memcontrol.c 131.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
97
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
98
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
99 100 101
	MEM_CGROUP_STAT_NSTATS,
};

102 103 104 105 106 107 108
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
	MEM_CGROUP_EVENTS_NSTATS,
};

109 110
struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
111
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
112 113
};

114 115 116 117
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
118 119 120
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
121 122
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
123 124

	struct zone_reclaim_stat reclaim_stat;
125 126 127 128
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
129 130
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
131 132 133 134 135 136 137 138 139 140 141 142
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

163 164 165 166 167
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
168
/* For threshold */
169 170
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
171
	int current_threshold;
172 173 174 175 176
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
177 178 179 180 181 182 183 184 185 186 187 188

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
189 190 191 192 193
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
194 195

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
196
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
197

B
Balbir Singh 已提交
198 199 200 201 202 203 204
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
205 206 207
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
208 209 210 211 212 213 214
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
215 216 217 218
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
219 220 221 222
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
223
	struct mem_cgroup_lru_info info;
224
	/*
225
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
226
	 * reclaimed from.
227
	 */
K
KAMEZAWA Hiroyuki 已提交
228
	int last_scanned_child;
229 230 231 232
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
233
	atomic_t	oom_lock;
234
	atomic_t	refcnt;
235

K
KOSAKI Motohiro 已提交
236
	unsigned int	swappiness;
237 238
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
239

240 241 242
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

243 244 245 246
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
247
	struct mem_cgroup_thresholds thresholds;
248

249
	/* thresholds for mem+swap usage. RCU-protected */
250
	struct mem_cgroup_thresholds memsw_thresholds;
251

K
KAMEZAWA Hiroyuki 已提交
252 253 254
	/* For oom notifier event fd */
	struct list_head oom_notify;

255 256 257 258 259
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
260
	/*
261
	 * percpu counter.
262
	 */
263
	struct mem_cgroup_stat_cpu *stat;
264 265 266 267 268 269
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
270 271
};

272 273 274 275 276 277
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
278
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
279
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
280 281 282
	NR_MOVE_TYPE,
};

283 284
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
285
	spinlock_t	  lock; /* for from, to */
286 287 288
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
289
	unsigned long moved_charge;
290
	unsigned long moved_swap;
291 292 293
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
294
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
295 296
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
297

D
Daisuke Nishimura 已提交
298 299 300 301 302 303
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

304 305 306 307 308 309
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

310 311 312 313 314 315 316
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

317 318 319
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
320
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
321
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
322
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
323
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
324 325 326
	NR_CHARGE_TYPE,
};

327 328 329
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
330
#define _OOM_TYPE		(2)
331 332 333
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
334 335
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
336

337 338 339 340 341 342 343
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
344 345
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
346

347 348
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
349
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
350
static void drain_all_stock_async(void);
351

352 353 354 355 356 357
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

358 359 360 361 362
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

363
static struct mem_cgroup_per_zone *
364
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
365
{
366 367
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
388
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
389
				struct mem_cgroup_per_zone *mz,
390 391
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
392 393 394 395 396 397 398 399
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

400 401 402
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
419 420 421 422 423 424 425 426 427 428 429 430 431
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

432 433 434 435 436 437
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
438
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
439 440 441 442 443 444
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
445
	unsigned long long excess;
446 447
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
448 449
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
450 451 452
	mctz = soft_limit_tree_from_page(page);

	/*
453 454
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
455
	 */
456 457
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
458
		excess = res_counter_soft_limit_excess(&mem->res);
459 460 461 462
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
463
		if (excess || mz->on_tree) {
464 465 466 467 468
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
469 470
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
471
			 */
472
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
473 474
			spin_unlock(&mctz->lock);
		}
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

493 494 495 496
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
497
	struct mem_cgroup_per_zone *mz;
498 499

retry:
500
	mz = NULL;
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
549 550 551 552 553 554
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

555 556
	get_online_cpus();
	for_each_online_cpu(cpu)
557
		val += per_cpu(mem->stat->count[idx], cpu);
558 559 560 561 562 563
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
564 565 566 567 568 569 570 571 572 573 574 575
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

576 577 578 579
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
580
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
581 582
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

599
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
600
					 bool file, int nr_pages)
601
{
602 603
	preempt_disable();

604 605
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
606
	else
607
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
608

609 610
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
611
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
612
	else {
613
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
614 615
		nr_pages = -nr_pages; /* for event */
	}
616

617
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
618

619
	preempt_enable();
620 621
}

K
KAMEZAWA Hiroyuki 已提交
622
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
623
					enum lru_list idx)
624 625 626 627 628 629 630 631 632 633 634
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
635 636
}

637 638
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
639
	unsigned long val;
640

641
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

660
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
661 662 663 664 665 666
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

667
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668
{
669 670 671 672 673 674 675 676
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

677 678 679 680
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

681 682 683
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
684 685 686

	if (!mm)
		return NULL;
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
702 703
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
704
{
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
727 728 729 730 731 732 733 734 735
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
736 737
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
738
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
739

K
KAMEZAWA Hiroyuki 已提交
740
	css_put(&iter->css);
741 742
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
743
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
744

745 746 747
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
748 749
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
750
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
751 752 753

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
754
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
755
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
756
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
757
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
758
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
759
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
760

K
KAMEZAWA Hiroyuki 已提交
761
	return iter;
K
KAMEZAWA Hiroyuki 已提交
762
}
K
KAMEZAWA Hiroyuki 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

776 777 778
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
779

780 781 782 783 784
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
798

K
KAMEZAWA Hiroyuki 已提交
799 800 801 802
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
803

804
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
805 806 807
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
808
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
809
		return;
810
	VM_BUG_ON(!pc->mem_cgroup);
811 812 813 814
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
815
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
816 817
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
818 819 820
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
821
	list_del_init(&pc->lru);
822 823
}

K
KAMEZAWA Hiroyuki 已提交
824
void mem_cgroup_del_lru(struct page *page)
825
{
K
KAMEZAWA Hiroyuki 已提交
826 827
	mem_cgroup_del_lru_list(page, page_lru(page));
}
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
851
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
852 853 854
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
855 856 857 858
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
859

860
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
861
		return;
862

K
KAMEZAWA Hiroyuki 已提交
863
	pc = lookup_page_cgroup(page);
864
	/* unused or root page is not rotated. */
865 866 867 868 869
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
870
		return;
871
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
872
	list_move(&pc->lru, &mz->lists[lru]);
873 874
}

K
KAMEZAWA Hiroyuki 已提交
875
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
876
{
K
KAMEZAWA Hiroyuki 已提交
877 878
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
879

