memcontrol.c 154.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71
#include <linux/uaccess.h>
72

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

135
struct mem_cgroup_tree_per_node {
136 137 138 139 140 141 142 143 144 145
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
146 147 148 149 150
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
151

152 153 154
/*
 * cgroup_event represents events which userspace want to receive.
 */
155
struct mem_cgroup_event {
156
	/*
157
	 * memcg which the event belongs to.
158
	 */
159
	struct mem_cgroup *memcg;
160 161 162 163 164 165 166 167
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
168 169 170 171 172
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
173
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
174
			      struct eventfd_ctx *eventfd, const char *args);
175 176 177 178 179
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
180
	void (*unregister_event)(struct mem_cgroup *memcg,
181
				 struct eventfd_ctx *eventfd);
182 183 184 185 186 187 188 189 190 191
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

192 193
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194

195 196
/* Stuffs for move charges at task migration. */
/*
197
 * Types of charges to be moved.
198
 */
199 200 201
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202

203 204
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
205
	spinlock_t	  lock; /* for from, to */
206
	struct mm_struct  *mm;
207 208
	struct mem_cgroup *from;
	struct mem_cgroup *to;
209
	unsigned long flags;
210
	unsigned long precharge;
211
	unsigned long moved_charge;
212
	unsigned long moved_swap;
213 214 215
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
216
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 218
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
219

220 221 222 223
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
224
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226

227 228
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
230
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
231
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 233 234
	NR_CHARGE_TYPE,
};

235
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
236 237 238 239
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
240
	_KMEM,
V
Vladimir Davydov 已提交
241
	_TCP,
G
Glauber Costa 已提交
242 243
};

244 245
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
247 248
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
249

250 251 252 253 254 255 256 257 258 259 260 261 262
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

263 264 265 266 267
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

268
#ifndef CONFIG_SLOB
269
/*
270
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
271 272 273 274 275
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
276
 *
277 278
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
279
 */
280 281
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
282

283 284 285 286 287 288 289 290 291 292 293 294 295
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

296 297 298 299 300 301
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
302
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 304
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
305
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 307 308
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
309
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310

311 312 313 314 315 316
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
317
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318
EXPORT_SYMBOL(memcg_kmem_enabled_key);
319

320
#endif /* !CONFIG_SLOB */
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

339
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 341 342 343 344
		memcg = root_mem_cgroup;

	return &memcg->css;
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

373 374
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375
{
376
	int nid = page_to_nid(page);
377

378
	return memcg->nodeinfo[nid];
379 380
}

381 382
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
383
{
384
	return soft_limit_tree.rb_tree_per_node[nid];
385 386
}

387
static struct mem_cgroup_tree_per_node *
388 389 390 391
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

392
	return soft_limit_tree.rb_tree_per_node[nid];
393 394
}

395 396
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
397
					 unsigned long new_usage_in_excess)
398 399 400
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
401
	struct mem_cgroup_per_node *mz_node;
402 403 404 405 406 407 408 409 410

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
411
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

427 428
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
429 430 431 432 433 434 435
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

436 437
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
438
{
439 440 441
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
442
	__mem_cgroup_remove_exceeded(mz, mctz);
443
	spin_unlock_irqrestore(&mctz->lock, flags);
444 445
}

446 447 448
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
449
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 451 452 453 454 455 456
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
457 458 459

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
460
	unsigned long excess;
461 462
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
463

464
	mctz = soft_limit_tree_from_page(page);
465 466 467 468 469
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470
		mz = mem_cgroup_page_nodeinfo(memcg, page);
471
		excess = soft_limit_excess(memcg);
472 473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
477 478 479
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
480 481
			/* if on-tree, remove it */
			if (mz->on_tree)
482
				__mem_cgroup_remove_exceeded(mz, mctz);
483 484 485 486
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
487
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488
			spin_unlock_irqrestore(&mctz->lock, flags);
489 490 491 492 493 494
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
495 496 497
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
498

499
	for_each_node(nid) {
500 501 502
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
		mem_cgroup_remove_exceeded(mz, mctz);
503 504 505
	}
}

506 507
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 509
{
	struct rb_node *rightmost = NULL;
510
	struct mem_cgroup_per_node *mz;
511 512 513 514 515 516 517

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

518
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 520 521 522 523
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
524
	__mem_cgroup_remove_exceeded(mz, mctz);
525
	if (!soft_limit_excess(mz->memcg) ||
526
	    !css_tryget_online(&mz->memcg->css))
527 528 529 530 531
		goto retry;
done:
	return mz;
}

532 533
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534
{
535
	struct mem_cgroup_per_node *mz;
536

537
	spin_lock_irq(&mctz->lock);
538
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539
	spin_unlock_irq(&mctz->lock);
540 541 542
	return mz;
}

543
/*
544 545
 * Return page count for single (non recursive) @memcg.
 *
546 547 548 549 550
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
551
 * a periodic synchronization of counter in memcg's counter.
552 553 554 555 556 557 558 559 560
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
561
 * common workload, threshold and synchronization as vmstat[] should be
562 563
 * implemented.
 */
564 565
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566
{
567
	long val = 0;
568 569
	int cpu;

570
	/* Per-cpu values can be negative, use a signed accumulator */
571
	for_each_possible_cpu(cpu)
572
		val += per_cpu(memcg->stat->count[idx], cpu);
573 574 575 576 577 578
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
579 580 581
	return val;
}

582
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 584 585 586 587
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->events[idx], cpu);
590 591 592
	return val;
}

593
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594
					 struct page *page,
595
					 bool compound, int nr_pages)
596
{
597 598 599 600
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
601
	if (PageAnon(page))
602
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603
				nr_pages);
604
	else
605
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606
				nr_pages);
607

608 609
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 611
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
612
	}
613

614 615
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
616
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617
	else {
618
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 620
		nr_pages = -nr_pages; /* for event */
	}
621

622
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 624
}

625 626
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
627
{
628
	unsigned long nr = 0;
629 630
	struct mem_cgroup_per_node *mz;
	enum lru_list lru;
631

632
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633

634 635 636 637 638
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
		mz = mem_cgroup_nodeinfo(memcg, nid);
		nr += mz->lru_size[lru];
639 640
	}
	return nr;
641
}
642

643
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644
			unsigned int lru_mask)
645
{
646
	unsigned long nr = 0;
647
	int nid;
648

649
	for_each_node_state(nid, N_MEMORY)
650 651
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
652 653
}

654 655
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
656 657 658
{
	unsigned long val, next;

659
	val = __this_cpu_read(memcg->stat->nr_page_events);
660
	next = __this_cpu_read(memcg->stat->targets[target]);
661
	/* from time_after() in jiffies.h */
662 663 664 665 666
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
667 668 669
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
670 671 672 673 674 675 676 677
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
678
	}
679
	return false;
680 681 682 683 684 685
}

/*
 * Check events in order.
 *
 */
686
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 688
{
	/* threshold event is triggered in finer grain than soft limit */
689 690
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
691
		bool do_softlimit;
692
		bool do_numainfo __maybe_unused;
693

694 695
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
696 697 698 699
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
700
		mem_cgroup_threshold(memcg);
701 702
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
703
#if MAX_NUMNODES > 1
704
		if (unlikely(do_numainfo))
705
			atomic_inc(&memcg->numainfo_events);
706
#endif
707
	}
708 709
}

710
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711
{
712 713 714 715 716 717 718 719
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

720
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721
}
M
Michal Hocko 已提交
722
EXPORT_SYMBOL(mem_cgroup_from_task);
723

724
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725
{
726
	struct mem_cgroup *memcg = NULL;
727

728 729
	rcu_read_lock();
	do {
730 731 732 733 734 735
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
736
			memcg = root_mem_cgroup;
737 738 739 740 741
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
742
	} while (!css_tryget_online(&memcg->css));
743
	rcu_read_unlock();
744
	return memcg;
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
764
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765
				   struct mem_cgroup *prev,
766
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
767
{
M
Michal Hocko 已提交
768
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769
	struct cgroup_subsys_state *css = NULL;
770
	struct mem_cgroup *memcg = NULL;
771
	struct mem_cgroup *pos = NULL;
772

773 774
	if (mem_cgroup_disabled())
		return NULL;
775

776 777
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
778

779
	if (prev && !reclaim)
780
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
781

782 783
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
784
			goto out;
785
		return root;
786
	}
K
KAMEZAWA Hiroyuki 已提交
787

788
	rcu_read_lock();
M
Michal Hocko 已提交
789

790
	if (reclaim) {
791
		struct mem_cgroup_per_node *mz;
792

793
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 795 796 797 798
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

799
		while (1) {
800
			pos = READ_ONCE(iter->position);
801 802
			if (!pos || css_tryget(&pos->css))
				break;
803
			/*
804 805 806 807 808 809
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
810
			 */
811 812
			(void)cmpxchg(&iter->position, pos, NULL);
		}
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
830
		}
K
KAMEZAWA Hiroyuki 已提交
831

832 833 834 835 836 837
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
838

839 840
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
841

842 843
		if (css_tryget(css))
			break;
844

845
		memcg = NULL;
846
	}
847 848 849

	if (reclaim) {
		/*
850 851 852
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
853
		 */
854 855
		(void)cmpxchg(&iter->position, pos, memcg);

856 857 858 859 860 861 862
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
863
	}
864

865 866
out_unlock:
	rcu_read_unlock();
867
out:
868 869 870
	if (prev && prev != root)
		css_put(&prev->css);

871
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
872
}
K
KAMEZAWA Hiroyuki 已提交
873

874 875 876 877 878 879 880
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
881 882 883 884 885 886
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
887

888 889 890 891
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
892 893
	struct mem_cgroup_per_node *mz;
	int nid;
894 895 896 897
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
898 899 900 901 902
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
903 904 905 906 907
			}
		}
	}
}

908 909 910 911 912 913
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
914
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
915
	     iter != NULL;				\
916
	     iter = mem_cgroup_iter(root, iter, NULL))
917

918
#define for_each_mem_cgroup(iter)			\
919
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
920
	     iter != NULL;				\
921
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
922

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

		css_task_iter_start(&iter->css, &it);
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

960
/**
961
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
962
 * @page: the page
963
 * @zone: zone of the page
964 965 966 967
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
968
 */
M
Mel Gorman 已提交
969
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
970
{
971
	struct mem_cgroup_per_node *mz;
972
	struct mem_cgroup *memcg;
973
	struct lruvec *lruvec;
974

975
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
976
		lruvec = &pgdat->lruvec;
977 978
		goto out;
	}
979

980
	memcg = page->mem_cgroup;
981
	/*
982
	 * Swapcache readahead pages are added to the LRU - and
983
	 * possibly migrated - before they are charged.
984
	 */
985 986
	if (!memcg)
		memcg = root_mem_cgroup;
987

988
	mz = mem_cgroup_page_nodeinfo(memcg, page);
989 990 991 992 993 994 995
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
996 997
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
998
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
999
}
1000

1001
/**
1002 1003 1004 1005
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1006
 *
1007 1008 1009
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010
 */
1011
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012
				int nr_pages)
1013
{
1014
	struct mem_cgroup_per_node *mz;
1015
	unsigned long *lru_size;
1016 1017
	long size;
	bool empty;
1018 1019 1020 1021

	if (mem_cgroup_disabled())
		return;

1022
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1023
	lru_size = mz->lru_size + lru;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1039
}
1040

1041
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1042
{
1043
	struct mem_cgroup *task_memcg;
1044
	struct task_struct *p;
1045
	bool ret;
1046

1047
	p = find_lock_task_mm(task);
1048
	if (p) {
1049
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1050 1051 1052 1053 1054 1055 1056
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1057
		rcu_read_lock();
1058 1059
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1060
		rcu_read_unlock();
1061
	}
1062 1063
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1064 1065 1066
	return ret;
}

1067
/**
1068
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1069
 * @memcg: the memory cgroup
1070
 *
1071
 * Returns the maximum amount of memory @mem can be charged with, in
1072
 * pages.
1073
 */
1074
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1075
{
1076 1077 1078
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1079

1080
	count = page_counter_read(&memcg->memory);
1081
	limit = READ_ONCE(memcg->memory.limit);
1082 1083 1084
	if (count < limit)
		margin = limit - count;

1085
	if (do_memsw_account()) {
1086
		count = page_counter_read(&memcg->memsw);
1087
		limit = READ_ONCE(memcg->memsw.limit);
1088 1089
		if (count <= limit)
			margin = min(margin, limit - count);
1090 1091
		else
			margin = 0;
1092 1093 1094
	}

	return margin;
1095 1096
}

1097
/*
Q
Qiang Huang 已提交
1098
 * A routine for checking "mem" is under move_account() or not.
1099
 *
Q
Qiang Huang 已提交
1100 1101 1102
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1103
 */
1104
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105
{
1106 1107
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1108
	bool ret = false;
1109 1110 1111 1112 1113 1114 1115 1116 1117
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1118

1119 1120
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1121 1122
unlock:
	spin_unlock(&mc.lock);
1123 1124 1125
	return ret;
}

1126
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 1128
{
	if (mc.moving_task && current != mc.moving_task) {
1129
		if (mem_cgroup_under_move(memcg)) {
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1142
#define K(x) ((x) << (PAGE_SHIFT-10))
1143
/**
1144
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145 1146 1147 1148 1149 1150 1151 1152
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1153 1154
	struct mem_cgroup *iter;
	unsigned int i;
1155 1156 1157

	rcu_read_lock();

1158 1159 1160 1161 1162 1163 1164 1165
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1166
	pr_cont_cgroup_path(memcg->css.cgroup);
1167
	pr_cont("\n");
1168 1169 1170

	rcu_read_unlock();

1171 1172 1173 1174 1175 1176 1177 1178 1179
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180 1181

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1182 1183
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1184 1185 1186
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188
				continue;
1189
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190 1191 1192 1193 1194 1195 1196 1197 1198
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1199 1200
}

1201 1202 1203 1204
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1205
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 1207
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1208 1209
	struct mem_cgroup *iter;

1210
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1211
		num++;
1212 1213 1214
	return num;
}

D
David Rientjes 已提交
1215 1216 1217
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1218
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1219
{
1220
	unsigned long limit;
1221

1222
	limit = memcg->memory.limit;
1223
	if (mem_cgroup_swappiness(memcg)) {
1224
		unsigned long memsw_limit;
1225
		unsigned long swap_limit;
1226

1227
		memsw_limit = memcg->memsw.limit;
1228 1229 1230
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1231 1232
	}
	return limit;
D
David Rientjes 已提交
1233 1234
}

1235
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236
				     int order)
1237
{
1238 1239 1240
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1241
		.memcg = memcg,
1242 1243 1244
		.gfp_mask = gfp_mask,
		.order = order,
	};
1245
	bool ret;
1246

1247
	mutex_lock(&oom_lock);
1248
	ret = out_of_memory(&oc);
1249
	mutex_unlock(&oom_lock);
1250
	return ret;
1251 1252
}

1253 1254
#if MAX_NUMNODES > 1

1255 1256
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1257
 * @memcg: the target memcg
1258 1259 1260 1261 1262 1263 1264
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1265
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1266 1267
		int nid, bool noswap)
{
1268
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1269 1270 1271
		return true;
	if (noswap || !total_swap_pages)
		return false;
1272
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1273 1274 1275 1276
		return true;
	return false;

}
1277 1278 1279 1280 1281 1282 1283

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1284
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1285 1286
{
	int nid;
1287 1288 1289 1290
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1291
	if (!atomic_read(&memcg->numainfo_events))
1292
		return;
1293
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1294 1295 1296
		return;

	/* make a nodemask where this memcg uses memory from */
1297
	memcg->scan_nodes = node_states[N_MEMORY];
1298

1299
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1300

1301 1302
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1303
	}
1304

1305 1306
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1321
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1322 1323 1324
{
	int node;

1325 1326
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1327

1328
	node = next_node_in(node, memcg->scan_nodes);
1329
	/*
1330 1331 1332
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1333 1334 1335 1336
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1337
	memcg->last_scanned_node = node;
1338 1339 1340
	return node;
}
#else
1341
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1342 1343 1344 1345 1346
{
	return 0;
}
#endif

1347
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1348
				   pg_data_t *pgdat,
1349 1350 1351 1352 1353 1354 1355 1356 1357
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1358
		.pgdat = pgdat,
1359 1360 1361
		.priority = 0,
	};

1362
	excess = soft_limit_excess(root_memcg);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1388
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1389
					pgdat, &nr_scanned);
1390
		*total_scanned += nr_scanned;
1391
		if (!soft_limit_excess(root_memcg))
1392
			break;
1393
	}
1394 1395
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1396 1397
}

1398 1399 1400 1401 1402 1403
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1404 1405
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1406 1407 1408 1409
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1410
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1411
{
1412
	struct mem_cgroup *iter, *failed = NULL;
1413

1414 1415
	spin_lock(&memcg_oom_lock);

1416
	for_each_mem_cgroup_tree(iter, memcg) {
1417
		if (iter->oom_lock) {
1418 1419 1420 1421 1422
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1423 1424
			mem_cgroup_iter_break(memcg, iter);
			break;
1425 1426
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1427
	}
K
KAMEZAWA Hiroyuki 已提交
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1440
		}
1441 1442
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1443 1444 1445 1446

	spin_unlock(&memcg_oom_lock);

	return !failed;
1447
}
1448

1449
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1450
{
K
KAMEZAWA Hiroyuki 已提交
1451 1452
	struct mem_cgroup *iter;

1453
	spin_lock(&memcg_oom_lock);
1454
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1455
	for_each_mem_cgroup_tree(iter, memcg)
1456
		iter->oom_lock = false;
1457
	spin_unlock(&memcg_oom_lock);
1458 1459
}

1460
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1461 1462 1463
{
	struct mem_cgroup *iter;

1464
	spin_lock(&memcg_oom_lock);
1465
	for_each_mem_cgroup_tree(iter, memcg)
1466 1467
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1468 1469
}

1470
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1471 1472 1473
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1474 1475
	/*
	 * When a new child is created while the hierarchy is under oom,
1476
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1477
	 */
1478
	spin_lock(&memcg_oom_lock);
1479
	for_each_mem_cgroup_tree(iter, memcg)
1480 1481 1482
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1483 1484
}

K
KAMEZAWA Hiroyuki 已提交
1485 1486
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1487
struct oom_wait_info {
1488
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1489 1490 1491 1492 1493 1494
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1495 1496
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1497 1498 1499
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1501

1502 1503
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1504 1505 1506 1507
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1508
static void memcg_oom_recover(struct mem_cgroup *memcg)
1509
{
1510 1511 1512 1513 1514 1515 1516 1517 1518
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1519
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1520 1521
}

1522
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1523
{
1524
	if (!current->memcg_may_oom)
1525
		return;
K
KAMEZAWA Hiroyuki 已提交
1526
	/*
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1539
	 */
1540
	css_get(&memcg->css);
T
Tejun Heo 已提交
1541 1542 1543
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1544 1545 1546 1547
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1548
 * @handle: actually kill/wait or just clean up the OOM state
1549
 *
1550 1551
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1552
 *
1553
 * Memcg supports userspace OOM handling where failed allocations must
1554 1555 1556 1557
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1558
 * the end of the page fault to complete the OOM handling.
1559 1560
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1561
 * completed, %false otherwise.
1562
 */
1563
bool mem_cgroup_oom_synchronize(bool handle)
1564
{
T
Tejun Heo 已提交
1565
	struct mem_cgroup *memcg = current->memcg_in_oom;
1566
	struct oom_wait_info owait;
1567
	bool locked;
1568 1569 1570

	/* OOM is global, do not handle */
	if (!memcg)
1571
		return false;
1572

1573
	if (!handle)
1574
		goto cleanup;
1575 1576 1577 1578 1579 1580

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1581

1582
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1593 1594
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1595
	} else {
1596
		schedule();
1597 1598 1599 1600 1601
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1602 1603 1604 1605 1606 1607 1608 1609
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1610
cleanup:
T
Tejun Heo 已提交
1611
	current->memcg_in_oom = NULL;
1612
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1613
	return true;
1614 1615
}

1616
/**
1617 1618
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1619
 *
1620 1621
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1622
 */
J
Johannes Weiner 已提交
1623
void lock_page_memcg(struct page *page)
1624 1625
{
	struct mem_cgroup *memcg;
1626
	unsigned long flags;
1627

1628 1629 1630 1631 1632
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1633 1634 1635
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1636
		return;
1637
again:
1638
	memcg = page->mem_cgroup;
1639
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1640
		return;
1641

Q
Qiang Huang 已提交
1642
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1643
		return;
1644

1645
	spin_lock_irqsave(&memcg->move_lock, flags);
1646
	if (memcg != page->mem_cgroup) {
1647
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1648 1649
		goto again;
	}
1650 1651 1652 1653

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1654
	 * the task who has the lock for unlock_page_memcg().
1655 1656 1657
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1658

J
Johannes Weiner 已提交
1659
	return;
1660
}
1661
EXPORT_SYMBOL(lock_page_memcg);
1662

1663
/**
1664
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1665
 * @page: the page
1666
 */
J
Johannes Weiner 已提交
1667
void unlock_page_memcg(struct page *page)
1668
{
J
Johannes Weiner 已提交
1669 1670
	struct mem_cgroup *memcg = page->mem_cgroup;

1671 1672 1673 1674 1675 1676 1677 1678
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1679

1680
	rcu_read_unlock();
1681
}
1682
EXPORT_SYMBOL(unlock_page_memcg);
1683

1684 1685 1686 1687
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1688
#define CHARGE_BATCH	32U
1689 1690
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1691
	unsigned int nr_pages;
1692
	struct work_struct work;
1693
	unsigned long flags;
1694
#define FLUSHING_CACHED_CHARGE	0
1695 1696
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697
static DEFINE_MUTEX(percpu_charge_mutex);
1698

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1709
 */
1710
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1711 1712
{
	struct memcg_stock_pcp *stock;
1713
	unsigned long flags;
1714
	bool ret = false;
1715

1716
	if (nr_pages > CHARGE_BATCH)
1717
		return ret;
1718

1719 1720 1721
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1722
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1723
		stock->nr_pages -= nr_pages;
1724 1725
		ret = true;
	}
1726 1727 1728

	local_irq_restore(flags);

1729 1730 1731 1732
	return ret;
}

/*
1733
 * Returns stocks cached in percpu and reset cached information.
1734 1735 1736 1737 1738
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1739
	if (stock->nr_pages) {
1740
		page_counter_uncharge(&old->memory, stock->nr_pages);
1741
		if (do_memsw_account())
1742
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1743
		css_put_many(&old->css, stock->nr_pages);
1744
		stock->nr_pages = 0;
1745 1746 1747 1748 1749 1750
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1751 1752 1753 1754 1755 1756
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1757
	drain_stock(stock);
1758
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1759 1760

	local_irq_restore(flags);
1761 1762 1763
}

/*
1764
 * Cache charges(val) to local per_cpu area.
1765
 * This will be consumed by consume_stock() function, later.
1766
 */
1767
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1768
{
1769 1770 1771 1772
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1773

1774
	stock = this_cpu_ptr(&memcg_stock);
1775
	if (stock->cached != memcg) { /* reset if necessary */
1776
		drain_stock(stock);
1777
		stock->cached = memcg;
1778
	}
1779
	stock->nr_pages += nr_pages;
1780 1781

	local_irq_restore(flags);
1782 1783 1784
}

/*
1785
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1786
 * of the hierarchy under it.
1787
 */
1788
static void drain_all_stock(struct mem_cgroup *root_memcg)
1789
{
1790
	int cpu, curcpu;
1791

1792 1793 1794
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1795 1796
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1797
	curcpu = get_cpu();
1798 1799
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1800
		struct mem_cgroup *memcg;
1801

1802 1803
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1804
			continue;
1805
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1806
			continue;
1807 1808 1809 1810 1811 1812
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1813
	}
1814
	put_cpu();
A
Andrew Morton 已提交
1815
	put_online_cpus();
1816
	mutex_unlock(&percpu_charge_mutex);
1817 1818
}

1819
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1820 1821 1822 1823 1824
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1825
	return 0;
1826 1827
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1848 1849 1850 1851 1852 1853 1854
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1855
	struct mem_cgroup *memcg;
1856 1857 1858 1859

	if (likely(!nr_pages))
		return;

1860 1861
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1862 1863 1864 1865
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1866 1867
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1868
{
1869
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1870
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1871
	struct mem_cgroup *mem_over_limit;
1872
	struct page_counter *counter;
1873
	unsigned long nr_reclaimed;
1874 1875
	bool may_swap = true;
	bool drained = false;
1876

1877
	if (mem_cgroup_is_root(memcg))
1878
		return 0;
1879
retry:
1880
	if (consume_stock(memcg, nr_pages))
1881
		return 0;
1882

1883
	if (!do_memsw_account() ||
1884 1885
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1886
			goto done_restock;
1887
		if (do_memsw_account())
1888 1889
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1890
	} else {
1891
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1892
		may_swap = false;
1893
	}
1894

1895 1896 1897 1898
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1899

1900 1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1909
		goto force;
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1920 1921 1922
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1923
	if (!gfpflags_allow_blocking(gfp_mask))
1924
		goto nomem;
1925

1926 1927
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1928 1929
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1930

1931
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1932
		goto retry;
1933

1934
	if (!drained) {
1935
		drain_all_stock(mem_over_limit);
1936 1937 1938 1939
		drained = true;
		goto retry;
	}

1940 1941
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1942 1943 1944 1945 1946 1947 1948 1949 1950
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1951
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1952 1953 1954 1955 1956 1957 1958 1959
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1960 1961 1962
	if (nr_retries--)
		goto retry;

1963
	if (gfp_mask & __GFP_NOFAIL)
1964
		goto force;
1965

1966
	if (fatal_signal_pending(current))
1967
		goto force;
1968

1969 1970
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

1971 1972
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1973
nomem:
1974
	if (!(gfp_mask & __GFP_NOFAIL))
1975
		return -ENOMEM;
1976 1977 1978 1979 1980 1981 1982
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
1983
	if (do_memsw_account())
1984 1985 1986 1987
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
1988 1989

done_restock:
1990
	css_get_many(&memcg->css, batch);
1991 1992
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
1993

1994
	/*
1995 1996
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
1997
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1998 1999 2000 2001
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2002 2003
	 */
	do {
2004
		if (page_counter_read(&memcg->memory) > memcg->high) {
2005 2006 2007 2008 2009
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2010
			current->memcg_nr_pages_over_high += batch;
2011 2012 2013
			set_notify_resume(current);
			break;
		}
2014
	} while ((memcg = parent_mem_cgroup(memcg)));
2015 2016

	return 0;
2017
}
2018

2019
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2020
{
2021 2022 2023
	if (mem_cgroup_is_root(memcg))
		return;

2024
	page_counter_uncharge(&memcg->memory, nr_pages);
2025
	if (do_memsw_account())
2026
		page_counter_uncharge(&memcg->memsw, nr_pages);
2027

2028
	css_put_many(&memcg->css, nr_pages);
2029 2030
}

2031 2032 2033 2034
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2035
	spin_lock_irq(zone_lru_lock(zone));
2036 2037 2038
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2039
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2054
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2055 2056 2057 2058
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2059
	spin_unlock_irq(zone_lru_lock(zone));
2060 2061
}

2062
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2063
			  bool lrucare)
2064
{
2065
	int isolated;
2066

2067
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2068 2069 2070 2071 2072

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2073 2074
	if (lrucare)
		lock_page_lru(page, &isolated);
2075

2076 2077
	/*
	 * Nobody should be changing or seriously looking at
2078
	 * page->mem_cgroup at this point:
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2090
	page->mem_cgroup = memcg;
2091

2092 2093
	if (lrucare)
		unlock_page_lru(page, isolated);
2094
}
2095

2096
#ifndef CONFIG_SLOB
2097
static int memcg_alloc_cache_id(void)
2098
{
2099 2100 2101
	int id, size;
	int err;

2102
	id = ida_simple_get(&memcg_cache_ida,
2103 2104 2105
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2106

2107
	if (id < memcg_nr_cache_ids)
2108 2109 2110 2111 2112 2113
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2114
	down_write(&memcg_cache_ids_sem);
2115 2116

	size = 2 * (id + 1);
2117 2118 2119 2120 2121
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2122
	err = memcg_update_all_caches(size);
2123 2124
	if (!err)
		err = memcg_update_all_list_lrus(size);
2125 2126 2127 2128 2129
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2130
	if (err) {
2131
		ida_simple_remove(&memcg_cache_ida, id);
2132 2133 2134 2135 2136 2137 2138
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2139
	ida_simple_remove(&memcg_cache_ida, id);
2140 2141
}

2142
struct memcg_kmem_cache_create_work {
2143 2144 2145 2146 2147
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2148 2149
static struct workqueue_struct *memcg_kmem_cache_create_wq;

2150
static void memcg_kmem_cache_create_func(struct work_struct *w)
2151
{
2152 2153
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2154 2155
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2156

2157
	memcg_create_kmem_cache(memcg, cachep);
2158

2159
	css_put(&memcg->css);
2160 2161 2162 2163 2164 2165
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2166 2167
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2168
{
2169
	struct memcg_kmem_cache_create_work *cw;
2170

2171
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2172
	if (!cw)
2173
		return;
2174 2175

	css_get(&memcg->css);
2176 2177 2178

	cw->memcg = memcg;
	cw->cachep = cachep;
2179
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2180

2181
	queue_work(memcg_kmem_cache_create_wq, &cw->work);
2182 2183
}

2184 2185
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2186 2187 2188 2189
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2190
	 * in __memcg_schedule_kmem_cache_create will recurse.
2191 2192 2193 2194 2195 2196 2197
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2198
	current->memcg_kmem_skip_account = 1;
2199
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2200
	current->memcg_kmem_skip_account = 0;
2201
}
2202

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2214 2215 2216
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2217 2218 2219
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2220
 *
2221 2222 2223 2224
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2225
 */
2226
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2227 2228
{
	struct mem_cgroup *memcg;
2229
	struct kmem_cache *memcg_cachep;
2230
	int kmemcg_id;
2231

2232
	VM_BUG_ON(!is_root_cache(cachep));
2233

2234
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2235 2236
		return cachep;

2237
	if (current->memcg_kmem_skip_account)
2238 2239
		return cachep;

2240
	memcg = get_mem_cgroup_from_mm(current->mm);
2241
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2242
	if (kmemcg_id < 0)
2243
		goto out;
2244

2245
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2246 2247
	if (likely(memcg_cachep))
		return memcg_cachep;
2248 2249 2250 2251 2252 2253 2254 2255 2256

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2257 2258 2259
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2260
	 */
2261
	memcg_schedule_kmem_cache_create(memcg, cachep);
2262
out:
2263
	css_put(&memcg->css);
2264
	return cachep;
2265 2266
}

2267 2268 2269 2270 2271
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2272 2273
{
	if (!is_root_cache(cachep))
2274
		css_put(&cachep->memcg_params.memcg->css);
2275 2276
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2288
{
2289 2290
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2291 2292
	int ret;

2293
	ret = try_charge(memcg, gfp, nr_pages);
2294
	if (ret)
2295
		return ret;
2296 2297 2298 2299 2300

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2301 2302
	}

2303
	page->mem_cgroup = memcg;
2304

2305
	return 0;
2306 2307
}

2308 2309 2310 2311 2312 2313 2314 2315 2316
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2317
{
2318
	struct mem_cgroup *memcg;
2319
	int ret = 0;
2320

2321 2322 2323
	if (memcg_kmem_bypass())
		return 0;

2324
	memcg = get_mem_cgroup_from_mm(current->mm);
2325
	if (!mem_cgroup_is_root(memcg)) {
2326
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2327 2328 2329
		if (!ret)
			__SetPageKmemcg(page);
	}
2330
	css_put(&memcg->css);
2331
	return ret;
2332
}
2333 2334 2335 2336 2337 2338
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2339
{
2340
	struct mem_cgroup *memcg = page->mem_cgroup;
2341
	unsigned int nr_pages = 1 << order;
2342 2343 2344 2345

	if (!memcg)
		return;

2346
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2347

2348 2349 2350
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2351
	page_counter_uncharge(&memcg->memory, nr_pages);
2352
	if (do_memsw_account())
2353
		page_counter_uncharge(&memcg->memsw, nr_pages);
2354

2355
	page->mem_cgroup = NULL;
2356 2357 2358 2359 2360

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2361
	css_put_many(&memcg->css, nr_pages);
2362
}
2363
#endif /* !CONFIG_SLOB */
2364

2365 2366 2367 2368
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2369
 * zone_lru_lock and migration entries setup in all page mappings.
2370
 */
2371
void mem_cgroup_split_huge_fixup(struct page *head)
2372
{
2373
	int i;
2374

2375 2376
	if (mem_cgroup_disabled())
		return;
2377

2378
	for (i = 1; i < HPAGE_PMD_NR; i++)
2379
		head[i].mem_cgroup = head->mem_cgroup;
2380

2381
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2382
		       HPAGE_PMD_NR);
2383
}
2384
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2385

A
Andrew Morton 已提交
2386
#ifdef CONFIG_MEMCG_SWAP
2387 2388
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2389
{
2390 2391
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2392
}
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2405
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2406 2407 2408
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2409
				struct mem_cgroup *from, struct mem_cgroup *to)
2410 2411 2412
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2413 2414
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2415 2416 2417

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2418
		mem_cgroup_swap_statistics(to, true);
2419 2420 2421 2422 2423 2424
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2425
				struct mem_cgroup *from, struct mem_cgroup *to)
2426 2427 2428
{
	return -EINVAL;
}
2429
#endif
K
KAMEZAWA Hiroyuki 已提交
2430

2431
static DEFINE_MUTEX(memcg_limit_mutex);
2432

2433
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2434
				   unsigned long limit)
2435
{
2436 2437 2438
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2439
	int retry_count;
2440
	int ret;
2441 2442 2443 2444 2445 2446

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2447 2448
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2449

2450
	oldusage = page_counter_read(&memcg->memory);
2451

2452
	do {
2453 2454 2455 2456
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2457 2458 2459 2460

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2461
			ret = -EINVAL;
2462 2463
			break;
		}
2464 2465 2466 2467
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2468 2469 2470 2471

		if (!ret)
			break;

2472 2473
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2474
		curusage = page_counter_read(&memcg->memory);
2475
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2476
		if (curusage >= oldusage)
2477 2478 2479
			retry_count--;
		else
			oldusage = curusage;
2480 2481
	} while (retry_count);

2482 2483
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2484

2485 2486 2487
	return ret;
}

L
Li Zefan 已提交
2488
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2489
					 unsigned long limit)
2490
{
2491 2492 2493
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2494
	int retry_count;
2495
	int ret;
2496

2497
	/* see mem_cgroup_resize_res_limit */
2498 2499 2500 2501 2502 2503
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2504 2505 2506 2507
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2508 2509 2510 2511

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2512 2513 2514
			ret = -EINVAL;
			break;
		}
2515 2516 2517 2518
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2519 2520 2521 2522

		if (!ret)
			break;

2523 2524
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2525
		curusage = page_counter_read(&memcg->memsw);
2526
		/* Usage is reduced ? */
2527
		if (curusage >= oldusage)
2528
			retry_count--;
2529 2530
		else
			oldusage = curusage;
2531 2532
	} while (retry_count);

2533 2534
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2535

2536 2537 2538
	return ret;
}

2539
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2540 2541 2542 2543
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2544
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2545 2546
	unsigned long reclaimed;
	int loop = 0;
2547
	struct mem_cgroup_tree_per_node *mctz;
2548
	unsigned long excess;
2549 2550 2551 2552 2553
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2554
	mctz = soft_limit_tree_node(pgdat->node_id);
2555 2556 2557 2558 2559 2560 2561 2562 2563

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
	if (RB_EMPTY_ROOT(&mctz->rb_root))
		return 0;

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2578
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2579 2580 2581
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2582
		spin_lock_irq(&mctz->lock);
2583
		__mem_cgroup_remove_exceeded(mz, mctz);
2584 2585 2586 2587 2588 2589

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2590 2591 2592
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2593
		excess = soft_limit_excess(mz->memcg);
2594 2595 2596 2597 2598 2599 2600 2601 2602
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2603
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2604
		spin_unlock_irq(&mctz->lock);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2622 2623 2624 2625 2626 2627
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2628 2629
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2630 2631 2632 2633 2634 2635
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2636 2637
}

2638
/*
2639
 * Reclaims as many pages from the given memcg as possible.
2640 2641 2642 2643 2644 2645 2646
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2647 2648
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2649
	/* try to free all pages in this cgroup */
2650
	while (nr_retries && page_counter_read(&memcg->memory)) {
2651
		int progress;
2652

2653 2654 2655
		if (signal_pending(current))
			return -EINTR;

2656 2657
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2658
		if (!progress) {
2659
			nr_retries--;
2660
			/* maybe some writeback is necessary */
2661
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2662
		}
2663 2664

	}
2665 2666

	return 0;
2667 2668
}

2669 2670 2671
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2672
{
2673
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2674

2675 2676
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2677
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2678 2679
}

2680 2681
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2682
{
2683
	return mem_cgroup_from_css(css)->use_hierarchy;
2684 2685
}

2686 2687
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2688 2689
{
	int retval = 0;
2690
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2691
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2692

2693
	if (memcg->use_hierarchy == val)
2694
		return 0;
2695

2696
	/*
2697
	 * If parent's use_hierarchy is set, we can't make any modifications
2698 2699 2700 2701 2702 2703
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2704
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2705
				(val == 1 || val == 0)) {
2706
		if (!memcg_has_children(memcg))
2707
			memcg->use_hierarchy = val;
2708 2709 2710 2711
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2712

2713 2714 2715
	return retval;
}

2716
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2717 2718
{
	struct mem_cgroup *iter;
2719
	int i;
2720

2721
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2722

2723 2724 2725 2726
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2727 2728
}

2729
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2730 2731
{
	struct mem_cgroup *iter;
2732
	int i;
2733

2734
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2735

2736 2737 2738 2739
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2740 2741
}

2742
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2743
{
2744
	unsigned long val = 0;
2745

2746
	if (mem_cgroup_is_root(memcg)) {
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2758
	} else {
2759
		if (!swap)
2760
			val = page_counter_read(&memcg->memory);
2761
		else
2762
			val = page_counter_read(&memcg->memsw);
2763
	}
2764
	return val;
2765 2766
}

2767 2768 2769 2770 2771 2772 2773
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2774

2775
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2776
			       struct cftype *cft)
B
Balbir Singh 已提交
2777
{
2778
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2779
	struct page_counter *counter;
2780

2781
	switch (MEMFILE_TYPE(cft->private)) {
2782
	case _MEM:
2783 2784
		counter = &memcg->memory;
		break;
2785
	case _MEMSWAP:
2786 2787
		counter = &memcg->memsw;
		break;
2788
	case _KMEM:
2789
		counter = &memcg->kmem;
2790
		break;
V
Vladimir Davydov 已提交
2791
	case _TCP:
2792
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2793
		break;
2794 2795 2796
	default:
		BUG();
	}
2797 2798 2799 2800

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2801
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2802
		if (counter == &memcg->memsw)
2803
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2816
}
2817

2818
#ifndef CONFIG_SLOB
2819
static int memcg_online_kmem(struct mem_cgroup *memcg)
2820 2821 2822
{
	int memcg_id;

2823 2824 2825
	if (cgroup_memory_nokmem)
		return 0;

2826
	BUG_ON(memcg->kmemcg_id >= 0);
2827
	BUG_ON(memcg->kmem_state);
2828

2829
	memcg_id = memcg_alloc_cache_id();
2830 2831
	if (memcg_id < 0)
		return memcg_id;
2832

2833
	static_branch_inc(&memcg_kmem_enabled_key);
2834
	/*
2835
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2836
	 * kmemcg_id. Setting the id after enabling static branching will
2837 2838 2839
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2840
	memcg->kmemcg_id = memcg_id;
2841
	memcg->kmem_state = KMEM_ONLINE;
2842 2843

	return 0;
2844 2845
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2879
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2880 2881 2882 2883 2884 2885 2886
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2887 2888
	rcu_read_unlock();

2889 2890 2891 2892 2893 2894 2895
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2896 2897 2898 2899
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2900 2901 2902 2903 2904 2905
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2906
#else
2907
static int memcg_online_kmem(struct mem_cgroup *memcg)
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2919
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2920
				   unsigned long limit)
2921
{
2922
	int ret;
2923 2924 2925 2926 2927

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2928
}
2929

V
Vladimir Davydov 已提交
2930 2931 2932 2933 2934 2935
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2936
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2937 2938 2939
	if (ret)
		goto out;

2940
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2941 2942 2943
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2944 2945 2946
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2947 2948 2949 2950 2951 2952
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2953
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2954 2955 2956 2957
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2958
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2959 2960 2961 2962 2963 2964
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2965 2966 2967 2968
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2969 2970
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2971
{
2972
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2973
	unsigned long nr_pages;
2974 2975
	int ret;

2976
	buf = strstrip(buf);
2977
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2978 2979
	if (ret)
		return ret;
2980

2981
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2982
	case RES_LIMIT:
2983 2984 2985 2986
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2987 2988 2989
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2990
			break;
2991 2992
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2993
			break;
2994 2995 2996
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
2997 2998 2999
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3000
		}
3001
		break;
3002 3003 3004
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3005 3006
		break;
	}
3007
	return ret ?: nbytes;
B
Balbir Singh 已提交
3008 3009
}

3010 3011
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3012
{
3013
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014
	struct page_counter *counter;
3015

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3026
	case _TCP:
3027
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3028
		break;
3029 3030 3031
	default:
		BUG();
	}
3032

3033
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3034
	case RES_MAX_USAGE:
3035
		page_counter_reset_watermark(counter);
3036 3037
		break;
	case RES_FAILCNT:
3038
		counter->failcnt = 0;
3039
		break;
3040 3041
	default:
		BUG();
3042
	}
3043

3044
	return nbytes;
3045 3046
}

3047
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3048 3049
					struct cftype *cft)
{
3050
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3051 3052
}

3053
#ifdef CONFIG_MMU
3054
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3055 3056
					struct cftype *cft, u64 val)
{
3057
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3058

3059
	if (val & ~MOVE_MASK)
3060
		return -EINVAL;
3061

3062
	/*
3063 3064 3065 3066
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3067
	 */
3068
	memcg->move_charge_at_immigrate = val;
3069 3070
	return 0;
}
3071
#else
3072
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3073 3074 3075 3076 3077
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3078

3079
#ifdef CONFIG_NUMA
3080
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3081
{
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3094
	int nid;
3095
	unsigned long nr;
3096
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3097

3098 3099 3100 3101 3102 3103 3104 3105 3106
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3107 3108
	}

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3124 3125 3126 3127 3128 3129
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3130
static int memcg_stat_show(struct seq_file *m, void *v)
3131
{
3132
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3133
	unsigned long memory, memsw;
3134 3135
	struct mem_cgroup *mi;
	unsigned int i;
3136

3137 3138 3139 3140
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3141 3142
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3143
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3144
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3145
			continue;
3146
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3147
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3148
	}
L
Lee Schermerhorn 已提交
3149

3150 3151 3152 3153 3154 3155 3156 3157
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3158
	/* Hierarchical information */
3159 3160 3161 3162
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3163
	}
3164 3165
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3166
	if (do_memsw_account())
3167 3168
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3169

3170
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171
		unsigned long long val = 0;
3172

3173
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3174
			continue;
3175 3176
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3177
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3195
	}
K
KAMEZAWA Hiroyuki 已提交
3196

K
KOSAKI Motohiro 已提交
3197 3198
#ifdef CONFIG_DEBUG_VM
	{
3199 3200
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3201
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3202 3203 3204
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3205 3206 3207
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3208

3209 3210 3211 3212 3213
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3214 3215 3216 3217
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3218 3219 3220
	}
#endif

3221 3222 3223
	return 0;
}

3224 3225
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3226
{
3227
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3228

3229
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3230 3231
}

3232 3233
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3234
{
3235
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3236

3237
	if (val > 100)
K
KOSAKI Motohiro 已提交
3238 3239
		return -EINVAL;

3240
	if (css->parent)
3241 3242 3243
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3244

K
KOSAKI Motohiro 已提交
3245 3246 3247
	return 0;
}

3248 3249 3250
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3251
	unsigned long usage;
3252 3253 3254 3255
	int i;

	rcu_read_lock();
	if (!swap)
3256
		t = rcu_dereference(memcg->thresholds.primary);
3257
	else
3258
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3259 3260 3261 3262

	if (!t)
		goto unlock;

3263
	usage = mem_cgroup_usage(memcg, swap);
3264 3265

	/*
3266
	 * current_threshold points to threshold just below or equal to usage.
3267 3268 3269
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3270
	i = t->current_threshold;
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3294
	t->current_threshold = i - 1;
3295 3296 3297 3298 3299 3300
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3301 3302
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3303
		if (do_memsw_account())
3304 3305 3306 3307
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3308 3309 3310 3311 3312 3313 3314
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3315 3316 3317 3318 3319 3320 3321
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3322 3323
}

3324
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3325 3326 3327
{
	struct mem_cgroup_eventfd_list *ev;

3328 3329
	spin_lock(&memcg_oom_lock);

3330
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3331
		eventfd_signal(ev->eventfd, 1);
3332 3333

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3334 3335 3336
	return 0;
}

3337
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3338
{
K
KAMEZAWA Hiroyuki 已提交
3339 3340
	struct mem_cgroup *iter;

3341
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3342
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3343 3344
}

3345
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3346
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3347
{
3348 3349
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3350 3351
	unsigned long threshold;
	unsigned long usage;
3352
	int i, size, ret;
3353

3354
	ret = page_counter_memparse(args, "-1", &threshold);
3355 3356 3357 3358
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3359

3360
	if (type == _MEM) {
3361
		thresholds = &memcg->thresholds;
3362
		usage = mem_cgroup_usage(memcg, false);
3363
	} else if (type == _MEMSWAP) {
3364
		thresholds = &memcg->memsw_thresholds;
3365
		usage = mem_cgroup_usage(memcg, true);
3366
	} else
3367 3368 3369
		BUG();

	/* Check if a threshold crossed before adding a new one */
3370
	if (thresholds->primary)
3371 3372
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3373
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3374 3375

	/* Allocate memory for new array of thresholds */
3376
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3377
			GFP_KERNEL);
3378
	if (!new) {
3379 3380 3381
		ret = -ENOMEM;
		goto unlock;
	}
3382
	new->size = size;
3383 3384

	/* Copy thresholds (if any) to new array */
3385 3386
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3387
				sizeof(struct mem_cgroup_threshold));
3388 3389
	}

3390
	/* Add new threshold */
3391 3392
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3393 3394

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3395
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3396 3397 3398
			compare_thresholds, NULL);

	/* Find current threshold */
3399
	new->current_threshold = -1;
3400
	for (i = 0; i < size; i++) {
3401
		if (new->entries[i].threshold <= usage) {
3402
			/*
3403 3404
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3405 3406
			 * it here.
			 */
3407
			++new->current_threshold;
3408 3409
		} else
			break;
3410 3411
	}

3412 3413 3414 3415 3416
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3417

3418
	/* To be sure that nobody uses thresholds */
3419 3420 3421 3422 3423 3424 3425 3426
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3427
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3428 3429
	struct eventfd_ctx *eventfd, const char *args)
{
3430
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3431 3432
}

3433
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3434 3435
	struct eventfd_ctx *eventfd, const char *args)
{
3436
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3437 3438
}

3439
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3440
	struct eventfd_ctx *eventfd, enum res_type type)
3441
{
3442 3443
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3444
	unsigned long usage;
3445
	int i, j, size;
3446 3447

	mutex_lock(&memcg->thresholds_lock);
3448 3449

	if (type == _MEM) {
3450
		thresholds = &memcg->thresholds;
3451
		usage = mem_cgroup_usage(memcg, false);
3452
	} else if (type == _MEMSWAP) {
3453
		thresholds = &memcg->memsw_thresholds;
3454
		usage = mem_cgroup_usage(memcg, true);
3455
	} else
3456 3457
		BUG();

3458 3459 3460
	if (!thresholds->primary)
		goto unlock;

3461 3462 3463 3464
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3465 3466 3467
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3468 3469 3470
			size++;
	}

3471
	new = thresholds->spare;
3472

3473 3474
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3475 3476
		kfree(new);
		new = NULL;
3477
		goto swap_buffers;
3478 3479
	}

3480
	new->size = size;
3481 3482

	/* Copy thresholds and find current threshold */
3483 3484 3485
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3486 3487
			continue;

3488
		new->entries[j] = thresholds->primary->entries[i];
3489
		if (new->entries[j].threshold <= usage) {
3490
			/*
3491
			 * new->current_threshold will not be used
3492 3493 3494
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3495
			++new->current_threshold;
3496 3497 3498 3499
		}
		j++;
	}

3500
swap_buffers:
3501 3502
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3503

3504
	rcu_assign_pointer(thresholds->primary, new);
3505

3506
	/* To be sure that nobody uses thresholds */
3507
	synchronize_rcu();
3508 3509 3510 3511 3512 3513

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3514
unlock:
3515 3516
	mutex_unlock(&memcg->thresholds_lock);
}
3517

3518
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3519 3520
	struct eventfd_ctx *eventfd)
{
3521
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3522 3523
}

3524
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3525 3526
	struct eventfd_ctx *eventfd)
{
3527
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3528 3529
}

3530
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3531
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3532 3533 3534 3535 3536 3537 3538
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3539
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3540 3541 3542 3543 3544

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3545
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3546
		eventfd_signal(eventfd, 1);
3547
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3548 3549 3550 3551

	return 0;
}

3552
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3553
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3554 3555 3556
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3557
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3558

3559
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3560 3561 3562 3563 3564 3565
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3566
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3567 3568
}

3569
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3570
{
3571
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3572

3573
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3574
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3575 3576 3577
	return 0;
}

3578
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3579 3580
	struct cftype *cft, u64 val)
{
3581
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3582 3583

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3584
	if (!css->parent || !((val == 0) || (val == 1)))
3585 3586
		return -EINVAL;

3587
	memcg->oom_kill_disable = val;
3588
	if (!val)
3589
		memcg_oom_recover(memcg);
3590

3591 3592 3593
	return 0;
}

3594 3595 3596 3597 3598 3599 3600
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3611 3612 3613 3614 3615
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3626 3627 3628
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3629 3630
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3631 3632 3633
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3634 3635 3636
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3637
 *
3638 3639 3640 3641 3642
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3643
 */
3644 3645 3646
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3647 3648 3649 3650 3651 3652 3653 3654
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3655 3656 3657
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3658 3659 3660 3661 3662

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3663
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3664 3665 3666 3667
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3679 3680 3681 3682
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3683 3684
#endif	/* CONFIG_CGROUP_WRITEBACK */

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3698 3699 3700 3701 3702
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3703
static void memcg_event_remove(struct work_struct *work)
3704
{
3705 3706
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3707
	struct mem_cgroup *memcg = event->memcg;
3708 3709 3710

	remove_wait_queue(event->wqh, &event->wait);

3711
	event->unregister_event(memcg, event->eventfd);
3712 3713 3714 3715 3716 3717

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3718
	css_put(&memcg->css);
3719 3720 3721 3722 3723 3724 3725
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3726 3727
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3728
{
3729 3730
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3731
	struct mem_cgroup *memcg = event->memcg;
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3744
		spin_lock(&memcg->event_list_lock);
3745 3746 3747 3748 3749 3750 3751 3752
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3753
		spin_unlock(&memcg->event_list_lock);
3754 3755 3756 3757 3758
	}

	return 0;
}

3759
static void memcg_event_ptable_queue_proc(struct file *file,
3760 3761
		wait_queue_head_t *wqh, poll_table *pt)
{
3762 3763
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3764 3765 3766 3767 3768 3769

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3770 3771
 * DO NOT USE IN NEW FILES.
 *
3772 3773 3774 3775 3776
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3777 3778
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3779
{
3780
	struct cgroup_subsys_state *css = of_css(of);
3781
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3782
	struct mem_cgroup_event *event;
3783 3784 3785 3786
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3787
	const char *name;
3788 3789 3790
	char *endp;
	int ret;

3791 3792 3793
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3794 3795
	if (*endp != ' ')
		return -EINVAL;
3796
	buf = endp + 1;
3797

3798
	cfd = simple_strtoul(buf, &endp, 10);
3799 3800
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3801
	buf = endp + 1;
3802 3803 3804 3805 3806

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3807
	event->memcg = memcg;
3808
	INIT_LIST_HEAD(&event->list);
3809 3810 3811
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3837 3838 3839 3840 3841
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3842 3843
	 *
	 * DO NOT ADD NEW FILES.
3844
	 */
A
Al Viro 已提交
3845
	name = cfile.file->f_path.dentry->d_name.name;
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3857 3858
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3859 3860 3861 3862 3863
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3864
	/*
3865 3866 3867
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3868
	 */
A
Al Viro 已提交
3869
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3870
					       &memory_cgrp_subsys);
3871
	ret = -EINVAL;
3872
	if (IS_ERR(cfile_css))
3873
		goto out_put_cfile;
3874 3875
	if (cfile_css != css) {
		css_put(cfile_css);
3876
		goto out_put_cfile;
3877
	}
3878

3879
	ret = event->register_event(memcg, event->eventfd, buf);
3880 3881 3882 3883 3884
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3885 3886 3887
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3888 3889 3890 3891

	fdput(cfile);
	fdput(efile);

3892
	return nbytes;
3893 3894

out_put_css:
3895
	css_put(css);
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3908
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3909
	{
3910
		.name = "usage_in_bytes",
3911
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3912
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3913
	},
3914 3915
	{
		.name = "max_usage_in_bytes",
3916
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3917
		.write = mem_cgroup_reset,
3918
		.read_u64 = mem_cgroup_read_u64,
3919
	},
B
Balbir Singh 已提交
3920
	{
3921
		.name = "limit_in_bytes",
3922
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3923
		.write = mem_cgroup_write,
3924
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3925
	},
3926 3927 3928
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3929
		.write = mem_cgroup_write,
3930
		.read_u64 = mem_cgroup_read_u64,
3931
	},
B
Balbir Singh 已提交
3932 3933
	{
		.name = "failcnt",
3934
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3935
		.write = mem_cgroup_reset,
3936
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3937
	},
3938 3939
	{
		.name = "stat",
3940
		.seq_show = memcg_stat_show,
3941
	},
3942 3943
	{
		.name = "force_empty",
3944
		.write = mem_cgroup_force_empty_write,
3945
	},
3946 3947 3948 3949 3950
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3951
	{
3952
		.name = "cgroup.event_control",		/* XXX: for compat */
3953
		.write = memcg_write_event_control,
3954
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3955
	},
K
KOSAKI Motohiro 已提交
3956 3957 3958 3959 3960
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3961 3962 3963 3964 3965
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3966 3967
	{
		.name = "oom_control",
3968
		.seq_show = mem_cgroup_oom_control_read,
3969
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3970 3971
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3972 3973 3974
	{
		.name = "pressure_level",
	},
3975 3976 3977
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3978
		.seq_show = memcg_numa_stat_show,
3979 3980
	},
#endif
3981 3982 3983
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3984
		.write = mem_cgroup_write,
3985
		.read_u64 = mem_cgroup_read_u64,
3986 3987 3988 3989
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3990
		.read_u64 = mem_cgroup_read_u64,
3991 3992 3993 3994
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3995
		.write = mem_cgroup_reset,
3996
		.read_u64 = mem_cgroup_read_u64,
3997 3998 3999 4000
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4001
		.write = mem_cgroup_reset,
4002
		.read_u64 = mem_cgroup_read_u64,
4003
	},
4004 4005 4006
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4007 4008 4009 4010
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4011 4012
	},
#endif
V
Vladimir Davydov 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4036
	{ },	/* terminate */
4037
};
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4065
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4066
{
4067
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4068
	atomic_add(n, &memcg->id.ref);
4069 4070
}

4071
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4072
{
4073
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4074
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4075 4076 4077 4078 4079 4080 4081 4082
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4105
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4106 4107
{
	struct mem_cgroup_per_node *pn;
4108
	int tmp = node;
4109 4110 4111 4112 4113 4114 4115 4116
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4117 4118
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4119
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4120 4121
	if (!pn)
		return 1;
4122

4123 4124 4125 4126 4127
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4128
	memcg->nodeinfo[node] = pn;
4129 4130 4131
	return 0;
}

4132
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4133
{
4134
	kfree(memcg->nodeinfo[node]);
4135 4136
}

4137
static void mem_cgroup_free(struct mem_cgroup *memcg)
4138
{
4139
	int node;
4140

4141
	memcg_wb_domain_exit(memcg);
4142
	for_each_node(node)
4143
		free_mem_cgroup_per_node_info(memcg, node);
4144
	free_percpu(memcg->stat);
4145
	kfree(memcg);
4146
}
4147

4148
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4149
{
4150
	struct mem_cgroup *memcg;
4151
	size_t size;
4152
	int node;
B
Balbir Singh 已提交
4153

4154 4155 4156 4157
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4158
	if (!memcg)
4159 4160
		return NULL;

4161 4162 4163 4164 4165 4166
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4167 4168 4169
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4170

B
Bob Liu 已提交
4171
	for_each_node(node)
4172
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4173
			goto fail;
4174

4175 4176
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4177

4178
	INIT_WORK(&memcg->high_work, high_work_func);
4179 4180 4181 4182
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4183
	vmpressure_init(&memcg->vmpressure);
4184 4185
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4186
	memcg->socket_pressure = jiffies;
4187
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4188 4189
	memcg->kmemcg_id = -1;
#endif
4190 4191 4192
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4193
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4194 4195
	return memcg;
fail:
4196 4197
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4198 4199
	mem_cgroup_free(memcg);
	return NULL;
4200 4201
}

4202 4203
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4204
{
4205 4206 4207
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4208

4209 4210 4211
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4212

4213 4214 4215 4216 4217 4218 4219 4220
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4221
		page_counter_init(&memcg->memory, &parent->memory);
4222
		page_counter_init(&memcg->swap, &parent->swap);
4223 4224
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4225
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4226
	} else {
4227
		page_counter_init(&memcg->memory, NULL);
4228
		page_counter_init(&memcg->swap, NULL);
4229 4230
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4231
		page_counter_init(&memcg->tcpmem, NULL);
4232 4233 4234 4235 4236
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4237
		if (parent != root_mem_cgroup)
4238
			memory_cgrp_subsys.broken_hierarchy = true;
4239
	}
4240

4241 4242 4243 4244 4245 4246
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4247
	error = memcg_online_kmem(memcg);
4248 4249
	if (error)
		goto fail;
4250

4251
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4252
		static_branch_inc(&memcg_sockets_enabled_key);
4253

4254 4255 4256
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4257
	return ERR_PTR(-ENOMEM);
4258 4259
}

4260
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4261
{
4262 4263
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4264
	/* Online state pins memcg ID, memcg ID pins CSS */
4265
	atomic_set(&memcg->id.ref, 1);
4266
	css_get(css);
4267
	return 0;
B
Balbir Singh 已提交
4268 4269
}

4270
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4271
{
4272
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273
	struct mem_cgroup_event *event, *tmp;
4274 4275 4276 4277 4278 4279

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4280 4281
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4282 4283 4284
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4285
	spin_unlock(&memcg->event_list_lock);
4286

4287
	memcg_offline_kmem(memcg);
4288
	wb_memcg_offline(memcg);
4289 4290

	mem_cgroup_id_put(memcg);
4291 4292
}

4293 4294 4295 4296 4297 4298 4299
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4300
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4301
{
4302
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303

4304
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4305
		static_branch_dec(&memcg_sockets_enabled_key);
4306

4307
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4308
		static_branch_dec(&memcg_sockets_enabled_key);
4309

4310 4311 4312
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4313
	memcg_free_kmem(memcg);
4314
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4315 4316
}

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4334 4335 4336 4337 4338
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4339 4340
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4341
	memcg->soft_limit = PAGE_COUNTER_MAX;
4342
	memcg_wb_domain_size_changed(memcg);
4343 4344
}

4345
#ifdef CONFIG_MMU
4346
/* Handlers for move charge at task migration. */
4347
static int mem_cgroup_do_precharge(unsigned long count)
4348
{
4349
	int ret;
4350

4351 4352
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4353
	if (!ret) {
4354 4355 4356
		mc.precharge += count;
		return ret;
	}
4357 4358

	/* Try charges one by one with reclaim */
4359
	while (count--) {
4360
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4361 4362
		if (ret)
			return ret;
4363
		mc.precharge++;
4364
		cond_resched();
4365
	}
4366
	return 0;
4367 4368 4369 4370
}

union mc_target {
	struct page	*page;
4371
	swp_entry_t	ent;
4372 4373 4374
};

enum mc_target_type {
4375
	MC_TARGET_NONE = 0,
4376
	MC_TARGET_PAGE,
4377
	MC_TARGET_SWAP,
4378 4379
};

D
Daisuke Nishimura 已提交
4380 4381
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4382
{
D
Daisuke Nishimura 已提交
4383
	struct page *page = vm_normal_page(vma, addr, ptent);
4384

D
Daisuke Nishimura 已提交
4385 4386 4387
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4388
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4389
			return NULL;
4390 4391 4392 4393
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4394 4395 4396 4397 4398 4399
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4400
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4401
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4402
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4403 4404 4405 4406
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4407
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4408
		return NULL;
4409 4410 4411 4412
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4413
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4414
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4415 4416 4417 4418
		entry->val = ent.val;

	return page;
}
4419 4420
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4421
			pte_t ptent, swp_entry_t *entry)
4422 4423 4424 4425
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4426

4427 4428 4429 4430 4431 4432 4433 4434 4435
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4436
	if (!(mc.flags & MOVE_FILE))
4437 4438 4439
		return NULL;

	mapping = vma->vm_file->f_mapping;
4440
	pgoff = linear_page_index(vma, addr);
4441 4442

	/* page is moved even if it's not RSS of this task(page-faulted). */
4443 4444
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4445 4446 4447 4448
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4449
			if (do_memsw_account())
4450
				*entry = swp;
4451 4452
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4453 4454 4455 4456 4457
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4458
#endif
4459 4460 4461
	return page;
}

4462 4463 4464
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4465
 * @compound: charge the page as compound or small page
4466 4467 4468
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4469
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4470 4471 4472 4473 4474
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4475
				   bool compound,
4476 4477 4478 4479
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4480
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4481
	int ret;
4482
	bool anon;
4483 4484 4485

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4486
	VM_BUG_ON(compound && !PageTransHuge(page));
4487 4488

	/*
4489
	 * Prevent mem_cgroup_migrate() from looking at
4490
	 * page->mem_cgroup of its source page while we change it.
4491
	 */
4492
	ret = -EBUSY;
4493 4494 4495 4496 4497 4498 4499
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4500 4501
	anon = PageAnon(page);

4502 4503
	spin_lock_irqsave(&from->move_lock, flags);

4504
	if (!anon && page_mapped(page)) {
4505 4506 4507 4508 4509 4510
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4547
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548
	memcg_check_events(to, page);
4549
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550 4551 4552 4553 4554 4555 4556 4557
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4577
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4578 4579 4580
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4581
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4582 4583 4584 4585 4586
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4587
		page = mc_handle_swap_pte(vma, ptent, &ent);
4588
	else if (pte_none(ptent))
4589
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4590 4591

	if (!page && !ent.val)
4592
		return ret;
4593 4594
	if (page) {
		/*
4595
		 * Do only loose check w/o serialization.
4596
		 * mem_cgroup_move_account() checks the page is valid or
4597
		 * not under LRU exclusion.
4598
		 */
4599
		if (page->mem_cgroup == mc.from) {
4600 4601 4602 4603 4604 4605 4606
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4607 4608
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4609
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4610 4611 4612
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4613 4614 4615 4616
	}
	return ret;
}

4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4630
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4631
	if (!(mc.flags & MOVE_ANON))
4632
		return ret;
4633
	if (page->mem_cgroup == mc.from) {
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4650 4651 4652 4653
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4654
	struct vm_area_struct *vma = walk->vma;
4655 4656 4657
	pte_t *pte;
	spinlock_t *ptl;

4658 4659
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4660 4661
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4662
		spin_unlock(ptl);
4663
		return 0;
4664
	}
4665

4666 4667
	if (pmd_trans_unstable(pmd))
		return 0;
4668 4669
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4670
		if (get_mctgt_type(vma, addr, *pte, NULL))
4671 4672 4673 4674
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4675 4676 4677
	return 0;
}

4678 4679 4680 4681
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4682 4683 4684 4685
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4686
	down_read(&mm->mmap_sem);
4687 4688
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4689
	up_read(&mm->mmap_sem);
4690 4691 4692 4693 4694 4695 4696 4697 4698

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4699 4700 4701 4702 4703
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4704 4705
}

4706 4707
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4708
{
4709 4710 4711
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4712
	/* we must uncharge all the leftover precharges from mc.to */
4713
	if (mc.precharge) {
4714
		cancel_charge(mc.to, mc.precharge);
4715 4716 4717 4718 4719 4720 4721
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4722
		cancel_charge(mc.from, mc.moved_charge);
4723
		mc.moved_charge = 0;
4724
	}
4725 4726 4727
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4728
		if (!mem_cgroup_is_root(mc.from))
4729
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4730

4731 4732
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4733
		/*
4734 4735
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4736
		 */
4737
		if (!mem_cgroup_is_root(mc.to))
4738 4739
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4740 4741
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4742

4743 4744
		mc.moved_swap = 0;
	}
4745 4746 4747 4748 4749 4750 4751
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4752 4753
	struct mm_struct *mm = mc.mm;

4754 4755 4756 4757 4758 4759
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4760
	spin_lock(&mc.lock);
4761 4762
	mc.from = NULL;
	mc.to = NULL;
4763
	mc.mm = NULL;
4764
	spin_unlock(&mc.lock);
4765 4766

	mmput(mm);
4767 4768
}

4769
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4770
{
4771
	struct cgroup_subsys_state *css;
4772
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4773
	struct mem_cgroup *from;
4774
	struct task_struct *leader, *p;
4775
	struct mm_struct *mm;
4776
	unsigned long move_flags;
4777
	int ret = 0;
4778

4779 4780
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4781 4782
		return 0;

4783 4784 4785 4786 4787 4788 4789
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4790
	cgroup_taskset_for_each_leader(leader, css, tset) {
4791 4792
		WARN_ON_ONCE(p);
		p = leader;
4793
		memcg = mem_cgroup_from_css(css);
4794 4795 4796 4797
	}
	if (!p)
		return 0;

4798 4799 4800 4801 4802 4803 4804 4805 4806
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4823
		mc.mm = mm;
4824 4825 4826 4827 4828 4829 4830 4831 4832
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4833 4834
	} else {
		mmput(mm);
4835 4836 4837 4838
	}
	return ret;
}

4839
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4840
{
4841 4842
	if (mc.to)
		mem_cgroup_clear_mc();
4843 4844
}

4845 4846 4847
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4848
{
4849
	int ret = 0;
4850
	struct vm_area_struct *vma = walk->vma;
4851 4852
	pte_t *pte;
	spinlock_t *ptl;
4853 4854 4855
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4856

4857 4858
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4859
		if (mc.precharge < HPAGE_PMD_NR) {
4860
			spin_unlock(ptl);
4861 4862 4863 4864 4865 4866
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4867
				if (!mem_cgroup_move_account(page, true,
4868
							     mc.from, mc.to)) {
4869 4870 4871 4872 4873 4874 4875
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4876
		spin_unlock(ptl);
4877
		return 0;
4878 4879
	}

4880 4881
	if (pmd_trans_unstable(pmd))
		return 0;
4882 4883 4884 4885
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4886
		swp_entry_t ent;
4887 4888 4889 4890

		if (!mc.precharge)
			break;

4891
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4892 4893
		case MC_TARGET_PAGE:
			page = target.page;
4894 4895 4896 4897 4898 4899 4900 4901
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4902 4903
			if (isolate_lru_page(page))
				goto put;
4904 4905
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4906
				mc.precharge--;
4907 4908
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4909 4910
			}
			putback_lru_page(page);
4911
put:			/* get_mctgt_type() gets the page */
4912 4913
			put_page(page);
			break;
4914 4915
		case MC_TARGET_SWAP:
			ent = target.ent;
4916
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4917
				mc.precharge--;
4918 4919 4920
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4921
			break;
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4936
		ret = mem_cgroup_do_precharge(1);
4937 4938 4939 4940 4941 4942 4943
		if (!ret)
			goto retry;
	}

	return ret;
}

4944
static void mem_cgroup_move_charge(void)
4945
{
4946 4947
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4948
		.mm = mc.mm,
4949
	};
4950 4951

	lru_add_drain_all();
4952
	/*
4953 4954 4955
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4956 4957 4958
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4959
retry:
4960
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4972 4973 4974 4975
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
4976 4977
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

4978
	up_read(&mc.mm->mmap_sem);
4979
	atomic_dec(&mc.from->moving_account);
4980 4981
}

4982
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4983
{
4984 4985
	if (mc.to) {
		mem_cgroup_move_charge();
4986
		mem_cgroup_clear_mc();
4987
	}
B
Balbir Singh 已提交
4988
}
4989
#else	/* !CONFIG_MMU */
4990
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4991 4992 4993
{
	return 0;
}
4994
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4995 4996
{
}
4997
static void mem_cgroup_move_task(void)
4998 4999 5000
{
}
#endif
B
Balbir Singh 已提交
5001

5002 5003
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5004 5005
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5006
 */
5007
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5008 5009
{
	/*
5010
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5011 5012 5013
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5014
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5015 5016 5017
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5018 5019
}

5020 5021 5022
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5023 5024 5025
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5026 5027 5028 5029 5030
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031
	unsigned long low = READ_ONCE(memcg->low);
5032 5033

	if (low == PAGE_COUNTER_MAX)
5034
		seq_puts(m, "max\n");
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5049
	err = page_counter_memparse(buf, "max", &low);
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5061
	unsigned long high = READ_ONCE(memcg->high);
5062 5063

	if (high == PAGE_COUNTER_MAX)
5064
		seq_puts(m, "max\n");
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5075
	unsigned long nr_pages;
5076 5077 5078 5079
	unsigned long high;
	int err;

	buf = strstrip(buf);
5080
	err = page_counter_memparse(buf, "max", &high);
5081 5082 5083 5084 5085
	if (err)
		return err;

	memcg->high = high;

5086 5087 5088 5089 5090
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5091
	memcg_wb_domain_size_changed(memcg);
5092 5093 5094 5095 5096 5097
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098
	unsigned long max = READ_ONCE(memcg->memory.limit);
5099 5100

	if (max == PAGE_COUNTER_MAX)
5101
		seq_puts(m, "max\n");
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 5113
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5114 5115 5116 5117
	unsigned long max;
	int err;

	buf = strstrip(buf);
5118
	err = page_counter_memparse(buf, "max", &max);
5119 5120 5121
	if (err)
		return err;

5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5152

5153
	memcg_wb_domain_size_changed(memcg);
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5169 5170 5171
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 5173
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5187 5188 5189
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5190
	seq_printf(m, "anon %llu\n",
5191
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5192
	seq_printf(m, "file %llu\n",
5193
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5194
	seq_printf(m, "kernel_stack %llu\n",
5195
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5196 5197 5198
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5199
	seq_printf(m, "sock %llu\n",
5200
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5201 5202

	seq_printf(m, "file_mapped %llu\n",
5203
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5204
	seq_printf(m, "file_dirty %llu\n",
5205
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5206
	seq_printf(m, "file_writeback %llu\n",
5207
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5219 5220 5221 5222 5223
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5224 5225 5226
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5227
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5228
	seq_printf(m, "pgmajfault %lu\n",
5229
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5230 5231 5232 5233

	return 0;
}

5234 5235 5236
static struct cftype memory_files[] = {
	{
		.name = "current",
5237
		.flags = CFTYPE_NOT_ON_ROOT,
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5261
		.file_offset = offsetof(struct mem_cgroup, events_file),
5262 5263
		.seq_show = memory_events_show,
	},
5264 5265 5266 5267 5268
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5269 5270 5271
	{ }	/* terminate */
};

5272
struct cgroup_subsys memory_cgrp_subsys = {
5273
	.css_alloc = mem_cgroup_css_alloc,
5274
	.css_online = mem_cgroup_css_online,
5275
	.css_offline = mem_cgroup_css_offline,
5276
	.css_released = mem_cgroup_css_released,
5277
	.css_free = mem_cgroup_css_free,
5278
	.css_reset = mem_cgroup_css_reset,
5279 5280
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5281
	.post_attach = mem_cgroup_move_task,
5282
	.bind = mem_cgroup_bind,
5283 5284
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5285
	.early_init = 0,
B
Balbir Singh 已提交
5286
};
5287

5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5310
	if (page_counter_read(&memcg->memory) >= memcg->low)
5311 5312 5313 5314 5315 5316 5317 5318
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5319
		if (page_counter_read(&memcg->memory) >= memcg->low)
5320 5321 5322 5323 5324
			return false;
	}
	return true;
}

5325 5326 5327 5328 5329 5330
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5331
 * @compound: charge the page as compound or small page
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5344 5345
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5346 5347
{
	struct mem_cgroup *memcg = NULL;
5348
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5362
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5363
		if (page->mem_cgroup)
5364
			goto out;
5365

5366
		if (do_swap_account) {
5367 5368 5369 5370 5371 5372 5373 5374 5375
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5394
 * @compound: charge the page as compound or small page
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5407
			      bool lrucare, bool compound)
5408
{
5409
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5424 5425 5426
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5427
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5428 5429
	memcg_check_events(memcg, page);
	local_irq_enable();
5430

5431
	if (do_memsw_account() && PageSwapCache(page)) {
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5446
 * @compound: charge the page as compound or small page
5447 5448 5449
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5450 5451
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5452
{
5453
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5468 5469
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5470 5471
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5472
{
5473
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5474 5475
	unsigned long flags;

5476
	if (!mem_cgroup_is_root(memcg)) {
5477
		page_counter_uncharge(&memcg->memory, nr_pages);
5478
		if (do_memsw_account())
5479
			page_counter_uncharge(&memcg->memsw, nr_pages);
5480 5481
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5482 5483
		memcg_oom_recover(memcg);
	}
5484 5485 5486 5487 5488 5489

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 5492
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5493 5494

	if (!mem_cgroup_is_root(memcg))
5495
		css_put_many(&memcg->css, nr_pages);
5496 5497 5498 5499 5500 5501 5502 5503
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5504
	unsigned long nr_kmem = 0;
5505 5506 5507 5508
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5509 5510 5511 5512
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5513 5514 5515 5516 5517 5518 5519 5520
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5521
		if (!page->mem_cgroup)
5522 5523 5524 5525
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5526
		 * page->mem_cgroup at this point, we have fully
5527
		 * exclusive access to the page.
5528 5529
		 */

5530
		if (memcg != page->mem_cgroup) {
5531
			if (memcg) {
5532
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5533 5534 5535
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5536
			}
5537
			memcg = page->mem_cgroup;
5538 5539
		}

5540 5541
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5542

5543 5544 5545 5546 5547 5548 5549 5550 5551
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
5552
		} else {
5553
			nr_kmem += 1 << compound_order(page);
5554 5555
			__ClearPageKmemcg(page);
		}
5556

5557
		page->mem_cgroup = NULL;
5558 5559 5560
	} while (next != page_list);

	if (memcg)
5561
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5562
			       nr_huge, nr_kmem, page);
5563 5564
}

5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5577
	/* Don't touch page->lru of any random page, pre-check: */
5578
	if (!page->mem_cgroup)
5579 5580
		return;

5581 5582 5583
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5584

5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5596

5597 5598
	if (!list_empty(page_list))
		uncharge_list(page_list);
5599 5600 5601
}

/**
5602 5603 5604
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5605
 *
5606 5607
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5608 5609 5610
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5611
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5612
{
5613
	struct mem_cgroup *memcg;
5614 5615
	unsigned int nr_pages;
	bool compound;
5616
	unsigned long flags;
5617 5618 5619 5620

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5621 5622
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5623 5624 5625 5626 5627

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5628
	if (newpage->mem_cgroup)
5629 5630
		return;

5631
	/* Swapcache readahead pages can get replaced before being charged */
5632
	memcg = oldpage->mem_cgroup;
5633
	if (!memcg)
5634 5635
		return;

5636 5637 5638 5639 5640 5641 5642 5643
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5644

5645
	commit_charge(newpage, memcg, false);
5646

5647
	local_irq_save(flags);
5648 5649
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5650
	local_irq_restore(flags);
5651 5652
}

5653
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5654 5655
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5656
void mem_cgroup_sk_alloc(struct sock *sk)
5657 5658 5659
{
	struct mem_cgroup *memcg;

5660 5661 5662 5663 5664
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5680 5681
	if (memcg == root_mem_cgroup)
		goto out;
5682
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5683 5684
		goto out;
	if (css_tryget_online(&memcg->css))
5685
		sk->sk_memcg = memcg;
5686
out:
5687 5688 5689
	rcu_read_unlock();
}

5690
void mem_cgroup_sk_free(struct sock *sk)
5691
{
5692 5693
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5706
	gfp_t gfp_mask = GFP_KERNEL;
5707

5708
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5709
		struct page_counter *fail;
5710

5711 5712
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5713 5714
			return true;
		}
5715 5716
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5717
		return false;
5718
	}
5719

5720 5721 5722 5723
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5724 5725
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5726 5727 5728 5729
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5740
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5741
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5742 5743
		return;
	}
5744

5745 5746
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5747 5748
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5749 5750
}

5751 5752 5753 5754 5755 5756 5757 5758 5759
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5760 5761
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5762 5763 5764 5765
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5766

5767
/*
5768 5769
 * subsys_initcall() for memory controller.
 *
5770 5771 5772 5773
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5774 5775 5776
 */
static int __init mem_cgroup_init(void)
{
5777 5778
	int cpu, node;

5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
	 * so use a special workqueue to avoid stalling all worker
	 * threads in case lots of cgroups are created simultaneously.
	 */
	memcg_kmem_cache_create_wq =
		alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
	BUG_ON(!memcg_kmem_cache_create_wq);
#endif

5790 5791
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5803 5804
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5805 5806 5807
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5808 5809 5810
	return 0;
}
subsys_initcall(mem_cgroup_init);
5811 5812

#ifdef CONFIG_MEMCG_SWAP
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5831 5832 5833 5834 5835 5836 5837 5838 5839
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5840
	struct mem_cgroup *memcg, *swap_memcg;
5841 5842 5843 5844 5845
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5846
	if (!do_memsw_account())
5847 5848 5849 5850 5851 5852 5853 5854
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5855 5856 5857 5858 5859 5860 5861
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5862
	VM_BUG_ON_PAGE(oldid, page);
5863
	mem_cgroup_swap_statistics(swap_memcg, true);
5864 5865 5866 5867 5868 5869

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5870 5871 5872 5873 5874 5875
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
			page_counter_charge(&swap_memcg->memsw, 1);
		page_counter_uncharge(&memcg->memsw, 1);
	}

5876 5877 5878 5879 5880 5881 5882
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5883
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5884
	memcg_check_events(memcg, page);
5885 5886 5887

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5888 5889
}

5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

5914 5915
	memcg = mem_cgroup_id_get_online(memcg);

5916
	if (!mem_cgroup_is_root(memcg) &&
5917 5918
	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
		mem_cgroup_id_put(memcg);
5919
		return -ENOMEM;
5920
	}
5921 5922 5923 5924 5925 5926 5927 5928

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5929 5930 5931 5932
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5933
 * Drop the swap charge associated with @entry.
5934 5935 5936 5937 5938 5939
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5940
	if (!do_swap_account)
5941 5942 5943 5944
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5945
	memcg = mem_cgroup_from_id(id);
5946
	if (memcg) {
5947 5948 5949 5950 5951 5952
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5953
		mem_cgroup_swap_statistics(memcg, false);
5954
		mem_cgroup_id_put(memcg);
5955 5956 5957 5958
	}
	rcu_read_unlock();
}

5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6099 6100
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6101 6102 6103 6104 6105 6106 6107 6108
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */