memcontrol.c 193.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmalloc.h>
53
#include <linux/vmpressure.h>
54
#include <linux/mm_inline.h>
55
#include <linux/page_cgroup.h>
56
#include <linux/cpu.h>
57
#include <linux/oom.h>
58
#include <linux/lockdep.h>
59
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
60
#include "internal.h"
G
Glauber Costa 已提交
61
#include <net/sock.h>
M
Michal Hocko 已提交
62
#include <net/ip.h>
G
Glauber Costa 已提交
63
#include <net/tcp_memcontrol.h>
64
#include "slab.h"
B
Balbir Singh 已提交
65

66 67
#include <asm/uaccess.h>

68 69
#include <trace/events/vmscan.h>

70
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
71 72
EXPORT_SYMBOL(mem_cgroup_subsys);

73
#define MEM_CGROUP_RECLAIM_RETRIES	5
74
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
75

A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
77
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
78
int do_swap_account __read_mostly;
79 80

/* for remember boot option*/
A
Andrew Morton 已提交
81
#ifdef CONFIG_MEMCG_SWAP_ENABLED
82 83 84 85 86
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

87
#else
88
#define do_swap_account		0
89 90 91
#endif


92 93 94
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
95
	"rss_huge",
96
	"mapped_file",
97
	"writeback",
98 99 100
	"swap",
};

101 102 103
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 105
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 107
	MEM_CGROUP_EVENTS_NSTATS,
};
108 109 110 111 112 113 114 115

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

116 117 118 119 120 121 122 123
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

124 125 126 127 128 129 130 131
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
132
	MEM_CGROUP_TARGET_SOFTLIMIT,
133
	MEM_CGROUP_TARGET_NUMAINFO,
134 135
	MEM_CGROUP_NTARGETS,
};
136 137 138
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
139

140
struct mem_cgroup_stat_cpu {
141
	long count[MEM_CGROUP_STAT_NSTATS];
142
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
143
	unsigned long nr_page_events;
144
	unsigned long targets[MEM_CGROUP_NTARGETS];
145 146
};

147
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
148 149 150 151
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
152
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
153 154
	unsigned long last_dead_count;

155 156 157 158
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

159 160 161 162
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
163
	struct lruvec		lruvec;
164
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
165

166 167
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

168 169 170 171
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
172
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
173
						/* use container_of	   */
174 175 176 177 178 179
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

200 201 202 203 204
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
205
/* For threshold */
206
struct mem_cgroup_threshold_ary {
207
	/* An array index points to threshold just below or equal to usage. */
208
	int current_threshold;
209 210 211 212 213
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
214 215 216 217 218 219 220 221 222 223 224 225

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
226 227 228 229 230
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
231

232 233 234
/*
 * cgroup_event represents events which userspace want to receive.
 */
235
struct mem_cgroup_event {
236
	/*
237
	 * memcg which the event belongs to.
238
	 */
239
	struct mem_cgroup *memcg;
240 241 242 243 244 245 246 247
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
248 249 250 251 252
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
253
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
254
			      struct eventfd_ctx *eventfd, const char *args);
255 256 257 258 259
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
260
	void (*unregister_event)(struct mem_cgroup *memcg,
261
				 struct eventfd_ctx *eventfd);
262 263 264 265 266 267 268 269 270 271
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

272 273
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
274

B
Balbir Singh 已提交
275 276 277 278 279 280 281
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
282 283 284
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
285 286 287 288 289 290 291
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
292

293 294 295
	/* vmpressure notifications */
	struct vmpressure vmpressure;

296 297 298 299
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
300

301 302 303 304
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
305 306 307 308
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
309
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
310 311 312

	bool		oom_lock;
	atomic_t	under_oom;
313
	atomic_t	oom_wakeups;
314

315
	int	swappiness;
316 317
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
318

319 320 321
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

322 323 324 325
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
326
	struct mem_cgroup_thresholds thresholds;
327

328
	/* thresholds for mem+swap usage. RCU-protected */
329
	struct mem_cgroup_thresholds memsw_thresholds;
330

K
KAMEZAWA Hiroyuki 已提交
331 332
	/* For oom notifier event fd */
	struct list_head oom_notify;
333

334 335 336 337
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
338
	unsigned long move_charge_at_immigrate;
339 340 341 342
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
343 344
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
345
	/*
346
	 * percpu counter.
347
	 */
348
	struct mem_cgroup_stat_cpu __percpu *stat;
349 350 351 352 353 354
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
355

M
Michal Hocko 已提交
356
	atomic_t	dead_count;
M
Michal Hocko 已提交
357
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
358
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
359
#endif
360 361 362 363 364 365 366 367
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
368 369 370 371 372 373 374

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
375

376 377 378 379
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

380 381
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
382 383
};

384 385 386 387 388 389
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

390 391 392
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
393
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
394
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
395 396
};

397 398 399
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
400 401 402 403 404 405

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
406 407 408 409 410 411

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

412 413 414 415 416
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

417 418 419 420 421
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

422 423
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
424 425 426 427 428
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
429 430 431 432 433 434 435 436 437
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
438 439
#endif

440 441
/* Stuffs for move charges at task migration. */
/*
442 443
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
444 445
 */
enum move_type {
446
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
447
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
448 449 450
	NR_MOVE_TYPE,
};

451 452
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
453
	spinlock_t	  lock; /* for from, to */
454 455
	struct mem_cgroup *from;
	struct mem_cgroup *to;
456
	unsigned long immigrate_flags;
457
	unsigned long precharge;
458
	unsigned long moved_charge;
459
	unsigned long moved_swap;
460 461 462
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
463
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
464 465
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
466

D
Daisuke Nishimura 已提交
467 468
static bool move_anon(void)
{
469
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
470 471
}

472 473
static bool move_file(void)
{
474
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
475 476
}

477 478 479 480
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
481
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
482
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
483

484 485
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
486
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
487
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
488
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
489 490 491
	NR_CHARGE_TYPE,
};

492
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
493 494 495 496
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
497
	_KMEM,
G
Glauber Costa 已提交
498 499
};

500 501
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
502
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
503 504
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
505

506 507 508 509 510 511 512 513
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

514 515 516 517 518 519 520
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

521 522
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
523
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
524 525
}

526 527 528 529 530 531 532 533 534 535 536 537 538
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

539 540 541 542 543
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

544 545 546 547 548 549
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

	css = css_from_id(id - 1, &mem_cgroup_subsys);
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
567
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
568
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
569 570 571

void sock_update_memcg(struct sock *sk)
{
572
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
573
		struct mem_cgroup *memcg;
574
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
575 576 577

		BUG_ON(!sk->sk_prot->proto_cgroup);

578 579 580 581 582 583 584 585 586 587
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
588
			css_get(&sk->sk_cgrp->memcg->css);
589 590 591
			return;
		}

G
Glauber Costa 已提交
592 593
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
594
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
595 596
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
597
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
598 599 600 601 602 603 604 605
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
606
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
607 608 609
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
610
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
611 612
	}
}
G
Glauber Costa 已提交
613 614 615 616 617 618

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

619
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
620 621
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
622

623 624
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
625
	if (!memcg_proto_activated(&memcg->tcp_mem))
626 627 628 629 630 631 632 633 634
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

635
#ifdef CONFIG_MEMCG_KMEM
636 637
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
638 639 640 641 642
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
643 644 645 646 647 648
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
649 650
int memcg_limited_groups_array_size;

651 652 653 654 655 656
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
657
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
658 659
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
660
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
661 662 663
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
664
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
665

666 667 668 669 670 671
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
672
struct static_key memcg_kmem_enabled_key;
673
EXPORT_SYMBOL(memcg_kmem_enabled_key);
674 675 676

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
677
	if (memcg_kmem_is_active(memcg)) {
678
		static_key_slow_dec(&memcg_kmem_enabled_key);
679 680
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
681 682 683 684 685
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
686 687 688 689 690 691 692 693 694 695 696 697 698
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

699
static void drain_all_stock_async(struct mem_cgroup *memcg);
700

701
static struct mem_cgroup_per_zone *
702
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
703
{
704
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
705
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
706 707
}

708
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
709
{
710
	return &memcg->css;
711 712
}

713
static struct mem_cgroup_per_zone *
714
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
715
{
716 717
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
718

719
	return mem_cgroup_zoneinfo(memcg, nid, zid);
720 721
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
899
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
900
				 enum mem_cgroup_stat_index idx)
901
{
902
	long val = 0;
903 904
	int cpu;

905 906
	get_online_cpus();
	for_each_online_cpu(cpu)
907
		val += per_cpu(memcg->stat->count[idx], cpu);
908
#ifdef CONFIG_HOTPLUG_CPU
909 910 911
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
912 913
#endif
	put_online_cpus();
914 915 916
	return val;
}

917
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
918 919 920
					 bool charge)
{
	int val = (charge) ? 1 : -1;
921
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
922 923
}

924
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
925 926 927 928 929
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

930
	get_online_cpus();
931
	for_each_online_cpu(cpu)
932
		val += per_cpu(memcg->stat->events[idx], cpu);
933
#ifdef CONFIG_HOTPLUG_CPU
934 935 936
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
937
#endif
938
	put_online_cpus();
939 940 941
	return val;
}

942
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
943
					 struct page *page,
944
					 bool anon, int nr_pages)
945
{
946 947
	preempt_disable();

948 949 950 951 952 953
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
954
				nr_pages);
955
	else
956
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
957
				nr_pages);
958

959 960 961 962
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

963 964
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
965
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
966
	else {
967
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
968 969
		nr_pages = -nr_pages; /* for event */
	}
970

971
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
972

973
	preempt_enable();
974 975
}

976
unsigned long
977
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
978 979 980 981 982 983 984 985
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
986
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
987
			unsigned int lru_mask)
988 989
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
990
	enum lru_list lru;
991 992
	unsigned long ret = 0;

993
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
994

H
Hugh Dickins 已提交
995 996 997
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
998 999 1000 1001 1002
	}
	return ret;
}

static unsigned long
1003
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1004 1005
			int nid, unsigned int lru_mask)
{
1006 1007 1008
	u64 total = 0;
	int zid;

1009
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
1010 1011
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
1012

1013 1014
	return total;
}
1015

1016
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1017
			unsigned int lru_mask)
1018
{
1019
	int nid;
1020 1021
	u64 total = 0;

1022
	for_each_node_state(nid, N_MEMORY)
1023
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1024
	return total;
1025 1026
}

1027 1028
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
1029 1030 1031
{
	unsigned long val, next;

1032
	val = __this_cpu_read(memcg->stat->nr_page_events);
1033
	next = __this_cpu_read(memcg->stat->targets[target]);
1034
	/* from time_after() in jiffies.h */
1035 1036 1037 1038 1039
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1040 1041 1042
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1043 1044 1045 1046 1047 1048 1049 1050
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1051
	}
1052
	return false;
1053 1054 1055 1056 1057 1058
}

/*
 * Check events in order.
 *
 */
1059
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1060
{
1061
	preempt_disable();
1062
	/* threshold event is triggered in finer grain than soft limit */
1063 1064
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1065
		bool do_softlimit;
1066
		bool do_numainfo __maybe_unused;
1067

1068 1069
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1070 1071 1072 1073 1074 1075
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1076
		mem_cgroup_threshold(memcg);
1077 1078
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1079
#if MAX_NUMNODES > 1
1080
		if (unlikely(do_numainfo))
1081
			atomic_inc(&memcg->numainfo_events);
1082
#endif
1083 1084
	} else
		preempt_enable();
1085 1086
}

1087
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1088
{
1089 1090 1091 1092 1093 1094 1095 1096
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1097
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1098 1099
}

1100
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1101
{
1102
	struct mem_cgroup *memcg = NULL;
1103 1104 1105

	if (!mm)
		return NULL;
1106 1107 1108 1109 1110 1111 1112
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1113 1114
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1115
			break;
1116
	} while (!css_tryget(&memcg->css));
1117
	rcu_read_unlock();
1118
	return memcg;
1119 1120
}

1121 1122 1123 1124 1125 1126 1127
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1128
		struct mem_cgroup *last_visited)
1129
{
1130
	struct cgroup_subsys_state *prev_css, *next_css;
1131

1132
	prev_css = last_visited ? &last_visited->css : NULL;
1133
skip_node:
1134
	next_css = css_next_descendant_pre(prev_css, &root->css);
1135 1136 1137 1138 1139 1140 1141 1142

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1143 1144 1145
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1146 1147 1148
		if (css_tryget(&mem->css))
			return mem;
		else {
1149
			prev_css = next_css;
1150 1151 1152 1153 1154 1155 1156
			goto skip_node;
		}
	}

	return NULL;
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1226
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1227
				   struct mem_cgroup *prev,
1228
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1229
{
1230
	struct mem_cgroup *memcg = NULL;
1231
	struct mem_cgroup *last_visited = NULL;
1232

1233 1234
	if (mem_cgroup_disabled())
		return NULL;
1235

1236 1237
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1238

1239
	if (prev && !reclaim)
1240
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1241

1242 1243
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1244
			goto out_css_put;
1245
		return root;
1246
	}
K
KAMEZAWA Hiroyuki 已提交
1247

1248
	rcu_read_lock();
1249
	while (!memcg) {
1250
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1251
		int uninitialized_var(seq);
1252

1253 1254 1255 1256 1257 1258 1259
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1260
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1261
				iter->last_visited = NULL;
1262 1263
				goto out_unlock;
			}
M
Michal Hocko 已提交
1264

1265
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1266
		}
K
KAMEZAWA Hiroyuki 已提交
1267

1268
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1269

1270
		if (reclaim) {
1271
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1272

M
Michal Hocko 已提交
1273
			if (!memcg)
1274 1275 1276 1277
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1278

1279
		if (prev && !memcg)
1280
			goto out_unlock;
1281
	}
1282 1283
out_unlock:
	rcu_read_unlock();
1284 1285 1286 1287
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1288
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1289
}
K
KAMEZAWA Hiroyuki 已提交
1290

1291 1292 1293 1294 1295 1296 1297
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1298 1299 1300 1301 1302 1303
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1304

1305 1306 1307 1308 1309 1310
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1311
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1312
	     iter != NULL;				\
1313
	     iter = mem_cgroup_iter(root, iter, NULL))
1314

1315
#define for_each_mem_cgroup(iter)			\
1316
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1317
	     iter != NULL;				\
1318
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1319

1320
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1321
{
1322
	struct mem_cgroup *memcg;
1323 1324

	rcu_read_lock();
1325 1326
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1327 1328 1329 1330
		goto out;

	switch (idx) {
	case PGFAULT:
1331 1332 1333 1334
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1335 1336 1337 1338 1339 1340 1341
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1342
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1343

1344 1345 1346
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1347
 * @memcg: memcg of the wanted lruvec
1348 1349 1350 1351 1352 1353 1354 1355 1356
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1357
	struct lruvec *lruvec;
1358

1359 1360 1361 1362
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1363 1364

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1375 1376
}

K
KAMEZAWA Hiroyuki 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1390

1391
/**
1392
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1393
 * @page: the page
1394
 * @zone: zone of the page
1395
 */
1396
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1397 1398
{
	struct mem_cgroup_per_zone *mz;
1399 1400
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1401
	struct lruvec *lruvec;
1402

1403 1404 1405 1406
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1407

K
KAMEZAWA Hiroyuki 已提交
1408
	pc = lookup_page_cgroup(page);
1409
	memcg = pc->mem_cgroup;
1410 1411

	/*
1412
	 * Surreptitiously switch any uncharged offlist page to root:
1413 1414 1415 1416 1417 1418 1419
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1420
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1421 1422
		pc->mem_cgroup = memcg = root_mem_cgroup;

1423
	mz = page_cgroup_zoneinfo(memcg, page);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1434
}
1435

1436
/**
1437 1438 1439 1440
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1441
 *
1442 1443
 * This function must be called when a page is added to or removed from an
 * lru list.
1444
 */
1445 1446
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1447 1448
{
	struct mem_cgroup_per_zone *mz;
1449
	unsigned long *lru_size;
1450 1451 1452 1453

	if (mem_cgroup_disabled())
		return;

1454 1455 1456 1457
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1458
}
1459

1460
/*
1461
 * Checks whether given mem is same or in the root_mem_cgroup's
1462 1463
 * hierarchy subtree
 */
1464 1465
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1466
{
1467 1468
	if (root_memcg == memcg)
		return true;
1469
	if (!root_memcg->use_hierarchy || !memcg)
1470
		return false;
1471
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1472 1473 1474 1475 1476 1477 1478
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1479
	rcu_read_lock();
1480
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1481 1482
	rcu_read_unlock();
	return ret;
1483 1484
}

1485 1486
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1487
{
1488
	struct mem_cgroup *curr = NULL;
1489
	struct task_struct *p;
1490
	bool ret;
1491

1492
	p = find_lock_task_mm(task);
1493 1494 1495 1496 1497 1498 1499 1500 1501
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1502
		rcu_read_lock();
1503 1504 1505
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1506
		rcu_read_unlock();
1507
	}
1508
	if (!curr)
1509
		return false;
1510
	/*
1511
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1512
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1513 1514
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1515
	 */
1516
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1517
	css_put(&curr->css);
1518 1519 1520
	return ret;
}

1521
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1522
{
1523
	unsigned long inactive_ratio;
1524
	unsigned long inactive;
1525
	unsigned long active;
1526
	unsigned long gb;
1527

1528 1529
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1530

1531 1532 1533 1534 1535 1536
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1537
	return inactive * inactive_ratio < active;
1538 1539
}

1540 1541 1542
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1543
/**
1544
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1545
 * @memcg: the memory cgroup
1546
 *
1547
 * Returns the maximum amount of memory @mem can be charged with, in
1548
 * pages.
1549
 */
1550
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1551
{
1552 1553
	unsigned long long margin;

1554
	margin = res_counter_margin(&memcg->res);
1555
	if (do_swap_account)
1556
		margin = min(margin, res_counter_margin(&memcg->memsw));
1557
	return margin >> PAGE_SHIFT;
1558 1559
}

1560
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1561 1562
{
	/* root ? */
T
Tejun Heo 已提交
1563
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1564 1565
		return vm_swappiness;

1566
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1567 1568
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1583 1584 1585 1586

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1587
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1588
{
1589
	atomic_inc(&memcg_moving);
1590
	atomic_inc(&memcg->moving_account);
1591 1592 1593
	synchronize_rcu();
}

1594
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1595
{
1596 1597 1598 1599
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1600 1601
	if (memcg) {
		atomic_dec(&memcg_moving);
1602
		atomic_dec(&memcg->moving_account);
1603
	}
1604
}
1605

1606 1607 1608
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1609 1610
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1611 1612 1613 1614 1615 1616 1617
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1618
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1619 1620
{
	VM_BUG_ON(!rcu_read_lock_held());
1621
	return atomic_read(&memcg->moving_account) > 0;
1622
}
1623

1624
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1625
{
1626 1627
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1628
	bool ret = false;
1629 1630 1631 1632 1633 1634 1635 1636 1637
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1638

1639 1640
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1641 1642
unlock:
	spin_unlock(&mc.lock);
1643 1644 1645
	return ret;
}

1646
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1647 1648
{
	if (mc.moving_task && current != mc.moving_task) {
1649
		if (mem_cgroup_under_move(memcg)) {
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1662 1663 1664 1665
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1666
 * see mem_cgroup_stolen(), too.
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1680
#define K(x) ((x) << (PAGE_SHIFT-10))
1681
/**
1682
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1700 1701
	struct mem_cgroup *iter;
	unsigned int i;
1702

1703
	if (!p)
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1722
	pr_info("Task in %s killed", memcg_name);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1735
	pr_cont(" as a result of limit of %s\n", memcg_name);
1736 1737
done:

1738
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1739 1740 1741
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1742
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1743 1744 1745
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1746
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1747 1748 1749
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1774 1775
}

1776 1777 1778 1779
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1780
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1781 1782
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1783 1784
	struct mem_cgroup *iter;

1785
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1786
		num++;
1787 1788 1789
	return num;
}

D
David Rientjes 已提交
1790 1791 1792
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1793
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1794 1795 1796
{
	u64 limit;

1797 1798
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1799
	/*
1800
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1801
	 */
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1816 1817
}

1818 1819
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1820 1821 1822 1823 1824 1825 1826
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1827
	/*
1828 1829 1830
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1831
	 */
1832
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1833 1834 1835 1836 1837
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1838 1839
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1840
		struct css_task_iter it;
1841 1842
		struct task_struct *task;

1843 1844
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1857
				css_task_iter_end(&it);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1874
		css_task_iter_end(&it);
1875 1876 1877 1878 1879 1880 1881 1882 1883
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1920 1921
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1922
 * @memcg: the target memcg
1923 1924 1925 1926 1927 1928 1929
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1930
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1931 1932
		int nid, bool noswap)
{
1933
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1934 1935 1936
		return true;
	if (noswap || !total_swap_pages)
		return false;
1937
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1938 1939 1940 1941
		return true;
	return false;

}
1942
#if MAX_NUMNODES > 1
1943 1944 1945 1946 1947 1948 1949

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1950
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1951 1952
{
	int nid;
1953 1954 1955 1956
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1957
	if (!atomic_read(&memcg->numainfo_events))
1958
		return;
1959
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1960 1961 1962
		return;

	/* make a nodemask where this memcg uses memory from */
1963
	memcg->scan_nodes = node_states[N_MEMORY];
1964

1965
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1966

1967 1968
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1969
	}
1970

1971 1972
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1987
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1988 1989 1990
{
	int node;

