memcontrol.c 21.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/smp.h>
25
#include <linux/page-flags.h>
26
#include <linux/backing-dev.h>
27 28
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
29 30 31
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
B
Balbir Singh 已提交
32

33 34
#include <asm/uaccess.h>

B
Balbir Singh 已提交
35
struct cgroup_subsys mem_cgroup_subsys;
36
static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
B
Balbir Singh 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx, int val)
{
	int cpu = smp_processor_id();
	stat->cpustat[cpu].count[idx] += val;
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

B
Balbir Singh 已提交
79 80 81 82 83 84 85
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
86 87 88
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
89 90 91 92 93 94 95
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
96 97 98 99 100 101 102
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 * TODO: Consider making these lists per zone
	 */
	struct list_head active_list;
	struct list_head inactive_list;
103 104 105 106
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
	spinlock_t lru_lock;
107
	unsigned long control_type;	/* control RSS or RSS+Pagecache */
108 109 110 111
	/*
	 * statistics.
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
112 113
};

114 115 116 117 118 119 120 121
/*
 * We use the lower bit of the page->page_cgroup pointer as a bit spin
 * lock. We need to ensure that page->page_cgroup is atleast two
 * byte aligned (based on comments from Nick Piggin)
 */
#define PAGE_CGROUP_LOCK_BIT 	0x0
#define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT)

B
Balbir Singh 已提交
122 123 124 125 126 127 128 129
/*
 * A page_cgroup page is associated with every page descriptor. The
 * page_cgroup helps us identify information about the cgroup
 */
struct page_cgroup {
	struct list_head lru;		/* per cgroup LRU list */
	struct page *page;
	struct mem_cgroup *mem_cgroup;
130 131
	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
					/* mapped and cached states     */
132
	int	 flags;
B
Balbir Singh 已提交
133
};
134
#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
135
#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
B
Balbir Singh 已提交
136

137 138 139 140 141 142 143 144
enum {
	MEM_CGROUP_TYPE_UNSPEC = 0,
	MEM_CGROUP_TYPE_MAPPED,
	MEM_CGROUP_TYPE_CACHED,
	MEM_CGROUP_TYPE_ALL,
	MEM_CGROUP_TYPE_MAX,
};

145 146 147 148 149
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
};

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Always modified under lru lock. Then, not necessary to preempt_disable()
 */
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
					bool charge)
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	VM_BUG_ON(!irqs_disabled());

	if (flags & PAGE_CGROUP_FLAG_CACHE)
		__mem_cgroup_stat_add_safe(stat,
					MEM_CGROUP_STAT_CACHE, val);
	else
		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);

}

168
static struct mem_cgroup init_mem_cgroup;
B
Balbir Singh 已提交
169 170 171 172 173 174 175 176 177

static inline
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
static inline
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
{
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_task(p);
	css_get(&mem->css);
	mm->mem_cgroup = mem;
}

void mm_free_cgroup(struct mm_struct *mm)
{
	css_put(&mm->mem_cgroup->css);
}

199 200 201 202 203 204
static inline int page_cgroup_locked(struct page *page)
{
	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
					&page->page_cgroup);
}

205 206
void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
{
207 208 209 210 211 212 213 214 215 216 217
	int locked;

	/*
	 * While resetting the page_cgroup we might not hold the
	 * page_cgroup lock. free_hot_cold_page() is an example
	 * of such a scenario
	 */
	if (pc)
		VM_BUG_ON(!page_cgroup_locked(page));
	locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
	page->page_cgroup = ((unsigned long)pc | locked);
218 219 220 221
}

struct page_cgroup *page_get_page_cgroup(struct page *page)
{
222 223 224 225
	return (struct page_cgroup *)
		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
}

226
static void __always_inline lock_page_cgroup(struct page *page)
227 228 229 230 231
{
	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
	VM_BUG_ON(!page_cgroup_locked(page));
}

232
static void __always_inline unlock_page_cgroup(struct page *page)
233 234 235 236
{
	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}

237 238 239 240 241
/*
 * Tie new page_cgroup to struct page under lock_page_cgroup()
 * This can fail if the page has been tied to a page_cgroup.
 * If success, returns 0.
 */
242 243
static int page_cgroup_assign_new_page_cgroup(struct page *page,
						struct page_cgroup *pc)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
{
	int ret = 0;

	lock_page_cgroup(page);
	if (!page_get_page_cgroup(page))
		page_assign_page_cgroup(page, pc);
	else /* A page is tied to other pc. */
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

/*
 * Clear page->page_cgroup member under lock_page_cgroup().
 * If given "pc" value is different from one page->page_cgroup,
 * page->cgroup is not cleared.
 * Returns a value of page->page_cgroup at lock taken.
 * A can can detect failure of clearing by following
 *  clear_page_cgroup(page, pc) == pc
 */

265 266
static struct page_cgroup *clear_page_cgroup(struct page *page,
						struct page_cgroup *pc)
267 268 269 270 271 272 273 274 275 276 277
{
	struct page_cgroup *ret;
	/* lock and clear */
	lock_page_cgroup(page);
	ret = page_get_page_cgroup(page);
	if (likely(ret == pc))
		page_assign_page_cgroup(page, NULL);
	unlock_page_cgroup(page);
	return ret;
}

278
static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
279
{
280 281
	if (active) {
		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
282
		list_move(&pc->lru, &pc->mem_cgroup->active_list);
283 284
	} else {
		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
285
		list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
286
	}
287 288
}

289 290 291 292 293 294 295 296 297 298
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;

	task_lock(task);
	ret = task->mm && mm_cgroup(task->mm) == mem;
	task_unlock(task);
	return ret;
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * This routine assumes that the appropriate zone's lru lock is already held
 */
void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
{
	struct mem_cgroup *mem;
	if (!pc)
		return;

	mem = pc->mem_cgroup;

	spin_lock(&mem->lru_lock);
	__mem_cgroup_move_lists(pc, active);
	spin_unlock(&mem->lru_lock);
}

unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
					int active)
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
327
	struct page_cgroup *pc, *tmp;
328 329 330 331 332 333 334

	if (active)
		src = &mem_cont->active_list;
	else
		src = &mem_cont->inactive_list;

	spin_lock(&mem_cont->lru_lock);
335 336
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
337
		if (scan >= nr_to_scan)
338
			break;
339 340 341
		page = pc->page;
		VM_BUG_ON(!pc);

H
Hugh Dickins 已提交
342
		if (unlikely(!PageLRU(page)))
343 344
			continue;

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		if (PageActive(page) && !active) {
			__mem_cgroup_move_lists(pc, true);
			continue;
		}
		if (!PageActive(page) && active) {
			__mem_cgroup_move_lists(pc, false);
			continue;
		}

		/*
		 * Reclaim, per zone
		 * TODO: make the active/inactive lists per zone
		 */
		if (page_zone(page) != z)
			continue;

H
Hugh Dickins 已提交
361 362
		scan++;
		list_move(&pc->lru, &pc_list);
363 364 365 366 367 368 369 370 371 372 373 374 375 376

		if (__isolate_lru_page(page, mode) == 0) {
			list_move(&page->lru, dst);
			nr_taken++;
		}
	}

	list_splice(&pc_list, src);
	spin_unlock(&mem_cont->lru_lock);

	*scanned = scan;
	return nr_taken;
}

377 378 379 380 381 382
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
383 384
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype)
385 386
{
	struct mem_cgroup *mem;
387
	struct page_cgroup *pc;
388 389
	unsigned long flags;
	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
390 391 392 393 394 395 396 397

	/*
	 * Should page_cgroup's go to their own slab?
	 * One could optimize the performance of the charging routine
	 * by saving a bit in the page_flags and using it as a lock
	 * to see if the cgroup page already has a page_cgroup associated
	 * with it
	 */
398
retry:
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	if (page) {
		lock_page_cgroup(page);
		pc = page_get_page_cgroup(page);
		/*
		 * The page_cgroup exists and
		 * the page has already been accounted.
		 */
		if (pc) {
			if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
				/* this page is under being uncharged ? */
				unlock_page_cgroup(page);
				cpu_relax();
				goto retry;
			} else {
				unlock_page_cgroup(page);
				goto done;
			}
416
		}
417
		unlock_page_cgroup(page);
418 419
	}

420
	pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
421 422 423 424
	if (pc == NULL)
		goto err;

	/*
425 426
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
427 428 429 430 431 432
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
	if (!mm)
		mm = &init_mm;

433
	rcu_read_lock();
434 435 436 437 438 439 440 441 442 443 444 445
	mem = rcu_dereference(mm->mem_cgroup);
	/*
	 * For every charge from the cgroup, increment reference
	 * count
	 */
	css_get(&mem->css);
	rcu_read_unlock();

	/*
	 * If we created the page_cgroup, we should free it on exceeding
	 * the cgroup limit.
	 */
446
	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
447 448
		if (!(gfp_mask & __GFP_WAIT))
			goto out;
449 450

		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
451 452 453 454 455 456 457 458 459 460 461
			continue;

		/*
 		 * try_to_free_mem_cgroup_pages() might not give us a full
 		 * picture of reclaim. Some pages are reclaimed and might be
 		 * moved to swap cache or just unmapped from the cgroup.
 		 * Check the limit again to see if the reclaim reduced the
 		 * current usage of the cgroup before giving up
 		 */
		if (res_counter_check_under_limit(&mem->res))
			continue;
462 463 464 465

		if (!nr_retries--) {
			mem_cgroup_out_of_memory(mem, gfp_mask);
			goto out;
466
		}
467
		congestion_wait(WRITE, HZ/10);
468 469 470 471 472
	}

	atomic_set(&pc->ref_cnt, 1);
	pc->mem_cgroup = mem;
	pc->page = page;
473
	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
474 475
	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
		pc->flags |= PAGE_CGROUP_FLAG_CACHE;
476

477
	if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
478
		/*
479 480
		 * Another charge has been added to this page already.
		 * We take lock_page_cgroup(page) again and read
481 482 483 484 485
		 * page->cgroup, increment refcnt.... just retry is OK.
		 */
		res_counter_uncharge(&mem->res, PAGE_SIZE);
		css_put(&mem->css);
		kfree(pc);
486 487
		if (!page)
			goto done;
488 489
		goto retry;
	}
490

491
	spin_lock_irqsave(&mem->lru_lock, flags);
492 493
	/* Update statistics vector */
	mem_cgroup_charge_statistics(mem, pc->flags, true);
494 495 496
	list_add(&pc->lru, &mem->active_list);
	spin_unlock_irqrestore(&mem->lru_lock, flags);

497 498
done:
	return 0;
499 500
out:
	css_put(&mem->css);
501 502 503 504 505
	kfree(pc);
err:
	return -ENOMEM;
}

506 507 508 509 510 511 512
int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
			gfp_t gfp_mask)
{
	return mem_cgroup_charge_common(page, mm, gfp_mask,
			MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

513 514 515
/*
 * See if the cached pages should be charged at all?
 */
516 517
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
518
{
519
	int ret = 0;
520 521 522 523
	struct mem_cgroup *mem;
	if (!mm)
		mm = &init_mm;

524
	rcu_read_lock();
525
	mem = rcu_dereference(mm->mem_cgroup);
526 527
	css_get(&mem->css);
	rcu_read_unlock();
528
	if (mem->control_type == MEM_CGROUP_TYPE_ALL)
529
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
530
				MEM_CGROUP_CHARGE_TYPE_CACHE);
531 532
	css_put(&mem->css);
	return ret;
533 534
}

535 536 537 538 539 540 541 542
/*
 * Uncharging is always a welcome operation, we never complain, simply
 * uncharge.
 */
void mem_cgroup_uncharge(struct page_cgroup *pc)
{
	struct mem_cgroup *mem;
	struct page *page;
543
	unsigned long flags;
544

545 546 547 548
	/*
	 * This can handle cases when a page is not charged at all and we
	 * are switching between handling the control_type.
	 */
549 550 551 552 553
	if (!pc)
		return;

	if (atomic_dec_and_test(&pc->ref_cnt)) {
		page = pc->page;
554 555
		/*
		 * get page->cgroup and clear it under lock.
556
		 * force_empty can drop page->cgroup without checking refcnt.
557 558 559 560 561 562 563
		 */
		if (clear_page_cgroup(page, pc) == pc) {
			mem = pc->mem_cgroup;
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			spin_lock_irqsave(&mem->lru_lock, flags);
			list_del_init(&pc->lru);
564
			mem_cgroup_charge_statistics(mem, pc->flags, false);
565 566 567
			spin_unlock_irqrestore(&mem->lru_lock, flags);
			kfree(pc);
		}
568
	}
569
}
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Returns non-zero if a page (under migration) has valid page_cgroup member.
 * Refcnt of page_cgroup is incremented.
 */