880
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
881 882
		return;
	pc = lookup_page_cgroup(page);
883
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
884
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
885
		return;
886 887
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
888
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
889 890
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
891 892 893
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
894 895
	list_add(&pc->lru, &mz->lists[lru]);
}
896

K
KAMEZAWA Hiroyuki 已提交
897
/*
898 899 900 901 902
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
903
 */
904
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
905
{
906 907 908 909 910 911 912 913 914 915 916 917
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
918 919
}

920 921 922 923 924 925 926 927
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
928
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
929 930 931 932 933
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
934 935 936
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
937
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
938 939 940
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
941 942
}

943 944 945
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
946
	struct mem_cgroup *curr = NULL;
947
	struct task_struct *p;
948

949 950 951 952 953
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
954 955
	if (!curr)
		return 0;
956 957 958 959 960 961 962
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
963 964 965 966
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
967 968 969
	return ret;
}

970
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
971 972 973
{
	unsigned long active;
	unsigned long inactive;
974 975
	unsigned long gb;
	unsigned long inactive_ratio;
976

K
KAMEZAWA Hiroyuki 已提交
977 978
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
979

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1007 1008 1009 1010 1011
		return 1;

	return 0;
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1023 1024 1025 1026
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1027
	int nid = zone_to_nid(zone);
1028 1029 1030 1031 1032 1033
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1034 1035 1036
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1037
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1054 1055
	if (!PageCgroupUsed(pc))
		return NULL;
1056 1057
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1058
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1059 1060 1061
	return &mz->reclaim_stat;
}

1062 1063 1064 1065 1066
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1067
					int active, int file)
1068 1069 1070 1071 1072 1073
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1074
	struct page_cgroup *pc, *tmp;
1075
	int nid = zone_to_nid(z);
1076 1077
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1078
	int lru = LRU_FILE * file + active;
1079
	int ret;
1080

1081
	BUG_ON(!mem_cont);
1082
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1083
	src = &mz->lists[lru];
1084

1085 1086
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1087
		if (scan >= nr_to_scan)
1088
			break;
K
KAMEZAWA Hiroyuki 已提交
1089

1090 1091
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1092

1093
		page = lookup_cgroup_page(pc);
1094

H
Hugh Dickins 已提交
1095
		if (unlikely(!PageLRU(page)))
1096 1097
			continue;

H
Hugh Dickins 已提交
1098
		scan++;
1099 1100 1101
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1102
			list_move(&page->lru, dst);
1103
			mem_cgroup_del_lru(page);
1104
			nr_taken += hpage_nr_pages(page);
1105 1106 1107 1108 1109 1110 1111
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1112 1113 1114 1115
		}
	}

	*scanned = scan;
1116 1117 1118 1119

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1120 1121 1122
	return nr_taken;
}

1123 1124 1125
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1126
/**
1127 1128
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1129
 *
1130
 * Returns the maximum amount of memory @mem can be charged with, in
1131
 * pages.
1132
 */
1133
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1134
{
1135 1136 1137 1138 1139
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1140
	return margin >> PAGE_SHIFT;
1141 1142
}

K
KOSAKI Motohiro 已提交
1143 1144 1145 1146 1147 1148 1149 1150
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1151
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1152 1153
}

1154 1155 1156
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1157 1158 1159 1160

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1161
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1162 1163 1164
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1175 1176 1177
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1178
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1179 1180 1181
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1200 1201 1202

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1203 1204
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1205
	bool ret = false;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1240
/**
1241
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1260
	if (!memcg || !p)
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1307 1308 1309 1310 1311 1312 1313
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1314 1315 1316 1317
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1318 1319 1320
	return num;
}

D
David Rientjes 已提交
1321 1322 1323 1324 1325 1326 1327 1328
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1329 1330 1331
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1332 1333 1334 1335 1336 1337 1338 1339
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1340
/*
K
KAMEZAWA Hiroyuki 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1381 1382
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1383 1384 1385
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1386 1387
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1388 1389
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1390
						struct zone *zone,
1391 1392
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1393
{
K
KAMEZAWA Hiroyuki 已提交
1394 1395 1396
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1397 1398
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1399
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1400 1401 1402
	unsigned long excess;

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1403

1404 1405 1406 1407
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1408
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1409
		victim = mem_cgroup_select_victim(root_mem);
1410
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1411
			loop++;
1412 1413
			if (loop >= 1)
				drain_all_stock_async();
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1437
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1438 1439
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1440 1441
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1442
		/* we use swappiness of local cgroup */
1443 1444
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1445
				noswap, get_swappiness(victim), zone);
1446 1447 1448
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1449
		css_put(&victim->css);
1450 1451 1452 1453 1454 1455 1456
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1457
		total += ret;
1458
		if (check_soft) {
1459
			if (!res_counter_soft_limit_excess(&root_mem->res))
1460
				return total;
1461
		} else if (mem_cgroup_margin(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1462
			return 1 + total;
1463
	}
K
KAMEZAWA Hiroyuki 已提交
1464
	return total;
1465 1466
}

K
KAMEZAWA Hiroyuki 已提交
1467 1468 1469 1470 1471 1472
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1473 1474
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1475

K
KAMEZAWA Hiroyuki 已提交
1476 1477 1478 1479
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1480 1481 1482 1483

	if (lock_count == 1)
		return true;
	return false;
1484
}
1485

K
KAMEZAWA Hiroyuki 已提交
1486
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1487
{
K
KAMEZAWA Hiroyuki 已提交
1488 1489
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1490 1491 1492 1493 1494
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1495 1496
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1497 1498 1499
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1500 1501 1502 1503

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1540 1541
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1542
	if (mem && atomic_read(&mem->oom_lock))
1543 1544 1545
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1546 1547 1548 1549
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1550
{
K
KAMEZAWA Hiroyuki 已提交
1551
	struct oom_wait_info owait;
1552
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1553

K
KAMEZAWA Hiroyuki 已提交
1554 1555 1556 1557 1558
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1559
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1560 1561 1562 1563 1564 1565 1566 1567
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1568 1569 1570 1571
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1572
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1573 1574
	mutex_unlock(&memcg_oom_mutex);

1575 1576
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1577
		mem_cgroup_out_of_memory(mem, mask);
1578
	} else {
K
KAMEZAWA Hiroyuki 已提交
1579
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1580
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1581 1582 1583
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1584
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1585 1586 1587 1588 1589 1590 1591
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1592 1593
}

1594 1595 1596
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1616
 */
1617

1618 1619
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1620 1621
{
	struct mem_cgroup *mem;
1622 1623
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1624
	unsigned long uninitialized_var(flags);
1625 1626 1627 1628

	if (unlikely(!pc))
		return;

1629
	rcu_read_lock();
1630
	mem = pc->mem_cgroup;
1631 1632 1633
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1634
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1635
		/* take a lock against to access pc->mem_cgroup */
1636
		move_lock_page_cgroup(pc, &flags);
1637 1638 1639 1640 1641
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1642 1643

	switch (idx) {
1644
	case MEMCG_NR_FILE_MAPPED:
1645 1646 1647
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1648
			ClearPageCgroupFileMapped(pc);
1649
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1650 1651 1652
		break;
	default:
		BUG();
1653
	}
1654

1655 1656
	this_cpu_add(mem->stat->count[idx], val);

1657 1658
out:
	if (unlikely(need_unlock))
1659
		move_unlock_page_cgroup(pc, &flags);
1660 1661
	rcu_read_unlock();
	return;
1662
}
1663
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1664

1665 1666 1667 1668
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1669
#define CHARGE_BATCH	32U
1670 1671
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1672
	unsigned int nr_pages;
1673 1674 1675 1676 1677 1678
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
1679
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1690 1691
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1705 1706 1707 1708
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1709
		if (do_swap_account)
1710 1711
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1728
 * This will be consumed by consume_stock() function, later.
1729
 */
1730
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1731 1732 1733 1734 1735 1736 1737
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
1738
	stock->nr_pages += nr_pages;
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1795 1796 1797 1798 1799 1800
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1812 1813 1814 1815
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1816 1817 1818 1819 1820
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1821
	struct mem_cgroup *iter;
1822

1823 1824 1825 1826 1827 1828
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1829
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1830
		return NOTIFY_OK;
1831 1832 1833 1834

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1835 1836 1837 1838 1839
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

1850 1851
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
1852
{
1853
	unsigned long csize = nr_pages * PAGE_SIZE;
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

1868
		res_counter_uncharge(&mem->res, csize);
1869 1870 1871 1872
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1873
	/*
1874 1875
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
1876 1877 1878 1879
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
1880
	if (nr_pages == CHARGE_BATCH)
1881 1882 1883 1884 1885 1886
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1887
					      gfp_mask, flags);
1888
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1889
		return CHARGE_RETRY;
1890
	/*
1891 1892 1893 1894 1895 1896 1897
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
1898
	 */
1899
	if (nr_pages == 1 && ret)
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1919 1920 1921
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1922
 */
1923
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1924
				   gfp_t gfp_mask,
1925 1926 1927
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
1928
{
1929
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1930 1931 1932
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
1933

K
KAMEZAWA Hiroyuki 已提交
1934 1935 1936 1937 1938 1939 1940 1941
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1942

1943
	/*
1944 1945
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1946 1947 1948
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1949 1950 1951 1952
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1953
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1954 1955 1956
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
1957
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1958
			goto done;
1959 1960
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1961
		struct task_struct *p;
1962

K
KAMEZAWA Hiroyuki 已提交
1963 1964 1965
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1966 1967 1968 1969 1970 1971 1972 1973
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1974 1975
		 */
		mem = mem_cgroup_from_task(p);
1976
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1977 1978 1979
			rcu_read_unlock();
			goto done;
		}
1980
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1999

2000 2001
	do {
		bool oom_check;
2002

2003
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2004 2005
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2006
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2007
		}
2008

2009 2010 2011 2012
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2013
		}
2014

2015
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2016 2017 2018 2019
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2020
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2021 2022 2023
			css_put(&mem->css);
			mem = NULL;
			goto again;
2024
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2025
			css_put(&mem->css);
2026 2027
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2028 2029
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2030
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2031
			}
2032 2033 2034 2035
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2036
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2037
			goto bypass;
2038
		}
2039 2040
	} while (ret != CHARGE_OK);

2041 2042
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2043
	css_put(&mem->css);
2044
done:
K
KAMEZAWA Hiroyuki 已提交
2045
	*memcg = mem;
2046 2047
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2048
	*memcg = NULL;
2049
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2050 2051 2052
bypass:
	*memcg = NULL;
	return 0;
2053
}
2054

2055 2056 2057 2058 2059
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2060
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2061
				       unsigned int nr_pages)
2062 2063
{
	if (!mem_cgroup_is_root(mem)) {
2064 2065 2066
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2067
		if (do_swap_account)
2068
			res_counter_uncharge(&mem->memsw, bytes);
2069
	}
2070 2071
}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2091
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2092
{
2093
	struct mem_cgroup *mem = NULL;
2094
	struct page_cgroup *pc;
2095
	unsigned short id;
2096 2097
	swp_entry_t ent;

2098 2099 2100
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2101
	lock_page_cgroup(pc);
2102
	if (PageCgroupUsed(pc)) {
2103
		mem = pc->mem_cgroup;
2104 2105
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2106
	} else if (PageSwapCache(page)) {
2107
		ent.val = page_private(page);
2108 2109 2110 2111 2112 2113
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2114
	}
2115
	unlock_page_cgroup(pc);
2116 2117 2118
	return mem;
}

2119
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2120
				       struct page *page,
2121
				       unsigned int nr_pages,
2122
				       struct page_cgroup *pc,
2123
				       enum charge_type ctype)
2124
{
2125 2126 2127
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2128
		__mem_cgroup_cancel_charge(mem, nr_pages);
2129 2130 2131 2132 2133 2134
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2135
	pc->mem_cgroup = mem;
2136 2137 2138 2139 2140 2141 2142
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2143
	smp_wmb();
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2157

2158
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2159
	unlock_page_cgroup(pc);
2160 2161 2162 2163 2164
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2165
	memcg_check_events(mem, page);
2166
}
2167

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2182 2183
	if (mem_cgroup_disabled())
		return;
2184
	/*
2185
	 * We have no races with charge/uncharge but will have races with
2186 2187 2188 2189 2190 2191
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2202
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2203 2204
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2205 2206 2207 2208 2209
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2210
/**
2211
 * mem_cgroup_move_account - move account of the page
2212
 * @page: the page
2213
 * @nr_pages: number of regular pages (>1 for huge pages)
2214 2215 2216
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2217
 * @uncharge: whether we should call uncharge and css_put against @from.
2218 2219
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2220
 * - page is not on LRU (isolate_page() is useful.)
2221
 * - compound_lock is held when nr_pages > 1
2222
 *
2223 2224 2225 2226
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2227
 */
2228 2229 2230 2231 2232 2233
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2234
{
2235 2236
	unsigned long flags;
	int ret;
2237

2238
	VM_BUG_ON(from == to);
2239
	VM_BUG_ON(PageLRU(page));
2240 2241 2242 2243 2244 2245 2246
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2247
	if (nr_pages > 1 && !PageTransHuge(page))
2248 2249 2250 2251 2252 2253 2254 2255 2256
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2257

2258
	if (PageCgroupFileMapped(pc)) {
2259 2260 2261 2262 2263
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2264
	}
2265
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2266 2267
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2268
		__mem_cgroup_cancel_charge(from, nr_pages);
2269

2270
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2271
	pc->mem_cgroup = to;
2272
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2273 2274 2275
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2276 2277 2278
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2279
	 */
2280 2281 2282
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2283
	unlock_page_cgroup(pc);
2284 2285 2286
	/*
	 * check events
	 */
2287 2288
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2289
out:
2290 2291 2292 2293 2294 2295 2296
	return ret;
}

/*
 * move charges to its parent.
 */

2297 2298
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2299 2300 2301 2302 2303 2304
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2305
	unsigned int nr_pages;
2306
	unsigned long flags;
2307 2308 2309 2310 2311 2312
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2313 2314 2315 2316 2317
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2318

2319
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2320

2321
	parent = mem_cgroup_from_cont(pcg);
2322
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2323
	if (ret || !parent)
2324
		goto put_back;
2325

2326
	if (nr_pages > 1)
2327 2328
		flags = compound_lock_irqsave(page);

2329
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2330
	if (ret)
2331
		__mem_cgroup_cancel_charge(parent, nr_pages);
2332

2333
	if (nr_pages > 1)
2334
		compound_unlock_irqrestore(page, flags);
2335
put_back:
K
KAMEZAWA Hiroyuki 已提交
2336
	putback_lru_page(page);
2337
put:
2338
	put_page(page);
2339
out:
2340 2341 2342
	return ret;
}

2343 2344 2345 2346 2347 2348 2349
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2350
				gfp_t gfp_mask, enum charge_type ctype)
2351
{
2352
	struct mem_cgroup *mem = NULL;
2353
	unsigned int nr_pages = 1;
2354
	struct page_cgroup *pc;
2355
	bool oom = true;
2356
	int ret;
A
Andrea Arcangeli 已提交
2357

A
Andrea Arcangeli 已提交
2358
	if (PageTransHuge(page)) {
2359
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2360
		VM_BUG_ON(!PageTransHuge(page));
2361 2362 2363 2364 2365
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2366
	}
2367 2368

	pc = lookup_page_cgroup(page);
2369
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2370

2371
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2372
	if (ret || !mem)
2373 2374
		return ret;

2375
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2376 2377 2378
	return 0;
}

2379 2380
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2381
{
2382
	if (mem_cgroup_disabled())
2383
		return 0;
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2395
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2396
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2397 2398
}

D
Daisuke Nishimura 已提交
2399 2400 2401 2402
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2403 2404
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2405
{
2406 2407
	int ret;

2408
	if (mem_cgroup_disabled())
2409
		return 0;
2410 2411
	if (PageCompound(page))
		return 0;
2412 2413 2414 2415 2416 2417 2418 2419
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2420 2421
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2422 2423 2424 2425
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2426 2427 2428 2429 2430 2431
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2432 2433
			return 0;
		}
2434
		unlock_page_cgroup(pc);
2435 2436
	}

2437
	if (unlikely(!mm))
2438
		mm = &init_mm;
2439

2440 2441
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2442
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2443

D
Daisuke Nishimura 已提交
2444 2445
	/* shmem */
	if (PageSwapCache(page)) {
2446
		struct mem_cgroup *mem;
2447

D
Daisuke Nishimura 已提交
2448 2449 2450 2451 2452 2453
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2454
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2455 2456

	return ret;
2457 2458
}

2459 2460 2461
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2462
 * struct page_cgroup is acquired. This refcnt will be consumed by
2463 2464
 * "commit()" or removed by "cancel()"
 */
2465 2466 2467 2468 2469
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2470
	int ret;
2471

2472 2473
	*ptr = NULL;

2474
	if (mem_cgroup_disabled())
2475 2476 2477 2478 2479 2480
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2481 2482 2483
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2484 2485
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2486
		goto charge_cur_mm;
2487
	mem = try_get_mem_cgroup_from_page(page);
2488 2489
	if (!mem)
		goto charge_cur_mm;
2490
	*ptr = mem;
2491
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2492 2493
	css_put(&mem->css);
	return ret;
2494 2495 2496
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2497
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2498 2499
}

D
Daisuke Nishimura 已提交
2500 2501 2502
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2503 2504 2505
{
	struct page_cgroup *pc;

2506
	if (mem_cgroup_disabled())
2507 2508 2509
		return;
	if (!ptr)
		return;
2510
	cgroup_exclude_rmdir(&ptr->css);
2511
	pc = lookup_page_cgroup(page);
2512
	mem_cgroup_lru_del_before_commit_swapcache(page);
2513
	__mem_cgroup_commit_charge(ptr, page, 1, pc, ctype);
2514
	mem_cgroup_lru_add_after_commit_swapcache(page);
2515 2516 2517
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2518 2519 2520
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2521
	 */
2522
	if (do_swap_account && PageSwapCache(page)) {
2523
		swp_entry_t ent = {.val = page_private(page)};
2524
		unsigned short id;
2525
		struct mem_cgroup *memcg;
2526 2527 2528 2529

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2530
		if (memcg) {
2531 2532 2533 2534
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2535
			if (!mem_cgroup_is_root(memcg))
2536
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2537
			mem_cgroup_swap_statistics(memcg, false);
2538 2539
			mem_cgroup_put(memcg);
		}
2540
		rcu_read_unlock();
2541
	}
2542 2543 2544 2545 2546 2547
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2548 2549
}

D
Daisuke Nishimura 已提交
2550 2551 2552 2553 2554 2555
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2556 2557
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2558
	if (mem_cgroup_disabled())
2559 2560 2561
		return;
	if (!mem)
		return;
2562
	__mem_cgroup_cancel_charge(mem, 1);
2563 2564
}

2565 2566 2567
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2568 2569 2570
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2571

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2595
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2596 2597
		goto direct_uncharge;

2598 2599 2600 2601 2602 2603 2604 2605
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2606
	batch->nr_pages++;
2607
	if (uncharge_memsw)
2608
		batch->memsw_nr_pages++;
2609 2610
	return;
direct_uncharge:
2611
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2612
	if (uncharge_memsw)
2613
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2614 2615
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2616 2617
	return;
}
2618

2619
/*
2620
 * uncharge if !page_mapped(page)
2621
 */
2622
static struct mem_cgroup *
2623
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2624
{
2625
	struct mem_cgroup *mem = NULL;
2626 2627
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2628

2629
	if (mem_cgroup_disabled())
2630
		return NULL;
2631

K
KAMEZAWA Hiroyuki 已提交
2632
	if (PageSwapCache(page))
2633
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2634

A
Andrea Arcangeli 已提交
2635
	if (PageTransHuge(page)) {
2636
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2637 2638
		VM_BUG_ON(!PageTransHuge(page));
	}
2639
	/*
2640
	 * Check if our page_cgroup is valid
2641
	 */
2642 2643
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2644
		return NULL;
2645

2646
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2647

2648 2649
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2650 2651 2652 2653 2654
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2655
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2656 2657
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2669
	}
K
KAMEZAWA Hiroyuki 已提交
2670

2671
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2672

2673
	ClearPageCgroupUsed(pc);
2674 2675 2676 2677 2678 2679
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2680

2681
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2682 2683 2684 2685
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2686
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2687 2688 2689 2690 2691
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
2692
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2693

2694
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2695 2696 2697

unlock_out:
	unlock_page_cgroup(pc);
2698
	return NULL;
2699 2700
}

2701 2702
void mem_cgroup_uncharge_page(struct page *page)
{
2703 2704 2705 2706 2707
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2708 2709 2710 2711 2712 2713
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2714
	VM_BUG_ON(page->mapping);
2715 2716 2717
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
2732 2733
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
2754 2755 2756 2757 2758 2759
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
2760
	memcg_oom_recover(batch->memcg);
2761 2762 2763 2764
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2765
#ifdef CONFIG_SWAP
2766
/*
2767
 * called after __delete_from_swap_cache() and drop "page" account.
2768 2769
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2770 2771
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2772 2773
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2774 2775 2776 2777 2778 2779
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2780

K
KAMEZAWA Hiroyuki 已提交
2781 2782 2783 2784 2785
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2786
		swap_cgroup_record(ent, css_id(&memcg->css));
2787
}
2788
#endif
2789 2790 2791 2792 2793 2794 2795

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2796
{
2797
	struct mem_cgroup *memcg;
2798
	unsigned short id;
2799 2800 2801 2802

	if (!do_swap_account)
		return;

2803 2804 2805
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2806
	if (memcg) {
2807 2808 2809 2810
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2811
		if (!mem_cgroup_is_root(memcg))
2812
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2813
		mem_cgroup_swap_statistics(memcg, false);
2814 2815
		mem_cgroup_put(memcg);
	}
2816
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2817
}
2818 2819 2820 2821 2822 2823

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2824
 * @need_fixup: whether we should fixup res_counters and refcounts.
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2835
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2836 2837 2838 2839 2840 2841 2842 2843
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2844
		mem_cgroup_swap_statistics(to, true);
2845
		/*
2846 2847 2848 2849 2850 2851
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2852 2853
		 */
		mem_cgroup_get(to);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2865 2866 2867 2868 2869 2870
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2871
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2872 2873 2874
{
	return -EINVAL;
}
2875
#endif
K
KAMEZAWA Hiroyuki 已提交
2876

2877
/*
2878 2879
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2880
 */
2881
int mem_cgroup_prepare_migration(struct page *page,
2882
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2883
{
2884
	struct mem_cgroup *mem = NULL;
2885
	struct page_cgroup *pc;
2886
	enum charge_type ctype;
2887
	int ret = 0;
2888

2889 2890
	*ptr = NULL;

A
Andrea Arcangeli 已提交
2891
	VM_BUG_ON(PageTransHuge(page));
2892
	if (mem_cgroup_disabled())
2893 2894
		return 0;

2895 2896 2897
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2898 2899
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2931
	}
2932
	unlock_page_cgroup(pc);
2933 2934 2935 2936 2937 2938
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2939

A
Andrea Arcangeli 已提交
2940
	*ptr = mem;
2941
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2954
	}
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2968
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2969
	return ret;
2970
}
2971

2972
/* remove redundant charge if migration failed*/
2973
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2974
	struct page *oldpage, struct page *newpage, bool migration_ok)
2975
{
2976
	struct page *used, *unused;
2977 2978 2979 2980
	struct page_cgroup *pc;

	if (!mem)
		return;
2981
	/* blocks rmdir() */
2982
	cgroup_exclude_rmdir(&mem->css);
2983
	if (!migration_ok) {
2984 2985
		used = oldpage;
		unused = newpage;
2986
	} else {
2987
		used = newpage;
2988 2989
		unused = oldpage;
	}
2990
	/*
2991 2992 2993
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2994
	 */
2995 2996 2997 2998
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2999

3000 3001
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3002
	/*
3003 3004 3005 3006 3007 3008
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3009
	 */
3010 3011
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3012
	/*
3013 3014
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3015 3016 3017 3018
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3019
}
3020

3021
/*
3022 3023 3024 3025 3026 3027
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3028
 */
3029
int mem_cgroup_shmem_charge_fallback(struct page *page,
3030 3031
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3032
{
3033
	struct mem_cgroup *mem;
3034
	int ret;
3035

3036
	if (mem_cgroup_disabled())
3037
		return 0;
3038

3039 3040 3041
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3042

3043
	return ret;
3044 3045
}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3092 3093
static DEFINE_MUTEX(set_limit_mutex);

3094
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3095
				unsigned long long val)
3096
{
3097
	int retry_count;
3098
	u64 memswlimit, memlimit;
3099
	int ret = 0;
3100 3101
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3102
	int enlarge;
3103 3104 3105 3106 3107 3108 3109 3110 3111

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3112

3113
	enlarge = 0;
3114
	while (retry_count) {
3115 3116 3117 3118
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3129 3130
			break;
		}
3131 3132 3133 3134 3135

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3136
		ret = res_counter_set_limit(&memcg->res, val);
3137 3138 3139 3140 3141 3142
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3143 3144 3145 3146 3147
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3148
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3149
						MEM_CGROUP_RECLAIM_SHRINK);
3150 3151 3152 3153 3154 3155
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3156
	}
3157 3158
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3159

3160 3161 3162
	return ret;
}

L
Li Zefan 已提交
3163 3164
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3165
{
3166
	int retry_count;
3167
	u64 memlimit, memswlimit, oldusage, curusage;
3168 3169
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3170
	int enlarge = 0;
3171

3172 3173 3174
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3192 3193 3194
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3195
		ret = res_counter_set_limit(&memcg->memsw, val);
3196 3197 3198 3199 3200 3201
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3202 3203 3204 3205 3206
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3207
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3208 3209
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3210
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3211
		/* Usage is reduced ? */
3212
		if (curusage >= oldusage)
3213
			retry_count--;
3214 3215
		else
			oldusage = curusage;
3216
	}
3217 3218
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3219 3220 3221
	return ret;
}

3222
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3223
					    gfp_t gfp_mask)
3224 3225 3226 3227 3228 3229
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3230
	unsigned long long excess;
3231 3232 3233 3234

	if (order > 0)
		return 0;

3235
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3283
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3284 3285 3286 3287 3288 3289 3290 3291
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3292 3293
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3312 3313 3314 3315
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3316
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3317
				int node, int zid, enum lru_list lru)
3318
{
K
KAMEZAWA Hiroyuki 已提交
3319 3320
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3321
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3322
	unsigned long flags, loop;
3323
	struct list_head *list;
3324
	int ret = 0;
3325

K
KAMEZAWA Hiroyuki 已提交
3326 3327
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3328
	list = &mz->lists[lru];
3329

3330 3331 3332 3333 3334
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3335 3336
		struct page *page;

3337
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3338
		spin_lock_irqsave(&zone->lru_lock, flags);
3339
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3340
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3341
			break;
3342 3343 3344 3345
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3346
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3347
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3348 3349
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3350
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3351

3352
		page = lookup_cgroup_page(pc);
3353 3354

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3355
		if (ret == -ENOMEM)
3356
			break;
3357 3358 3359 3360 3361 3362 3363

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3364
	}
K
KAMEZAWA Hiroyuki 已提交
3365

3366 3367 3368
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3369 3370 3371 3372 3373 3374
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3375
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3376
{
3377 3378 3379
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3380
	struct cgroup *cgrp = mem->css.cgroup;
3381

3382
	css_get(&mem->css);
3383 3384

	shrink = 0;
3385 3386 3387
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3388
move_account:
3389
	do {
3390
		ret = -EBUSY;
3391 3392 3393 3394
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3395
			goto out;
3396 3397
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3398
		drain_all_stock_sync();
3399
		ret = 0;
3400
		mem_cgroup_start_move(mem);
3401
		for_each_node_state(node, N_HIGH_MEMORY) {
3402
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3403
				enum lru_list l;
3404 3405
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3406
							node, zid, l);
3407 3408 3409
					if (ret)
						break;
				}
3410
			}
3411 3412 3413
			if (ret)
				break;
		}
3414
		mem_cgroup_end_move(mem);
3415
		memcg_oom_recover(mem);
3416 3417 3418
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3419
		cond_resched();
3420 3421
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3422 3423 3424
out:
	css_put(&mem->css);
	return ret;
3425 3426

try_to_free:
3427 3428
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3429 3430 3431
		ret = -EBUSY;
		goto out;
	}
3432 3433
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3434 3435 3436 3437
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3438 3439 3440 3441 3442

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3443 3444
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3445
		if (!progress) {
3446
			nr_retries--;
3447
			/* maybe some writeback is necessary */
3448
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3449
		}
3450 3451

	}
K
KAMEZAWA Hiroyuki 已提交
3452
	lru_add_drain();
3453
	/* try move_account...there may be some *locked* pages. */
3454
	goto move_account;
3455 3456
}

3457 3458 3459 3460 3461 3462
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3481
	 * If parent's use_hierarchy is set, we can't make any modifications
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3501

K
KAMEZAWA Hiroyuki 已提交
3502 3503
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3504
{
K
KAMEZAWA Hiroyuki 已提交
3505 3506
	struct mem_cgroup *iter;
	s64 val = 0;
3507

K
KAMEZAWA Hiroyuki 已提交
3508 3509 3510 3511 3512 3513 3514
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3515 3516
}

3517 3518
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3519
	u64 val;
3520 3521 3522 3523 3524 3525 3526 3527

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3528 3529
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3530

K
KAMEZAWA Hiroyuki 已提交
3531 3532 3533
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3534 3535 3536 3537

	return val << PAGE_SHIFT;
}

3538
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3539
{
3540
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3541
	u64 val;
3542 3543 3544 3545 3546 3547
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3548 3549 3550
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3551
			val = res_counter_read_u64(&mem->res, name);
3552 3553
		break;
	case _MEMSWAP:
3554 3555 3556
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3557
			val = res_counter_read_u64(&mem->memsw, name);
3558 3559 3560 3561 3562 3563
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3564
}
3565 3566 3567 3568
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3569 3570
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3571
{
3572
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3573
	int type, name;
3574 3575 3576
	unsigned long long val;
	int ret;

3577 3578 3579
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3580
	case RES_LIMIT:
3581 3582 3583 3584
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3585 3586
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3587 3588 3589
		if (ret)
			break;
		if (type == _MEM)
3590
			ret = mem_cgroup_resize_limit(memcg, val);
3591 3592
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3593
		break;
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3608 3609 3610 3611 3612
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3613 3614
}

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3643
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3644 3645
{
	struct mem_cgroup *mem;
3646
	int type, name;
3647 3648

	mem = mem_cgroup_from_cont(cont);
3649 3650 3651
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3652
	case RES_MAX_USAGE:
3653 3654 3655 3656
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3657 3658
		break;
	case RES_FAILCNT:
3659 3660 3661 3662
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3663 3664
		break;
	}
3665

3666
	return 0;
3667 3668
}

3669 3670 3671 3672 3673 3674
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3675
#ifdef CONFIG_MMU
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3694 3695 3696 3697 3698 3699 3700
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3701

K
KAMEZAWA Hiroyuki 已提交
3702 3703 3704 3705 3706

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3707
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3708 3709
	MCS_PGPGIN,
	MCS_PGPGOUT,
3710
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3721 3722
};

K
KAMEZAWA Hiroyuki 已提交
3723 3724 3725 3726 3727 3728
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3729
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3730 3731
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3732
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3733 3734 3735 3736 3737 3738 3739 3740
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3741 3742
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3743 3744 3745 3746
{
	s64 val;

	/* per cpu stat */
3747
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3748
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3749
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3750
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3751
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3752
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3753
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
3754
	s->stat[MCS_PGPGIN] += val;
3755
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
3756
	s->stat[MCS_PGPGOUT] += val;
3757
	if (do_swap_account) {
3758
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3759 3760
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3778 3779 3780 3781
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3782 3783
}

3784 3785
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3786 3787
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3788
	struct mcs_total_stat mystat;
3789 3790
	int i;

K
KAMEZAWA Hiroyuki 已提交
3791 3792
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3793

3794 3795 3796
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3797
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3798
	}
L
Lee Schermerhorn 已提交
3799

K
KAMEZAWA Hiroyuki 已提交
3800
	/* Hierarchical information */
3801 3802 3803 3804 3805 3806 3807
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3808

K
KAMEZAWA Hiroyuki 已提交
3809 3810
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3811 3812 3813
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3814
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3815
	}
K
KAMEZAWA Hiroyuki 已提交
3816

K
KOSAKI Motohiro 已提交
3817
#ifdef CONFIG_DEBUG_VM
3818
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3846 3847 3848
	return 0;
}

K
KOSAKI Motohiro 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3861

K
KOSAKI Motohiro 已提交
3862 3863 3864 3865 3866 3867 3868
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3869 3870 3871

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3872 3873
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3874 3875
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3876
		return -EINVAL;
3877
	}
K
KOSAKI Motohiro 已提交
3878 3879 3880

	memcg->swappiness = val;

3881 3882
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3883 3884 3885
	return 0;
}

3886 3887 3888 3889 3890 3891 3892 3893
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3894
		t = rcu_dereference(memcg->thresholds.primary);
3895
	else
3896
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3908
	i = t->current_threshold;
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3932
	t->current_threshold = i - 1;
3933 3934 3935 3936 3937 3938
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3939 3940 3941 3942 3943 3944 3945
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3956
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3967 3968 3969 3970
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3971 3972 3973 3974
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3975 3976
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3977 3978
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3979 3980
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3981
	int i, size, ret;
3982 3983 3984 3985 3986 3987

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3988

3989
	if (type == _MEM)
3990
		thresholds = &memcg->thresholds;
3991
	else if (type == _MEMSWAP)
3992
		thresholds = &memcg->memsw_thresholds;
3993 3994 3995 3996 3997 3998
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3999
	if (thresholds->primary)
4000 4001
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4002
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4003 4004

	/* Allocate memory for new array of thresholds */
4005
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4006
			GFP_KERNEL);
4007
	if (!new) {
4008 4009 4010
		ret = -ENOMEM;
		goto unlock;
	}
4011
	new->size = size;
4012 4013

	/* Copy thresholds (if any) to new array */
4014 4015
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4016
				sizeof(struct mem_cgroup_threshold));
4017 4018
	}

4019
	/* Add new threshold */
4020 4021
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4022 4023

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4024
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4025 4026 4027
			compare_thresholds, NULL);

	/* Find current threshold */
4028
	new->current_threshold = -1;
4029
	for (i = 0; i < size; i++) {
4030
		if (new->entries[i].threshold < usage) {
4031
			/*
4032 4033
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4034 4035
			 * it here.
			 */
4036
			++new->current_threshold;
4037 4038 4039
		}
	}

4040 4041 4042 4043 4044
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4045

4046
	/* To be sure that nobody uses thresholds */
4047 4048 4049 4050 4051 4052 4053 4054
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4055
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4056
	struct cftype *cft, struct eventfd_ctx *eventfd)
4057 4058
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4059 4060
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4061 4062
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4063
	int i, j, size;
4064 4065 4066

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4067
		thresholds = &memcg->thresholds;
4068
	else if (type == _MEMSWAP)
4069
		thresholds = &memcg->memsw_thresholds;
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4085 4086 4087
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4088 4089 4090
			size++;
	}

4091
	new = thresholds->spare;
4092

4093 4094
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4095 4096
		kfree(new);
		new = NULL;
4097
		goto swap_buffers;
4098 4099
	}

4100
	new->size = size;
4101 4102

	/* Copy thresholds and find current threshold */
4103 4104 4105
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4106 4107
			continue;

4108 4109
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4110
			/*
4111
			 * new->current_threshold will not be used
4112 4113 4114
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4115
			++new->current_threshold;
4116 4117 4118 4119
		}
		j++;
	}

4120
swap_buffers:
4121 4122 4123
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4124

4125
	/* To be sure that nobody uses thresholds */
4126 4127 4128 4129
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4130

K
KAMEZAWA Hiroyuki 已提交
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4156
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4211 4212
	if (!val)
		memcg_oom_recover(mem);
4213 4214 4215 4216
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4217 4218
static struct cftype mem_cgroup_files[] = {
	{
4219
		.name = "usage_in_bytes",
4220
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4221
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4222 4223
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4224
	},
4225 4226
	{
		.name = "max_usage_in_bytes",
4227
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4228
		.trigger = mem_cgroup_reset,
4229 4230
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4231
	{
4232
		.name = "limit_in_bytes",
4233
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4234
		.write_string = mem_cgroup_write,
4235
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4236
	},
4237 4238 4239 4240 4241 4242
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4243 4244
	{
		.name = "failcnt",
4245
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4246
		.trigger = mem_cgroup_reset,
4247
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4248
	},
4249 4250
	{
		.name = "stat",
4251
		.read_map = mem_control_stat_show,
4252
	},
4253 4254 4255 4256
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4257 4258 4259 4260 4261
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4262 4263 4264 4265 4266
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4267 4268 4269 4270 4271
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4272 4273
	{
		.name = "oom_control",
4274 4275
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4276 4277 4278 4279
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4280 4281
};

4282 4283 4284 4285 4286 4287
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4288 4289
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4325 4326 4327
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4328
	struct mem_cgroup_per_zone *mz;
4329
	enum lru_list l;
4330
	int zone, tmp = node;
4331 4332 4333 4334 4335 4336 4337 4338
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4339 4340
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4341
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4342 4343
	if (!pn)
		return 1;
4344

4345
	mem->info.nodeinfo[node] = pn;
4346 4347
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4348 4349
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4350
		mz->usage_in_excess = 0;
4351 4352
		mz->on_tree = false;
		mz->mem = mem;
4353
	}
4354 4355 4356
	return 0;
}

4357 4358 4359 4360 4361
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4362 4363 4364
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4365
	int size = sizeof(struct mem_cgroup);
4366

4367
	/* Can be very big if MAX_NUMNODES is very big */
4368
	if (size < PAGE_SIZE)
4369
		mem = kzalloc(size, GFP_KERNEL);
4370
	else
4371
		mem = vzalloc(size);
4372

4373 4374 4375
	if (!mem)
		return NULL;

4376
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4377 4378
	if (!mem->stat)
		goto out_free;
4379
	spin_lock_init(&mem->pcp_counter_lock);
4380
	return mem;
4381 4382 4383 4384 4385 4386 4387

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4388 4389
}

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4401
static void __mem_cgroup_free(struct mem_cgroup *mem)
4402
{
K
KAMEZAWA Hiroyuki 已提交
4403 4404
	int node;

4405
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4406 4407
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4408 4409 4410
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4411 4412
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4413 4414 4415 4416 4417
		kfree(mem);
	else
		vfree(mem);
}

4418 4419 4420 4421 4422
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4423
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4424
{
4425
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4426
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4427
		__mem_cgroup_free(mem);
4428 4429 4430
		if (parent)
			mem_cgroup_put(parent);
	}
4431 4432
}

4433 4434 4435 4436 4437
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4438 4439 4440 4441 4442 4443 4444 4445 4446
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4447

4448 4449 4450
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4451
	if (!mem_cgroup_disabled() && really_do_swap_account)
4452 4453 4454 4455 4456 4457 4458 4459
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4485
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4486 4487
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4488
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4489
	long error = -ENOMEM;
4490
	int node;
B
Balbir Singh 已提交
4491

4492 4493
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4494
		return ERR_PTR(error);
4495

4496 4497 4498
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4499

4500
	/* root ? */
4501
	if (cont->parent == NULL) {
4502
		int cpu;
4503
		enable_swap_cgroup();
4504
		parent = NULL;
4505
		root_mem_cgroup = mem;
4506 4507
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4508 4509 4510 4511 4512
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4513
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4514
	} else {
4515
		parent = mem_cgroup_from_cont(cont->parent);
4516
		mem->use_hierarchy = parent->use_hierarchy;
4517
		mem->oom_kill_disable = parent->oom_kill_disable;
4518
	}
4519

4520 4521 4522
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4523 4524 4525 4526 4527 4528 4529
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4530 4531 4532 4533
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4534
	mem->last_scanned_child = 0;
K
KAMEZAWA Hiroyuki 已提交
4535
	INIT_LIST_HEAD(&mem->oom_notify);
4536

K
KOSAKI Motohiro 已提交
4537 4538
	if (parent)
		mem->swappiness = get_swappiness(parent);
4539
	atomic_set(&mem->refcnt, 1);
4540
	mem->move_charge_at_immigrate = 0;
4541
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4542
	return &mem->css;
4543
free_out:
4544
	__mem_cgroup_free(mem);
4545
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4546
	return ERR_PTR(error);
B
Balbir Singh 已提交
4547 4548
}

4549
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4550 4551 4552
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4553 4554

	return mem_cgroup_force_empty(mem, false);
4555 4556
}

B
Balbir Singh 已提交
4557 4558 4559
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4560 4561 4562
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4563 4564 4565 4566 4567
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4568 4569 4570 4571 4572 4573 4574 4575
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4576 4577
}

4578
#ifdef CONFIG_MMU
4579
/* Handlers for move charge at task migration. */
4580 4581
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4582
{
4583 4584
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4585 4586
	struct mem_cgroup *mem = mc.to;

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4622
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4623 4624 4625 4626 4627
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4628 4629 4630 4631 4632 4633 4634 4635
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4636
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4637 4638 4639 4640 4641 4642
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4643 4644 4645
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4646 4647 4648 4649 4650
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4651
	swp_entry_t	ent;
4652 4653 4654 4655 4656
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4657
	MC_TARGET_SWAP,
4658 4659
};

D
Daisuke Nishimura 已提交
4660 4661
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4662
{
D
Daisuke Nishimura 已提交
4663
	struct page *page = vm_normal_page(vma, addr, ptent);
4664

D
Daisuke Nishimura 已提交
4665 4666 4667 4668 4669 4670
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4671 4672
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4691 4692
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4693
		return NULL;
4694
	}
D
Daisuke Nishimura 已提交
4695 4696 4697 4698 4699 4700
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4746 4747
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4748 4749 4750

	if (!page && !ent.val)
		return 0;
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4766 4767
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4768 4769 4770 4771
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4784 4785
	split_huge_page_pmd(walk->mm, pmd);

4786 4787 4788 4789 4790 4791 4792
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4793 4794 4795
	return 0;
}

4796 4797 4798 4799 4800
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4801
	down_read(&mm->mmap_sem);
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4813
	up_read(&mm->mmap_sem);
4814 4815 4816 4817 4818 4819 4820 4821 4822

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4823 4824 4825 4826 4827
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4828 4829
}

4830 4831
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4832
{
4833 4834 4835
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4836
	/* we must uncharge all the leftover precharges from mc.to */
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4848
	}
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4883
	spin_lock(&mc.lock);
4884 4885
	mc.from = NULL;
	mc.to = NULL;
4886
	spin_unlock(&mc.lock);
4887
	mem_cgroup_end_move(from);
4888 4889
}

4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4908 4909 4910 4911
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4912
			VM_BUG_ON(mc.moved_charge);
4913
			VM_BUG_ON(mc.moved_swap);
4914
			mem_cgroup_start_move(from);
4915
			spin_lock(&mc.lock);
4916 4917
			mc.from = from;
			mc.to = mem;
4918
			spin_unlock(&mc.lock);
4919
			/* We set mc.moving_task later */
4920 4921 4922 4923

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4924 4925
		}
		mmput(mm);
4926 4927 4928 4929 4930 4931 4932 4933 4934
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4935
	mem_cgroup_clear_mc();
4936 4937
}

4938 4939 4940
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4941
{
4942 4943 4944 4945 4946
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4947
	split_huge_page_pmd(walk->mm, pmd);
4948 4949 4950 4951 4952 4953 4954 4955
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4956
		swp_entry_t ent;
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4968 4969
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
4970
				mc.precharge--;
4971 4972
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4973 4974 4975 4976 4977
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4978 4979
		case MC_TARGET_SWAP:
			ent = target.ent;
4980 4981
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4982
				mc.precharge--;
4983 4984 4985
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4986
			break;
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5001
		ret = mem_cgroup_do_precharge(1);
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5045
	up_read(&mm->mmap_sem);
5046 5047
}

B
Balbir Singh 已提交
5048 5049 5050
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5051 5052
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
5053
{
5054 5055 5056
	struct mm_struct *mm;

	if (!mc.to)
5057 5058 5059
		/* no need to move charge */
		return;

5060 5061 5062 5063 5064
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
5065
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5066
}
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
5089

B
Balbir Singh 已提交
5090 5091 5092 5093
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5094
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5095 5096
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5097 5098
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5099
	.attach = mem_cgroup_move_task,
5100
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5101
	.use_id = 1,
B
Balbir Singh 已提交
5102
};
5103 5104

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5105 5106 5107
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5108
	if (!(*s) || !strcmp(s, "=1"))
5109
		really_do_swap_account = 1;
5110
	else if (!strcmp(s, "=0"))
5111 5112 5113 5114
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
5115 5116 5117

static int __init disable_swap_account(char *s)
{
5118
	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5119
	enable_swap_account("=0");
5120 5121 5122 5123
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif