memcontrol.c 145.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
G
Glauber Costa 已提交
69
#include <net/tcp_memcontrol.h>
70
#include "slab.h"
B
Balbir Singh 已提交
71

72 73
#include <asm/uaccess.h>

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79
#define MEM_CGROUP_RECLAIM_RETRIES	5
80
static struct mem_cgroup *root_mem_cgroup __read_mostly;
T
Tejun Heo 已提交
81
struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
B
Balbir Singh 已提交
82

83
/* Whether the swap controller is active */
A
Andrew Morton 已提交
84
#ifdef CONFIG_MEMCG_SWAP
85 86
int do_swap_account __read_mostly;
#else
87
#define do_swap_account		0
88 89
#endif

90 91 92
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
93
	"rss_huge",
94
	"mapped_file",
95
	"dirty",
96
	"writeback",
97 98 99 100 101 102 103 104 105 106
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

107 108 109 110 111 112 113 114
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

115 116 117
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
139 140 141 142 143
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
144

145 146 147
/*
 * cgroup_event represents events which userspace want to receive.
 */
148
struct mem_cgroup_event {
149
	/*
150
	 * memcg which the event belongs to.
151
	 */
152
	struct mem_cgroup *memcg;
153 154 155 156 157 158 159 160
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
161 162 163 164 165
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
166
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
167
			      struct eventfd_ctx *eventfd, const char *args);
168 169 170 171 172
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
173
	void (*unregister_event)(struct mem_cgroup *memcg,
174
				 struct eventfd_ctx *eventfd);
175 176 177 178 179 180 181 182 183 184
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

185 186
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187

188 189
/* Stuffs for move charges at task migration. */
/*
190
 * Types of charges to be moved.
191
 */
192 193 194
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
195

196 197
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
198
	spinlock_t	  lock; /* for from, to */
199 200
	struct mem_cgroup *from;
	struct mem_cgroup *to;
201
	unsigned long flags;
202
	unsigned long precharge;
203
	unsigned long moved_charge;
204
	unsigned long moved_swap;
205 206 207
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
208
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
209 210
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
211

212 213 214 215
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
216
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
217
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
218

219 220
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
221
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
222
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
223
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
224 225 226
	NR_CHARGE_TYPE,
};

227
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
228 229 230 231
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
232
	_KMEM,
G
Glauber Costa 已提交
233 234
};

235 236
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
237
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
238 239
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
240

241 242 243 244 245 246 247
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

248 249 250 251 252 253 254 255 256 257 258 259 260
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

261 262 263 264 265
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

266 267 268 269 270 271
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
272 273
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
274
	return memcg->css.id;
L
Li Zefan 已提交
275 276
}

277 278 279 280 281 282
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
283 284 285 286
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

287
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
288 289 290
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
291
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
292
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
293 294 295

void sock_update_memcg(struct sock *sk)
{
296
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
297
		struct mem_cgroup *memcg;
298
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
299 300 301

		BUG_ON(!sk->sk_prot->proto_cgroup);

302 303 304 305 306 307 308 309 310 311
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
312
			css_get(&sk->sk_cgrp->memcg->css);
313 314 315
			return;
		}

G
Glauber Costa 已提交
316 317
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
318
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
319
		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
320
		    css_tryget_online(&memcg->css)) {
321
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
322 323 324 325 326 327 328 329
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
330
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
331 332 333
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
334
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
335 336
	}
}
G
Glauber Costa 已提交
337 338 339 340 341 342

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

343
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
344 345
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
346

347 348
#endif

349
#ifdef CONFIG_MEMCG_KMEM
350
/*
351
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
352 353 354 355 356
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
357
 *
358 359
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
360
 */
361 362
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
363

364 365 366 367 368 369 370 371 372 373 374 375 376
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

377 378 379 380 381 382
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
383
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 385
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
386
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 388 389
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
390
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391

392 393 394 395 396 397
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
398
struct static_key memcg_kmem_enabled_key;
399
EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 401 402

#endif /* CONFIG_MEMCG_KMEM */

403
static struct mem_cgroup_per_zone *
404
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405
{
406 407 408
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

409
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 411
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

438
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
439 440 441 442 443 444
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

473
static struct mem_cgroup_per_zone *
474
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
475
{
476 477
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
478

479
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
480 481
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

497 498
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
499
					 unsigned long new_usage_in_excess)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

529 530
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
531 532 533 534 535 536 537
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

538 539
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
540
{
541 542 543
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
544
	__mem_cgroup_remove_exceeded(mz, mctz);
545
	spin_unlock_irqrestore(&mctz->lock, flags);
546 547
}

548 549 550
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
551
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
552 553 554 555 556 557 558
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
559 560 561

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
562
	unsigned long excess;
563 564 565
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

566
	mctz = soft_limit_tree_from_page(page);
567 568 569 570 571
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
572
		mz = mem_cgroup_page_zoneinfo(memcg, page);
573
		excess = soft_limit_excess(memcg);
574 575 576 577 578
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
579 580 581
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
582 583
			/* if on-tree, remove it */
			if (mz->on_tree)
584
				__mem_cgroup_remove_exceeded(mz, mctz);
585 586 587 588
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
589
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
590
			spin_unlock_irqrestore(&mctz->lock, flags);
591 592 593 594 595 596 597
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
598 599
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
600

601 602 603 604
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
605
			mem_cgroup_remove_exceeded(mz, mctz);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
628
	__mem_cgroup_remove_exceeded(mz, mctz);
629
	if (!soft_limit_excess(mz->memcg) ||
630
	    !css_tryget_online(&mz->memcg->css))
631 632 633 634 635 636 637 638 639 640
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

641
	spin_lock_irq(&mctz->lock);
642
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
643
	spin_unlock_irq(&mctz->lock);
644 645 646
	return mz;
}

647
/*
648 649
 * Return page count for single (non recursive) @memcg.
 *
650 651 652 653 654
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
655
 * a periodic synchronization of counter in memcg's counter.
656 657 658 659 660 661 662 663 664
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
665
 * common workload, threshold and synchronization as vmstat[] should be
666 667
 * implemented.
 */
668 669
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
670
{
671
	long val = 0;
672 673
	int cpu;

674
	/* Per-cpu values can be negative, use a signed accumulator */
675
	for_each_possible_cpu(cpu)
676
		val += per_cpu(memcg->stat->count[idx], cpu);
677 678 679 680 681 682
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
683 684 685
	return val;
}

686
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
687 688 689 690 691
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

692
	for_each_possible_cpu(cpu)
693
		val += per_cpu(memcg->stat->events[idx], cpu);
694 695 696
	return val;
}

697
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698
					 struct page *page,
699
					 int nr_pages)
700
{
701 702 703 704
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
705
	if (PageAnon(page))
706
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707
				nr_pages);
708
	else
709
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710
				nr_pages);
711

712 713 714 715
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

716 717
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
718
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
719
	else {
720
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
721 722
		nr_pages = -nr_pages; /* for event */
	}
723

724
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
725 726
}

727 728 729
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
730
{
731
	unsigned long nr = 0;
732 733
	int zid;

734
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
735

736 737 738 739 740 741 742 743 744 745 746 747
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
748
}
749

750
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
751
			unsigned int lru_mask)
752
{
753
	unsigned long nr = 0;
754
	int nid;
755

756
	for_each_node_state(nid, N_MEMORY)
757 758
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
759 760
}

761 762
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
763 764 765
{
	unsigned long val, next;

766
	val = __this_cpu_read(memcg->stat->nr_page_events);
767
	next = __this_cpu_read(memcg->stat->targets[target]);
768
	/* from time_after() in jiffies.h */
769 770 771 772 773
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
774 775 776
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
777 778 779 780 781 782 783 784
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
785
	}
786
	return false;
787 788 789 790 791 792
}

/*
 * Check events in order.
 *
 */
793
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
794 795
{
	/* threshold event is triggered in finer grain than soft limit */
796 797
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
798
		bool do_softlimit;
799
		bool do_numainfo __maybe_unused;
800

801 802
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
803 804 805 806
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
807
		mem_cgroup_threshold(memcg);
808 809
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
810
#if MAX_NUMNODES > 1
811
		if (unlikely(do_numainfo))
812
			atomic_inc(&memcg->numainfo_events);
813
#endif
814
	}
815 816
}

817
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
818
{
819 820 821 822 823 824 825 826
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

827
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
828
}
M
Michal Hocko 已提交
829
EXPORT_SYMBOL(mem_cgroup_from_task);
830

831
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
832
{
833
	struct mem_cgroup *memcg = NULL;
834

835 836
	rcu_read_lock();
	do {
837 838 839 840 841 842
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
843
			memcg = root_mem_cgroup;
844 845 846 847 848
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
849
	} while (!css_tryget_online(&memcg->css));
850
	rcu_read_unlock();
851
	return memcg;
852 853
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
871
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
872
				   struct mem_cgroup *prev,
873
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
874
{
M
Michal Hocko 已提交
875
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
876
	struct cgroup_subsys_state *css = NULL;
877
	struct mem_cgroup *memcg = NULL;
878
	struct mem_cgroup *pos = NULL;
879

880 881
	if (mem_cgroup_disabled())
		return NULL;
882

883 884
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
885

886
	if (prev && !reclaim)
887
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
888