int mem_cgroup_prepare_migration(struct page *page)
{
	struct page_cgroup *pc;
	int ret = 0;
	lock_page_cgroup(page);
	pc = page_get_page_cgroup(page);
	if (pc && atomic_inc_not_zero(&pc->ref_cnt))
		ret = 1;
	unlock_page_cgroup(page);
	return ret;
}

void mem_cgroup_end_migration(struct page *page)
{
	struct page_cgroup *pc = page_get_page_cgroup(page);
	mem_cgroup_uncharge(pc);
}
/*
 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
 * And no race with uncharge() routines because page_cgroup for *page*
 * has extra one reference by mem_cgroup_prepare_migration.
 */

void mem_cgroup_page_migration(struct page *page, struct page *newpage)
{
	struct page_cgroup *pc;
retry:
	pc = page_get_page_cgroup(page);
	if (!pc)
		return;
	if (clear_page_cgroup(page, pc) != pc)
		goto retry;
	pc->page = newpage;
	lock_page_cgroup(newpage);
	page_assign_page_cgroup(newpage, pc);
	unlock_page_cgroup(newpage);
	return;
}
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * This routine ignores page_cgroup->ref_cnt.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
#define FORCE_UNCHARGE_BATCH	(128)
static void
mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
{
	struct page_cgroup *pc;
	struct page *page;
	int count;
	unsigned long flags;

retry:
	count = FORCE_UNCHARGE_BATCH;
	spin_lock_irqsave(&mem->lru_lock, flags);

	while (--count && !list_empty(list)) {
		pc = list_entry(list->prev, struct page_cgroup, lru);
		page = pc->page;
		/* Avoid race with charge */
		atomic_set(&pc->ref_cnt, 0);
		if (clear_page_cgroup(page, pc) == pc) {
			css_put(&mem->css);
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			list_del_init(&pc->lru);
641
			mem_cgroup_charge_statistics(mem, pc->flags, false);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
			kfree(pc);
		} else 	/* being uncharged ? ...do relax */
			break;
	}
	spin_unlock_irqrestore(&mem->lru_lock, flags);
	if (!list_empty(list)) {
		cond_resched();
		goto retry;
	}
	return;
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */

int mem_cgroup_force_empty(struct mem_cgroup *mem)
{
	int ret = -EBUSY;
	css_get(&mem->css);
	/*
	 * page reclaim code (kswapd etc..) will move pages between
`	 * active_list <-> inactive_list while we don't take a lock.
	 * So, we have to do loop here until all lists are empty.
	 */
	while (!(list_empty(&mem->active_list) &&
		 list_empty(&mem->inactive_list))) {
		if (atomic_read(&mem->css.cgroup->count) > 0)
			goto out;
		/* drop all page_cgroup in active_list */
		mem_cgroup_force_empty_list(mem, &mem->active_list);
		/* drop all page_cgroup in inactive_list */
		mem_cgroup_force_empty_list(mem, &mem->inactive_list);
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
}



685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
{
	*tmp = memparse(buf, &buf);
	if (*buf != '\0')
		return -EINVAL;

	/*
	 * Round up the value to the closest page size
	 */
	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
	return 0;
}

static ssize_t mem_cgroup_read(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			char __user *userbuf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
701 702
{
	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
703 704
				cft->private, userbuf, nbytes, ppos,
				NULL);
B
Balbir Singh 已提交
705 706 707 708 709 710 711
}

static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
				struct file *file, const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
712 713
				cft->private, userbuf, nbytes, ppos,
				mem_cgroup_write_strategy);
B
Balbir Singh 已提交
714 715
}

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static ssize_t mem_control_type_write(struct cgroup *cont,
			struct cftype *cft, struct file *file,
			const char __user *userbuf,
			size_t nbytes, loff_t *pos)
{
	int ret;
	char *buf, *end;
	unsigned long tmp;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	buf = kmalloc(nbytes + 1, GFP_KERNEL);
	ret = -ENOMEM;
	if (buf == NULL)
		goto out;

	buf[nbytes] = 0;
	ret = -EFAULT;
	if (copy_from_user(buf, userbuf, nbytes))
		goto out_free;

	ret = -EINVAL;
	tmp = simple_strtoul(buf, &end, 10);
	if (*end != '\0')
		goto out_free;

	if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
		goto out_free;

	mem->control_type = tmp;
	ret = nbytes;
out_free:
	kfree(buf);
out:
	return ret;
}

static ssize_t mem_control_type_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	unsigned long val;
	char buf[64], *s;
	struct mem_cgroup *mem;

	mem = mem_cgroup_from_cont(cont);
	s = buf;
	val = mem->control_type;
	s += sprintf(s, "%lu\n", val);
	return simple_read_from_buffer((void __user *)userbuf, nbytes,
			ppos, buf, s - buf);
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

static ssize_t mem_force_empty_write(struct cgroup *cont,
				struct cftype *cft, struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	int ret;
	ret = mem_cgroup_force_empty(mem);
	if (!ret)
		ret = nbytes;
	return ret;
}

/*
 * Note: This should be removed if cgroup supports write-only file.
 */

static ssize_t mem_force_empty_read(struct cgroup *cont,
				struct cftype *cft,
				struct file *file, char __user *userbuf,
				size_t nbytes, loff_t *ppos)
{
	return -EINVAL;
}


B
Balbir Singh 已提交
797 798
static struct cftype mem_cgroup_files[] = {
	{
799
		.name = "usage_in_bytes",
B
Balbir Singh 已提交
800 801 802 803
		.private = RES_USAGE,
		.read = mem_cgroup_read,
	},
	{
804
		.name = "limit_in_bytes",
B
Balbir Singh 已提交
805 806 807 808 809 810 811 812 813
		.private = RES_LIMIT,
		.write = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "failcnt",
		.private = RES_FAILCNT,
		.read = mem_cgroup_read,
	},
814 815 816 817 818
	{
		.name = "control_type",
		.write = mem_control_type_write,
		.read = mem_control_type_read,
	},
819 820 821 822 823
	{
		.name = "force_empty",
		.write = mem_force_empty_write,
		.read = mem_force_empty_read,
	},
B
Balbir Singh 已提交
824 825
};

826 827
static struct mem_cgroup init_mem_cgroup;

B
Balbir Singh 已提交
828 829 830 831 832
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct mem_cgroup *mem;

833 834 835 836 837 838 839 840
	if (unlikely((cont->parent) == NULL)) {
		mem = &init_mem_cgroup;
		init_mm.mem_cgroup = mem;
	} else
		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);

	if (mem == NULL)
		return NULL;
B
Balbir Singh 已提交
841 842

	res_counter_init(&mem->res);
843 844
	INIT_LIST_HEAD(&mem->active_list);
	INIT_LIST_HEAD(&mem->inactive_list);
845
	spin_lock_init(&mem->lru_lock);
846
	mem->control_type = MEM_CGROUP_TYPE_ALL;
B
Balbir Singh 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	return &mem->css;
}

static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	kfree(mem_cgroup_from_cont(cont));
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, mem_cgroup_files,
					ARRAY_SIZE(mem_cgroup_files));
}

B
Balbir Singh 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
	struct mm_struct *mm;
	struct mem_cgroup *mem, *old_mem;

	mm = get_task_mm(p);
	if (mm == NULL)
		return;

	mem = mem_cgroup_from_cont(cont);
	old_mem = mem_cgroup_from_cont(old_cont);

	if (mem == old_mem)
		goto out;

	/*
	 * Only thread group leaders are allowed to migrate, the mm_struct is
	 * in effect owned by the leader
	 */
	if (p->tgid != p->pid)
		goto out;

	css_get(&mem->css);
	rcu_assign_pointer(mm->mem_cgroup, mem);
	css_put(&old_mem->css);

out:
	mmput(mm);
	return;
}

B
Balbir Singh 已提交
897 898 899 900 901 902
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
903
	.attach = mem_cgroup_move_task,
904
	.early_init = 1,
B
Balbir Singh 已提交
905
};