1991 1992
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1993

1994
	node = next_node(node, memcg->scan_nodes);
1995
	if (node == MAX_NUMNODES)
1996
		node = first_node(memcg->scan_nodes);
1997 1998 1999 2000 2001 2002 2003 2004 2005
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

2006
	memcg->last_scanned_node = node;
2007 2008 2009
	return node;
}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

2045
#else
2046
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2047 2048 2049
{
	return 0;
}
2050

2051 2052 2053 2054
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
2055 2056
#endif

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2105
	}
2106 2107
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2108 2109
}

2110 2111 2112 2113 2114 2115
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2116 2117
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2118 2119 2120 2121
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2122
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2123
{
2124
	struct mem_cgroup *iter, *failed = NULL;
2125

2126 2127
	spin_lock(&memcg_oom_lock);

2128
	for_each_mem_cgroup_tree(iter, memcg) {
2129
		if (iter->oom_lock) {
2130 2131 2132 2133 2134
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2135 2136
			mem_cgroup_iter_break(memcg, iter);
			break;
2137 2138
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2139
	}
K
KAMEZAWA Hiroyuki 已提交
2140

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2152
		}
2153 2154
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2155 2156 2157 2158

	spin_unlock(&memcg_oom_lock);

	return !failed;
2159
}
2160

2161
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2162
{
K
KAMEZAWA Hiroyuki 已提交
2163 2164
	struct mem_cgroup *iter;

2165
	spin_lock(&memcg_oom_lock);
2166
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2167
	for_each_mem_cgroup_tree(iter, memcg)
2168
		iter->oom_lock = false;
2169
	spin_unlock(&memcg_oom_lock);
2170 2171
}

2172
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2173 2174 2175
{
	struct mem_cgroup *iter;

2176
	for_each_mem_cgroup_tree(iter, memcg)
2177 2178 2179
		atomic_inc(&iter->under_oom);
}

2180
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2181 2182 2183
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2184 2185 2186 2187 2188
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2189
	for_each_mem_cgroup_tree(iter, memcg)
2190
		atomic_add_unless(&iter->under_oom, -1, 0);
2191 2192
}

K
KAMEZAWA Hiroyuki 已提交
2193 2194
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2195
struct oom_wait_info {
2196
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2197 2198 2199 2200 2201 2202
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2203 2204
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2205 2206 2207
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2208
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2209 2210

	/*
2211
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2212 2213
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2214 2215
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2216 2217 2218 2219
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2220
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2221
{
2222
	atomic_inc(&memcg->oom_wakeups);
2223 2224
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2225 2226
}

2227
static void memcg_oom_recover(struct mem_cgroup *memcg)
2228
{
2229 2230
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2231 2232
}

2233
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2234
{
2235 2236
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2237
	/*
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2250
	 */
2251 2252 2253 2254
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2255 2256 2257 2258
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2259
 * @handle: actually kill/wait or just clean up the OOM state
2260
 *
2261 2262
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2263
 *
2264
 * Memcg supports userspace OOM handling where failed allocations must
2265 2266 2267 2268
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2269
 * the end of the page fault to complete the OOM handling.
2270 2271
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2272
 * completed, %false otherwise.
2273
 */
2274
bool mem_cgroup_oom_synchronize(bool handle)
2275
{
2276
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2277
	struct oom_wait_info owait;
2278
	bool locked;
2279 2280 2281

	/* OOM is global, do not handle */
	if (!memcg)
2282
		return false;
2283

2284 2285
	if (!handle)
		goto cleanup;
2286 2287 2288 2289 2290 2291

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2292

2293
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2307
		schedule();
2308 2309 2310 2311 2312
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2313 2314 2315 2316 2317 2318 2319 2320
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2321 2322
cleanup:
	current->memcg_oom.memcg = NULL;
2323
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2324
	return true;
2325 2326
}

2327 2328 2329
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2347 2348
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2349
 */
2350

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2364
	 * need to take move_lock_mem_cgroup(). Because we already hold
2365
	 * rcu_read_lock(), any calls to move_account will be delayed until
2366
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2367
	 */
2368
	if (!mem_cgroup_stolen(memcg))
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2386
	 * should take move_lock_mem_cgroup().
2387 2388 2389 2390
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2391
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2392
				 enum mem_cgroup_stat_index idx, int val)
2393
{
2394
	struct mem_cgroup *memcg;
2395
	struct page_cgroup *pc = lookup_page_cgroup(page);
2396
	unsigned long uninitialized_var(flags);
2397

2398
	if (mem_cgroup_disabled())
2399
		return;
2400

2401
	VM_BUG_ON(!rcu_read_lock_held());
2402 2403
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2404
		return;
2405

2406
	this_cpu_add(memcg->stat->count[idx], val);
2407
}
2408

2409 2410 2411 2412
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2413
#define CHARGE_BATCH	32U
2414 2415
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2416
	unsigned int nr_pages;
2417
	struct work_struct work;
2418
	unsigned long flags;
2419
#define FLUSHING_CACHED_CHARGE	0
2420 2421
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2422
static DEFINE_MUTEX(percpu_charge_mutex);
2423

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2434
 */
2435
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2436 2437 2438 2439
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2440 2441 2442
	if (nr_pages > CHARGE_BATCH)
		return false;

2443
	stock = &get_cpu_var(memcg_stock);
2444 2445
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2459 2460 2461 2462
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2463
		if (do_swap_account)
2464 2465
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2478
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2479 2480
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2492 2493
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2494
 * This will be consumed by consume_stock() function, later.
2495
 */
2496
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2497 2498 2499
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2500
	if (stock->cached != memcg) { /* reset if necessary */
2501
		drain_stock(stock);
2502
		stock->cached = memcg;
2503
	}
2504
	stock->nr_pages += nr_pages;
2505 2506 2507 2508
	put_cpu_var(memcg_stock);
}

/*
2509
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2510 2511
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2512
 */
2513
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2514
{
2515
	int cpu, curcpu;
2516

2517 2518
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2519
	curcpu = get_cpu();
2520 2521
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2522
		struct mem_cgroup *memcg;
2523

2524 2525
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2526
			continue;
2527
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2528
			continue;
2529 2530 2531 2532 2533 2534
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2535
	}
2536
	put_cpu();
2537 2538 2539 2540 2541 2542

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2543
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2544 2545 2546
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2547
	put_online_cpus();
2548 2549 2550 2551 2552 2553 2554 2555
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2556
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2557
{
2558 2559 2560 2561 2562
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2563
	drain_all_stock(root_memcg, false);
2564
	mutex_unlock(&percpu_charge_mutex);
2565 2566 2567
}

/* This is a synchronous drain interface. */
2568
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2569 2570
{
	/* called when force_empty is called */
2571
	mutex_lock(&percpu_charge_mutex);
2572
	drain_all_stock(root_memcg, true);
2573
	mutex_unlock(&percpu_charge_mutex);
2574 2575
}

2576 2577 2578 2579
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2580
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2581 2582 2583
{
	int i;

2584
	spin_lock(&memcg->pcp_counter_lock);
2585
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2586
		long x = per_cpu(memcg->stat->count[i], cpu);
2587

2588 2589
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2590
	}
2591
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2592
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2593

2594 2595
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2596
	}
2597
	spin_unlock(&memcg->pcp_counter_lock);
2598 2599
}

2600
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2601 2602 2603 2604 2605
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2606
	struct mem_cgroup *iter;
2607

2608
	if (action == CPU_ONLINE)
2609 2610
		return NOTIFY_OK;

2611
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2612
		return NOTIFY_OK;
2613

2614
	for_each_mem_cgroup(iter)
2615 2616
		mem_cgroup_drain_pcp_counter(iter, cpu);

2617 2618 2619 2620 2621
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2622 2623 2624 2625 2626 2627 2628 2629 2630

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2631
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632
				unsigned int nr_pages, unsigned int min_pages,
2633
				bool invoke_oom)
2634
{
2635
	unsigned long csize = nr_pages * PAGE_SIZE;
2636 2637 2638 2639 2640
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2641
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2642 2643 2644 2645

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2646
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2647 2648 2649
		if (likely(!ret))
			return CHARGE_OK;

2650
		res_counter_uncharge(&memcg->res, csize);
2651 2652 2653 2654
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2655 2656 2657 2658
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2659
	if (nr_pages > min_pages)
2660 2661 2662 2663 2664
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2665 2666 2667
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2668
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2669
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2670
		return CHARGE_RETRY;
2671
	/*
2672 2673 2674 2675 2676 2677 2678
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2679
	 */
2680
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2681 2682 2683 2684 2685 2686 2687 2688 2689
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2690 2691
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2692

2693
	return CHARGE_NOMEM;
2694 2695
}

2696
/*
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2716
 */
2717
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2718
				   gfp_t gfp_mask,
2719
				   unsigned int nr_pages,
2720
				   struct mem_cgroup **ptr,
2721
				   bool oom)
2722
{
2723
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2724
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2725
	struct mem_cgroup *memcg = NULL;
2726
	int ret;
2727

K
KAMEZAWA Hiroyuki 已提交
2728 2729 2730 2731 2732 2733 2734 2735
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2736

2737 2738 2739
	if (unlikely(task_in_memcg_oom(current)))
		goto bypass;

2740
	/*
2741 2742
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2743
	 * thread group leader migrates. It's possible that mm is not
2744
	 * set, if so charge the root memcg (happens for pagecache usage).
2745
	 */
2746
	if (!*ptr && !mm)
2747
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2748
again:
2749 2750 2751
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2752
			goto done;
2753
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2754
			goto done;
2755
		css_get(&memcg->css);
2756
	} else {
K
KAMEZAWA Hiroyuki 已提交
2757
		struct task_struct *p;
2758

K
KAMEZAWA Hiroyuki 已提交
2759 2760 2761
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2762
		 * Because we don't have task_lock(), "p" can exit.
2763
		 * In that case, "memcg" can point to root or p can be NULL with
2764 2765 2766 2767 2768 2769
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2770
		 */
2771
		memcg = mem_cgroup_from_task(p);
2772 2773 2774
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2775 2776 2777
			rcu_read_unlock();
			goto done;
		}
2778
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2791
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2792 2793 2794 2795 2796
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2797

2798
	do {
2799
		bool invoke_oom = oom && !nr_oom_retries;
2800

2801
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2802
		if (fatal_signal_pending(current)) {
2803
			css_put(&memcg->css);
2804
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2805
		}
2806

2807 2808
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2809 2810 2811 2812
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2813
			batch = nr_pages;
2814 2815
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2816
			goto again;
2817
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2818
			css_put(&memcg->css);
2819 2820
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2821
			if (!oom || invoke_oom) {
2822
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2823
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2824
			}
2825 2826
			nr_oom_retries--;
			break;
2827
		}
2828 2829
	} while (ret != CHARGE_OK);

2830
	if (batch > nr_pages)
2831 2832
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2833
done:
2834
	*ptr = memcg;
2835 2836
	return 0;
nomem:
2837 2838 2839 2840
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2841
bypass:
2842 2843
	*ptr = root_mem_cgroup;
	return -EINTR;
2844
}
2845

2846 2847 2848 2849 2850
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2851
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2852
				       unsigned int nr_pages)
2853
{
2854
	if (!mem_cgroup_is_root(memcg)) {
2855 2856
		unsigned long bytes = nr_pages * PAGE_SIZE;

2857
		res_counter_uncharge(&memcg->res, bytes);
2858
		if (do_swap_account)
2859
			res_counter_uncharge(&memcg->memsw, bytes);
2860
	}
2861 2862
}

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2881 2882
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2883 2884 2885
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2886 2887 2888 2889 2890 2891
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2892
	return mem_cgroup_from_id(id);
2893 2894
}

2895
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2896
{
2897
	struct mem_cgroup *memcg = NULL;
2898
	struct page_cgroup *pc;
2899
	unsigned short id;
2900 2901
	swp_entry_t ent;

2902 2903 2904
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2905
	lock_page_cgroup(pc);
2906
	if (PageCgroupUsed(pc)) {
2907 2908 2909
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2910
	} else if (PageSwapCache(page)) {
2911
		ent.val = page_private(page);
2912
		id = lookup_swap_cgroup_id(ent);
2913
		rcu_read_lock();
2914 2915 2916
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2917
		rcu_read_unlock();
2918
	}
2919
	unlock_page_cgroup(pc);
2920
	return memcg;
2921 2922
}

2923
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2924
				       struct page *page,
2925
				       unsigned int nr_pages,
2926 2927
				       enum charge_type ctype,
				       bool lrucare)
2928
{
2929
	struct page_cgroup *pc = lookup_page_cgroup(page);
2930
	struct zone *uninitialized_var(zone);
2931
	struct lruvec *lruvec;
2932
	bool was_on_lru = false;
2933
	bool anon;
2934

2935
	lock_page_cgroup(pc);
2936
	VM_BUG_ON(PageCgroupUsed(pc));
2937 2938 2939 2940
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2941 2942 2943 2944 2945 2946 2947 2948 2949

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2950
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2951
			ClearPageLRU(page);
2952
			del_page_from_lru_list(page, lruvec, page_lru(page));
2953 2954 2955 2956
			was_on_lru = true;
		}
	}

2957
	pc->mem_cgroup = memcg;
2958 2959 2960 2961 2962 2963
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2964
	 */
K
KAMEZAWA Hiroyuki 已提交
2965
	smp_wmb();
2966
	SetPageCgroupUsed(pc);
2967

2968 2969
	if (lrucare) {
		if (was_on_lru) {
2970
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2971 2972
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2973
			add_page_to_lru_list(page, lruvec, page_lru(page));
2974 2975 2976 2977
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2978
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2979 2980 2981 2982
		anon = true;
	else
		anon = false;

2983
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2984
	unlock_page_cgroup(pc);
2985

2986
	/*
2987 2988 2989
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2990
	 */
2991
	memcg_check_events(memcg, page);
2992
}
2993

2994 2995
static DEFINE_MUTEX(set_limit_mutex);

2996 2997 2998 2999 3000 3001 3002
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
3013
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
3014 3015
}

3016
#ifdef CONFIG_SLABINFO
3017 3018
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
3019
{
3020
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3049
				      &_memcg, oom_gfp_allowed(gfp));
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3083 3084 3085 3086 3087

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3088 3089 3090 3091 3092 3093 3094 3095
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3096
	if (memcg_kmem_test_and_clear_dead(memcg))
3097
		css_put(&memcg->css);
3098 3099
}

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3183 3184
static void kmem_cache_destroy_work_func(struct work_struct *w);

3185 3186 3187 3188
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3189
	VM_BUG_ON(!is_root_cache(s));
3190 3191 3192 3193 3194 3195

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3196
		size += offsetof(struct memcg_cache_params, memcg_caches);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3236 3237
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3238
{
3239
	size_t size;
3240 3241 3242 3243

	if (!memcg_kmem_enabled())
		return 0;

3244 3245
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3246
		size += memcg_limited_groups_array_size * sizeof(void *);
3247 3248
	} else
		size = sizeof(struct memcg_cache_params);
3249

3250 3251 3252 3253
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3254
	if (memcg) {
3255
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3256
		s->memcg_params->root_cache = root_cache;
3257 3258
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3259 3260 3261
	} else
		s->memcg_params->is_root_cache = true;

3262 3263 3264 3265 3266
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3291
	css_put(&memcg->css);
3292
out:
3293 3294 3295
	kfree(s->memcg_params);
}

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3327 3328 3329 3330 3331 3332 3333 3334 3335
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3357 3358 3359 3360 3361 3362 3363 3364
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3385 3386 3387 3388 3389 3390 3391
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3392 3393 3394 3395 3396 3397 3398 3399 3400
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3401

3402 3403 3404
/*
 * Called with memcg_cache_mutex held
 */
3405 3406 3407 3408
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3409
	static char *tmp_name = NULL;
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3429

3430
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3431
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3432

3433 3434 3435
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
3450
	new_cachep = cache_from_memcg_idx(cachep, idx);
3451 3452
	if (new_cachep) {
		css_put(&memcg->css);
3453
		goto out;
3454
	}
3455 3456 3457 3458

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3459
		css_put(&memcg->css);
3460 3461 3462
		goto out;
	}

G
Glauber Costa 已提交
3463
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
3496 3497
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3515
		cancel_work_sync(&c->memcg_params->destroy);
3516 3517 3518 3519 3520
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3521 3522 3523 3524 3525 3526
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3556 3557
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3558 3559 3560 3561
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3562 3563
	if (cw == NULL) {
		css_put(&memcg->css);
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3614 3615 3616
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3617 3618 3619 3620
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3621
		goto out;
3622 3623 3624 3625 3626 3627 3628 3629

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3630 3631
	if (likely(cache_from_memcg_idx(cachep, idx))) {
		cachep = cache_from_memcg_idx(cachep, idx);
3632
		goto out;
3633 3634
	}

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3662 3663 3664
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3701 3702 3703
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3788 3789 3790 3791
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3792 3793
#endif /* CONFIG_MEMCG_KMEM */

3794 3795
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3796
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3797 3798
/*
 * Because tail pages are not marked as "used", set it. We're under
3799 3800 3801
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3802
 */
3803
void mem_cgroup_split_huge_fixup(struct page *head)
3804 3805
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3806
	struct page_cgroup *pc;
3807
	struct mem_cgroup *memcg;
3808
	int i;
3809

3810 3811
	if (mem_cgroup_disabled())
		return;
3812 3813

	memcg = head_pc->mem_cgroup;
3814 3815
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3816
		pc->mem_cgroup = memcg;
3817 3818 3819
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3820 3821
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3822
}
3823
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3824

3825 3826 3827 3828 3829 3830 3831 3832
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3833
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3834 3835 3836 3837
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3838
/**
3839
 * mem_cgroup_move_account - move account of the page
3840
 * @page: the page
3841
 * @nr_pages: number of regular pages (>1 for huge pages)
3842 3843 3844 3845 3846
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3847
 * - page is not on LRU (isolate_page() is useful.)
3848
 * - compound_lock is held when nr_pages > 1
3849
 *
3850 3851
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3852
 */
3853 3854 3855 3856
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3857
				   struct mem_cgroup *to)
3858
{
3859 3860
	unsigned long flags;
	int ret;
3861
	bool anon = PageAnon(page);
3862

3863
	VM_BUG_ON(from == to);
3864
	VM_BUG_ON(PageLRU(page));
3865 3866 3867 3868 3869 3870 3871
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3872
	if (nr_pages > 1 && !PageTransHuge(page))
3873 3874 3875 3876 3877 3878 3879 3880
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3881
	move_lock_mem_cgroup(from, &flags);
3882

3883 3884 3885 3886 3887 3888 3889 3890
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3891
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3892

3893
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3894
	pc->mem_cgroup = to;
3895
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3896
	move_unlock_mem_cgroup(from, &flags);
3897 3898
	ret = 0;
unlock:
3899
	unlock_page_cgroup(pc);
3900 3901 3902
	/*
	 * check events
	 */
3903 3904
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3905
out:
3906 3907 3908
	return ret;
}

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3929
 */
3930 3931
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3932
				  struct mem_cgroup *child)
3933 3934
{
	struct mem_cgroup *parent;
3935
	unsigned int nr_pages;
3936
	unsigned long uninitialized_var(flags);
3937 3938
	int ret;

3939
	VM_BUG_ON(mem_cgroup_is_root(child));
3940

3941 3942 3943 3944 3945
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3946

3947
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3948

3949 3950 3951 3952 3953 3954
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3955

3956 3957
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3958
		flags = compound_lock_irqsave(page);
3959
	}
3960

3961
	ret = mem_cgroup_move_account(page, nr_pages,
3962
				pc, child, parent);
3963 3964
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3965

3966
	if (nr_pages > 1)
3967
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3968
	putback_lru_page(page);
3969
put:
3970
	put_page(page);
3971
out:
3972 3973 3974
	return ret;
}

3975 3976 3977 3978 3979 3980 3981
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3982
				gfp_t gfp_mask, enum charge_type ctype)
3983
{
3984
	struct mem_cgroup *memcg = NULL;
3985
	unsigned int nr_pages = 1;
3986
	bool oom = true;
3987
	int ret;
A
Andrea Arcangeli 已提交
3988

A
Andrea Arcangeli 已提交
3989
	if (PageTransHuge(page)) {
3990
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3991
		VM_BUG_ON(!PageTransHuge(page));
3992 3993 3994 3995 3996
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3997
	}
3998

3999
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
4000
	if (ret == -ENOMEM)
4001
		return ret;
4002
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
4003 4004 4005
	return 0;
}

4006 4007
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
4008
{
4009
	if (mem_cgroup_disabled())
4010
		return 0;
4011 4012 4013
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
4014
	return mem_cgroup_charge_common(page, mm, gfp_mask,
4015
					MEM_CGROUP_CHARGE_TYPE_ANON);
4016 4017
}

4018 4019 4020
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
4021
 * struct page_cgroup is acquired. This refcnt will be consumed by
4022 4023
 * "commit()" or removed by "cancel()"
 */
4024 4025 4026 4027
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
4028
{
4029
	struct mem_cgroup *memcg;
4030
	struct page_cgroup *pc;
4031
	int ret;
4032

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
4043 4044
	if (!do_swap_account)
		goto charge_cur_mm;
4045 4046
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
4047
		goto charge_cur_mm;
4048 4049
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4050
	css_put(&memcg->css);
4051 4052
	if (ret == -EINTR)
		ret = 0;
4053
	return ret;
4054
charge_cur_mm:
4055 4056 4057 4058
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4059 4060
}

4061 4062 4063 4064 4065 4066
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4081 4082 4083
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4084 4085 4086 4087 4088 4089 4090 4091 4092
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4093
static void
4094
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4095
					enum charge_type ctype)
4096
{
4097
	if (mem_cgroup_disabled())
4098
		return;
4099
	if (!memcg)
4100
		return;
4101

4102
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4103 4104 4105
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4106 4107 4108
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4109
	 */
4110
	if (do_swap_account && PageSwapCache(page)) {
4111
		swp_entry_t ent = {.val = page_private(page)};
4112
		mem_cgroup_uncharge_swap(ent);
4113
	}
4114 4115
}

4116 4117
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4118
{
4119
	__mem_cgroup_commit_charge_swapin(page, memcg,
4120
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4121 4122
}

4123 4124
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4125
{
4126 4127 4128 4129
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4130
	if (mem_cgroup_disabled())
4131 4132 4133 4134 4135 4136 4137
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4138 4139
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4140 4141 4142 4143
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4144 4145
}

4146
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4147 4148
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4149 4150 4151
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4152

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4164
		batch->memcg = memcg;
4165 4166
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4167
	 * In those cases, all pages freed continuously can be expected to be in
4168 4169 4170 4171 4172 4173 4174 4175
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4176
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4177 4178
		goto direct_uncharge;

4179 4180 4181 4182 4183
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4184
	if (batch->memcg != memcg)
4185 4186
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4187
	batch->nr_pages++;
4188
	if (uncharge_memsw)
4189
		batch->memsw_nr_pages++;
4190 4191
	return;
direct_uncharge:
4192
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4193
	if (uncharge_memsw)
4194 4195 4196
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4197
}
4198

4199
/*
4200
 * uncharge if !page_mapped(page)
4201
 */
4202
static struct mem_cgroup *
4203 4204
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4205
{
4206
	struct mem_cgroup *memcg = NULL;
4207 4208
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4209
	bool anon;
4210

4211
	if (mem_cgroup_disabled())
4212
		return NULL;
4213

A
Andrea Arcangeli 已提交
4214
	if (PageTransHuge(page)) {
4215
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4216 4217
		VM_BUG_ON(!PageTransHuge(page));
	}
4218
	/*
4219
	 * Check if our page_cgroup is valid
4220
	 */
4221
	pc = lookup_page_cgroup(page);
4222
	if (unlikely(!PageCgroupUsed(pc)))
4223
		return NULL;
4224

4225
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4226

4227
	memcg = pc->mem_cgroup;
4228

K
KAMEZAWA Hiroyuki 已提交
4229 4230 4231
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4232 4233
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4234
	switch (ctype) {
4235
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4236 4237 4238 4239 4240
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4241 4242
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4243
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4244
		/* See mem_cgroup_prepare_migration() */
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4266
	}
K
KAMEZAWA Hiroyuki 已提交
4267

4268
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4269

4270
	ClearPageCgroupUsed(pc);
4271 4272 4273 4274 4275 4276
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4277

4278
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4279
	/*
4280
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4281
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4282
	 */
4283
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4284
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4285
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4286
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4287
	}
4288 4289 4290 4291 4292 4293
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4294
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4295

4296
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4297 4298 4299

unlock_out:
	unlock_page_cgroup(pc);
4300
	return NULL;
4301 4302
}

4303 4304
void mem_cgroup_uncharge_page(struct page *page)
{
4305 4306 4307
	/* early check. */
	if (page_mapped(page))
		return;
4308
	VM_BUG_ON(page->mapping && !PageAnon(page));
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4321 4322
	if (PageSwapCache(page))
		return;
4323
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4324 4325 4326 4327 4328
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4329
	VM_BUG_ON(page->mapping);
4330
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4331 4332
}

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4347 4348
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4369 4370 4371 4372 4373 4374
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4375
	memcg_oom_recover(batch->memcg);
4376 4377 4378 4379
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4380
#ifdef CONFIG_SWAP
4381
/*
4382
 * called after __delete_from_swap_cache() and drop "page" account.
4383 4384
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4385 4386
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4387 4388
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4389 4390 4391 4392 4393
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4394
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4395

K
KAMEZAWA Hiroyuki 已提交
4396 4397
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4398
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4399 4400
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4401
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4402
}
4403
#endif
4404

A
Andrew Morton 已提交
4405
#ifdef CONFIG_MEMCG_SWAP
4406 4407 4408 4409 4410
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4411
{
4412
	struct mem_cgroup *memcg;
4413
	unsigned short id;
4414 4415 4416 4417

	if (!do_swap_account)
		return;

4418 4419 4420
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4421
	if (memcg) {
4422 4423 4424 4425
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4426
		if (!mem_cgroup_is_root(memcg))
4427
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4428
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4429
		css_put(&memcg->css);
4430
	}
4431
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4432
}
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4449
				struct mem_cgroup *from, struct mem_cgroup *to)
4450 4451 4452
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4453 4454
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4455 4456 4457

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4458
		mem_cgroup_swap_statistics(to, true);
4459
		/*
4460 4461 4462
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4463 4464 4465 4466 4467 4468
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4469
		 */
L
Li Zefan 已提交
4470
		css_get(&to->css);
4471 4472 4473 4474 4475 4476
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4477
				struct mem_cgroup *from, struct mem_cgroup *to)
4478 4479 4480
{
	return -EINVAL;
}
4481
#endif
K
KAMEZAWA Hiroyuki 已提交
4482

4483
/*
4484 4485
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4486
 */
4487 4488
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4489
{
4490
	struct mem_cgroup *memcg = NULL;
4491
	unsigned int nr_pages = 1;
4492
	struct page_cgroup *pc;
4493
	enum charge_type ctype;
4494

4495
	*memcgp = NULL;
4496

4497
	if (mem_cgroup_disabled())
4498
		return;
4499

4500 4501 4502
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4503 4504 4505
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4506 4507
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4539
	}
4540
	unlock_page_cgroup(pc);
4541 4542 4543 4544
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4545
	if (!memcg)
4546
		return;
4547

4548
	*memcgp = memcg;
4549 4550 4551 4552 4553 4554 4555
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4556
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4557
	else
4558
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4559 4560 4561 4562 4563
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4564
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4565
}
4566

4567
/* remove redundant charge if migration failed*/
4568
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4569
	struct page *oldpage, struct page *newpage, bool migration_ok)
4570
{
4571
	struct page *used, *unused;
4572
	struct page_cgroup *pc;
4573
	bool anon;
4574

4575
	if (!memcg)
4576
		return;
4577

4578
	if (!migration_ok) {
4579 4580
		used = oldpage;
		unused = newpage;
4581
	} else {
4582
		used = newpage;
4583 4584
		unused = oldpage;
	}
4585
	anon = PageAnon(used);
4586 4587 4588 4589
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4590
	css_put(&memcg->css);
4591
	/*
4592 4593 4594
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4595
	 */
4596 4597 4598 4599 4600
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4601
	/*
4602 4603 4604 4605 4606 4607
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4608
	 */
4609
	if (anon)
4610
		mem_cgroup_uncharge_page(used);
4611
}
4612

4613 4614 4615 4616 4617 4618 4619 4620
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4621
	struct mem_cgroup *memcg = NULL;
4622 4623 4624 4625 4626 4627 4628 4629 4630
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4631 4632
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4633
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4634 4635
		ClearPageCgroupUsed(pc);
	}
4636 4637
	unlock_page_cgroup(pc);

4638 4639 4640 4641 4642 4643
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4644 4645 4646 4647 4648
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4649
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4650 4651
}

4652 4653 4654 4655 4656 4657
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4658 4659 4660 4661 4662
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4682 4683
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4684 4685 4686 4687
	}
}
#endif

4688
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4689
				unsigned long long val)
4690
{
4691
	int retry_count;
4692
	u64 memswlimit, memlimit;
4693
	int ret = 0;
4694 4695
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4696
	int enlarge;
4697 4698 4699 4700 4701 4702 4703 4704 4705

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4706

4707
	enlarge = 0;
4708
	while (retry_count) {
4709 4710 4711 4712
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4713 4714 4715
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4716
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4717 4718 4719 4720 4721 4722
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4723 4724
			break;
		}
4725 4726 4727 4728 4729

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4730
		ret = res_counter_set_limit(&memcg->res, val);
4731 4732 4733 4734 4735 4736
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4737 4738 4739 4740 4741
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4742 4743
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4744 4745
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4746
		if (curusage >= oldusage)
4747 4748 4749
			retry_count--;
		else
			oldusage = curusage;
4750
	}
4751 4752
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4753

4754 4755 4756
	return ret;
}

L
Li Zefan 已提交
4757 4758
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4759
{
4760
	int retry_count;
4761
	u64 memlimit, memswlimit, oldusage, curusage;
4762 4763
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4764
	int enlarge = 0;
4765

4766
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4767
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4768
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4769 4770 4771 4772 4773 4774 4775 4776
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4777
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4778 4779 4780 4781 4782 4783 4784 4785
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4786 4787 4788
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4789
		ret = res_counter_set_limit(&memcg->memsw, val);
4790 4791 4792 4793 4794 4795
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4796 4797 4798 4799 4800
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4801 4802 4803
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4804
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4805
		/* Usage is reduced ? */
4806
		if (curusage >= oldusage)
4807
			retry_count--;
4808 4809
		else
			oldusage = curusage;
4810
	}
4811 4812
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4813 4814 4815
	return ret;
}

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4908 4909 4910 4911 4912 4913 4914
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4915
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4916 4917
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4918
 */
4919
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4920
				int node, int zid, enum lru_list lru)
4921
{
4922
	struct lruvec *lruvec;
4923
	unsigned long flags;
4924
	struct list_head *list;
4925 4926
	struct page *busy;
	struct zone *zone;
4927

K
KAMEZAWA Hiroyuki 已提交
4928
	zone = &NODE_DATA(node)->node_zones[zid];
4929 4930
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4931

4932
	busy = NULL;
4933
	do {
4934
		struct page_cgroup *pc;
4935 4936
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4937
		spin_lock_irqsave(&zone->lru_lock, flags);
4938
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4939
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4940
			break;
4941
		}
4942 4943 4944
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4945
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4946
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4947 4948
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4949
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4950

4951
		pc = lookup_page_cgroup(page);
4952

4953
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4954
			/* found lock contention or "pc" is obsolete. */
4955
			busy = page;
4956 4957 4958
			cond_resched();
		} else
			busy = NULL;
4959
	} while (!list_empty(list));
4960 4961 4962
}

/*
4963 4964
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4965
 * This enables deleting this mem_cgroup.
4966 4967
 *
 * Caller is responsible for holding css reference on the memcg.
4968
 */
4969
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4970
{
4971
	int node, zid;
4972
	u64 usage;
4973

4974
	do {
4975 4976
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4977 4978
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4979
		for_each_node_state(node, N_MEMORY) {
4980
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4981 4982
				enum lru_list lru;
				for_each_lru(lru) {
4983
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4984
							node, zid, lru);
4985
				}
4986
			}
4987
		}
4988 4989
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4990
		cond_resched();
4991

4992
		/*
4993 4994 4995 4996 4997
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4998 4999 5000 5001 5002 5003
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
5004 5005 5006
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
5007 5008
}

5009 5010
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
5021 5022
}

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
5033

5034
	/* returns EBUSY if there is a task or if we come here twice. */
5035 5036 5037
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

5038 5039
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
5040
	/* try to free all pages in this cgroup */
5041
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5042
		int progress;
5043

5044 5045 5046
		if (signal_pending(current))
			return -EINTR;

5047
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5048
						false);
5049
		if (!progress) {
5050
			nr_retries--;
5051
			/* maybe some writeback is necessary */
5052
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5053
		}
5054 5055

	}
K
KAMEZAWA Hiroyuki 已提交
5056
	lru_add_drain();
5057 5058 5059
	mem_cgroup_reparent_charges(memcg);

	return 0;
5060 5061
}

5062 5063
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5064
{
5065
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5066

5067 5068
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5069
	return mem_cgroup_force_empty(memcg);
5070 5071
}

5072 5073
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5074
{
5075
	return mem_cgroup_from_css(css)->use_hierarchy;
5076 5077
}

5078 5079
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5080 5081
{
	int retval = 0;
5082
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5083
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5084

5085
	mutex_lock(&memcg_create_mutex);
5086 5087 5088 5089

	if (memcg->use_hierarchy == val)
		goto out;

5090
	/*
5091
	 * If parent's use_hierarchy is set, we can't make any modifications
5092 5093 5094 5095 5096 5097
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5098
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5099
				(val == 1 || val == 0)) {
5100
		if (list_empty(&memcg->css.cgroup->children))
5101
			memcg->use_hierarchy = val;
5102 5103 5104 5105
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5106 5107

out:
5108
	mutex_unlock(&memcg_create_mutex);
5109 5110 5111 5112

	return retval;
}

5113

5114
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5115
					       enum mem_cgroup_stat_index idx)
5116
{
K
KAMEZAWA Hiroyuki 已提交
5117
	struct mem_cgroup *iter;
5118
	long val = 0;
5119

5120
	/* Per-cpu values can be negative, use a signed accumulator */
5121
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5122 5123 5124 5125 5126
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5127 5128
}

5129
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5130
{
K
KAMEZAWA Hiroyuki 已提交
5131
	u64 val;
5132

5133
	if (!mem_cgroup_is_root(memcg)) {
5134
		if (!swap)
5135
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5136
		else
5137
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5138 5139
	}

5140 5141 5142 5143
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5144 5145
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5146

K
KAMEZAWA Hiroyuki 已提交
5147
	if (swap)
5148
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5149 5150 5151 5152

	return val << PAGE_SHIFT;
}

5153 5154
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
5155
{
5156
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157
	u64 val;
5158
	int name;
G
Glauber Costa 已提交
5159
	enum res_type type;
5160 5161 5162

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5163

5164 5165
	switch (type) {
	case _MEM:
5166
		if (name == RES_USAGE)
5167
			val = mem_cgroup_usage(memcg, false);
5168
		else
5169
			val = res_counter_read_u64(&memcg->res, name);
5170 5171
		break;
	case _MEMSWAP:
5172
		if (name == RES_USAGE)
5173
			val = mem_cgroup_usage(memcg, true);
5174
		else
5175
			val = res_counter_read_u64(&memcg->memsw, name);
5176
		break;
5177 5178 5179
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5180 5181 5182
	default:
		BUG();
	}
5183

5184
	return val;
B
Balbir Singh 已提交
5185
}
5186

5187
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5188 5189 5190
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5191
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5204
	mutex_lock(&memcg_create_mutex);
5205
	mutex_lock(&set_limit_mutex);
5206
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5207
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5208 5209 5210 5211 5212 5213
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5214 5215
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5216
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5217 5218
			goto out;
		}
5219 5220 5221 5222 5223 5224
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5225 5226 5227 5228
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5229
	mutex_unlock(&memcg_create_mutex);
5230 5231 5232 5233
#endif
	return ret;
}

5234
#ifdef CONFIG_MEMCG_KMEM
5235
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5236
{
5237
	int ret = 0;
5238 5239
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5240 5241
		goto out;

5242
	memcg->kmem_account_flags = parent->kmem_account_flags;
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5253 5254 5255 5256
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5257 5258 5259
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5260 5261 5262 5263
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5264
	memcg_stop_kmem_account();
5265
	ret = memcg_update_cache_sizes(memcg);
5266
	memcg_resume_kmem_account();
5267 5268 5269
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5270
}
5271
#endif /* CONFIG_MEMCG_KMEM */
5272

5273 5274 5275 5276
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5277
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5278
			    const char *buffer)
B
Balbir Singh 已提交
5279
{
5280
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5281 5282
	enum res_type type;
	int name;
5283 5284 5285
	unsigned long long val;
	int ret;

5286 5287
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5288

5289
	switch (name) {
5290
	case RES_LIMIT:
5291 5292 5293 5294
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5295 5296
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5297 5298 5299
		if (ret)
			break;
		if (type == _MEM)
5300
			ret = mem_cgroup_resize_limit(memcg, val);
5301
		else if (type == _MEMSWAP)
5302
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5303
		else if (type == _KMEM)
5304
			ret = memcg_update_kmem_limit(css, val);
5305 5306
		else
			return -EINVAL;
5307
		break;
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5322 5323 5324 5325 5326
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5327 5328
}

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5339 5340
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5353
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5354
{
5355
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5356 5357
	int name;
	enum res_type type;
5358

5359 5360
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5361

5362
	switch (name) {
5363
	case RES_MAX_USAGE:
5364
		if (type == _MEM)
5365
			res_counter_reset_max(&memcg->res);
5366
		else if (type == _MEMSWAP)
5367
			res_counter_reset_max(&memcg->memsw);
5368 5369 5370 5371
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5372 5373
		break;
	case RES_FAILCNT:
5374
		if (type == _MEM)
5375
			res_counter_reset_failcnt(&memcg->res);
5376
		else if (type == _MEMSWAP)
5377
			res_counter_reset_failcnt(&memcg->memsw);
5378 5379 5380 5381
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5382 5383
		break;
	}
5384

5385
	return 0;
5386 5387
}

5388
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5389 5390
					struct cftype *cft)
{
5391
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5392 5393
}

5394
#ifdef CONFIG_MMU
5395
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5396 5397
					struct cftype *cft, u64 val)
{
5398
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5399 5400 5401

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5402

5403
	/*
5404 5405 5406 5407
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5408
	 */
5409
	memcg->move_charge_at_immigrate = val;
5410 5411
	return 0;
}
5412
#else
5413
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5414 5415 5416 5417 5418
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5419

5420
#ifdef CONFIG_NUMA
5421 5422
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5423
{
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5436
	int nid;
5437
	unsigned long nr;
5438
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5439

5440 5441 5442 5443 5444 5445 5446 5447 5448
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5449 5450
	}

5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5466 5467 5468 5469 5470 5471
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5472 5473 5474 5475 5476
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5477
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5478
				 struct seq_file *m)
5479
{
5480
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5481 5482
	struct mem_cgroup *mi;
	unsigned int i;
5483

5484
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5485
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5486
			continue;
5487 5488
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5489
	}
L
Lee Schermerhorn 已提交
5490

5491 5492 5493 5494 5495 5496 5497 5498
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5499
	/* Hierarchical information */
5500 5501
	{
		unsigned long long limit, memsw_limit;
5502
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5503
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5504
		if (do_swap_account)
5505 5506
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5507
	}
K
KOSAKI Motohiro 已提交
5508

5509 5510 5511
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5512
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5513
			continue;
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5534
	}
K
KAMEZAWA Hiroyuki 已提交
5535

K
KOSAKI Motohiro 已提交
5536 5537 5538 5539
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5540
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5541 5542 5543 5544 5545
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5546
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5547
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5548

5549 5550 5551 5552
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5553
			}
5554 5555 5556 5557
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5558 5559 5560
	}
#endif

5561 5562 5563
	return 0;
}

5564 5565
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5566
{
5567
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5568

5569
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5570 5571
}

5572 5573
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5574
{
5575
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5576
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5577

T
Tejun Heo 已提交
5578
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5579 5580
		return -EINVAL;

5581
	mutex_lock(&memcg_create_mutex);
5582

K
KOSAKI Motohiro 已提交
5583
	/* If under hierarchy, only empty-root can set this value */
5584
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5585
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5586
		return -EINVAL;
5587
	}
K
KOSAKI Motohiro 已提交
5588 5589 5590

	memcg->swappiness = val;

5591
	mutex_unlock(&memcg_create_mutex);
5592

K
KOSAKI Motohiro 已提交
5593 5594 5595
	return 0;
}

5596 5597 5598 5599 5600 5601 5602 5603
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5604
		t = rcu_dereference(memcg->thresholds.primary);
5605
	else
5606
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5607 5608 5609 5610 5611 5612 5613

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5614
	 * current_threshold points to threshold just below or equal to usage.
5615 5616 5617
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5618
	i = t->current_threshold;
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5642
	t->current_threshold = i - 1;
5643 5644 5645 5646 5647 5648
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5649 5650 5651 5652 5653 5654 5655
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5656 5657 5658 5659 5660 5661 5662
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5663 5664 5665 5666 5667 5668 5669
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5670 5671
}

5672
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5673 5674 5675
{
	struct mem_cgroup_eventfd_list *ev;

5676
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5677 5678 5679 5680
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5681
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5682
{
K
KAMEZAWA Hiroyuki 已提交
5683 5684
	struct mem_cgroup *iter;

5685
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5686
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5687 5688
}

5689
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5690
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5691
{
5692 5693
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5694
	u64 threshold, usage;
5695
	int i, size, ret;
5696 5697 5698 5699 5700 5701

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5702

5703
	if (type == _MEM)
5704
		thresholds = &memcg->thresholds;
5705
	else if (type == _MEMSWAP)
5706
		thresholds = &memcg->memsw_thresholds;
5707 5708 5709 5710 5711 5712
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5713
	if (thresholds->primary)
5714 5715
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5716
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5717 5718

	/* Allocate memory for new array of thresholds */
5719
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5720
			GFP_KERNEL);
5721
	if (!new) {
5722 5723 5724
		ret = -ENOMEM;
		goto unlock;
	}
5725
	new->size = size;
5726 5727

	/* Copy thresholds (if any) to new array */
5728 5729
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5730
				sizeof(struct mem_cgroup_threshold));
5731 5732
	}

5733
	/* Add new threshold */
5734 5735
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5736 5737

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5738
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5739 5740 5741
			compare_thresholds, NULL);

	/* Find current threshold */
5742
	new->current_threshold = -1;
5743
	for (i = 0; i < size; i++) {
5744
		if (new->entries[i].threshold <= usage) {
5745
			/*
5746 5747
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5748 5749
			 * it here.
			 */
5750
			++new->current_threshold;
5751 5752
		} else
			break;
5753 5754
	}

5755 5756 5757 5758 5759
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5760

5761
	/* To be sure that nobody uses thresholds */
5762 5763 5764 5765 5766 5767 5768 5769
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5770
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5771 5772
	struct eventfd_ctx *eventfd, const char *args)
{
5773
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5774 5775
}

5776
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5777 5778
	struct eventfd_ctx *eventfd, const char *args)
{
5779
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5780 5781
}

5782
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5783
	struct eventfd_ctx *eventfd, enum res_type type)
5784
{
5785 5786
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5787
	u64 usage;
5788
	int i, j, size;
5789 5790 5791

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5792
		thresholds = &memcg->thresholds;
5793
	else if (type == _MEMSWAP)
5794
		thresholds = &memcg->memsw_thresholds;
5795 5796 5797
	else
		BUG();

5798 5799 5800
	if (!thresholds->primary)
		goto unlock;

5801 5802 5803 5804 5805 5806
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5807 5808 5809
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5810 5811 5812
			size++;
	}

5813
	new = thresholds->spare;
5814

5815 5816
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5817 5818
		kfree(new);
		new = NULL;
5819
		goto swap_buffers;
5820 5821
	}

5822
	new->size = size;
5823 5824

	/* Copy thresholds and find current threshold */
5825 5826 5827
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5828 5829
			continue;

5830
		new->entries[j] = thresholds->primary->entries[i];
5831
		if (new->entries[j].threshold <= usage) {
5832
			/*
5833
			 * new->current_threshold will not be used
5834 5835 5836
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5837
			++new->current_threshold;
5838 5839 5840 5841
		}
		j++;
	}

5842
swap_buffers:
5843 5844
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5845 5846 5847 5848 5849 5850
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5851
	rcu_assign_pointer(thresholds->primary, new);
5852

5853
	/* To be sure that nobody uses thresholds */
5854
	synchronize_rcu();
5855
unlock:
5856 5857
	mutex_unlock(&memcg->thresholds_lock);
}
5858

5859
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5860 5861
	struct eventfd_ctx *eventfd)
{
5862
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5863 5864
}

5865
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5866 5867
	struct eventfd_ctx *eventfd)
{
5868
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5869 5870
}

5871
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5872
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5873 5874 5875 5876 5877 5878 5879
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5880
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5881 5882 5883 5884 5885

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5886
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5887
		eventfd_signal(eventfd, 1);
5888
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5889 5890 5891 5892

	return 0;
}

5893
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5894
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5895 5896 5897
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5898
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5899

5900
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5901 5902 5903 5904 5905 5906
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5907
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5908 5909
}

5910
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5911
				       struct cftype *cft, struct seq_file *sf)
5912
{
5913
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5914

5915 5916
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5917 5918 5919
	return 0;
}

5920
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5921 5922
	struct cftype *cft, u64 val)
{
5923
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5924
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5925 5926

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5927
	if (!parent || !((val == 0) || (val == 1)))
5928 5929
		return -EINVAL;

5930
	mutex_lock(&memcg_create_mutex);
5931
	/* oom-kill-disable is a flag for subhierarchy. */
5932
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5933
		mutex_unlock(&memcg_create_mutex);
5934 5935
		return -EINVAL;
	}
5936
	memcg->oom_kill_disable = val;
5937
	if (!val)
5938
		memcg_oom_recover(memcg);
5939
	mutex_unlock(&memcg_create_mutex);
5940 5941 5942
	return 0;
}

A
Andrew Morton 已提交
5943
#ifdef CONFIG_MEMCG_KMEM
5944
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5945
{
5946 5947
	int ret;

5948
	memcg->kmemcg_id = -1;
5949 5950 5951
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5952

5953
	return mem_cgroup_sockets_init(memcg, ss);
5954
}
5955

5956
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5957
{
5958
	mem_cgroup_sockets_destroy(memcg);
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5985 5986 5987 5988 5989 5990 5991

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5992
		css_put(&memcg->css);
G
Glauber Costa 已提交
5993
}
5994
#else
5995
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5996 5997 5998
{
	return 0;
}
G
Glauber Costa 已提交
5999

6000 6001 6002 6003 6004
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
6005 6006
{
}
6007 6008
#endif

6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

6022 6023 6024 6025 6026
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
6027
static void memcg_event_remove(struct work_struct *work)
6028
{
6029 6030
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
6031
	struct mem_cgroup *memcg = event->memcg;
6032 6033 6034

	remove_wait_queue(event->wqh, &event->wait);

6035
	event->unregister_event(memcg, event->eventfd);
6036 6037 6038 6039 6040 6041

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
6042
	css_put(&memcg->css);
6043 6044 6045 6046 6047 6048 6049
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
6050 6051
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
6052
{
6053 6054
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
6055
	struct mem_cgroup *memcg = event->memcg;
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
6068
		spin_lock(&memcg->event_list_lock);
6069 6070 6071 6072 6073 6074 6075 6076
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
6077
		spin_unlock(&memcg->event_list_lock);
6078 6079 6080 6081 6082
	}

	return 0;
}

6083
static void memcg_event_ptable_queue_proc(struct file *file,
6084 6085
		wait_queue_head_t *wqh, poll_table *pt)
{
6086 6087
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
6088 6089 6090 6091 6092 6093

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
6094 6095
 * DO NOT USE IN NEW FILES.
 *
6096 6097 6098 6099 6100
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
6101 6102
static int memcg_write_event_control(struct cgroup_subsys_state *css,
				     struct cftype *cft, const char *buffer)
6103
{
6104
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6105
	struct mem_cgroup_event *event;
6106 6107 6108 6109
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
6110
	const char *name;
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

6128
	event->memcg = memcg;
6129
	INIT_LIST_HEAD(&event->list);
6130 6131 6132
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

6158 6159 6160 6161 6162
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
6163 6164
	 *
	 * DO NOT ADD NEW FILES.
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
6178 6179
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
6180 6181 6182 6183 6184
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

6185
	/*
6186 6187 6188
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
6189 6190 6191 6192
	 */
	rcu_read_lock();

	ret = -EINVAL;
6193 6194 6195
	cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
				 &mem_cgroup_subsys);
	if (cfile_css == css && css_tryget(css))
6196 6197 6198 6199 6200 6201
		ret = 0;

	rcu_read_unlock();
	if (ret)
		goto out_put_cfile;

6202
	ret = event->register_event(memcg, event->eventfd, buffer);
6203 6204 6205 6206 6207
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

6208 6209 6210
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
6211 6212 6213 6214 6215 6216 6217

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
6218
	css_put(css);
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
6231 6232
static struct cftype mem_cgroup_files[] = {
	{
6233
		.name = "usage_in_bytes",
6234
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6235
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6236
	},
6237 6238
	{
		.name = "max_usage_in_bytes",
6239
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6240
		.trigger = mem_cgroup_reset,
6241
		.read_u64 = mem_cgroup_read_u64,
6242
	},
B
Balbir Singh 已提交
6243
	{
6244
		.name = "limit_in_bytes",
6245
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6246
		.write_string = mem_cgroup_write,
6247
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6248
	},
6249 6250 6251 6252
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6253
		.read_u64 = mem_cgroup_read_u64,
6254
	},
B
Balbir Singh 已提交
6255 6256
	{
		.name = "failcnt",
6257
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6258
		.trigger = mem_cgroup_reset,
6259
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
6260
	},
6261 6262
	{
		.name = "stat",
6263
		.read_seq_string = memcg_stat_show,
6264
	},
6265 6266 6267 6268
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6269 6270
	{
		.name = "use_hierarchy",
6271
		.flags = CFTYPE_INSANE,
6272 6273 6274
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6275
	{
6276 6277
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6278 6279 6280
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6281 6282 6283 6284 6285
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6286 6287 6288 6289 6290
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6291 6292
	{
		.name = "oom_control",
6293
		.read_seq_string = mem_cgroup_oom_control_read,
6294
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6295 6296
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6297 6298 6299
	{
		.name = "pressure_level",
	},
6300 6301 6302
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6303
		.read_seq_string = memcg_numa_stat_show,
6304 6305
	},
#endif
6306 6307 6308 6309 6310
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6311
		.read_u64 = mem_cgroup_read_u64,
6312 6313 6314 6315
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6316
		.read_u64 = mem_cgroup_read_u64,
6317 6318 6319 6320 6321
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6322
		.read_u64 = mem_cgroup_read_u64,
6323 6324 6325 6326 6327
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6328
		.read_u64 = mem_cgroup_read_u64,
6329
	},
6330 6331 6332 6333 6334 6335
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6336
#endif
6337
	{ },	/* terminate */
6338
};
6339

6340 6341 6342 6343 6344
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6345
		.read_u64 = mem_cgroup_read_u64,
6346 6347 6348 6349 6350
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6351
		.read_u64 = mem_cgroup_read_u64,
6352 6353 6354 6355 6356
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6357
		.read_u64 = mem_cgroup_read_u64,
6358 6359 6360 6361 6362
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6363
		.read_u64 = mem_cgroup_read_u64,
6364 6365 6366 6367
	},
	{ },	/* terminate */
};
#endif
6368
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6369 6370
{
	struct mem_cgroup_per_node *pn;
6371
	struct mem_cgroup_per_zone *mz;
6372
	int zone, tmp = node;
6373 6374 6375 6376 6377 6378 6379 6380
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6381 6382
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6383
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6384 6385
	if (!pn)
		return 1;
6386 6387 6388

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6389
		lruvec_init(&mz->lruvec);
6390 6391
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6392
		mz->memcg = memcg;
6393
	}
6394
	memcg->nodeinfo[node] = pn;
6395 6396 6397
	return 0;
}

6398
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6399
{
6400
	kfree(memcg->nodeinfo[node]);
6401 6402
}

6403 6404
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6405
	struct mem_cgroup *memcg;
6406
	size_t size = memcg_size();
6407

6408
	/* Can be very big if nr_node_ids is very big */
6409
	if (size < PAGE_SIZE)
6410
		memcg = kzalloc(size, GFP_KERNEL);
6411
	else
6412
		memcg = vzalloc(size);
6413

6414
	if (!memcg)
6415 6416
		return NULL;

6417 6418
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6419
		goto out_free;
6420 6421
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6422 6423 6424

out_free:
	if (size < PAGE_SIZE)
6425
		kfree(memcg);
6426
	else
6427
		vfree(memcg);
6428
	return NULL;
6429 6430
}

6431
/*
6432 6433 6434 6435 6436 6437 6438 6439
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6440
 */
6441 6442

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6443
{
6444
	int node;
6445
	size_t size = memcg_size();
6446

6447
	mem_cgroup_remove_from_trees(memcg);
6448 6449 6450 6451 6452 6453

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6465
	disarm_static_keys(memcg);
6466 6467 6468 6469
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6470
}
6471

6472 6473 6474
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6475
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6476
{
6477
	if (!memcg->res.parent)
6478
		return NULL;
6479
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6480
}
G
Glauber Costa 已提交
6481
EXPORT_SYMBOL(parent_mem_cgroup);
6482

6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6506
static struct cgroup_subsys_state * __ref
6507
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6508
{
6509
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6510
	long error = -ENOMEM;
6511
	int node;
B
Balbir Singh 已提交
6512

6513 6514
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6515
		return ERR_PTR(error);
6516

B
Bob Liu 已提交
6517
	for_each_node(node)
6518
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6519
			goto free_out;
6520

6521
	/* root ? */
6522
	if (parent_css == NULL) {
6523
		root_mem_cgroup = memcg;
6524 6525 6526
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6527
	}
6528

6529 6530 6531 6532 6533
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6534
	vmpressure_init(&memcg->vmpressure);
6535 6536
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6537 6538 6539 6540 6541 6542 6543 6544 6545

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6546
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6547
{
6548 6549
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6550 6551
	int error = 0;

6552 6553 6554
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6555
	if (!parent)
6556 6557
		return 0;

6558
	mutex_lock(&memcg_create_mutex);
6559 6560 6561 6562 6563 6564

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6565 6566
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6567
		res_counter_init(&memcg->kmem, &parent->kmem);
6568

6569
		/*
6570 6571
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6572
		 */
6573
	} else {
6574 6575
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6576
		res_counter_init(&memcg->kmem, NULL);
6577 6578 6579 6580 6581
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6582
		if (parent != root_mem_cgroup)
6583
			mem_cgroup_subsys.broken_hierarchy = true;
6584
	}
6585 6586

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6587
	mutex_unlock(&memcg_create_mutex);
6588
	return error;
B
Balbir Singh 已提交
6589 6590
}

M
Michal Hocko 已提交
6591 6592 6593 6594 6595 6596 6597 6598
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6599
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6600 6601 6602 6603 6604 6605

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6606
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6607 6608
}

6609
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6610
{
6611
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6612
	struct mem_cgroup_event *event, *tmp;
6613 6614 6615 6616 6617 6618

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6619 6620
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6621 6622 6623
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6624
	spin_unlock(&memcg->event_list_lock);
6625

6626 6627
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6628
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6629
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6630
	mem_cgroup_destroy_all_caches(memcg);
6631
	vmpressure_cleanup(&memcg->vmpressure);
6632 6633
}

6634
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6635
{
6636
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6637

6638
	memcg_destroy_kmem(memcg);
6639
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6640 6641
}

6642
#ifdef CONFIG_MMU
6643
/* Handlers for move charge at task migration. */
6644 6645
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6646
{
6647 6648
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6649
	struct mem_cgroup *memcg = mc.to;
6650

6651
	if (mem_cgroup_is_root(memcg)) {
6652 6653 6654 6655 6656 6657 6658 6659
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6660
		 * "memcg" cannot be under rmdir() because we've already checked
6661 6662 6663 6664
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6665
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6666
			goto one_by_one;
6667
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6668
						PAGE_SIZE * count, &dummy)) {
6669
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6686 6687
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6688
		if (ret)
6689
			/* mem_cgroup_clear_mc() will do uncharge later */
6690
			return ret;
6691 6692
		mc.precharge++;
	}
6693 6694 6695 6696
	return ret;
}

/**
6697
 * get_mctgt_type - get target type of moving charge
6698 6699 6700
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6701
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6702 6703 6704 6705 6706 6707
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6708 6709 6710
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6711 6712 6713 6714 6715
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6716
	swp_entry_t	ent;
6717 6718 6719
};

enum mc_target_type {
6720
	MC_TARGET_NONE = 0,
6721
	MC_TARGET_PAGE,
6722
	MC_TARGET_SWAP,
6723 6724
};

D
Daisuke Nishimura 已提交
6725 6726
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6727
{
D
Daisuke Nishimura 已提交
6728
	struct page *page = vm_normal_page(vma, addr, ptent);
6729

D
Daisuke Nishimura 已提交
6730 6731 6732 6733
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6734
		if (!move_anon())
D
Daisuke Nishimura 已提交
6735
			return NULL;
6736 6737
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6738 6739 6740 6741 6742 6743 6744
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6745
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6746 6747 6748 6749 6750 6751 6752 6753
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6754 6755 6756 6757
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6758
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6759 6760 6761 6762 6763
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6764 6765 6766 6767 6768 6769 6770
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6771

6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6791 6792 6793 6794 6795 6796
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6797
		if (do_swap_account)
6798
			*entry = swap;
6799
		page = find_get_page(swap_address_space(swap), swap.val);
6800
	}
6801
#endif
6802 6803 6804
	return page;
}

6805
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6806 6807 6808 6809
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6810
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6811 6812 6813 6814 6815 6816
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6817 6818
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6819 6820

	if (!page && !ent.val)
6821
		return ret;
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6837 6838
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6839
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6840 6841 6842
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6843 6844 6845 6846
	}
	return ret;
}

6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6882 6883 6884 6885 6886 6887 6888 6889
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6890
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6891 6892
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6893
		spin_unlock(ptl);
6894
		return 0;
6895
	}
6896

6897 6898
	if (pmd_trans_unstable(pmd))
		return 0;
6899 6900
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6901
		if (get_mctgt_type(vma, addr, *pte, NULL))
6902 6903 6904 6905
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6906 6907 6908
	return 0;
}

6909 6910 6911 6912 6913
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6914
	down_read(&mm->mmap_sem);
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6926
	up_read(&mm->mmap_sem);
6927 6928 6929 6930 6931 6932 6933 6934 6935

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6936 6937 6938 6939 6940
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6941 6942
}

6943 6944
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6945
{
6946 6947
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6948
	int i;
6949

6950
	/* we must uncharge all the leftover precharges from mc.to */
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6962
	}
6963 6964 6965 6966 6967 6968
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6969 6970 6971

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6972 6973 6974 6975 6976 6977 6978 6979 6980

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6981
		/* we've already done css_get(mc.to) */
6982 6983
		mc.moved_swap = 0;
	}
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6999
	spin_lock(&mc.lock);
7000 7001
	mc.from = NULL;
	mc.to = NULL;
7002
	spin_unlock(&mc.lock);
7003
	mem_cgroup_end_move(from);
7004 7005
}

7006
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7007
				 struct cgroup_taskset *tset)
7008
{
7009
	struct task_struct *p = cgroup_taskset_first(tset);
7010
	int ret = 0;
7011
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7012
	unsigned long move_charge_at_immigrate;
7013

7014 7015 7016 7017 7018 7019 7020
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
7021 7022 7023
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

7024
		VM_BUG_ON(from == memcg);
7025 7026 7027 7028 7029

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
7030 7031 7032 7033
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
7034
			VM_BUG_ON(mc.moved_charge);
7035
			VM_BUG_ON(mc.moved_swap);
7036
			mem_cgroup_start_move(from);
7037
			spin_lock(&mc.lock);
7038
			mc.from = from;
7039
			mc.to = memcg;
7040
			mc.immigrate_flags = move_charge_at_immigrate;
7041
			spin_unlock(&mc.lock);
7042
			/* We set mc.moving_task later */
7043 7044 7045 7046

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
7047 7048
		}
		mmput(mm);
7049 7050 7051 7052
	}
	return ret;
}

7053
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7054
				     struct cgroup_taskset *tset)
7055
{
7056
	mem_cgroup_clear_mc();
7057 7058
}

7059 7060 7061
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
7062
{
7063 7064 7065 7066
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
7067 7068 7069 7070
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
7071

7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
7082
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7083
		if (mc.precharge < HPAGE_PMD_NR) {
7084
			spin_unlock(ptl);
7085 7086 7087 7088 7089 7090 7091 7092
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7093
							pc, mc.from, mc.to)) {
7094 7095 7096 7097 7098 7099 7100
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
7101
		spin_unlock(ptl);
7102
		return 0;
7103 7104
	}

7105 7106
	if (pmd_trans_unstable(pmd))
		return 0;
7107 7108 7109 7110
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
7111
		swp_entry_t ent;
7112 7113 7114 7115

		if (!mc.precharge)
			break;

7116
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7117 7118 7119 7120 7121
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
7122
			if (!mem_cgroup_move_account(page, 1, pc,
7123
						     mc.from, mc.to)) {
7124
				mc.precharge--;
7125 7126
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
7127 7128
			}
			putback_lru_page(page);
7129
put:			/* get_mctgt_type() gets the page */
7130 7131
			put_page(page);
			break;
7132 7133
		case MC_TARGET_SWAP:
			ent = target.ent;
7134
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7135
				mc.precharge--;
7136 7137 7138
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
7139
			break;
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
7154
		ret = mem_cgroup_do_precharge(1);
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
7198
	up_read(&mm->mmap_sem);
7199 7200
}

7201
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7202
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
7203
{
7204
	struct task_struct *p = cgroup_taskset_first(tset);
7205
	struct mm_struct *mm = get_task_mm(p);
7206 7207

	if (mm) {
7208 7209
		if (mc.to)
			mem_cgroup_move_charge(mm);
7210 7211
		mmput(mm);
	}
7212 7213
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
7214
}
7215
#else	/* !CONFIG_MMU */
7216
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7217
				 struct cgroup_taskset *tset)
7218 7219 7220
{
	return 0;
}
7221
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7222
				     struct cgroup_taskset *tset)
7223 7224
{
}
7225
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7226
				 struct cgroup_taskset *tset)
7227 7228 7229
{
}
#endif
B
Balbir Singh 已提交
7230

7231 7232 7233 7234
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7235
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7236 7237 7238 7239 7240 7241
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7242 7243
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7244 7245
}

B
Balbir Singh 已提交
7246 7247 7248
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
7249
	.css_alloc = mem_cgroup_css_alloc,
7250
	.css_online = mem_cgroup_css_online,
7251 7252
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7253 7254
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7255
	.attach = mem_cgroup_move_task,
7256
	.bind = mem_cgroup_bind,
7257
	.base_cftypes = mem_cgroup_files,
7258
	.early_init = 0,
B
Balbir Singh 已提交
7259
};
7260

A
Andrew Morton 已提交
7261
#ifdef CONFIG_MEMCG_SWAP
7262 7263
static int __init enable_swap_account(char *s)
{
7264
	if (!strcmp(s, "1"))
7265
		really_do_swap_account = 1;
7266
	else if (!strcmp(s, "0"))
7267 7268 7269
		really_do_swap_account = 0;
	return 1;
}
7270
__setup("swapaccount=", enable_swap_account);
7271

7272 7273
static void __init memsw_file_init(void)
{
7274 7275 7276 7277 7278 7279 7280 7281 7282
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7283
}
7284

7285
#else
7286
static void __init enable_swap_cgroup(void)
7287 7288
{
}
7289
#endif
7290 7291

/*
7292 7293 7294 7295 7296 7297
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7298 7299 7300 7301
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7302
	enable_swap_cgroup();
7303
	mem_cgroup_soft_limit_tree_init();
7304
	memcg_stock_init();
7305 7306 7307
	return 0;
}
subsys_initcall(mem_cgroup_init);