889 890
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
891
			goto out;
892
		return root;
893
	}
K
KAMEZAWA Hiroyuki 已提交
894

895
	rcu_read_lock();
M
Michal Hocko 已提交
896

897 898 899 900 901 902 903 904 905 906
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
907
			pos = READ_ONCE(iter->position);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
931
		}
K
KAMEZAWA Hiroyuki 已提交
932

933 934 935 936 937 938
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
939

940 941
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
942

943
		if (css_tryget(css)) {
944 945 946 947 948 949 950
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
951

952
			css_put(css);
953
		}
954

955
		memcg = NULL;
956
	}
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
977
	}
978

979 980
out_unlock:
	rcu_read_unlock();
981
out:
982 983 984
	if (prev && prev != root)
		css_put(&prev->css);

985
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
986
}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993 994
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
995 996 997 998 999 1000
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1001

1002 1003 1004 1005 1006 1007
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1008
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1009
	     iter != NULL;				\
1010
	     iter = mem_cgroup_iter(root, iter, NULL))
1011

1012
#define for_each_mem_cgroup(iter)			\
1013
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1014
	     iter != NULL;				\
1015
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1016

1017 1018 1019
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1020
 * @memcg: memcg of the wanted lruvec
1021 1022 1023 1024 1025 1026 1027 1028 1029
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1030
	struct lruvec *lruvec;
1031

1032 1033 1034 1035
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1036

1037
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1048 1049 1050
}

/**
1051
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1052
 * @page: the page
1053
 * @zone: zone of the page
1054 1055 1056 1057
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1058
 */
1059
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1060 1061
{
	struct mem_cgroup_per_zone *mz;
1062
	struct mem_cgroup *memcg;
1063
	struct lruvec *lruvec;
1064

1065 1066 1067 1068
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1069

1070
	memcg = page->mem_cgroup;
1071
	/*
1072
	 * Swapcache readahead pages are added to the LRU - and
1073
	 * possibly migrated - before they are charged.
1074
	 */
1075 1076
	if (!memcg)
		memcg = root_mem_cgroup;
1077

1078
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1089
}
1090

1091
/**
1092 1093 1094 1095
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1096
 *
1097 1098
 * This function must be called when a page is added to or removed from an
 * lru list.
1099
 */
1100 1101
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1102 1103
{
	struct mem_cgroup_per_zone *mz;
1104
	unsigned long *lru_size;
1105 1106 1107 1108

	if (mem_cgroup_disabled())
		return;

1109 1110 1111 1112
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1113
}
1114

1115
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1116
{
1117
	struct mem_cgroup *task_memcg;
1118
	struct task_struct *p;
1119
	bool ret;
1120

1121
	p = find_lock_task_mm(task);
1122
	if (p) {
1123
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1124 1125 1126 1127 1128 1129 1130
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1131
		rcu_read_lock();
1132 1133
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1134
		rcu_read_unlock();
1135
	}
1136 1137
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1138 1139 1140
	return ret;
}

1141
#define mem_cgroup_from_counter(counter, member)	\
1142 1143
	container_of(counter, struct mem_cgroup, member)

1144
/**
1145
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1146
 * @memcg: the memory cgroup
1147
 *
1148
 * Returns the maximum amount of memory @mem can be charged with, in
1149
 * pages.
1150
 */
1151
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1152
{
1153 1154 1155
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1156

1157
	count = page_counter_read(&memcg->memory);
1158
	limit = READ_ONCE(memcg->memory.limit);
1159 1160 1161 1162 1163
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1164
		limit = READ_ONCE(memcg->memsw.limit);
1165 1166 1167 1168 1169
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1170 1171
}

1172
/*
Q
Qiang Huang 已提交
1173
 * A routine for checking "mem" is under move_account() or not.
1174
 *
Q
Qiang Huang 已提交
1175 1176 1177
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1178
 */
1179
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1180
{
1181 1182
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1183
	bool ret = false;
1184 1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1193

1194 1195
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1196 1197
unlock:
	spin_unlock(&mc.lock);
1198 1199 1200
	return ret;
}

1201
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1202 1203
{
	if (mc.moving_task && current != mc.moving_task) {
1204
		if (mem_cgroup_under_move(memcg)) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1217
#define K(x) ((x) << (PAGE_SHIFT-10))
1218
/**
1219
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1220 1221 1222 1223 1224 1225 1226 1227
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1228
	/* oom_info_lock ensures that parallel ooms do not interleave */
1229
	static DEFINE_MUTEX(oom_info_lock);
1230 1231
	struct mem_cgroup *iter;
	unsigned int i;
1232

1233
	mutex_lock(&oom_info_lock);
1234 1235
	rcu_read_lock();

1236 1237 1238 1239 1240 1241 1242 1243
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1244
	pr_cont_cgroup_path(memcg->css.cgroup);
1245
	pr_cont("\n");
1246 1247 1248

	rcu_read_unlock();

1249 1250 1251 1252 1253 1254 1255 1256 1257
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1258 1259

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1260 1261
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1262 1263 1264 1265 1266
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
1267
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1268 1269 1270 1271 1272 1273 1274 1275 1276
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1277
	mutex_unlock(&oom_info_lock);
1278 1279
}

1280 1281 1282 1283
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1284
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1285 1286
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1287 1288
	struct mem_cgroup *iter;

1289
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1290
		num++;
1291 1292 1293
	return num;
}

D
David Rientjes 已提交
1294 1295 1296
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1297
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1298
{
1299
	unsigned long limit;
1300

1301
	limit = memcg->memory.limit;
1302
	if (mem_cgroup_swappiness(memcg)) {
1303
		unsigned long memsw_limit;
1304

1305 1306
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1307 1308
	}
	return limit;
D
David Rientjes 已提交
1309 1310
}

1311 1312
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1313
{
1314 1315 1316 1317 1318 1319
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1320 1321 1322 1323 1324 1325
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1326 1327
	mutex_lock(&oom_lock);

1328
	/*
1329 1330 1331
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1332
	 */
1333
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1334
		mark_oom_victim(current);
1335
		goto unlock;
1336 1337
	}

1338
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1339
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1340
	for_each_mem_cgroup_tree(iter, memcg) {
1341
		struct css_task_iter it;
1342 1343
		struct task_struct *task;

1344 1345
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1346
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1357
				css_task_iter_end(&it);
1358 1359 1360
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1361
				goto unlock;
1362 1363 1364 1365
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1378
		}
1379
		css_task_iter_end(&it);
1380 1381
	}

1382 1383
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1384 1385
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1386 1387 1388
	}
unlock:
	mutex_unlock(&oom_lock);
1389 1390
}

1391 1392
#if MAX_NUMNODES > 1

1393 1394
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1395
 * @memcg: the target memcg
1396 1397 1398 1399 1400 1401 1402
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1403
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 1405
		int nid, bool noswap)
{
1406
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 1408 1409
		return true;
	if (noswap || !total_swap_pages)
		return false;
1410
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 1412 1413 1414
		return true;
	return false;

}
1415 1416 1417 1418 1419 1420 1421

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1422
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 1424
{
	int nid;
1425 1426 1427 1428
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1429
	if (!atomic_read(&memcg->numainfo_events))
1430
		return;
1431
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 1433 1434
		return;

	/* make a nodemask where this memcg uses memory from */
1435
	memcg->scan_nodes = node_states[N_MEMORY];
1436

1437
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1438

1439 1440
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1441
	}
1442

1443 1444
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1459
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 1461 1462
{
	int node;

1463 1464
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1465

1466
	node = next_node(node, memcg->scan_nodes);
1467
	if (node == MAX_NUMNODES)
1468
		node = first_node(memcg->scan_nodes);
1469 1470 1471 1472 1473 1474 1475 1476 1477
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1478
	memcg->last_scanned_node = node;
1479 1480 1481
	return node;
}
#else
1482
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1483 1484 1485 1486 1487
{
	return 0;
}
#endif

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1503
	excess = soft_limit_excess(root_memcg);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1532
		if (!soft_limit_excess(root_memcg))
1533
			break;
1534
	}
1535 1536
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1537 1538
}

1539 1540 1541 1542 1543 1544
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1545 1546
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1547 1548 1549 1550
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1551
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1552
{
1553
	struct mem_cgroup *iter, *failed = NULL;
1554

1555 1556
	spin_lock(&memcg_oom_lock);

1557
	for_each_mem_cgroup_tree(iter, memcg) {
1558
		if (iter->oom_lock) {
1559 1560 1561 1562 1563
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1564 1565
			mem_cgroup_iter_break(memcg, iter);
			break;
1566 1567
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1568
	}
K
KAMEZAWA Hiroyuki 已提交
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1581
		}
1582 1583
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1584 1585 1586 1587

	spin_unlock(&memcg_oom_lock);

	return !failed;
1588
}
1589

1590
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1591
{
K
KAMEZAWA Hiroyuki 已提交
1592 1593
	struct mem_cgroup *iter;

1594
	spin_lock(&memcg_oom_lock);
1595
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1596
	for_each_mem_cgroup_tree(iter, memcg)
1597
		iter->oom_lock = false;
1598
	spin_unlock(&memcg_oom_lock);
1599 1600
}

1601
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1602 1603 1604
{
	struct mem_cgroup *iter;

1605
	spin_lock(&memcg_oom_lock);
1606
	for_each_mem_cgroup_tree(iter, memcg)
1607 1608
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1609 1610
}

1611
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1612 1613 1614
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1615 1616
	/*
	 * When a new child is created while the hierarchy is under oom,
1617
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1618
	 */
1619
	spin_lock(&memcg_oom_lock);
1620
	for_each_mem_cgroup_tree(iter, memcg)
1621 1622 1623
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1624 1625
}

K
KAMEZAWA Hiroyuki 已提交
1626 1627
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1628
struct oom_wait_info {
1629
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1630 1631 1632 1633 1634 1635
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1636 1637
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1638 1639 1640
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1641
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1642

1643 1644
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1645 1646 1647 1648
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1649
static void memcg_oom_recover(struct mem_cgroup *memcg)
1650
{
1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1660
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1661 1662
}

1663
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1664
{
T
Tejun Heo 已提交
1665
	if (!current->memcg_may_oom)
1666
		return;
K
KAMEZAWA Hiroyuki 已提交
1667
	/*
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1680
	 */
1681
	css_get(&memcg->css);
T
Tejun Heo 已提交
1682 1683 1684
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1685 1686 1687 1688
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1689
 * @handle: actually kill/wait or just clean up the OOM state
1690
 *
1691 1692
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1693
 *
1694
 * Memcg supports userspace OOM handling where failed allocations must
1695 1696 1697 1698
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1699
 * the end of the page fault to complete the OOM handling.
1700 1701
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1702
 * completed, %false otherwise.
1703
 */
1704
bool mem_cgroup_oom_synchronize(bool handle)
1705
{
T
Tejun Heo 已提交
1706
	struct mem_cgroup *memcg = current->memcg_in_oom;
1707
	struct oom_wait_info owait;
1708
	bool locked;
1709 1710 1711

	/* OOM is global, do not handle */
	if (!memcg)
1712
		return false;
1713

1714
	if (!handle || oom_killer_disabled)
1715
		goto cleanup;
1716 1717 1718 1719 1720 1721

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1722

1723
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1734 1735
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1736
	} else {
1737
		schedule();
1738 1739 1740 1741 1742
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1743 1744 1745 1746 1747 1748 1749 1750
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1751
cleanup:
T
Tejun Heo 已提交
1752
	current->memcg_in_oom = NULL;
1753
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1754
	return true;
1755 1756
}

1757 1758 1759
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1760
 *
1761 1762 1763
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1764
 *
1765
 *   memcg = mem_cgroup_begin_page_stat(page);
1766 1767
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1768
 *   mem_cgroup_end_page_stat(memcg);
1769
 */
1770
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1771 1772
{
	struct mem_cgroup *memcg;
1773
	unsigned long flags;
1774

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1787 1788 1789 1790
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1791
again:
1792
	memcg = page->mem_cgroup;
1793
	if (unlikely(!memcg))
1794 1795
		return NULL;

Q
Qiang Huang 已提交
1796
	if (atomic_read(&memcg->moving_account) <= 0)
1797
		return memcg;
1798

1799
	spin_lock_irqsave(&memcg->move_lock, flags);
1800
	if (memcg != page->mem_cgroup) {
1801
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1802 1803
		goto again;
	}
1804 1805 1806 1807 1808 1809 1810 1811

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1812 1813

	return memcg;
1814
}
1815
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1816

1817 1818 1819 1820
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1821
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1822
{
1823 1824 1825 1826 1827 1828 1829 1830
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1831

1832
	rcu_read_unlock();
1833
}
1834
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1835

1836 1837 1838 1839
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1840
#define CHARGE_BATCH	32U
1841 1842
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1843
	unsigned int nr_pages;
1844
	struct work_struct work;
1845
	unsigned long flags;
1846
#define FLUSHING_CACHED_CHARGE	0
1847 1848
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1849
static DEFINE_MUTEX(percpu_charge_mutex);
1850

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1861
 */
1862
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1863 1864
{
	struct memcg_stock_pcp *stock;
1865
	bool ret = false;
1866

1867
	if (nr_pages > CHARGE_BATCH)
1868
		return ret;
1869

1870
	stock = &get_cpu_var(memcg_stock);
1871
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1872
		stock->nr_pages -= nr_pages;
1873 1874
		ret = true;
	}
1875 1876 1877 1878 1879
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1880
 * Returns stocks cached in percpu and reset cached information.
1881 1882 1883 1884 1885
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1886
	if (stock->nr_pages) {
1887
		page_counter_uncharge(&old->memory, stock->nr_pages);
1888
		if (do_swap_account)
1889
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1890
		css_put_many(&old->css, stock->nr_pages);
1891
		stock->nr_pages = 0;
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1902
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1903
	drain_stock(stock);
1904
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1905 1906 1907
}

/*
1908
 * Cache charges(val) to local per_cpu area.
1909
 * This will be consumed by consume_stock() function, later.
1910
 */
1911
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1912 1913 1914
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1915
	if (stock->cached != memcg) { /* reset if necessary */
1916
		drain_stock(stock);
1917
		stock->cached = memcg;
1918
	}
1919
	stock->nr_pages += nr_pages;
1920 1921 1922 1923
	put_cpu_var(memcg_stock);
}

/*
1924
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1925
 * of the hierarchy under it.
1926
 */
1927
static void drain_all_stock(struct mem_cgroup *root_memcg)
1928
{
1929
	int cpu, curcpu;
1930

1931 1932 1933
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1934 1935
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1936
	curcpu = get_cpu();
1937 1938
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1939
		struct mem_cgroup *memcg;
1940

1941 1942
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1943
			continue;
1944
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1945
			continue;
1946 1947 1948 1949 1950 1951
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1952
	}
1953
	put_cpu();
A
Andrew Morton 已提交
1954
	put_online_cpus();
1955
	mutex_unlock(&percpu_charge_mutex);
1956 1957
}

1958
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1959 1960 1961 1962 1963 1964
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1965
	if (action == CPU_ONLINE)
1966 1967
		return NOTIFY_OK;

1968
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1969
		return NOTIFY_OK;
1970

1971 1972 1973 1974 1975
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg, *pos;

	if (likely(!nr_pages))
		return;

	pos = memcg = get_mem_cgroup_from_mm(current->mm);

	do {
		if (page_counter_read(&pos->memory) <= pos->high)
			continue;
		mem_cgroup_events(pos, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
	} while ((pos = parent_mem_cgroup(pos)));

	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2001 2002
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2003
{
2004
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2005
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2006
	struct mem_cgroup *mem_over_limit;
2007
	struct page_counter *counter;
2008
	unsigned long nr_reclaimed;
2009 2010
	bool may_swap = true;
	bool drained = false;
2011

2012
	if (mem_cgroup_is_root(memcg))
2013
		return 0;
2014
retry:
2015
	if (consume_stock(memcg, nr_pages))
2016
		return 0;
2017

2018
	if (!do_swap_account ||
2019 2020
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2021
			goto done_restock;
2022
		if (do_swap_account)
2023 2024
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2025
	} else {
2026
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2027
		may_swap = false;
2028
	}
2029

2030 2031 2032 2033
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2044
		goto force;
2045 2046 2047 2048

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2049
	if (!gfpflags_allow_blocking(gfp_mask))
2050
		goto nomem;
2051

2052 2053
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2054 2055
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2056

2057
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2058
		goto retry;
2059

2060
	if (!drained) {
2061
		drain_all_stock(mem_over_limit);
2062 2063 2064 2065
		drained = true;
		goto retry;
	}

2066 2067
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2068 2069 2070 2071 2072 2073 2074 2075 2076
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2077
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2078 2079 2080 2081 2082 2083 2084 2085
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2086 2087 2088
	if (nr_retries--)
		goto retry;

2089
	if (gfp_mask & __GFP_NOFAIL)
2090
		goto force;
2091

2092
	if (fatal_signal_pending(current))
2093
		goto force;
2094

2095 2096
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2097 2098
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2099
nomem:
2100
	if (!(gfp_mask & __GFP_NOFAIL))
2101
		return -ENOMEM;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
	if (do_swap_account)
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2114 2115

done_restock:
2116
	css_get_many(&memcg->css, batch);
2117 2118
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2119

2120
	/*
2121 2122
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2123
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2124 2125 2126 2127
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2128 2129
	 */
	do {
2130 2131 2132 2133 2134
		if (page_counter_read(&memcg->memory) > memcg->high) {
			current->memcg_nr_pages_over_high += nr_pages;
			set_notify_resume(current);
			break;
		}
2135
	} while ((memcg = parent_mem_cgroup(memcg)));
2136 2137

	return 0;
2138
}
2139

2140
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2141
{
2142 2143 2144
	if (mem_cgroup_is_root(memcg))
		return;

2145
	page_counter_uncharge(&memcg->memory, nr_pages);
2146
	if (do_swap_account)
2147
		page_counter_uncharge(&memcg->memsw, nr_pages);
2148

2149
	css_put_many(&memcg->css, nr_pages);
2150 2151
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2183
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2184
			  bool lrucare)
2185
{
2186
	int isolated;
2187

2188
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2189 2190 2191 2192 2193

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2194 2195
	if (lrucare)
		lock_page_lru(page, &isolated);
2196

2197 2198
	/*
	 * Nobody should be changing or seriously looking at
2199
	 * page->mem_cgroup at this point:
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2211
	page->mem_cgroup = memcg;
2212

2213 2214
	if (lrucare)
		unlock_page_lru(page, isolated);
2215
}
2216

2217
#ifdef CONFIG_MEMCG_KMEM
2218
static int memcg_alloc_cache_id(void)
2219
{
2220 2221 2222
	int id, size;
	int err;

2223
	id = ida_simple_get(&memcg_cache_ida,
2224 2225 2226
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2227

2228
	if (id < memcg_nr_cache_ids)
2229 2230 2231 2232 2233 2234
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2235
	down_write(&memcg_cache_ids_sem);
2236 2237

	size = 2 * (id + 1);
2238 2239 2240 2241 2242
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2243
	err = memcg_update_all_caches(size);
2244 2245
	if (!err)
		err = memcg_update_all_list_lrus(size);
2246 2247 2248 2249 2250
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2251
	if (err) {
2252
		ida_simple_remove(&memcg_cache_ida, id);
2253 2254 2255 2256 2257 2258 2259
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2260
	ida_simple_remove(&memcg_cache_ida, id);
2261 2262
}

2263
struct memcg_kmem_cache_create_work {
2264 2265 2266 2267 2268
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2269
static void memcg_kmem_cache_create_func(struct work_struct *w)
2270
{
2271 2272
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2273 2274
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2275

2276
	memcg_create_kmem_cache(memcg, cachep);
2277

2278
	css_put(&memcg->css);
2279 2280 2281 2282 2283 2284
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2285 2286
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2287
{
2288
	struct memcg_kmem_cache_create_work *cw;
2289

2290
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2291
	if (!cw)
2292
		return;
2293 2294

	css_get(&memcg->css);
2295 2296 2297

	cw->memcg = memcg;
	cw->cachep = cachep;
2298
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2299 2300 2301 2302

	schedule_work(&cw->work);
}

2303 2304
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2305 2306 2307 2308
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2309
	 * in __memcg_schedule_kmem_cache_create will recurse.
2310 2311 2312 2313 2314 2315 2316
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2317
	current->memcg_kmem_skip_account = 1;
2318
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2319
	current->memcg_kmem_skip_account = 0;
2320
}
2321

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2335
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2336 2337
{
	struct mem_cgroup *memcg;
2338
	struct kmem_cache *memcg_cachep;
2339
	int kmemcg_id;
2340

2341
	VM_BUG_ON(!is_root_cache(cachep));
2342

2343
	if (current->memcg_kmem_skip_account)
2344 2345
		return cachep;

2346
	memcg = get_mem_cgroup_from_mm(current->mm);
2347
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2348
	if (kmemcg_id < 0)
2349
		goto out;
2350

2351
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2352 2353
	if (likely(memcg_cachep))
		return memcg_cachep;
2354 2355 2356 2357 2358 2359 2360 2361 2362

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2363 2364 2365
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2366
	 */
2367
	memcg_schedule_kmem_cache_create(memcg, cachep);
2368
out:
2369
	css_put(&memcg->css);
2370
	return cachep;
2371 2372
}

2373 2374 2375
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2376
		css_put(&cachep->memcg_params.memcg->css);
2377 2378
}

2379 2380
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2381
{
2382 2383
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2384 2385
	int ret;

2386
	if (!memcg_kmem_is_active(memcg))
2387
		return 0;
2388

2389 2390
	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
		return -ENOMEM;
2391

2392 2393 2394 2395
	ret = try_charge(memcg, gfp, nr_pages);
	if (ret) {
		page_counter_uncharge(&memcg->kmem, nr_pages);
		return ret;
2396 2397
	}

2398
	page->mem_cgroup = memcg;
2399

2400
	return 0;
2401 2402
}

2403
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2404
{
2405 2406
	struct mem_cgroup *memcg;
	int ret;
2407

2408 2409
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2410
	css_put(&memcg->css);
2411
	return ret;
2412 2413
}

2414
void __memcg_kmem_uncharge(struct page *page, int order)
2415
{
2416
	struct mem_cgroup *memcg = page->mem_cgroup;
2417
	unsigned int nr_pages = 1 << order;
2418 2419 2420 2421

	if (!memcg)
		return;

2422
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2423

2424 2425 2426 2427
	page_counter_uncharge(&memcg->kmem, nr_pages);
	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_swap_account)
		page_counter_uncharge(&memcg->memsw, nr_pages);
2428

2429
	page->mem_cgroup = NULL;
2430
	css_put_many(&memcg->css, nr_pages);
2431
}
2432 2433
#endif /* CONFIG_MEMCG_KMEM */

2434 2435 2436 2437
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2438 2439 2440
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2441
 */
2442
void mem_cgroup_split_huge_fixup(struct page *head)
2443
{
2444
	int i;
2445

2446 2447
	if (mem_cgroup_disabled())
		return;
2448

2449
	for (i = 1; i < HPAGE_PMD_NR; i++)
2450
		head[i].mem_cgroup = head->mem_cgroup;
2451

2452
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2453
		       HPAGE_PMD_NR);
2454
}
2455
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2456

A
Andrew Morton 已提交
2457
#ifdef CONFIG_MEMCG_SWAP
2458 2459
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2460
{
2461 2462
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2463
}
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2476
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2477 2478 2479
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2480
				struct mem_cgroup *from, struct mem_cgroup *to)
2481 2482 2483
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2484 2485
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2486 2487 2488

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2489
		mem_cgroup_swap_statistics(to, true);
2490 2491 2492 2493 2494 2495
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2496
				struct mem_cgroup *from, struct mem_cgroup *to)
2497 2498 2499
{
	return -EINVAL;
}
2500
#endif
K
KAMEZAWA Hiroyuki 已提交
2501

2502
static DEFINE_MUTEX(memcg_limit_mutex);
2503

2504
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2505
				   unsigned long limit)
2506
{
2507 2508 2509
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2510
	int retry_count;
2511
	int ret;
2512 2513 2514 2515 2516 2517

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2518 2519
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2520

2521
	oldusage = page_counter_read(&memcg->memory);
2522

2523
	do {
2524 2525 2526 2527
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2528 2529 2530 2531

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2532
			ret = -EINVAL;
2533 2534
			break;
		}
2535 2536 2537 2538
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2539 2540 2541 2542

		if (!ret)
			break;

2543 2544
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2545
		curusage = page_counter_read(&memcg->memory);
2546
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2547
		if (curusage >= oldusage)
2548 2549 2550
			retry_count--;
		else
			oldusage = curusage;
2551 2552
	} while (retry_count);

2553 2554
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2555

2556 2557 2558
	return ret;
}

L
Li Zefan 已提交
2559
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2560
					 unsigned long limit)
2561
{
2562 2563 2564
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2565
	int retry_count;
2566
	int ret;
2567

2568
	/* see mem_cgroup_resize_res_limit */
2569 2570 2571 2572 2573 2574
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2575 2576 2577 2578
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2579 2580 2581 2582

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2583 2584 2585
			ret = -EINVAL;
			break;
		}
2586 2587 2588 2589
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2590 2591 2592 2593

		if (!ret)
			break;

2594 2595
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2596
		curusage = page_counter_read(&memcg->memsw);
2597
		/* Usage is reduced ? */
2598
		if (curusage >= oldusage)
2599
			retry_count--;
2600 2601
		else
			oldusage = curusage;
2602 2603
	} while (retry_count);

2604 2605
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2606

2607 2608 2609
	return ret;
}

2610 2611 2612 2613 2614 2615 2616 2617 2618
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2619
	unsigned long excess;
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2644
		spin_lock_irq(&mctz->lock);
2645
		__mem_cgroup_remove_exceeded(mz, mctz);
2646 2647 2648 2649 2650 2651

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2652 2653 2654
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2655
		excess = soft_limit_excess(mz->memcg);
2656 2657 2658 2659 2660 2661 2662 2663 2664
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2665
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2666
		spin_unlock_irq(&mctz->lock);
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2684 2685 2686 2687 2688 2689
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2690 2691
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2692 2693
	bool ret;

2694
	/*
2695 2696 2697 2698
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2699
	 */
2700 2701 2702 2703 2704 2705
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2706 2707
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2718 2719
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2720
	/* try to free all pages in this cgroup */
2721
	while (nr_retries && page_counter_read(&memcg->memory)) {
2722
		int progress;
2723

2724 2725 2726
		if (signal_pending(current))
			return -EINTR;

2727 2728
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2729
		if (!progress) {
2730
			nr_retries--;
2731
			/* maybe some writeback is necessary */
2732
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2733
		}
2734 2735

	}
2736 2737

	return 0;
2738 2739
}

2740 2741 2742
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2743
{
2744
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2745

2746 2747
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2748
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2749 2750
}

2751 2752
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2753
{
2754
	return mem_cgroup_from_css(css)->use_hierarchy;
2755 2756
}

2757 2758
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2759 2760
{
	int retval = 0;
2761
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2762
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2763

2764
	mutex_lock(&memcg_create_mutex);
2765 2766 2767 2768

	if (memcg->use_hierarchy == val)
		goto out;

2769
	/*
2770
	 * If parent's use_hierarchy is set, we can't make any modifications
2771 2772 2773 2774 2775 2776
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2777
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2778
				(val == 1 || val == 0)) {
2779
		if (!memcg_has_children(memcg))
2780
			memcg->use_hierarchy = val;
2781 2782 2783 2784
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2785 2786

out:
2787
	mutex_unlock(&memcg_create_mutex);
2788 2789 2790 2791

	return retval;
}

2792 2793
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2794 2795
{
	struct mem_cgroup *iter;
2796
	unsigned long val = 0;
2797 2798 2799 2800 2801 2802 2803

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2804
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2805
{
2806
	unsigned long val;
2807

2808 2809 2810 2811 2812 2813
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2814
		if (!swap)
2815
			val = page_counter_read(&memcg->memory);
2816
		else
2817
			val = page_counter_read(&memcg->memsw);
2818
	}
2819
	return val;
2820 2821
}

2822 2823 2824 2825 2826 2827 2828
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2829

2830
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2831
			       struct cftype *cft)
B
Balbir Singh 已提交
2832
{
2833
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2834
	struct page_counter *counter;
2835

2836
	switch (MEMFILE_TYPE(cft->private)) {
2837
	case _MEM:
2838 2839
		counter = &memcg->memory;
		break;
2840
	case _MEMSWAP:
2841 2842
		counter = &memcg->memsw;
		break;
2843
	case _KMEM:
2844
		counter = &memcg->kmem;
2845
		break;
2846 2847 2848
	default:
		BUG();
	}
2849 2850 2851 2852

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2853
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2854
		if (counter == &memcg->memsw)
2855
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2868
}
2869 2870

#ifdef CONFIG_MEMCG_KMEM
2871 2872
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2873 2874 2875 2876
{
	int err = 0;
	int memcg_id;

2877
	BUG_ON(memcg->kmemcg_id >= 0);
2878
	BUG_ON(memcg->kmem_acct_activated);
2879
	BUG_ON(memcg->kmem_acct_active);
2880

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2893
	mutex_lock(&memcg_create_mutex);
2894
	if (cgroup_is_populated(memcg->css.cgroup) ||
2895
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2896 2897 2898 2899
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2900

2901
	memcg_id = memcg_alloc_cache_id();
2902 2903 2904 2905 2906 2907
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2908 2909
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2910
	 */
2911
	err = page_counter_limit(&memcg->kmem, nr_pages);
2912 2913 2914 2915
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2916 2917
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2918 2919 2920
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2921
	memcg->kmemcg_id = memcg_id;
2922
	memcg->kmem_acct_activated = true;
2923
	memcg->kmem_acct_active = true;
2924
out:
2925 2926 2927 2928
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2929
				   unsigned long limit)
2930 2931 2932
{
	int ret;

2933
	mutex_lock(&memcg_limit_mutex);
2934
	if (!memcg_kmem_is_active(memcg))
2935
		ret = memcg_activate_kmem(memcg, limit);
2936
	else
2937 2938
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2939 2940 2941
	return ret;
}

2942
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2943
{
2944
	int ret = 0;
2945
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2946

2947 2948
	if (!parent)
		return 0;
2949

2950
	mutex_lock(&memcg_limit_mutex);
2951
	/*
2952 2953
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
2954
	 */
2955
	if (memcg_kmem_is_active(parent))
2956 2957
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
2958
	return ret;
2959
}
2960 2961
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2962
				   unsigned long limit)
2963 2964 2965
{
	return -EINVAL;
}
2966
#endif /* CONFIG_MEMCG_KMEM */
2967

2968 2969 2970 2971
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2972 2973
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2974
{
2975
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2976
	unsigned long nr_pages;
2977 2978
	int ret;

2979
	buf = strstrip(buf);
2980
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2981 2982
	if (ret)
		return ret;
2983

2984
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2985
	case RES_LIMIT:
2986 2987 2988 2989
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2990 2991 2992
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2993
			break;
2994 2995
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2996
			break;
2997 2998 2999 3000
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3001
		break;
3002 3003 3004
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3005 3006
		break;
	}
3007
	return ret ?: nbytes;
B
Balbir Singh 已提交
3008 3009
}

3010 3011
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3012
{
3013
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014
	struct page_counter *counter;
3015

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3029

3030
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3031
	case RES_MAX_USAGE:
3032
		page_counter_reset_watermark(counter);
3033 3034
		break;
	case RES_FAILCNT:
3035
		counter->failcnt = 0;
3036
		break;
3037 3038
	default:
		BUG();
3039
	}
3040

3041
	return nbytes;
3042 3043
}

3044
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3045 3046
					struct cftype *cft)
{
3047
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3048 3049
}

3050
#ifdef CONFIG_MMU
3051
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3052 3053
					struct cftype *cft, u64 val)
{
3054
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3055

3056
	if (val & ~MOVE_MASK)
3057
		return -EINVAL;
3058

3059
	/*
3060 3061 3062 3063
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3064
	 */
3065
	memcg->move_charge_at_immigrate = val;
3066 3067
	return 0;
}
3068
#else
3069
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 3071 3072 3073 3074
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3075

3076
#ifdef CONFIG_NUMA
3077
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3078
{
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3091
	int nid;
3092
	unsigned long nr;
3093
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3094

3095 3096 3097 3098 3099 3100 3101 3102 3103
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3104 3105
	}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3121 3122 3123 3124 3125 3126
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3127
static int memcg_stat_show(struct seq_file *m, void *v)
3128
{
3129
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3130
	unsigned long memory, memsw;
3131 3132
	struct mem_cgroup *mi;
	unsigned int i;
3133

3134 3135 3136 3137
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3138 3139
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3140
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3141
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3142
			continue;
3143
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3144
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3145
	}
L
Lee Schermerhorn 已提交
3146

3147 3148 3149 3150 3151 3152 3153 3154
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3155
	/* Hierarchical information */
3156 3157 3158 3159
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3160
	}
3161 3162 3163 3164 3165
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3166

3167
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3168
		unsigned long long val = 0;
3169

3170
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3171
			continue;
3172 3173
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3174
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3192
	}
K
KAMEZAWA Hiroyuki 已提交
3193

K
KOSAKI Motohiro 已提交
3194 3195 3196 3197
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3198
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3199 3200 3201 3202 3203
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3204
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3205
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3206

3207 3208 3209 3210
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3211
			}
3212 3213 3214 3215
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3216 3217 3218
	}
#endif

3219 3220 3221
	return 0;
}

3222 3223
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3224
{
3225
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3226

3227
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3228 3229
}

3230 3231
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3232
{
3233
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3234

3235
	if (val > 100)
K
KOSAKI Motohiro 已提交
3236 3237
		return -EINVAL;

3238
	if (css->parent)
3239 3240 3241
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3242

K
KOSAKI Motohiro 已提交
3243 3244 3245
	return 0;
}

3246 3247 3248
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3249
	unsigned long usage;
3250 3251 3252 3253
	int i;

	rcu_read_lock();
	if (!swap)
3254
		t = rcu_dereference(memcg->thresholds.primary);
3255
	else
3256
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3257 3258 3259 3260

	if (!t)
		goto unlock;

3261
	usage = mem_cgroup_usage(memcg, swap);
3262 3263

	/*
3264
	 * current_threshold points to threshold just below or equal to usage.
3265 3266 3267
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3268
	i = t->current_threshold;
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3292
	t->current_threshold = i - 1;
3293 3294 3295 3296 3297 3298
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3299 3300 3301 3302 3303 3304 3305
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3306 3307 3308 3309 3310 3311 3312
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3313 3314 3315 3316 3317 3318 3319
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3320 3321
}

3322
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3323 3324 3325
{
	struct mem_cgroup_eventfd_list *ev;

3326 3327
	spin_lock(&memcg_oom_lock);

3328
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3329
		eventfd_signal(ev->eventfd, 1);
3330 3331

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3332 3333 3334
	return 0;
}

3335
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3336
{
K
KAMEZAWA Hiroyuki 已提交
3337 3338
	struct mem_cgroup *iter;

3339
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3340
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3341 3342
}

3343
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3344
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345
{
3346 3347
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3348 3349
	unsigned long threshold;
	unsigned long usage;
3350
	int i, size, ret;
3351

3352
	ret = page_counter_memparse(args, "-1", &threshold);
3353 3354 3355 3356
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3357

3358
	if (type == _MEM) {
3359
		thresholds = &memcg->thresholds;
3360
		usage = mem_cgroup_usage(memcg, false);
3361
	} else if (type == _MEMSWAP) {
3362
		thresholds = &memcg->memsw_thresholds;
3363
		usage = mem_cgroup_usage(memcg, true);
3364
	} else
3365 3366 3367
		BUG();

	/* Check if a threshold crossed before adding a new one */
3368
	if (thresholds->primary)
3369 3370
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3371
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372 3373

	/* Allocate memory for new array of thresholds */
3374
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375
			GFP_KERNEL);
3376
	if (!new) {
3377 3378 3379
		ret = -ENOMEM;
		goto unlock;
	}
3380
	new->size = size;
3381 3382

	/* Copy thresholds (if any) to new array */
3383 3384
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385
				sizeof(struct mem_cgroup_threshold));
3386 3387
	}

3388
	/* Add new threshold */
3389 3390
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3391 3392

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3393
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394 3395 3396
			compare_thresholds, NULL);

	/* Find current threshold */
3397
	new->current_threshold = -1;
3398
	for (i = 0; i < size; i++) {
3399
		if (new->entries[i].threshold <= usage) {
3400
			/*
3401 3402
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3403 3404
			 * it here.
			 */
3405
			++new->current_threshold;
3406 3407
		} else
			break;
3408 3409
	}

3410 3411 3412 3413 3414
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3415

3416
	/* To be sure that nobody uses thresholds */
3417 3418 3419 3420 3421 3422 3423 3424
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3425
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3426 3427
	struct eventfd_ctx *eventfd, const char *args)
{
3428
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3429 3430
}

3431
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3432 3433
	struct eventfd_ctx *eventfd, const char *args)
{
3434
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3435 3436
}

3437
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3438
	struct eventfd_ctx *eventfd, enum res_type type)
3439
{
3440 3441
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3442
	unsigned long usage;
3443
	int i, j, size;
3444 3445

	mutex_lock(&memcg->thresholds_lock);
3446 3447

	if (type == _MEM) {
3448
		thresholds = &memcg->thresholds;
3449
		usage = mem_cgroup_usage(memcg, false);
3450
	} else if (type == _MEMSWAP) {
3451
		thresholds = &memcg->memsw_thresholds;
3452
		usage = mem_cgroup_usage(memcg, true);
3453
	} else
3454 3455
		BUG();

3456 3457 3458
	if (!thresholds->primary)
		goto unlock;

3459 3460 3461 3462
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3463 3464 3465
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3466 3467 3468
			size++;
	}

3469
	new = thresholds->spare;
3470

3471 3472
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3473 3474
		kfree(new);
		new = NULL;
3475
		goto swap_buffers;
3476 3477
	}

3478
	new->size = size;
3479 3480

	/* Copy thresholds and find current threshold */
3481 3482 3483
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3484 3485
			continue;

3486
		new->entries[j] = thresholds->primary->entries[i];
3487
		if (new->entries[j].threshold <= usage) {
3488
			/*
3489
			 * new->current_threshold will not be used
3490 3491 3492
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3493
			++new->current_threshold;
3494 3495 3496 3497
		}
		j++;
	}

3498
swap_buffers:
3499 3500
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3501 3502 3503 3504 3505 3506
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3507
	rcu_assign_pointer(thresholds->primary, new);
3508

3509
	/* To be sure that nobody uses thresholds */
3510
	synchronize_rcu();
3511
unlock:
3512 3513
	mutex_unlock(&memcg->thresholds_lock);
}
3514

3515
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3516 3517
	struct eventfd_ctx *eventfd)
{
3518
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3519 3520
}

3521
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3522 3523
	struct eventfd_ctx *eventfd)
{
3524
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3525 3526
}

3527
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3528
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3529 3530 3531 3532 3533 3534 3535
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3536
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3537 3538 3539 3540 3541

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3542
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3543
		eventfd_signal(eventfd, 1);
3544
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3545 3546 3547 3548

	return 0;
}

3549
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3550
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3551 3552 3553
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3554
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3555

3556
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3557 3558 3559 3560 3561 3562
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3563
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3564 3565
}

3566
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3567
{
3568
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3569

3570
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3571
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3572 3573 3574
	return 0;
}

3575
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3576 3577
	struct cftype *cft, u64 val)
{
3578
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3579 3580

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3581
	if (!css->parent || !((val == 0) || (val == 1)))
3582 3583
		return -EINVAL;

3584
	memcg->oom_kill_disable = val;
3585
	if (!val)
3586
		memcg_oom_recover(memcg);
3587

3588 3589 3590
	return 0;
}

A
Andrew Morton 已提交
3591
#ifdef CONFIG_MEMCG_KMEM
3592
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3593
{
3594 3595 3596 3597 3598
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3599

3600
	return mem_cgroup_sockets_init(memcg, ss);
3601
}
3602

3603 3604
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3605 3606 3607 3608
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3647 3648
}

3649
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3650
{
3651 3652 3653 3654 3655
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3656
	mem_cgroup_sockets_destroy(memcg);
3657
}
3658
#else
3659
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3660 3661 3662
{
	return 0;
}
G
Glauber Costa 已提交
3663

3664 3665 3666 3667
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3668 3669 3670
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3671 3672
#endif

3673 3674 3675 3676 3677 3678 3679
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3690 3691 3692 3693 3694
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3705 3706 3707
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3708 3709
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3710 3711 3712
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3713 3714 3715
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3716
 *
3717 3718 3719 3720 3721
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3722
 */
3723 3724 3725
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3726 3727 3728 3729 3730 3731 3732 3733
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3734 3735 3736
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3737 3738 3739 3740 3741

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3742
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3743 3744 3745 3746
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3758 3759 3760 3761
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3762 3763
#endif	/* CONFIG_CGROUP_WRITEBACK */

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3777 3778 3779 3780 3781
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3782
static void memcg_event_remove(struct work_struct *work)
3783
{
3784 3785
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3786
	struct mem_cgroup *memcg = event->memcg;
3787 3788 3789

	remove_wait_queue(event->wqh, &event->wait);

3790
	event->unregister_event(memcg, event->eventfd);
3791 3792 3793 3794 3795 3796

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3797
	css_put(&memcg->css);
3798 3799 3800 3801 3802 3803 3804
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3805 3806
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3807
{
3808 3809
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3810
	struct mem_cgroup *memcg = event->memcg;
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3823
		spin_lock(&memcg->event_list_lock);
3824 3825 3826 3827 3828 3829 3830 3831
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3832
		spin_unlock(&memcg->event_list_lock);
3833 3834 3835 3836 3837
	}

	return 0;
}

3838
static void memcg_event_ptable_queue_proc(struct file *file,
3839 3840
		wait_queue_head_t *wqh, poll_table *pt)
{
3841 3842
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3843 3844 3845 3846 3847 3848

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3849 3850
 * DO NOT USE IN NEW FILES.
 *
3851 3852 3853 3854 3855
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3856 3857
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3858
{
3859
	struct cgroup_subsys_state *css = of_css(of);
3860
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3861
	struct mem_cgroup_event *event;
3862 3863 3864 3865
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3866
	const char *name;
3867 3868 3869
	char *endp;
	int ret;

3870 3871 3872
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3873 3874
	if (*endp != ' ')
		return -EINVAL;
3875
	buf = endp + 1;
3876

3877
	cfd = simple_strtoul(buf, &endp, 10);
3878 3879
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3880
	buf = endp + 1;
3881 3882 3883 3884 3885

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3886
	event->memcg = memcg;
3887
	INIT_LIST_HEAD(&event->list);
3888 3889 3890
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3916 3917 3918 3919 3920
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3921 3922
	 *
	 * DO NOT ADD NEW FILES.
3923
	 */
A
Al Viro 已提交
3924
	name = cfile.file->f_path.dentry->d_name.name;
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3936 3937
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3938 3939 3940 3941 3942
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3943
	/*
3944 3945 3946
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3947
	 */
A
Al Viro 已提交
3948
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3949
					       &memory_cgrp_subsys);
3950
	ret = -EINVAL;
3951
	if (IS_ERR(cfile_css))
3952
		goto out_put_cfile;
3953 3954
	if (cfile_css != css) {
		css_put(cfile_css);
3955
		goto out_put_cfile;
3956
	}
3957

3958
	ret = event->register_event(memcg, event->eventfd, buf);
3959 3960 3961 3962 3963
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3964 3965 3966
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3967 3968 3969 3970

	fdput(cfile);
	fdput(efile);

3971
	return nbytes;
3972 3973

out_put_css:
3974
	css_put(css);
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3987
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3988
	{
3989
		.name = "usage_in_bytes",
3990
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3991
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3992
	},
3993 3994
	{
		.name = "max_usage_in_bytes",
3995
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3996
		.write = mem_cgroup_reset,
3997
		.read_u64 = mem_cgroup_read_u64,
3998
	},
B
Balbir Singh 已提交
3999
	{
4000
		.name = "limit_in_bytes",
4001
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4002
		.write = mem_cgroup_write,
4003
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4004
	},
4005 4006 4007
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4008
		.write = mem_cgroup_write,
4009
		.read_u64 = mem_cgroup_read_u64,
4010
	},
B
Balbir Singh 已提交
4011 4012
	{
		.name = "failcnt",
4013
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4014
		.write = mem_cgroup_reset,
4015
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4016
	},
4017 4018
	{
		.name = "stat",
4019
		.seq_show = memcg_stat_show,
4020
	},
4021 4022
	{
		.name = "force_empty",
4023
		.write = mem_cgroup_force_empty_write,
4024
	},
4025 4026 4027 4028 4029
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4030
	{
4031
		.name = "cgroup.event_control",		/* XXX: for compat */
4032
		.write = memcg_write_event_control,
4033
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4034
	},
K
KOSAKI Motohiro 已提交
4035 4036 4037 4038 4039
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4040 4041 4042 4043 4044
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4045 4046
	{
		.name = "oom_control",
4047
		.seq_show = mem_cgroup_oom_control_read,
4048
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4049 4050
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4051 4052 4053
	{
		.name = "pressure_level",
	},
4054 4055 4056
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4057
		.seq_show = memcg_numa_stat_show,
4058 4059
	},
#endif
4060 4061 4062 4063
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4064
		.write = mem_cgroup_write,
4065
		.read_u64 = mem_cgroup_read_u64,
4066 4067 4068 4069
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4070
		.read_u64 = mem_cgroup_read_u64,
4071 4072 4073 4074
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4075
		.write = mem_cgroup_reset,
4076
		.read_u64 = mem_cgroup_read_u64,
4077 4078 4079 4080
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4081
		.write = mem_cgroup_reset,
4082
		.read_u64 = mem_cgroup_read_u64,
4083
	},
4084 4085 4086
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4087 4088 4089 4090
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4091 4092
	},
#endif
4093
#endif
4094
	{ },	/* terminate */
4095
};
4096

4097
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4098 4099
{
	struct mem_cgroup_per_node *pn;
4100
	struct mem_cgroup_per_zone *mz;
4101
	int zone, tmp = node;
4102 4103 4104 4105 4106 4107 4108 4109
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4110 4111
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4112
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4113 4114
	if (!pn)
		return 1;
4115 4116 4117

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4118
		lruvec_init(&mz->lruvec);
4119 4120
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4121
		mz->memcg = memcg;
4122
	}
4123
	memcg->nodeinfo[node] = pn;
4124 4125 4126
	return 0;
}

4127
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4128
{
4129
	kfree(memcg->nodeinfo[node]);
4130 4131
}

4132 4133
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4134
	struct mem_cgroup *memcg;
4135
	size_t size;
4136

4137 4138
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4139

4140
	memcg = kzalloc(size, GFP_KERNEL);
4141
	if (!memcg)
4142 4143
		return NULL;

4144 4145
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4146
		goto out_free;
T
Tejun Heo 已提交
4147 4148 4149 4150

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4151
	return memcg;
4152

T
Tejun Heo 已提交
4153 4154
out_free_stat:
	free_percpu(memcg->stat);
4155
out_free:
4156
	kfree(memcg);
4157
	return NULL;
4158 4159
}

4160
/*
4161 4162 4163 4164 4165 4166 4167 4168
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4169
 */
4170 4171

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4172
{
4173
	int node;
4174

4175
	mem_cgroup_remove_from_trees(memcg);
4176 4177 4178 4179 4180

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4181
	memcg_wb_domain_exit(memcg);
4182
	kfree(memcg);
4183
}
4184

4185 4186 4187
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4188
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4189
{
4190
	if (!memcg->memory.parent)
4191
		return NULL;
4192
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4193
}
G
Glauber Costa 已提交
4194
EXPORT_SYMBOL(parent_mem_cgroup);
4195

L
Li Zefan 已提交
4196
static struct cgroup_subsys_state * __ref
4197
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4198
{
4199
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4200
	long error = -ENOMEM;
4201
	int node;
B
Balbir Singh 已提交
4202

4203 4204
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4205
		return ERR_PTR(error);
4206

B
Bob Liu 已提交
4207
	for_each_node(node)
4208
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4209
			goto free_out;
4210

4211
	/* root ? */
4212
	if (parent_css == NULL) {
4213
		root_mem_cgroup = memcg;
T
Tejun Heo 已提交
4214
		mem_cgroup_root_css = &memcg->css;
4215
		page_counter_init(&memcg->memory, NULL);
4216
		memcg->high = PAGE_COUNTER_MAX;
4217
		memcg->soft_limit = PAGE_COUNTER_MAX;
4218 4219
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4220
	}
4221

4222 4223 4224 4225 4226
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4227
	vmpressure_init(&memcg->vmpressure);
4228 4229
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4230 4231 4232
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4233 4234 4235
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4236 4237 4238 4239 4240 4241 4242 4243
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4244
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4245
{
4246
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4247
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4248
	int ret;
4249

4250
	if (css->id > MEM_CGROUP_ID_MAX)
4251 4252
		return -ENOSPC;

T
Tejun Heo 已提交
4253
	if (!parent)
4254 4255
		return 0;

4256
	mutex_lock(&memcg_create_mutex);
4257 4258 4259 4260 4261 4262

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4263
		page_counter_init(&memcg->memory, &parent->memory);
4264
		memcg->high = PAGE_COUNTER_MAX;
4265
		memcg->soft_limit = PAGE_COUNTER_MAX;
4266 4267
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4268

4269
		/*
4270 4271
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4272
		 */
4273
	} else {
4274
		page_counter_init(&memcg->memory, NULL);
4275
		memcg->high = PAGE_COUNTER_MAX;
4276
		memcg->soft_limit = PAGE_COUNTER_MAX;
4277 4278
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4279 4280 4281 4282 4283
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4284
		if (parent != root_mem_cgroup)
4285
			memory_cgrp_subsys.broken_hierarchy = true;
4286
	}
4287
	mutex_unlock(&memcg_create_mutex);
4288

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4301 4302
}

4303
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4304
{
4305
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4306
	struct mem_cgroup_event *event, *tmp;
4307 4308 4309 4310 4311 4312

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4313 4314
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4315 4316 4317
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4318
	spin_unlock(&memcg->event_list_lock);
4319

4320
	vmpressure_cleanup(&memcg->vmpressure);
4321 4322

	memcg_deactivate_kmem(memcg);
4323 4324

	wb_memcg_offline(memcg);
4325 4326
}

4327
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4328
{
4329
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4330

4331
	memcg_destroy_kmem(memcg);
4332
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4333 4334
}

4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4352 4353 4354
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4355 4356
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4357
	memcg->soft_limit = PAGE_COUNTER_MAX;
4358
	memcg_wb_domain_size_changed(memcg);
4359 4360
}

4361
#ifdef CONFIG_MMU
4362
/* Handlers for move charge at task migration. */
4363
static int mem_cgroup_do_precharge(unsigned long count)
4364
{
4365
	int ret;
4366

4367 4368
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4369
	if (!ret) {
4370 4371 4372
		mc.precharge += count;
		return ret;
	}
4373 4374

	/* Try charges one by one with reclaim */
4375
	while (count--) {
4376
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4377 4378
		if (ret)
			return ret;
4379
		mc.precharge++;
4380
		cond_resched();
4381
	}
4382
	return 0;
4383 4384 4385
}

/**
4386
 * get_mctgt_type - get target type of moving charge
4387 4388 4389
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4390
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4391 4392 4393 4394 4395 4396
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4397 4398 4399
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4400 4401 4402 4403 4404
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4405
	swp_entry_t	ent;
4406 4407 4408
};

enum mc_target_type {
4409
	MC_TARGET_NONE = 0,
4410
	MC_TARGET_PAGE,
4411
	MC_TARGET_SWAP,
4412 4413
};

D
Daisuke Nishimura 已提交
4414 4415
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4416
{
D
Daisuke Nishimura 已提交
4417
	struct page *page = vm_normal_page(vma, addr, ptent);
4418

D
Daisuke Nishimura 已提交
4419 4420 4421
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4422
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4423
			return NULL;
4424 4425 4426 4427
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4428 4429 4430 4431 4432 4433
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4434
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4435 4436 4437 4438 4439 4440
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4441
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4442
		return NULL;
4443 4444 4445 4446
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4447
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4448 4449 4450 4451 4452
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4453 4454 4455 4456 4457 4458 4459
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4460

4461 4462 4463 4464 4465 4466 4467 4468 4469
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4470
	if (!(mc.flags & MOVE_FILE))
4471 4472 4473
		return NULL;

	mapping = vma->vm_file->f_mapping;
4474
	pgoff = linear_page_index(vma, addr);
4475 4476

	/* page is moved even if it's not RSS of this task(page-faulted). */
4477 4478
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4491
#endif
4492 4493 4494
	return page;
}

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4516
	bool anon;
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
4531 4532
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4533 4534 4535 4536 4537 4538 4539 4540
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4541 4542
	anon = PageAnon(page);

4543 4544
	spin_lock_irqsave(&from->move_lock, flags);

4545
	if (!anon && page_mapped(page)) {
4546 4547 4548 4549 4550 4551
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4599
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4600 4601 4602
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4603
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4604 4605 4606 4607 4608 4609
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4610
	else if (pte_none(ptent))
4611
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4612 4613

	if (!page && !ent.val)
4614
		return ret;
4615 4616
	if (page) {
		/*
4617
		 * Do only loose check w/o serialization.
4618
		 * mem_cgroup_move_account() checks the page is valid or
4619
		 * not under LRU exclusion.
4620
		 */
4621
		if (page->mem_cgroup == mc.from) {
4622 4623 4624 4625 4626 4627 4628
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4629 4630
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4631
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4632 4633 4634
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4635 4636 4637 4638
	}
	return ret;
}

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4652
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4653
	if (!(mc.flags & MOVE_ANON))
4654
		return ret;
4655
	if (page->mem_cgroup == mc.from) {
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4672 4673 4674 4675
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4676
	struct vm_area_struct *vma = walk->vma;
4677 4678 4679
	pte_t *pte;
	spinlock_t *ptl;

4680
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4681 4682
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4683
		spin_unlock(ptl);
4684
		return 0;
4685
	}
4686

4687 4688
	if (pmd_trans_unstable(pmd))
		return 0;
4689 4690
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4691
		if (get_mctgt_type(vma, addr, *pte, NULL))
4692 4693 4694 4695
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4696 4697 4698
	return 0;
}

4699 4700 4701 4702
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4703 4704 4705 4706
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4707
	down_read(&mm->mmap_sem);
4708
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4709
	up_read(&mm->mmap_sem);
4710 4711 4712 4713 4714 4715 4716 4717 4718

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4719 4720 4721 4722 4723
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4724 4725
}

4726 4727
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4728
{
4729 4730 4731
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4732
	/* we must uncharge all the leftover precharges from mc.to */
4733
	if (mc.precharge) {
4734
		cancel_charge(mc.to, mc.precharge);
4735 4736 4737 4738 4739 4740 4741
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4742
		cancel_charge(mc.from, mc.moved_charge);
4743
		mc.moved_charge = 0;
4744
	}
4745 4746 4747
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4748
		if (!mem_cgroup_is_root(mc.from))
4749
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4750

4751
		/*
4752 4753
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4754
		 */
4755
		if (!mem_cgroup_is_root(mc.to))
4756 4757
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4758
		css_put_many(&mc.from->css, mc.moved_swap);
4759

L
Li Zefan 已提交
4760
		/* we've already done css_get(mc.to) */
4761 4762
		mc.moved_swap = 0;
	}
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4776
	spin_lock(&mc.lock);
4777 4778
	mc.from = NULL;
	mc.to = NULL;
4779
	spin_unlock(&mc.lock);
4780 4781
}

4782
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4783
				 struct cgroup_taskset *tset)
4784
{
4785
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4786
	struct mem_cgroup *from;
4787
	struct task_struct *leader, *p;
4788
	struct mm_struct *mm;
4789
	unsigned long move_flags;
4790
	int ret = 0;
4791

4792 4793 4794 4795 4796
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
4797
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4798 4799 4800
	if (!move_flags)
		return 0;

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
	cgroup_taskset_for_each_leader(leader, tset) {
		WARN_ON_ONCE(p);
		p = leader;
	}
	if (!p)
		return 0;

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4840
	}
4841
	mmput(mm);
4842 4843 4844
	return ret;
}

4845
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4846
				     struct cgroup_taskset *tset)
4847
{
4848 4849
	if (mc.to)
		mem_cgroup_clear_mc();
4850 4851
}

4852 4853 4854
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4855
{
4856
	int ret = 0;
4857
	struct vm_area_struct *vma = walk->vma;
4858 4859
	pte_t *pte;
	spinlock_t *ptl;
4860 4861 4862
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4863

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4874
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4875
		if (mc.precharge < HPAGE_PMD_NR) {
4876
			spin_unlock(ptl);
4877 4878 4879 4880 4881 4882 4883
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4884
							     mc.from, mc.to)) {
4885 4886 4887 4888 4889 4890 4891
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4892
		spin_unlock(ptl);
4893
		return 0;
4894 4895
	}

4896 4897
	if (pmd_trans_unstable(pmd))
		return 0;
4898 4899 4900 4901
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4902
		swp_entry_t ent;
4903 4904 4905 4906

		if (!mc.precharge)
			break;

4907
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4908 4909 4910 4911
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4912
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4913
				mc.precharge--;
4914 4915
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4916 4917
			}
			putback_lru_page(page);
4918
put:			/* get_mctgt_type() gets the page */
4919 4920
			put_page(page);
			break;
4921 4922
		case MC_TARGET_SWAP:
			ent = target.ent;
4923
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4924
				mc.precharge--;
4925 4926 4927
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4928
			break;
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4943
		ret = mem_cgroup_do_precharge(1);
4944 4945 4946 4947 4948 4949 4950 4951 4952
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4953 4954 4955 4956
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4957 4958

	lru_add_drain_all();
4959 4960 4961 4962 4963 4964 4965
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4979 4980 4981 4982 4983
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4984
	up_read(&mm->mmap_sem);
4985
	atomic_dec(&mc.from->moving_account);
4986 4987
}

4988
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
4989
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
4990
{
4991
	struct task_struct *p = cgroup_taskset_first(tset);
4992
	struct mm_struct *mm = get_task_mm(p);
4993 4994

	if (mm) {
4995 4996
		if (mc.to)
			mem_cgroup_move_charge(mm);
4997 4998
		mmput(mm);
	}
4999 5000
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5001
}
5002
#else	/* !CONFIG_MMU */
5003
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5004
				 struct cgroup_taskset *tset)
5005 5006 5007
{
	return 0;
}
5008
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5009
				     struct cgroup_taskset *tset)
5010 5011
{
}
5012
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5013
				 struct cgroup_taskset *tset)
5014 5015 5016
{
}
#endif
B
Balbir Singh 已提交
5017

5018 5019
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5020 5021
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5022
 */
5023
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5024 5025
{
	/*
5026
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5027 5028 5029
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5030
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5031 5032 5033
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5034 5035
}

5036 5037 5038
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5039 5040 5041
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5042 5043 5044 5045 5046
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5047
	unsigned long low = READ_ONCE(memcg->low);
5048 5049

	if (low == PAGE_COUNTER_MAX)
5050
		seq_puts(m, "max\n");
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5065
	err = page_counter_memparse(buf, "max", &low);
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5077
	unsigned long high = READ_ONCE(memcg->high);
5078 5079

	if (high == PAGE_COUNTER_MAX)
5080
		seq_puts(m, "max\n");
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5095
	err = page_counter_memparse(buf, "max", &high);
5096 5097 5098 5099 5100
	if (err)
		return err;

	memcg->high = high;

5101
	memcg_wb_domain_size_changed(memcg);
5102 5103 5104 5105 5106 5107
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5108
	unsigned long max = READ_ONCE(memcg->memory.limit);
5109 5110

	if (max == PAGE_COUNTER_MAX)
5111
		seq_puts(m, "max\n");
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5126
	err = page_counter_memparse(buf, "max", &max);
5127 5128 5129 5130 5131 5132 5133
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5134
	memcg_wb_domain_size_changed(memcg);
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
5153
		.flags = CFTYPE_NOT_ON_ROOT,
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5177
		.file_offset = offsetof(struct mem_cgroup, events_file),
5178 5179 5180 5181 5182
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5183
struct cgroup_subsys memory_cgrp_subsys = {
5184
	.css_alloc = mem_cgroup_css_alloc,
5185
	.css_online = mem_cgroup_css_online,
5186 5187
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5188
	.css_reset = mem_cgroup_css_reset,
5189 5190
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5191
	.attach = mem_cgroup_move_task,
5192
	.bind = mem_cgroup_bind,
5193 5194
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5195
	.early_init = 0,
B
Balbir Singh 已提交
5196
};
5197

5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5220
	if (page_counter_read(&memcg->memory) >= memcg->low)
5221 5222 5223 5224 5225 5226 5227 5228
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5229
		if (page_counter_read(&memcg->memory) >= memcg->low)
5230 5231 5232 5233 5234
			return false;
	}
	return true;
}

5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5270
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5271
		if (page->mem_cgroup)
5272
			goto out;
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283

		if (do_swap_account) {
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5336 5337
	commit_charge(page, memcg, lrucare);

5338 5339 5340 5341 5342
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5343 5344 5345 5346
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5388 5389 5390 5391
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5392
	unsigned long nr_pages = nr_anon + nr_file;
5393 5394
	unsigned long flags;

5395
	if (!mem_cgroup_is_root(memcg)) {
5396 5397 5398
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5399 5400
		memcg_oom_recover(memcg);
	}
5401 5402 5403 5404 5405 5406

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5407
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5408 5409
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5410 5411

	if (!mem_cgroup_is_root(memcg))
5412
		css_put_many(&memcg->css, nr_pages);
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5435
		if (!page->mem_cgroup)
5436 5437 5438 5439
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5440
		 * page->mem_cgroup at this point, we have fully
5441
		 * exclusive access to the page.
5442 5443
		 */

5444
		if (memcg != page->mem_cgroup) {
5445
			if (memcg) {
5446 5447 5448
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5449
			}
5450
			memcg = page->mem_cgroup;
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5464
		page->mem_cgroup = NULL;
5465 5466 5467 5468 5469

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5470 5471
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5472 5473
}

5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5486
	/* Don't touch page->lru of any random page, pre-check: */
5487
	if (!page->mem_cgroup)
5488 5489
		return;

5490 5491 5492
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5493

5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5505

5506 5507
	if (!list_empty(page_list))
		uncharge_list(page_list);
5508 5509 5510
}

/**
5511
 * mem_cgroup_replace_page - migrate a charge to another page
5512 5513
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5514
 * @lrucare: either or both pages might be on the LRU already
5515 5516 5517 5518 5519
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5520
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5521
{
5522
	struct mem_cgroup *memcg;
5523 5524 5525 5526 5527
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 5529
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5530 5531 5532 5533 5534

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5535
	if (newpage->mem_cgroup)
5536 5537
		return;

5538
	/* Swapcache readahead pages can get replaced before being charged */
5539
	memcg = oldpage->mem_cgroup;
5540
	if (!memcg)
5541 5542
		return;

5543
	lock_page_lru(oldpage, &isolated);
5544
	oldpage->mem_cgroup = NULL;
5545
	unlock_page_lru(oldpage, isolated);
5546

5547
	commit_charge(newpage, memcg, true);
5548 5549
}

5550
/*
5551 5552 5553 5554 5555 5556
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5557 5558 5559
 */
static int __init mem_cgroup_init(void)
{
5560 5561
	int cpu, node;

5562
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5585 5586 5587
	return 0;
}
subsys_initcall(mem_cgroup_init);
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5623 5624 5625 5626 5627 5628 5629
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5650
	memcg = mem_cgroup_from_id(id);
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */