULL;
2369
	css_put_many(&memcg->css, nr_pages);
2370
}
2371
#endif /* !CONFIG_SLOB */
2372

2373 2374 2375 2376
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2377
 * zone->lru_lock and migration entries setup in all page mappings.
2378
 */
2379
void mem_cgroup_split_huge_fixup(struct page *head)
2380
{
2381
	int i;
2382

2383 2384
	if (mem_cgroup_disabled())
		return;
2385

2386
	for (i = 1; i < HPAGE_PMD_NR; i++)
2387
		head[i].mem_cgroup = head->mem_cgroup;
2388

2389
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2390
		       HPAGE_PMD_NR);
2391
}
2392
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2393

A
Andrew Morton 已提交
2394
#ifdef CONFIG_MEMCG_SWAP
2395 2396
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2397
{
2398 2399
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2400
}
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2413
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2414 2415 2416
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2417
				struct mem_cgroup *from, struct mem_cgroup *to)
2418 2419 2420
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2421 2422
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2423 2424 2425

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2426
		mem_cgroup_swap_statistics(to, true);
2427 2428 2429 2430 2431 2432
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2433
				struct mem_cgroup *from, struct mem_cgroup *to)
2434 2435 2436
{
	return -EINVAL;
}
2437
#endif
K
KAMEZAWA Hiroyuki 已提交
2438

2439
static DEFINE_MUTEX(memcg_limit_mutex);
2440

2441
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2442
				   unsigned long limit)
2443
{
2444 2445 2446
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2447
	int retry_count;
2448
	int ret;
2449 2450 2451 2452 2453 2454

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2455 2456
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2457

2458
	oldusage = page_counter_read(&memcg->memory);
2459

2460
	do {
2461 2462 2463 2464
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2465 2466 2467 2468

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2469
			ret = -EINVAL;
2470 2471
			break;
		}
2472 2473 2474 2475
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2476 2477 2478 2479

		if (!ret)
			break;

2480 2481
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2482
		curusage = page_counter_read(&memcg->memory);
2483
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2484
		if (curusage >= oldusage)
2485 2486 2487
			retry_count--;
		else
			oldusage = curusage;
2488 2489
	} while (retry_count);

2490 2491
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2492

2493 2494 2495
	return ret;
}

L
Li Zefan 已提交
2496
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2497
					 unsigned long limit)
2498
{
2499 2500 2501
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2502
	int retry_count;
2503
	int ret;
2504

2505
	/* see mem_cgroup_resize_res_limit */
2506 2507 2508 2509 2510 2511
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2512 2513 2514 2515
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2516 2517 2518 2519

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2520 2521 2522
			ret = -EINVAL;
			break;
		}
2523 2524 2525 2526
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2527 2528 2529 2530

		if (!ret)
			break;

2531 2532
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2533
		curusage = page_counter_read(&memcg->memsw);
2534
		/* Usage is reduced ? */
2535
		if (curusage >= oldusage)
2536
			retry_count--;
2537 2538
		else
			oldusage = curusage;
2539 2540
	} while (retry_count);

2541 2542
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2543

2544 2545 2546
	return ret;
}

2547 2548 2549 2550 2551 2552 2553 2554 2555
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2556
	unsigned long excess;
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2581
		spin_lock_irq(&mctz->lock);
2582
		__mem_cgroup_remove_exceeded(mz, mctz);
2583 2584 2585 2586 2587 2588

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2589 2590 2591
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2592
		excess = soft_limit_excess(mz->memcg);
2593 2594 2595 2596 2597 2598 2599 2600 2601
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2602
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2603
		spin_unlock_irq(&mctz->lock);
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2621 2622 2623 2624 2625 2626
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2627 2628
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2629 2630 2631 2632 2633 2634
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2635 2636
}

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2647 2648
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2649
	/* try to free all pages in this cgroup */
2650
	while (nr_retries && page_counter_read(&memcg->memory)) {
2651
		int progress;
2652

2653 2654 2655
		if (signal_pending(current))
			return -EINTR;

2656 2657
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2658
		if (!progress) {
2659
			nr_retries--;
2660
			/* maybe some writeback is necessary */
2661
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2662
		}
2663 2664

	}
2665 2666

	return 0;
2667 2668
}

2669 2670 2671
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2672
{
2673
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2674

2675 2676
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2677
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2678 2679
}

2680 2681
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2682
{
2683
	return mem_cgroup_from_css(css)->use_hierarchy;
2684 2685
}

2686 2687
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2688 2689
{
	int retval = 0;
2690
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2691
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2692

2693
	if (memcg->use_hierarchy == val)
2694
		return 0;
2695

2696
	/*
2697
	 * If parent's use_hierarchy is set, we can't make any modifications
2698 2699 2700 2701 2702 2703
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2704
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2705
				(val == 1 || val == 0)) {
2706
		if (!memcg_has_children(memcg))
2707
			memcg->use_hierarchy = val;
2708 2709 2710 2711
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2712

2713 2714 2715
	return retval;
}

2716
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2717 2718
{
	struct mem_cgroup *iter;
2719
	int i;
2720

2721
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2722

2723 2724 2725 2726
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2727 2728
}

2729
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2730 2731
{
	struct mem_cgroup *iter;
2732
	int i;
2733

2734
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2735

2736 2737 2738 2739
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2740 2741
}

2742
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2743
{
2744
	unsigned long val = 0;
2745

2746
	if (mem_cgroup_is_root(memcg)) {
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2758
	} else {
2759
		if (!swap)
2760
			val = page_counter_read(&memcg->memory);
2761
		else
2762
			val = page_counter_read(&memcg->memsw);
2763
	}
2764
	return val;
2765 2766
}

2767 2768 2769 2770 2771 2772 2773
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2774

2775
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2776
			       struct cftype *cft)
B
Balbir Singh 已提交
2777
{
2778
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2779
	struct page_counter *counter;
2780

2781
	switch (MEMFILE_TYPE(cft->private)) {
2782
	case _MEM:
2783 2784
		counter = &memcg->memory;
		break;
2785
	case _MEMSWAP:
2786 2787
		counter = &memcg->memsw;
		break;
2788
	case _KMEM:
2789
		counter = &memcg->kmem;
2790
		break;
V
Vladimir Davydov 已提交
2791
	case _TCP:
2792
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2793
		break;
2794 2795 2796
	default:
		BUG();
	}
2797 2798 2799 2800

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2801
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2802
		if (counter == &memcg->memsw)
2803
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2816
}
2817

2818
#ifndef CONFIG_SLOB
2819
static int memcg_online_kmem(struct mem_cgroup *memcg)
2820 2821 2822
{
	int memcg_id;

2823 2824 2825
	if (cgroup_memory_nokmem)
		return 0;

2826
	BUG_ON(memcg->kmemcg_id >= 0);
2827
	BUG_ON(memcg->kmem_state);
2828

2829
	memcg_id = memcg_alloc_cache_id();
2830 2831
	if (memcg_id < 0)
		return memcg_id;
2832

2833
	static_branch_inc(&memcg_kmem_enabled_key);
2834
	/*
2835
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2836
	 * kmemcg_id. Setting the id after enabling static branching will
2837 2838 2839
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2840
	memcg->kmemcg_id = memcg_id;
2841
	memcg->kmem_state = KMEM_ONLINE;
2842 2843

	return 0;
2844 2845
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2893 2894 2895 2896
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2897 2898 2899 2900 2901 2902
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2903
#else
2904
static int memcg_online_kmem(struct mem_cgroup *memcg)
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2916
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2917
				   unsigned long limit)
2918
{
2919
	int ret;
2920 2921 2922 2923 2924

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2925
}
2926

V
Vladimir Davydov 已提交
2927 2928 2929 2930 2931 2932
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2933
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2934 2935 2936
	if (ret)
		goto out;

2937
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2955
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2956 2957 2958 2959 2960 2961
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2962 2963 2964 2965
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2966 2967
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2968
{
2969
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2970
	unsigned long nr_pages;
2971 2972
	int ret;

2973
	buf = strstrip(buf);
2974
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2975 2976
	if (ret)
		return ret;
2977

2978
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2979
	case RES_LIMIT:
2980 2981 2982 2983
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2984 2985 2986
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2987
			break;
2988 2989
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2990
			break;
2991 2992 2993
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
2994 2995 2996
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
2997
		}
2998
		break;
2999 3000 3001
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3002 3003
		break;
	}
3004
	return ret ?: nbytes;
B
Balbir Singh 已提交
3005 3006
}

3007 3008
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3009
{
3010
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3011
	struct page_counter *counter;
3012

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3023
	case _TCP:
3024
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3025
		break;
3026 3027 3028
	default:
		BUG();
	}
3029

3030
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3031
	case RES_MAX_USAGE:
3032
		page_counter_reset_watermark(counter);
3033 3034
		break;
	case RES_FAILCNT:
3035
		counter->failcnt = 0;
3036
		break;
3037 3038
	default:
		BUG();
3039
	}
3040

3041
	return nbytes;
3042 3043
}

3044
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3045 3046
					struct cftype *cft)
{
3047
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3048 3049
}

3050
#ifdef CONFIG_MMU
3051
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3052 3053
					struct cftype *cft, u64 val)
{
3054
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3055

3056
	if (val & ~MOVE_MASK)
3057
		return -EINVAL;
3058

3059
	/*
3060 3061 3062 3063
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3064
	 */
3065
	memcg->move_charge_at_immigrate = val;
3066 3067
	return 0;
}
3068
#else
3069
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 3071 3072 3073 3074
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3075

3076
#ifdef CONFIG_NUMA
3077
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3078
{
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3091
	int nid;
3092
	unsigned long nr;
3093
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3094

3095 3096 3097 3098 3099 3100 3101 3102 3103
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3104 3105
	}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3121 3122 3123 3124 3125 3126
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3127
static int memcg_stat_show(struct seq_file *m, void *v)
3128
{
3129
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3130
	unsigned long memory, memsw;
3131 3132
	struct mem_cgroup *mi;
	unsigned int i;
3133

3134 3135 3136 3137
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3138 3139
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3140
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3141
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3142
			continue;
3143
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3144
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3145
	}
L
Lee Schermerhorn 已提交
3146

3147 3148 3149 3150 3151 3152 3153 3154
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3155
	/* Hierarchical information */
3156 3157 3158 3159
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3160
	}
3161 3162
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3163
	if (do_memsw_account())
3164 3165
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3166

3167
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3168
		unsigned long long val = 0;
3169

3170
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3171
			continue;
3172 3173
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3174
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3192
	}
K
KAMEZAWA Hiroyuki 已提交
3193

K
KOSAKI Motohiro 已提交
3194 3195 3196 3197
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3198
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3199 3200 3201 3202 3203
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3204
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3205
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3206

3207 3208 3209 3210
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3211
			}
3212 3213 3214 3215
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3216 3217 3218
	}
#endif

3219 3220 3221
	return 0;
}

3222 3223
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3224
{
3225
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3226

3227
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3228 3229
}

3230 3231
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3232
{
3233
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3234

3235
	if (val > 100)
K
KOSAKI Motohiro 已提交
3236 3237
		return -EINVAL;

3238
	if (css->parent)
3239 3240 3241
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3242

K
KOSAKI Motohiro 已提交
3243 3244 3245
	return 0;
}

3246 3247 3248
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3249
	unsigned long usage;
3250 3251 3252 3253
	int i;

	rcu_read_lock();
	if (!swap)
3254
		t = rcu_dereference(memcg->thresholds.primary);
3255
	else
3256
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3257 3258 3259 3260

	if (!t)
		goto unlock;

3261
	usage = mem_cgroup_usage(memcg, swap);
3262 3263

	/*
3264
	 * current_threshold points to threshold just below or equal to usage.
3265 3266 3267
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3268
	i = t->current_threshold;
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3292
	t->current_threshold = i - 1;
3293 3294 3295 3296 3297 3298
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3299 3300
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3301
		if (do_memsw_account())
3302 3303 3304 3305
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3306 3307 3308 3309 3310 3311 3312
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3313 3314 3315 3316 3317 3318 3319
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3320 3321
}

3322
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3323 3324 3325
{
	struct mem_cgroup_eventfd_list *ev;

3326 3327
	spin_lock(&memcg_oom_lock);

3328
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3329
		eventfd_signal(ev->eventfd, 1);
3330 3331

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3332 3333 3334
	return 0;
}

3335
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3336
{
K
KAMEZAWA Hiroyuki 已提交
3337 3338
	struct mem_cgroup *iter;

3339
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3340
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3341 3342
}

3343
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3344
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345
{
3346 3347
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3348 3349
	unsigned long threshold;
	unsigned long usage;
3350
	int i, size, ret;
3351

3352
	ret = page_counter_memparse(args, "-1", &threshold);
3353 3354 3355 3356
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3357

3358
	if (type == _MEM) {
3359
		thresholds = &memcg->thresholds;
3360
		usage = mem_cgroup_usage(memcg, false);
3361
	} else if (type == _MEMSWAP) {
3362
		thresholds = &memcg->memsw_thresholds;
3363
		usage = mem_cgroup_usage(memcg, true);
3364
	} else
3365 3366 3367
		BUG();

	/* Check if a threshold crossed before adding a new one */
3368
	if (thresholds->primary)
3369 3370
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3371
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372 3373

	/* Allocate memory for new array of thresholds */
3374
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375
			GFP_KERNEL);
3376
	if (!new) {
3377 3378 3379
		ret = -ENOMEM;
		goto unlock;
	}
3380
	new->size = size;
3381 3382

	/* Copy thresholds (if any) to new array */
3383 3384
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385
				sizeof(struct mem_cgroup_threshold));
3386 3387
	}

3388
	/* Add new threshold */
3389 3390
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3391 3392

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3393
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394 3395 3396
			compare_thresholds, NULL);

	/* Find current threshold */
3397
	new->current_threshold = -1;
3398
	for (i = 0; i < size; i++) {
3399
		if (new->entries[i].threshold <= usage) {
3400
			/*
3401 3402
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3403 3404
			 * it here.
			 */
3405
			++new->current_threshold;
3406 3407
		} else
			break;
3408 3409
	}

3410 3411 3412 3413 3414
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3415

3416
	/* To be sure that nobody uses thresholds */
3417 3418 3419 3420 3421 3422 3423 3424
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3425
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3426 3427
	struct eventfd_ctx *eventfd, const char *args)
{
3428
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3429 3430
}

3431
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3432 3433
	struct eventfd_ctx *eventfd, const char *args)
{
3434
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3435 3436
}

3437
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3438
	struct eventfd_ctx *eventfd, enum res_type type)
3439
{
3440 3441
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3442
	unsigned long usage;
3443
	int i, j, size;
3444 3445

	mutex_lock(&memcg->thresholds_lock);
3446 3447

	if (type == _MEM) {
3448
		thresholds = &memcg->thresholds;
3449
		usage = mem_cgroup_usage(memcg, false);
3450
	} else if (type == _MEMSWAP) {
3451
		thresholds = &memcg->memsw_thresholds;
3452
		usage = mem_cgroup_usage(memcg, true);
3453
	} else
3454 3455
		BUG();

3456 3457 3458
	if (!thresholds->primary)
		goto unlock;

3459 3460 3461 3462
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3463 3464 3465
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3466 3467 3468
			size++;
	}

3469
	new = thresholds->spare;
3470

3471 3472
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3473 3474
		kfree(new);
		new = NULL;
3475
		goto swap_buffers;
3476 3477
	}

3478
	new->size = size;
3479 3480

	/* Copy thresholds and find current threshold */
3481 3482 3483
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3484 3485
			continue;

3486
		new->entries[j] = thresholds->primary->entries[i];
3487
		if (new->entries[j].threshold <= usage) {
3488
			/*
3489
			 * new->current_threshold will not be used
3490 3491 3492
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3493
			++new->current_threshold;
3494 3495 3496 3497
		}
		j++;
	}

3498
swap_buffers:
3499 3500
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3501

3502
	rcu_assign_pointer(thresholds->primary, new);
3503

3504
	/* To be sure that nobody uses thresholds */
3505
	synchronize_rcu();
3506 3507 3508 3509 3510 3511

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3512
unlock:
3513 3514
	mutex_unlock(&memcg->thresholds_lock);
}
3515

3516
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3517 3518
	struct eventfd_ctx *eventfd)
{
3519
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3520 3521
}

3522
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3523 3524
	struct eventfd_ctx *eventfd)
{
3525
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3526 3527
}

3528
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3529
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3530 3531 3532 3533 3534 3535 3536
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3537
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3538 3539 3540 3541 3542

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3543
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3544
		eventfd_signal(eventfd, 1);
3545
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3546 3547 3548 3549

	return 0;
}

3550
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3551
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3552 3553 3554
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3555
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3556

3557
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3558 3559 3560 3561 3562 3563
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3564
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3565 3566
}

3567
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3568
{
3569
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3570

3571
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3572
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3573 3574 3575
	return 0;
}

3576
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3577 3578
	struct cftype *cft, u64 val)
{
3579
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580 3581

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3582
	if (!css->parent || !((val == 0) || (val == 1)))
3583 3584
		return -EINVAL;

3585
	memcg->oom_kill_disable = val;
3586
	if (!val)
3587
		memcg_oom_recover(memcg);
3588

3589 3590 3591
	return 0;
}

3592 3593 3594 3595 3596 3597 3598
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3609 3610 3611 3612 3613
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3624 3625 3626
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3627 3628
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3629 3630 3631
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3632 3633 3634
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3635
 *
3636 3637 3638 3639 3640
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3641
 */
3642 3643 3644
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3645 3646 3647 3648 3649 3650 3651 3652
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3653 3654 3655
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3656 3657 3658 3659 3660

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3661
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3662 3663 3664 3665
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3677 3678 3679 3680
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3681 3682
#endif	/* CONFIG_CGROUP_WRITEBACK */

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3696 3697 3698 3699 3700
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3701
static void memcg_event_remove(struct work_struct *work)
3702
{
3703 3704
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3705
	struct mem_cgroup *memcg = event->memcg;
3706 3707 3708

	remove_wait_queue(event->wqh, &event->wait);

3709
	event->unregister_event(memcg, event->eventfd);
3710 3711 3712 3713 3714 3715

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3716
	css_put(&memcg->css);
3717 3718 3719 3720 3721 3722 3723
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3724 3725
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3726
{
3727 3728
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3729
	struct mem_cgroup *memcg = event->memcg;
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3742
		spin_lock(&memcg->event_list_lock);
3743 3744 3745 3746 3747 3748 3749 3750
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3751
		spin_unlock(&memcg->event_list_lock);
3752 3753 3754 3755 3756
	}

	return 0;
}

3757
static void memcg_event_ptable_queue_proc(struct file *file,
3758 3759
		wait_queue_head_t *wqh, poll_table *pt)
{
3760 3761
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3762 3763 3764 3765 3766 3767

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3768 3769
 * DO NOT USE IN NEW FILES.
 *
3770 3771 3772 3773 3774
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3775 3776
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3777
{
3778
	struct cgroup_subsys_state *css = of_css(of);
3779
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3780
	struct mem_cgroup_event *event;
3781 3782 3783 3784
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3785
	const char *name;
3786 3787 3788
	char *endp;
	int ret;

3789 3790 3791
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3792 3793
	if (*endp != ' ')
		return -EINVAL;
3794
	buf = endp + 1;
3795

3796
	cfd = simple_strtoul(buf, &endp, 10);
3797 3798
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3799
	buf = endp + 1;
3800 3801 3802 3803 3804

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3805
	event->memcg = memcg;
3806
	INIT_LIST_HEAD(&event->list);
3807 3808 3809
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3835 3836 3837 3838 3839
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3840 3841
	 *
	 * DO NOT ADD NEW FILES.
3842
	 */
A
Al Viro 已提交
3843
	name = cfile.file->f_path.dentry->d_name.name;
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3855 3856
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3857 3858 3859 3860 3861
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3862
	/*
3863 3864 3865
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3866
	 */
A
Al Viro 已提交
3867
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3868
					       &memory_cgrp_subsys);
3869
	ret = -EINVAL;
3870
	if (IS_ERR(cfile_css))
3871
		goto out_put_cfile;
3872 3873
	if (cfile_css != css) {
		css_put(cfile_css);
3874
		goto out_put_cfile;
3875
	}
3876

3877
	ret = event->register_event(memcg, event->eventfd, buf);
3878 3879 3880 3881 3882
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3883 3884 3885
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3886 3887 3888 3889

	fdput(cfile);
	fdput(efile);

3890
	return nbytes;
3891 3892

out_put_css:
3893
	css_put(css);
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3906
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3907
	{
3908
		.name = "usage_in_bytes",
3909
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3910
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3911
	},
3912 3913
	{
		.name = "max_usage_in_bytes",
3914
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3915
		.write = mem_cgroup_reset,
3916
		.read_u64 = mem_cgroup_read_u64,
3917
	},
B
Balbir Singh 已提交
3918
	{
3919
		.name = "limit_in_bytes",
3920
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3921
		.write = mem_cgroup_write,
3922
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3923
	},
3924 3925 3926
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3927
		.write = mem_cgroup_write,
3928
		.read_u64 = mem_cgroup_read_u64,
3929
	},
B
Balbir Singh 已提交
3930 3931
	{
		.name = "failcnt",
3932
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3933
		.write = mem_cgroup_reset,
3934
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3935
	},
3936 3937
	{
		.name = "stat",
3938
		.seq_show = memcg_stat_show,
3939
	},
3940 3941
	{
		.name = "force_empty",
3942
		.write = mem_cgroup_force_empty_write,
3943
	},
3944 3945 3946 3947 3948
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3949
	{
3950
		.name = "cgroup.event_control",		/* XXX: for compat */
3951
		.write = memcg_write_event_control,
3952
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3953
	},
K
KOSAKI Motohiro 已提交
3954 3955 3956 3957 3958
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3959 3960 3961 3962 3963
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3964 3965
	{
		.name = "oom_control",
3966
		.seq_show = mem_cgroup_oom_control_read,
3967
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3968 3969
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3970 3971 3972
	{
		.name = "pressure_level",
	},
3973 3974 3975
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3976
		.seq_show = memcg_numa_stat_show,
3977 3978
	},
#endif
3979 3980 3981
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3982
		.write = mem_cgroup_write,
3983
		.read_u64 = mem_cgroup_read_u64,
3984 3985 3986 3987
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3988
		.read_u64 = mem_cgroup_read_u64,
3989 3990 3991 3992
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3993
		.write = mem_cgroup_reset,
3994
		.read_u64 = mem_cgroup_read_u64,
3995 3996 3997 3998
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3999
		.write = mem_cgroup_reset,
4000
		.read_u64 = mem_cgroup_read_u64,
4001
	},
4002 4003 4004
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4005 4006 4007 4008
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4009 4010
	},
#endif
V
Vladimir Davydov 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4034
	{ },	/* terminate */
4035
};
4036

4037
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4038 4039
{
	struct mem_cgroup_per_node *pn;
4040
	struct mem_cgroup_per_zone *mz;
4041
	int zone, tmp = node;
4042 4043 4044 4045 4046 4047 4048 4049
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4050 4051
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4052
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4053 4054
	if (!pn)
		return 1;
4055 4056 4057

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4058
		lruvec_init(&mz->lruvec);
4059 4060
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4061
		mz->memcg = memcg;
4062
	}
4063
	memcg->nodeinfo[node] = pn;
4064 4065 4066
	return 0;
}

4067
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4068
{
4069
	kfree(memcg->nodeinfo[node]);
4070 4071
}

4072
static void mem_cgroup_free(struct mem_cgroup *memcg)
4073
{
4074
	int node;
4075

4076
	memcg_wb_domain_exit(memcg);
4077 4078 4079
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4080
	kfree(memcg);
4081
}
4082

4083
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4084
{
4085
	struct mem_cgroup *memcg;
4086
	size_t size;
4087
	int node;
B
Balbir Singh 已提交
4088

4089 4090 4091 4092
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4093
	if (!memcg)
4094 4095 4096 4097 4098
		return NULL;

	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4099

B
Bob Liu 已提交
4100
	for_each_node(node)
4101
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4102
			goto fail;
4103

4104 4105
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4106

4107
	INIT_WORK(&memcg->high_work, high_work_func);
4108 4109 4110 4111
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4112
	vmpressure_init(&memcg->vmpressure);
4113 4114
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4115
	memcg->socket_pressure = jiffies;
4116
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4117 4118
	memcg->kmemcg_id = -1;
#endif
4119 4120 4121
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4122 4123 4124 4125
	return memcg;
fail:
	mem_cgroup_free(memcg);
	return NULL;
4126 4127
}

4128 4129
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4130
{
4131 4132 4133
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4134

4135 4136 4137
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4138

4139 4140 4141 4142 4143 4144 4145 4146
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4147
		page_counter_init(&memcg->memory, &parent->memory);
4148
		page_counter_init(&memcg->swap, &parent->swap);
4149 4150
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4151
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4152
	} else {
4153
		page_counter_init(&memcg->memory, NULL);
4154
		page_counter_init(&memcg->swap, NULL);
4155 4156
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4157
		page_counter_init(&memcg->tcpmem, NULL);
4158 4159 4160 4161 4162
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4163
		if (parent != root_mem_cgroup)
4164
			memory_cgrp_subsys.broken_hierarchy = true;
4165
	}
4166

4167 4168 4169 4170 4171 4172
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4173
	error = memcg_online_kmem(memcg);
4174 4175
	if (error)
		goto fail;
4176

4177
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4178
		static_branch_inc(&memcg_sockets_enabled_key);
4179

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
	return NULL;
}

static int
mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
	if (css->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;
4191 4192

	return 0;
B
Balbir Singh 已提交
4193 4194
}

4195
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4196
{
4197
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4198
	struct mem_cgroup_event *event, *tmp;
4199 4200 4201 4202 4203 4204

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4205 4206
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4207 4208 4209
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4210
	spin_unlock(&memcg->event_list_lock);
4211

4212
	memcg_offline_kmem(memcg);
4213
	wb_memcg_offline(memcg);
4214 4215
}

4216 4217 4218 4219 4220 4221 4222
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4223
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4224
{
4225
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4226

4227
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4228
		static_branch_dec(&memcg_sockets_enabled_key);
4229

4230
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4231
		static_branch_dec(&memcg_sockets_enabled_key);
4232

4233 4234 4235
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4236
	memcg_free_kmem(memcg);
4237
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4238 4239
}

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4257 4258 4259 4260 4261
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4262 4263
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4264
	memcg->soft_limit = PAGE_COUNTER_MAX;
4265
	memcg_wb_domain_size_changed(memcg);
4266 4267
}

4268
#ifdef CONFIG_MMU
4269
/* Handlers for move charge at task migration. */
4270
static int mem_cgroup_do_precharge(unsigned long count)
4271
{
4272
	int ret;
4273

4274 4275
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4276
	if (!ret) {
4277 4278 4279
		mc.precharge += count;
		return ret;
	}
4280 4281

	/* Try charges one by one with reclaim */
4282
	while (count--) {
4283
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4284 4285
		if (ret)
			return ret;
4286
		mc.precharge++;
4287
		cond_resched();
4288
	}
4289
	return 0;
4290 4291 4292
}

/**
4293
 * get_mctgt_type - get target type of moving charge
4294 4295 4296
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4297
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4298 4299 4300 4301 4302 4303
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4304 4305 4306
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4307 4308 4309 4310 4311
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4312
	swp_entry_t	ent;
4313 4314 4315
};

enum mc_target_type {
4316
	MC_TARGET_NONE = 0,
4317
	MC_TARGET_PAGE,
4318
	MC_TARGET_SWAP,
4319 4320
};

D
Daisuke Nishimura 已提交
4321 4322
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4323
{
D
Daisuke Nishimura 已提交
4324
	struct page *page = vm_normal_page(vma, addr, ptent);
4325

D
Daisuke Nishimura 已提交
4326 4327 4328
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4329
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4330
			return NULL;
4331 4332 4333 4334
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4335 4336 4337 4338 4339 4340
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4341
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4342 4343 4344 4345 4346 4347
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4348
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4349
		return NULL;
4350 4351 4352 4353
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4354
	page = find_get_page(swap_address_space(ent), ent.val);
4355
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4356 4357 4358 4359
		entry->val = ent.val;

	return page;
}
4360 4361 4362 4363 4364 4365 4366
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4367

4368 4369 4370 4371 4372 4373 4374 4375 4376
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4377
	if (!(mc.flags & MOVE_FILE))
4378 4379 4380
		return NULL;

	mapping = vma->vm_file->f_mapping;
4381
	pgoff = linear_page_index(vma, addr);
4382 4383

	/* page is moved even if it's not RSS of this task(page-faulted). */
4384 4385
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4386 4387 4388 4389
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4390
			if (do_memsw_account())
4391 4392 4393 4394 4395 4396 4397
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4398
#endif
4399 4400 4401
	return page;
}

4402 4403 4404 4405 4406 4407 4408
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4409
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4410 4411 4412 4413 4414
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4415
				   bool compound,
4416 4417 4418 4419
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4420
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4421
	int ret;
4422
	bool anon;
4423 4424 4425

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4426
	VM_BUG_ON(compound && !PageTransHuge(page));
4427 4428

	/*
4429
	 * Prevent mem_cgroup_migrate() from looking at
4430
	 * page->mem_cgroup of its source page while we change it.
4431
	 */
4432
	ret = -EBUSY;
4433 4434 4435 4436 4437 4438 4439
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4440 4441
	anon = PageAnon(page);

4442 4443
	spin_lock_irqsave(&from->move_lock, flags);

4444
	if (!anon && page_mapped(page)) {
4445 4446 4447 4448 4449 4450
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4487
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4488
	memcg_check_events(to, page);
4489
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4490 4491 4492 4493 4494 4495 4496 4497
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4498
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4499 4500 4501
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4502
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4503 4504 4505 4506 4507 4508
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4509
	else if (pte_none(ptent))
4510
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4511 4512

	if (!page && !ent.val)
4513
		return ret;
4514 4515
	if (page) {
		/*
4516
		 * Do only loose check w/o serialization.
4517
		 * mem_cgroup_move_account() checks the page is valid or
4518
		 * not under LRU exclusion.
4519
		 */
4520
		if (page->mem_cgroup == mc.from) {
4521 4522 4523 4524 4525 4526 4527
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4528 4529
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4530
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4531 4532 4533
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4534 4535 4536 4537
	}
	return ret;
}

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4551
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4552
	if (!(mc.flags & MOVE_ANON))
4553
		return ret;
4554
	if (page->mem_cgroup == mc.from) {
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4571 4572 4573 4574
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4575
	struct vm_area_struct *vma = walk->vma;
4576 4577 4578
	pte_t *pte;
	spinlock_t *ptl;

4579 4580
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4581 4582
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4583
		spin_unlock(ptl);
4584
		return 0;
4585
	}
4586

4587 4588
	if (pmd_trans_unstable(pmd))
		return 0;
4589 4590
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4591
		if (get_mctgt_type(vma, addr, *pte, NULL))
4592 4593 4594 4595
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4596 4597 4598
	return 0;
}

4599 4600 4601 4602
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4603 4604 4605 4606
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4607
	down_read(&mm->mmap_sem);
4608
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4609
	up_read(&mm->mmap_sem);
4610 4611 4612 4613 4614 4615 4616 4617 4618

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4619 4620 4621 4622 4623
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4624 4625
}

4626 4627
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4628
{
4629 4630 4631
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4632
	/* we must uncharge all the leftover precharges from mc.to */
4633
	if (mc.precharge) {
4634
		cancel_charge(mc.to, mc.precharge);
4635 4636 4637 4638 4639 4640 4641
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4642
		cancel_charge(mc.from, mc.moved_charge);
4643
		mc.moved_charge = 0;
4644
	}
4645 4646 4647
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4648
		if (!mem_cgroup_is_root(mc.from))
4649
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4650

4651
		/*
4652 4653
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4654
		 */
4655
		if (!mem_cgroup_is_root(mc.to))
4656 4657
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4658
		css_put_many(&mc.from->css, mc.moved_swap);
4659

L
Li Zefan 已提交
4660
		/* we've already done css_get(mc.to) */
4661 4662
		mc.moved_swap = 0;
	}
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4676
	spin_lock(&mc.lock);
4677 4678
	mc.from = NULL;
	mc.to = NULL;
4679
	spin_unlock(&mc.lock);
4680 4681
}

4682
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4683
{
4684
	struct cgroup_subsys_state *css;
4685
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4686
	struct mem_cgroup *from;
4687
	struct task_struct *leader, *p;
4688
	struct mm_struct *mm;
4689
	unsigned long move_flags;
4690
	int ret = 0;
4691

4692 4693
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4694 4695
		return 0;

4696 4697 4698 4699 4700 4701 4702
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4703
	cgroup_taskset_for_each_leader(leader, css, tset) {
4704 4705
		WARN_ON_ONCE(p);
		p = leader;
4706
		memcg = mem_cgroup_from_css(css);
4707 4708 4709 4710
	}
	if (!p)
		return 0;

4711 4712 4713 4714 4715 4716 4717 4718 4719
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4745
	}
4746
	mmput(mm);
4747 4748 4749
	return ret;
}

4750
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4751
{
4752 4753
	if (mc.to)
		mem_cgroup_clear_mc();
4754 4755
}

4756 4757 4758
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4759
{
4760
	int ret = 0;
4761
	struct vm_area_struct *vma = walk->vma;
4762 4763
	pte_t *pte;
	spinlock_t *ptl;
4764 4765 4766
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4767

4768 4769
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4770
		if (mc.precharge < HPAGE_PMD_NR) {
4771
			spin_unlock(ptl);
4772 4773 4774 4775 4776 4777
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4778
				if (!mem_cgroup_move_account(page, true,
4779
							     mc.from, mc.to)) {
4780 4781 4782 4783 4784 4785 4786
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4787
		spin_unlock(ptl);
4788
		return 0;
4789 4790
	}

4791 4792
	if (pmd_trans_unstable(pmd))
		return 0;
4793 4794 4795 4796
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4797
		swp_entry_t ent;
4798 4799 4800 4801

		if (!mc.precharge)
			break;

4802
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4803 4804
		case MC_TARGET_PAGE:
			page = target.page;
4805 4806 4807 4808 4809 4810 4811 4812
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4813 4814
			if (isolate_lru_page(page))
				goto put;
4815 4816
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4817
				mc.precharge--;
4818 4819
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4820 4821
			}
			putback_lru_page(page);
4822
put:			/* get_mctgt_type() gets the page */
4823 4824
			put_page(page);
			break;
4825 4826
		case MC_TARGET_SWAP:
			ent = target.ent;
4827
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4828
				mc.precharge--;
4829 4830 4831
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4832
			break;
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4847
		ret = mem_cgroup_do_precharge(1);
4848 4849 4850 4851 4852 4853 4854 4855 4856
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4857 4858 4859 4860
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4861 4862

	lru_add_drain_all();
4863
	/*
4864 4865 4866
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4867 4868 4869
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4883 4884 4885 4886 4887
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4888
	up_read(&mm->mmap_sem);
4889
	atomic_dec(&mc.from->moving_account);
4890 4891
}

4892
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
4893
{
4894 4895
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
4896
	struct mm_struct *mm = get_task_mm(p);
4897 4898

	if (mm) {
4899 4900
		if (mc.to)
			mem_cgroup_move_charge(mm);
4901 4902
		mmput(mm);
	}
4903 4904
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4905
}
4906
#else	/* !CONFIG_MMU */
4907
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4908 4909 4910
{
	return 0;
}
4911
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4912 4913
{
}
4914
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4915 4916 4917
{
}
#endif
B
Balbir Singh 已提交
4918

4919 4920
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4921 4922
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4923
 */
4924
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4925 4926
{
	/*
4927
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4928 4929 4930
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4931
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4932 4933 4934
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4935 4936
}

4937 4938 4939
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
4940 4941 4942
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4943 4944 4945 4946 4947
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4948
	unsigned long low = READ_ONCE(memcg->low);
4949 4950

	if (low == PAGE_COUNTER_MAX)
4951
		seq_puts(m, "max\n");
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
4966
	err = page_counter_memparse(buf, "max", &low);
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4978
	unsigned long high = READ_ONCE(memcg->high);
4979 4980

	if (high == PAGE_COUNTER_MAX)
4981
		seq_puts(m, "max\n");
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4992
	unsigned long nr_pages;
4993 4994 4995 4996
	unsigned long high;
	int err;

	buf = strstrip(buf);
4997
	err = page_counter_memparse(buf, "max", &high);
4998 4999 5000 5001 5002
	if (err)
		return err;

	memcg->high = high;

5003 5004 5005 5006 5007
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5008
	memcg_wb_domain_size_changed(memcg);
5009 5010 5011 5012 5013 5014
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5015
	unsigned long max = READ_ONCE(memcg->memory.limit);
5016 5017

	if (max == PAGE_COUNTER_MAX)
5018
		seq_puts(m, "max\n");
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5029 5030
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5031 5032 5033 5034
	unsigned long max;
	int err;

	buf = strstrip(buf);
5035
	err = page_counter_memparse(buf, "max", &max);
5036 5037 5038
	if (err)
		return err;

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5069

5070
	memcg_wb_domain_size_changed(memcg);
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5086 5087 5088
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5089 5090
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5104 5105 5106
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5107
	seq_printf(m, "anon %llu\n",
5108
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5109
	seq_printf(m, "file %llu\n",
5110
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5111 5112
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5113 5114 5115
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5116
	seq_printf(m, "sock %llu\n",
5117
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5118 5119

	seq_printf(m, "file_mapped %llu\n",
5120
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5121
	seq_printf(m, "file_dirty %llu\n",
5122
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5123
	seq_printf(m, "file_writeback %llu\n",
5124
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5136 5137 5138 5139 5140
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5141 5142 5143
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5144
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5145
	seq_printf(m, "pgmajfault %lu\n",
5146
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5147 5148 5149 5150

	return 0;
}

5151 5152 5153
static struct cftype memory_files[] = {
	{
		.name = "current",
5154
		.flags = CFTYPE_NOT_ON_ROOT,
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5178
		.file_offset = offsetof(struct mem_cgroup, events_file),
5179 5180
		.seq_show = memory_events_show,
	},
5181 5182 5183 5184 5185
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5186 5187 5188
	{ }	/* terminate */
};

5189
struct cgroup_subsys memory_cgrp_subsys = {
5190
	.css_alloc = mem_cgroup_css_alloc,
5191
	.css_online = mem_cgroup_css_online,
5192
	.css_offline = mem_cgroup_css_offline,
5193
	.css_released = mem_cgroup_css_released,
5194
	.css_free = mem_cgroup_css_free,
5195
	.css_reset = mem_cgroup_css_reset,
5196 5197
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5198
	.attach = mem_cgroup_move_task,
5199
	.bind = mem_cgroup_bind,
5200 5201
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5202
	.early_init = 0,
B
Balbir Singh 已提交
5203
};
5204

5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5227
	if (page_counter_read(&memcg->memory) >= memcg->low)
5228 5229 5230 5231 5232 5233 5234 5235
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5236
		if (page_counter_read(&memcg->memory) >= memcg->low)
5237 5238 5239 5240 5241
			return false;
	}
	return true;
}

5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5260 5261
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5262 5263
{
	struct mem_cgroup *memcg = NULL;
5264
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5278
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5279
		if (page->mem_cgroup)
5280
			goto out;
5281

5282
		if (do_swap_account) {
5283 5284 5285 5286 5287 5288 5289 5290 5291
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5322
			      bool lrucare, bool compound)
5323
{
5324
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5339 5340 5341
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5342
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5343 5344
	memcg_check_events(memcg, page);
	local_irq_enable();
5345

5346
	if (do_memsw_account() && PageSwapCache(page)) {
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5364 5365
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5366
{
5367
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5382 5383 5384 5385
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5386
	unsigned long nr_pages = nr_anon + nr_file;
5387 5388
	unsigned long flags;

5389
	if (!mem_cgroup_is_root(memcg)) {
5390
		page_counter_uncharge(&memcg->memory, nr_pages);
5391
		if (do_memsw_account())
5392
			page_counter_uncharge(&memcg->memsw, nr_pages);
5393 5394
		memcg_oom_recover(memcg);
	}
5395 5396 5397 5398 5399 5400

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5401
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5402 5403
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5404 5405

	if (!mem_cgroup_is_root(memcg))
5406
		css_put_many(&memcg->css, nr_pages);
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5419 5420 5421 5422
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5433
		if (!page->mem_cgroup)
5434 5435 5436 5437
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5438
		 * page->mem_cgroup at this point, we have fully
5439
		 * exclusive access to the page.
5440 5441
		 */

5442
		if (memcg != page->mem_cgroup) {
5443
			if (memcg) {
5444 5445 5446
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5447
			}
5448
			memcg = page->mem_cgroup;
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5462
		page->mem_cgroup = NULL;
5463 5464 5465 5466 5467

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5468 5469
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5470 5471
}

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5484
	/* Don't touch page->lru of any random page, pre-check: */
5485
	if (!page->mem_cgroup)
5486 5487
		return;

5488 5489 5490
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5491

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5503

5504 5505
	if (!list_empty(page_list))
		uncharge_list(page_list);
5506 5507 5508
}

/**
5509 5510 5511
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5512
 *
5513 5514
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5515 5516 5517
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5518
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5519
{
5520
	struct mem_cgroup *memcg;
5521 5522
	unsigned int nr_pages;
	bool compound;
5523 5524 5525 5526

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5527 5528
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5529 5530 5531 5532 5533

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5534
	if (newpage->mem_cgroup)
5535 5536
		return;

5537
	/* Swapcache readahead pages can get replaced before being charged */
5538
	memcg = oldpage->mem_cgroup;
5539
	if (!memcg)
5540 5541
		return;

5542 5543 5544 5545 5546 5547 5548 5549
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5550

5551
	commit_charge(newpage, memcg, false);
5552 5553 5554 5555 5556

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
	local_irq_enable();
5557 5558
}

5559
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5582 5583
	if (memcg == root_mem_cgroup)
		goto out;
5584
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5585 5586
		goto out;
	if (css_tryget_online(&memcg->css))
5587
		sk->sk_memcg = memcg;
5588
out:
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5609
	gfp_t gfp_mask = GFP_KERNEL;
5610

5611
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5612
		struct page_counter *fail;
5613

5614 5615
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5616 5617
			return true;
		}
5618 5619
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5620
		return false;
5621
	}
5622

5623 5624 5625 5626
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5627 5628
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5629 5630 5631 5632
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5643
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5644
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5645 5646
		return;
	}
5647

5648 5649
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5650 5651
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5652 5653
}

5654 5655 5656 5657 5658 5659 5660 5661 5662
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5663 5664
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5665 5666 5667 5668
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5669

5670
/*
5671 5672 5673 5674 5675 5676
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5677 5678 5679
 */
static int __init mem_cgroup_init(void)
{
5680 5681
	int cpu, node;

5682
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5705 5706 5707
	return 0;
}
subsys_initcall(mem_cgroup_init);
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5725
	if (!do_memsw_account())
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5743 5744 5745 5746 5747 5748 5749
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5750
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5751 5752 5753
	memcg_check_events(memcg, page);
}

5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	css_get(&memcg->css);
	return 0;
}

5790 5791 5792 5793
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5794
 * Drop the swap charge associated with @entry.
5795 5796 5797 5798 5799 5800
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5801
	if (!do_swap_account)
5802 5803 5804 5805
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5806
	memcg = mem_cgroup_from_id(id);
5807
	if (memcg) {
5808 5809 5810 5811 5812 5813
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5814 5815 5816 5817 5818 5819
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
5960 5961
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
5962 5963 5964 5965 5966 5967 5968 5969
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */