memcontrol.c 149.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99 100 101 102 103 104 105 106
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

107 108 109 110 111 112 113 114
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

115 116 117 118 119 120 121 122
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
123
	MEM_CGROUP_TARGET_SOFTLIMIT,
124
	MEM_CGROUP_TARGET_NUMAINFO,
125 126
	MEM_CGROUP_NTARGETS,
};
127 128 129
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
130

131
struct mem_cgroup_stat_cpu {
132
	long count[MEM_CGROUP_STAT_NSTATS];
133
	unsigned long events[MEMCG_NR_EVENTS];
134
	unsigned long nr_page_events;
135
	unsigned long targets[MEM_CGROUP_NTARGETS];
136 137
};

138 139
struct reclaim_iter {
	struct mem_cgroup *position;
140 141 142 143
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

144 145 146 147
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
148
	struct lruvec		lruvec;
149
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
150

151
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
152

153
	struct rb_node		tree_node;	/* RB tree node */
154
	unsigned long		usage_in_excess;/* Set to the value by which */
155 156
						/* the soft limit is exceeded*/
	bool			on_tree;
157
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
158
						/* use container_of	   */
159 160 161 162 163 164
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

185 186
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
187
	unsigned long threshold;
188 189
};

K
KAMEZAWA Hiroyuki 已提交
190
/* For threshold */
191
struct mem_cgroup_threshold_ary {
192
	/* An array index points to threshold just below or equal to usage. */
193
	int current_threshold;
194 195 196 197 198
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
199 200 201 202 203 204 205 206 207 208 209 210

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
211 212 213 214 215
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
216

217 218 219
/*
 * cgroup_event represents events which userspace want to receive.
 */
220
struct mem_cgroup_event {
221
	/*
222
	 * memcg which the event belongs to.
223
	 */
224
	struct mem_cgroup *memcg;
225 226 227 228 229 230 231 232
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
233 234 235 236 237
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
238
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
239
			      struct eventfd_ctx *eventfd, const char *args);
240 241 242 243 244
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
245
	void (*unregister_event)(struct mem_cgroup *memcg,
246
				 struct eventfd_ctx *eventfd);
247 248 249 250 251 252 253 254 255 256
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

257 258
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
259

B
Balbir Singh 已提交
260 261 262 263 264 265 266
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
267 268 269
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
270 271 272
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
273 274 275 276 277 278

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

279 280 281 282
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

283
	unsigned long soft_limit;
284

285 286 287
	/* vmpressure notifications */
	struct vmpressure vmpressure;

288 289 290
	/* css_online() has been completed */
	int initialized;

291 292 293 294
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
295 296 297

	bool		oom_lock;
	atomic_t	under_oom;
298
	atomic_t	oom_wakeups;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306 307
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
308
	struct mem_cgroup_thresholds thresholds;
309

310
	/* thresholds for mem+swap usage. RCU-protected */
311
	struct mem_cgroup_thresholds memsw_thresholds;
312

K
KAMEZAWA Hiroyuki 已提交
313 314
	/* For oom notifier event fd */
	struct list_head oom_notify;
315

316 317 318 319
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
320
	unsigned long move_charge_at_immigrate;
321 322 323
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
324
	atomic_t		moving_account;
325
	/* taken only while moving_account > 0 */
326 327 328
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
329
	/*
330
	 * percpu counter.
331
	 */
332
	struct mem_cgroup_stat_cpu __percpu *stat;
333 334 335 336 337 338
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
339

M
Michal Hocko 已提交
340
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
341
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
342
#endif
343 344 345 346
#if defined(CONFIG_MEMCG_KMEM)
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
347 348 349 350 351 352 353

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
354

355 356 357 358
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

359 360
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
361 362
};

363
#ifdef CONFIG_MEMCG_KMEM
364 365
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
V
Vladimir Davydov 已提交
366
	return memcg->kmemcg_id >= 0;
367
}
368 369
#endif

370 371
/* Stuffs for move charges at task migration. */
/*
372
 * Types of charges to be moved.
373
 */
374 375 376
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
377

378 379
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
380
	spinlock_t	  lock; /* for from, to */
381 382
	struct mem_cgroup *from;
	struct mem_cgroup *to;
383
	unsigned long flags;
384
	unsigned long precharge;
385
	unsigned long moved_charge;
386
	unsigned long moved_swap;
387 388 389
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
390
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
391 392
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
393

394 395 396 397
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
398
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
399
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
400

401 402
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
403
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
404
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
405
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
406 407 408
	NR_CHARGE_TYPE,
};

409
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
410 411 412 413
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
414
	_KMEM,
G
Glauber Costa 已提交
415 416
};

417 418
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
419
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
420 421
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
422

423 424 425 426 427 428 429
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

430 431
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
432
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
433 434
}

435 436 437 438 439 440 441 442 443 444 445 446 447
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

448 449 450 451 452
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

453 454 455 456 457 458
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
459 460
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
461
	return memcg->css.id;
L
Li Zefan 已提交
462 463 464 465 466 467
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

468
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
469 470 471
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
472
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
473
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
474 475 476

void sock_update_memcg(struct sock *sk)
{
477
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
478
		struct mem_cgroup *memcg;
479
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
480 481 482

		BUG_ON(!sk->sk_prot->proto_cgroup);

483 484 485 486 487 488 489 490 491 492
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
493
			css_get(&sk->sk_cgrp->memcg->css);
494 495 496
			return;
		}

G
Glauber Costa 已提交
497 498
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
499
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
500
		if (!mem_cgroup_is_root(memcg) &&
501 502
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
503
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
504 505 506 507 508 509 510 511
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
512
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
513 514 515
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
516
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
517 518
	}
}
G
Glauber Costa 已提交
519 520 521 522 523 524

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

525
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
526 527
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
528

529 530
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
531
	if (!memcg_proto_activated(&memcg->tcp_mem))
532 533 534 535 536 537 538 539 540
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

541
#ifdef CONFIG_MEMCG_KMEM
542 543
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
544 545 546 547 548
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
549 550 551 552 553 554
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
555 556
int memcg_limited_groups_array_size;

557 558 559 560 561 562
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
563
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
564 565
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
566
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
567 568 569
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
570
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
571

572 573 574 575 576 577
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
578
struct static_key memcg_kmem_enabled_key;
579
EXPORT_SYMBOL(memcg_kmem_enabled_key);
580

581 582
static void memcg_free_cache_id(int id);

583 584
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
585
	if (memcg_kmem_is_active(memcg)) {
586
		static_key_slow_dec(&memcg_kmem_enabled_key);
587
		memcg_free_cache_id(memcg->kmemcg_id);
588
	}
589 590 591 592
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
593
	WARN_ON(page_counter_read(&memcg->kmem));
594 595 596 597 598 599 600 601 602 603 604 605 606
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

607
static struct mem_cgroup_per_zone *
608
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
609
{
610 611 612
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

613
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
614 615
}

616
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
617
{
618
	return &memcg->css;
619 620
}

621
static struct mem_cgroup_per_zone *
622
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
623
{
624 625
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
626

627
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

645 646
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
647
					 unsigned long new_usage_in_excess)
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

677 678
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
679 680 681 682 683 684 685
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

686 687
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
688
{
689 690 691
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
692
	__mem_cgroup_remove_exceeded(mz, mctz);
693
	spin_unlock_irqrestore(&mctz->lock, flags);
694 695
}

696 697 698 699 700 701 702 703 704 705 706
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
707 708 709

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
710
	unsigned long excess;
711 712 713
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

714
	mctz = soft_limit_tree_from_page(page);
715 716 717 718 719
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
720
		mz = mem_cgroup_page_zoneinfo(memcg, page);
721
		excess = soft_limit_excess(memcg);
722 723 724 725 726
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
727 728 729
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
730 731
			/* if on-tree, remove it */
			if (mz->on_tree)
732
				__mem_cgroup_remove_exceeded(mz, mctz);
733 734 735 736
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
737
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
738
			spin_unlock_irqrestore(&mctz->lock, flags);
739 740 741 742 743 744 745
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
746 747
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
748

749 750 751 752
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
753
			mem_cgroup_remove_exceeded(mz, mctz);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
776
	__mem_cgroup_remove_exceeded(mz, mctz);
777
	if (!soft_limit_excess(mz->memcg) ||
778
	    !css_tryget_online(&mz->memcg->css))
779 780 781 782 783 784 785 786 787 788
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

789
	spin_lock_irq(&mctz->lock);
790
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
791
	spin_unlock_irq(&mctz->lock);
792 793 794
	return mz;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
814
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
815
				 enum mem_cgroup_stat_index idx)
816
{
817
	long val = 0;
818 819
	int cpu;

820 821
	get_online_cpus();
	for_each_online_cpu(cpu)
822
		val += per_cpu(memcg->stat->count[idx], cpu);
823
#ifdef CONFIG_HOTPLUG_CPU
824 825 826
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
827 828
#endif
	put_online_cpus();
829 830 831
	return val;
}

832
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
833 834 835 836 837
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

838
	get_online_cpus();
839
	for_each_online_cpu(cpu)
840
		val += per_cpu(memcg->stat->events[idx], cpu);
841
#ifdef CONFIG_HOTPLUG_CPU
842 843 844
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
845
#endif
846
	put_online_cpus();
847 848 849
	return val;
}

850
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
851
					 struct page *page,
852
					 int nr_pages)
853
{
854 855 856 857
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
858
	if (PageAnon(page))
859
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
860
				nr_pages);
861
	else
862
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
863
				nr_pages);
864

865 866 867 868
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

869 870
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
871
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
872
	else {
873
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
874 875
		nr_pages = -nr_pages; /* for event */
	}
876

877
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
878 879
}

880
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
881 882 883 884 885 886 887
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

888 889 890
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
891
{
892
	unsigned long nr = 0;
893 894
	int zid;

895
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
896

897 898 899 900 901 902 903 904 905 906 907 908
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
909
}
910

911
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
912
			unsigned int lru_mask)
913
{
914
	unsigned long nr = 0;
915
	int nid;
916

917
	for_each_node_state(nid, N_MEMORY)
918 919
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
920 921
}

922 923
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
924 925 926
{
	unsigned long val, next;

927
	val = __this_cpu_read(memcg->stat->nr_page_events);
928
	next = __this_cpu_read(memcg->stat->targets[target]);
929
	/* from time_after() in jiffies.h */
930 931 932 933 934
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
935 936 937
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
938 939 940 941 942 943 944 945
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
946
	}
947
	return false;
948 949 950 951 952 953
}

/*
 * Check events in order.
 *
 */
954
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
955 956
{
	/* threshold event is triggered in finer grain than soft limit */
957 958
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
959
		bool do_softlimit;
960
		bool do_numainfo __maybe_unused;
961

962 963
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
964 965 966 967
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
968
		mem_cgroup_threshold(memcg);
969 970
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
971
#if MAX_NUMNODES > 1
972
		if (unlikely(do_numainfo))
973
			atomic_inc(&memcg->numainfo_events);
974
#endif
975
	}
976 977
}

978
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
979
{
980 981 982 983 984 985 986 987
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

988
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
989 990
}

991
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
992
{
993
	struct mem_cgroup *memcg = NULL;
994

995 996
	rcu_read_lock();
	do {
997 998 999 1000 1001 1002
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1003
			memcg = root_mem_cgroup;
1004 1005 1006 1007 1008
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1009
	} while (!css_tryget_online(&memcg->css));
1010
	rcu_read_unlock();
1011
	return memcg;
1012 1013
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1031
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1032
				   struct mem_cgroup *prev,
1033
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1034
{
1035 1036
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1037
	struct mem_cgroup *memcg = NULL;
1038
	struct mem_cgroup *pos = NULL;
1039

1040 1041
	if (mem_cgroup_disabled())
		return NULL;
1042

1043 1044
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1045

1046
	if (prev && !reclaim)
1047
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1048

1049 1050
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1051
			goto out;
1052
		return root;
1053
	}
K
KAMEZAWA Hiroyuki 已提交
1054

1055
	rcu_read_lock();
M
Michal Hocko 已提交
1056

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1091
		}
K
KAMEZAWA Hiroyuki 已提交
1092

1093 1094 1095 1096 1097 1098
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1099

1100 1101
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1102

1103
		if (css_tryget(css)) {
1104 1105 1106 1107 1108 1109 1110
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1111

1112
			css_put(css);
1113
		}
1114

1115
		memcg = NULL;
1116
	}
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1137
	}
1138

1139 1140
out_unlock:
	rcu_read_unlock();
1141
out:
1142 1143 1144
	if (prev && prev != root)
		css_put(&prev->css);

1145
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1146
}
K
KAMEZAWA Hiroyuki 已提交
1147

1148 1149 1150 1151 1152 1153 1154
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1155 1156 1157 1158 1159 1160
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1161

1162 1163 1164 1165 1166 1167
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1168
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1169
	     iter != NULL;				\
1170
	     iter = mem_cgroup_iter(root, iter, NULL))
1171

1172
#define for_each_mem_cgroup(iter)			\
1173
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1174
	     iter != NULL;				\
1175
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1176

1177
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1178
{
1179
	struct mem_cgroup *memcg;
1180 1181

	rcu_read_lock();
1182 1183
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1184 1185 1186 1187
		goto out;

	switch (idx) {
	case PGFAULT:
1188 1189 1190 1191
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1192 1193 1194 1195 1196 1197 1198
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1199
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1200

1201 1202 1203
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1204
 * @memcg: memcg of the wanted lruvec
1205 1206 1207 1208 1209 1210 1211 1212 1213
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1214
	struct lruvec *lruvec;
1215

1216 1217 1218 1219
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1220

1221
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1232 1233 1234
}

/**
1235
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1236
 * @page: the page
1237
 * @zone: zone of the page
1238 1239 1240 1241
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1242
 */
1243
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1244 1245
{
	struct mem_cgroup_per_zone *mz;
1246
	struct mem_cgroup *memcg;
1247
	struct lruvec *lruvec;
1248

1249 1250 1251 1252
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1253

1254
	memcg = page->mem_cgroup;
1255
	/*
1256
	 * Swapcache readahead pages are added to the LRU - and
1257
	 * possibly migrated - before they are charged.
1258
	 */
1259 1260
	if (!memcg)
		memcg = root_mem_cgroup;
1261

1262
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1273
}
1274

1275
/**
1276 1277 1278 1279
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1280
 *
1281 1282
 * This function must be called when a page is added to or removed from an
 * lru list.
1283
 */
1284 1285
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1286 1287
{
	struct mem_cgroup_per_zone *mz;
1288
	unsigned long *lru_size;
1289 1290 1291 1292

	if (mem_cgroup_disabled())
		return;

1293 1294 1295 1296
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1297
}
1298

1299
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1300
{
1301
	if (root == memcg)
1302
		return true;
1303
	if (!root->use_hierarchy)
1304
		return false;
1305
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1306 1307
}

1308
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1309
{
1310
	struct mem_cgroup *task_memcg;
1311
	struct task_struct *p;
1312
	bool ret;
1313

1314
	p = find_lock_task_mm(task);
1315
	if (p) {
1316
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1317 1318 1319 1320 1321 1322 1323
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1324
		rcu_read_lock();
1325 1326
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1327
		rcu_read_unlock();
1328
	}
1329 1330
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1331 1332 1333
	return ret;
}

1334
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1335
{
1336
	unsigned long inactive_ratio;
1337
	unsigned long inactive;
1338
	unsigned long active;
1339
	unsigned long gb;
1340

1341 1342
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1343

1344 1345 1346 1347 1348 1349
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1350
	return inactive * inactive_ratio < active;
1351 1352
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1367
#define mem_cgroup_from_counter(counter, member)	\
1368 1369
	container_of(counter, struct mem_cgroup, member)

1370
/**
1371
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1372
 * @memcg: the memory cgroup
1373
 *
1374
 * Returns the maximum amount of memory @mem can be charged with, in
1375
 * pages.
1376
 */
1377
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1378
{
1379 1380 1381
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1396 1397
}

1398
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1399 1400
{
	/* root ? */
1401
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1402 1403
		return vm_swappiness;

1404
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1405 1406
}

1407
/*
Q
Qiang Huang 已提交
1408
 * A routine for checking "mem" is under move_account() or not.
1409
 *
Q
Qiang Huang 已提交
1410 1411 1412
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1413
 */
1414
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1415
{
1416 1417
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1418
	bool ret = false;
1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1428

1429 1430
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1431 1432
unlock:
	spin_unlock(&mc.lock);
1433 1434 1435
	return ret;
}

1436
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1437 1438
{
	if (mc.moving_task && current != mc.moving_task) {
1439
		if (mem_cgroup_under_move(memcg)) {
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1452
#define K(x) ((x) << (PAGE_SHIFT-10))
1453
/**
1454
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1455 1456 1457 1458 1459 1460 1461 1462
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1463
	/* oom_info_lock ensures that parallel ooms do not interleave */
1464
	static DEFINE_MUTEX(oom_info_lock);
1465 1466
	struct mem_cgroup *iter;
	unsigned int i;
1467

1468
	if (!p)
1469 1470
		return;

1471
	mutex_lock(&oom_info_lock);
1472 1473
	rcu_read_lock();

T
Tejun Heo 已提交
1474 1475
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1476
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1477
	pr_cont_cgroup_path(memcg->css.cgroup);
1478
	pr_cont("\n");
1479 1480 1481

	rcu_read_unlock();

1482 1483 1484 1485 1486 1487 1488 1489 1490
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1491 1492

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1493 1494
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1510
	mutex_unlock(&oom_info_lock);
1511 1512
}

1513 1514 1515 1516
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1517
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1518 1519
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1520 1521
	struct mem_cgroup *iter;

1522
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1523
		num++;
1524 1525 1526
	return num;
}

D
David Rientjes 已提交
1527 1528 1529
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1530
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1531
{
1532
	unsigned long limit;
1533

1534
	limit = memcg->memory.limit;
1535
	if (mem_cgroup_swappiness(memcg)) {
1536
		unsigned long memsw_limit;
1537

1538 1539
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1540 1541
	}
	return limit;
D
David Rientjes 已提交
1542 1543
}

1544 1545
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1546 1547 1548 1549 1550 1551 1552
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1553
	/*
1554 1555 1556
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1557
	 */
1558
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1559
		mark_tsk_oom_victim(current);
1560 1561 1562 1563
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1564
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1565
	for_each_mem_cgroup_tree(iter, memcg) {
1566
		struct css_task_iter it;
1567 1568
		struct task_struct *task;

1569 1570
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1583
				css_task_iter_end(&it);
1584 1585 1586 1587 1588 1589 1590 1591
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1604
		}
1605
		css_task_iter_end(&it);
1606 1607 1608 1609 1610 1611 1612 1613 1614
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1615 1616
#if MAX_NUMNODES > 1

1617 1618
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1619
 * @memcg: the target memcg
1620 1621 1622 1623 1624 1625 1626
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1627
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1628 1629
		int nid, bool noswap)
{
1630
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1631 1632 1633
		return true;
	if (noswap || !total_swap_pages)
		return false;
1634
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1635 1636 1637 1638
		return true;
	return false;

}
1639 1640 1641 1642 1643 1644 1645

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1646
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1647 1648
{
	int nid;
1649 1650 1651 1652
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1653
	if (!atomic_read(&memcg->numainfo_events))
1654
		return;
1655
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1656 1657 1658
		return;

	/* make a nodemask where this memcg uses memory from */
1659
	memcg->scan_nodes = node_states[N_MEMORY];
1660

1661
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1662

1663 1664
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1665
	}
1666

1667 1668
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1683
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1684 1685 1686
{
	int node;

1687 1688
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1689

1690
	node = next_node(node, memcg->scan_nodes);
1691
	if (node == MAX_NUMNODES)
1692
		node = first_node(memcg->scan_nodes);
1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1702
	memcg->last_scanned_node = node;
1703 1704 1705
	return node;
}
#else
1706
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1707 1708 1709 1710 1711
{
	return 0;
}
#endif

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1727
	excess = soft_limit_excess(root_memcg);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1756
		if (!soft_limit_excess(root_memcg))
1757
			break;
1758
	}
1759 1760
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1761 1762
}

1763 1764 1765 1766 1767 1768
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1769 1770
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1771 1772 1773 1774
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1775
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1776
{
1777
	struct mem_cgroup *iter, *failed = NULL;
1778

1779 1780
	spin_lock(&memcg_oom_lock);

1781
	for_each_mem_cgroup_tree(iter, memcg) {
1782
		if (iter->oom_lock) {
1783 1784 1785 1786 1787
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1788 1789
			mem_cgroup_iter_break(memcg, iter);
			break;
1790 1791
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1792
	}
K
KAMEZAWA Hiroyuki 已提交
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1805
		}
1806 1807
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1808 1809 1810 1811

	spin_unlock(&memcg_oom_lock);

	return !failed;
1812
}
1813

1814
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1815
{
K
KAMEZAWA Hiroyuki 已提交
1816 1817
	struct mem_cgroup *iter;

1818
	spin_lock(&memcg_oom_lock);
1819
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1820
	for_each_mem_cgroup_tree(iter, memcg)
1821
		iter->oom_lock = false;
1822
	spin_unlock(&memcg_oom_lock);
1823 1824
}

1825
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1826 1827 1828
{
	struct mem_cgroup *iter;

1829
	for_each_mem_cgroup_tree(iter, memcg)
1830 1831 1832
		atomic_inc(&iter->under_oom);
}

1833
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1834 1835 1836
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1837 1838 1839 1840 1841
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1842
	for_each_mem_cgroup_tree(iter, memcg)
1843
		atomic_add_unless(&iter->under_oom, -1, 0);
1844 1845
}

K
KAMEZAWA Hiroyuki 已提交
1846 1847
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1848
struct oom_wait_info {
1849
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1850 1851 1852 1853 1854 1855
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1856 1857
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1861
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1862

1863 1864
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1865 1866 1867 1868
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1869
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1870
{
1871
	atomic_inc(&memcg->oom_wakeups);
1872 1873
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1874 1875
}

1876
static void memcg_oom_recover(struct mem_cgroup *memcg)
1877
{
1878 1879
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1880 1881
}

1882
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1883
{
1884 1885
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1886
	/*
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1899
	 */
1900 1901 1902 1903
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1904 1905 1906 1907
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1908
 * @handle: actually kill/wait or just clean up the OOM state
1909
 *
1910 1911
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1912
 *
1913
 * Memcg supports userspace OOM handling where failed allocations must
1914 1915 1916 1917
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1918
 * the end of the page fault to complete the OOM handling.
1919 1920
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1921
 * completed, %false otherwise.
1922
 */
1923
bool mem_cgroup_oom_synchronize(bool handle)
1924
{
1925
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1926
	struct oom_wait_info owait;
1927
	bool locked;
1928 1929 1930

	/* OOM is global, do not handle */
	if (!memcg)
1931
		return false;
1932

1933
	if (!handle || oom_killer_disabled)
1934
		goto cleanup;
1935 1936 1937 1938 1939 1940

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1941

1942
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1956
		schedule();
1957 1958 1959 1960 1961
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1962 1963 1964 1965 1966 1967 1968 1969
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1970 1971
cleanup:
	current->memcg_oom.memcg = NULL;
1972
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1973
	return true;
1974 1975
}

1976 1977 1978
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1979
 *
1980 1981 1982
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1983
 *
1984
 *   memcg = mem_cgroup_begin_page_stat(page);
1985 1986
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1987
 *   mem_cgroup_end_page_stat(memcg);
1988
 */
1989
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1990 1991
{
	struct mem_cgroup *memcg;
1992
	unsigned long flags;
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
2006 2007 2008 2009
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2010
again:
2011
	memcg = page->mem_cgroup;
2012
	if (unlikely(!memcg))
2013 2014
		return NULL;

Q
Qiang Huang 已提交
2015
	if (atomic_read(&memcg->moving_account) <= 0)
2016
		return memcg;
2017

2018
	spin_lock_irqsave(&memcg->move_lock, flags);
2019
	if (memcg != page->mem_cgroup) {
2020
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2021 2022
		goto again;
	}
2023 2024 2025 2026 2027 2028 2029 2030

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2031 2032

	return memcg;
2033 2034
}

2035 2036 2037 2038
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2039
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2040
{
2041 2042 2043 2044 2045 2046 2047 2048
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2049

2050
	rcu_read_unlock();
2051 2052
}

2053 2054 2055 2056 2057 2058 2059 2060 2061
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2062
				 enum mem_cgroup_stat_index idx, int val)
2063
{
2064
	VM_BUG_ON(!rcu_read_lock_held());
2065

2066 2067
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2068
}
2069

2070 2071 2072 2073
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2074
#define CHARGE_BATCH	32U
2075 2076
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2077
	unsigned int nr_pages;
2078
	struct work_struct work;
2079
	unsigned long flags;
2080
#define FLUSHING_CACHED_CHARGE	0
2081 2082
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2083
static DEFINE_MUTEX(percpu_charge_mutex);
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2095
 */
2096
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2097 2098
{
	struct memcg_stock_pcp *stock;
2099
	bool ret = false;
2100

2101
	if (nr_pages > CHARGE_BATCH)
2102
		return ret;
2103

2104
	stock = &get_cpu_var(memcg_stock);
2105
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2106
		stock->nr_pages -= nr_pages;
2107 2108
		ret = true;
	}
2109 2110 2111 2112 2113
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2114
 * Returns stocks cached in percpu and reset cached information.
2115 2116 2117 2118 2119
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2120
	if (stock->nr_pages) {
2121
		page_counter_uncharge(&old->memory, stock->nr_pages);
2122
		if (do_swap_account)
2123
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2124
		css_put_many(&old->css, stock->nr_pages);
2125
		stock->nr_pages = 0;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2136
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2137
	drain_stock(stock);
2138
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2139 2140
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2152
/*
2153
 * Cache charges(val) to local per_cpu area.
2154
 * This will be consumed by consume_stock() function, later.
2155
 */
2156
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2157 2158 2159
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2160
	if (stock->cached != memcg) { /* reset if necessary */
2161
		drain_stock(stock);
2162
		stock->cached = memcg;
2163
	}
2164
	stock->nr_pages += nr_pages;
2165 2166 2167 2168
	put_cpu_var(memcg_stock);
}

/*
2169
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2170
 * of the hierarchy under it.
2171
 */
2172
static void drain_all_stock(struct mem_cgroup *root_memcg)
2173
{
2174
	int cpu, curcpu;
2175

2176 2177 2178
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2179 2180
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2181
	curcpu = get_cpu();
2182 2183
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2184
		struct mem_cgroup *memcg;
2185

2186 2187
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2188
			continue;
2189
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2190
			continue;
2191 2192 2193 2194 2195 2196
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2197
	}
2198
	put_cpu();
A
Andrew Morton 已提交
2199
	put_online_cpus();
2200
	mutex_unlock(&percpu_charge_mutex);
2201 2202
}

2203 2204 2205 2206
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2207
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2208 2209 2210
{
	int i;

2211
	spin_lock(&memcg->pcp_counter_lock);
2212
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2213
		long x = per_cpu(memcg->stat->count[i], cpu);
2214

2215 2216
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2217
	}
2218
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2219
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2220

2221 2222
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2223
	}
2224
	spin_unlock(&memcg->pcp_counter_lock);
2225 2226
}

2227
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2228 2229 2230 2231 2232
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2233
	struct mem_cgroup *iter;
2234

2235
	if (action == CPU_ONLINE)
2236 2237
		return NOTIFY_OK;

2238
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2239
		return NOTIFY_OK;
2240

2241
	for_each_mem_cgroup(iter)
2242 2243
		mem_cgroup_drain_pcp_counter(iter, cpu);

2244 2245 2246 2247 2248
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2249 2250
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2251
{
2252
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2253
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2254
	struct mem_cgroup *mem_over_limit;
2255
	struct page_counter *counter;
2256
	unsigned long nr_reclaimed;
2257 2258
	bool may_swap = true;
	bool drained = false;
2259
	int ret = 0;
2260

2261 2262
	if (mem_cgroup_is_root(memcg))
		goto done;
2263
retry:
2264 2265
	if (consume_stock(memcg, nr_pages))
		goto done;
2266

2267
	if (!do_swap_account ||
2268 2269
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2270
			goto done_restock;
2271
		if (do_swap_account)
2272 2273
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2274
	} else {
2275
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2276
		may_swap = false;
2277
	}
2278

2279 2280 2281 2282
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2283

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2298 2299
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2300

2301 2302
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2303 2304
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2305

2306
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2307
		goto retry;
2308

2309
	if (!drained) {
2310
		drain_all_stock(mem_over_limit);
2311 2312 2313 2314
		drained = true;
		goto retry;
	}

2315 2316
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2317 2318 2319 2320 2321 2322 2323 2324 2325
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2326
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2327 2328 2329 2330 2331 2332 2333 2334
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2335 2336 2337
	if (nr_retries--)
		goto retry;

2338 2339 2340
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2341 2342 2343
	if (fatal_signal_pending(current))
		goto bypass;

2344 2345
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2346
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2347
nomem:
2348
	if (!(gfp_mask & __GFP_NOFAIL))
2349
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2350
bypass:
2351
	return -EINTR;
2352 2353

done_restock:
2354
	css_get_many(&memcg->css, batch);
2355 2356
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2367
done:
2368
	return ret;
2369
}
2370

2371
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2372
{
2373 2374 2375
	if (mem_cgroup_is_root(memcg))
		return;

2376
	page_counter_uncharge(&memcg->memory, nr_pages);
2377
	if (do_swap_account)
2378
		page_counter_uncharge(&memcg->memsw, nr_pages);
2379

2380
	css_put_many(&memcg->css, nr_pages);
2381 2382
}

2383 2384
/*
 * A helper function to get mem_cgroup from ID. must be called under
2385 2386 2387
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2388 2389 2390 2391 2392 2393
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2394
	return mem_cgroup_from_id(id);
2395 2396
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2407
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2408
{
2409
	struct mem_cgroup *memcg;
2410
	unsigned short id;
2411 2412
	swp_entry_t ent;

2413
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2414

2415
	memcg = page->mem_cgroup;
2416 2417
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2418
			memcg = NULL;
2419
	} else if (PageSwapCache(page)) {
2420
		ent.val = page_private(page);
2421
		id = lookup_swap_cgroup_id(ent);
2422
		rcu_read_lock();
2423
		memcg = mem_cgroup_lookup(id);
2424
		if (memcg && !css_tryget_online(&memcg->css))
2425
			memcg = NULL;
2426
		rcu_read_unlock();
2427
	}
2428
	return memcg;
2429 2430
}

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2462
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2463
			  bool lrucare)
2464
{
2465
	int isolated;
2466

2467
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2468 2469 2470 2471 2472

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2473 2474
	if (lrucare)
		lock_page_lru(page, &isolated);
2475

2476 2477
	/*
	 * Nobody should be changing or seriously looking at
2478
	 * page->mem_cgroup at this point:
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2490
	page->mem_cgroup = memcg;
2491

2492 2493
	if (lrucare)
		unlock_page_lru(page, isolated);
2494
}
2495

2496
#ifdef CONFIG_MEMCG_KMEM
2497 2498
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2499
{
2500
	struct page_counter *counter;
2501 2502
	int ret = 0;

2503 2504
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2505 2506
		return ret;

2507
	ret = try_charge(memcg, gfp, nr_pages);
2508 2509
	if (ret == -EINTR)  {
		/*
2510 2511 2512 2513 2514 2515
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2516 2517 2518
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2519 2520 2521
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2522 2523
		 * directed to the root cgroup in memcontrol.h
		 */
2524
		page_counter_charge(&memcg->memory, nr_pages);
2525
		if (do_swap_account)
2526
			page_counter_charge(&memcg->memsw, nr_pages);
2527
		css_get_many(&memcg->css, nr_pages);
2528 2529
		ret = 0;
	} else if (ret)
2530
		page_counter_uncharge(&memcg->kmem, nr_pages);
2531 2532 2533 2534

	return ret;
}

2535
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2536
{
2537
	page_counter_uncharge(&memcg->memory, nr_pages);
2538
	if (do_swap_account)
2539
		page_counter_uncharge(&memcg->memsw, nr_pages);
2540

2541
	page_counter_uncharge(&memcg->kmem, nr_pages);
2542

2543
	css_put_many(&memcg->css, nr_pages);
2544 2545
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2556
static int memcg_alloc_cache_id(void)
2557
{
2558 2559 2560 2561 2562 2563 2564
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2565

2566 2567 2568 2569 2570 2571 2572 2573 2574
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2575 2576 2577 2578 2579
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	err = memcg_update_all_caches(size);
	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2591 2592 2593 2594 2595 2596 2597 2598 2599
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2600
	memcg_limited_groups_array_size = num;
2601 2602
}

2603
struct memcg_kmem_cache_create_work {
2604 2605 2606 2607 2608
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2609
static void memcg_kmem_cache_create_func(struct work_struct *w)
2610
{
2611 2612
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2613 2614
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2615

2616
	memcg_create_kmem_cache(memcg, cachep);
2617

2618
	css_put(&memcg->css);
2619 2620 2621 2622 2623 2624
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2625 2626
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2627
{
2628
	struct memcg_kmem_cache_create_work *cw;
2629

2630
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2631
	if (!cw)
2632
		return;
2633 2634

	css_get(&memcg->css);
2635 2636 2637

	cw->memcg = memcg;
	cw->cachep = cachep;
2638
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2639 2640 2641 2642

	schedule_work(&cw->work);
}

2643 2644
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2645 2646 2647 2648
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2649
	 * in __memcg_schedule_kmem_cache_create will recurse.
2650 2651 2652 2653 2654 2655 2656
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2657
	current->memcg_kmem_skip_account = 1;
2658
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2659
	current->memcg_kmem_skip_account = 0;
2660
}
2661

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2675
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2676 2677
{
	struct mem_cgroup *memcg;
2678
	struct kmem_cache *memcg_cachep;
2679 2680 2681 2682

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2683
	if (current->memcg_kmem_skip_account)
2684 2685
		return cachep;

2686
	memcg = get_mem_cgroup_from_mm(current->mm);
2687
	if (!memcg_kmem_is_active(memcg))
2688
		goto out;
2689

2690
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2691 2692
	if (likely(memcg_cachep))
		return memcg_cachep;
2693 2694 2695 2696 2697 2698 2699 2700 2701

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2702 2703 2704
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2705
	 */
2706
	memcg_schedule_kmem_cache_create(memcg, cachep);
2707
out:
2708
	css_put(&memcg->css);
2709
	return cachep;
2710 2711
}

2712 2713 2714 2715 2716 2717
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
		css_put(&cachep->memcg_params->memcg->css);
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2739

2740
	memcg = get_mem_cgroup_from_mm(current->mm);
2741

2742
	if (!memcg_kmem_is_active(memcg)) {
2743 2744 2745 2746
		css_put(&memcg->css);
		return true;
	}

2747
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2762
		memcg_uncharge_kmem(memcg, 1 << order);
2763 2764
		return;
	}
2765
	page->mem_cgroup = memcg;
2766 2767 2768 2769
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2770
	struct mem_cgroup *memcg = page->mem_cgroup;
2771 2772 2773 2774

	if (!memcg)
		return;

2775
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2776

2777
	memcg_uncharge_kmem(memcg, 1 << order);
2778
	page->mem_cgroup = NULL;
2779 2780 2781
}
#endif /* CONFIG_MEMCG_KMEM */

2782 2783 2784 2785
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2786 2787 2788
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2789
 */
2790
void mem_cgroup_split_huge_fixup(struct page *head)
2791
{
2792
	int i;
2793

2794 2795
	if (mem_cgroup_disabled())
		return;
2796

2797
	for (i = 1; i < HPAGE_PMD_NR; i++)
2798
		head[i].mem_cgroup = head->mem_cgroup;
2799

2800
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2801
		       HPAGE_PMD_NR);
2802
}
2803
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2804

2805
/**
2806
 * mem_cgroup_move_account - move account of the page
2807
 * @page: the page
2808
 * @nr_pages: number of regular pages (>1 for huge pages)
2809 2810 2811 2812
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2813
 * - page is not on LRU (isolate_page() is useful.)
2814
 * - compound_lock is held when nr_pages > 1
2815
 *
2816 2817
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2818
 */
2819 2820 2821
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2822
				   struct mem_cgroup *to)
2823
{
2824 2825
	unsigned long flags;
	int ret;
2826

2827
	VM_BUG_ON(from == to);
2828
	VM_BUG_ON_PAGE(PageLRU(page), page);
2829 2830 2831 2832 2833 2834 2835
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2836
	if (nr_pages > 1 && !PageTransHuge(page))
2837 2838
		goto out;

2839
	/*
2840
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2841 2842 2843 2844 2845
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2846 2847

	ret = -EINVAL;
2848
	if (page->mem_cgroup != from)
2849
		goto out_unlock;
2850

2851
	spin_lock_irqsave(&from->move_lock, flags);
2852

2853
	if (!PageAnon(page) && page_mapped(page)) {
2854 2855 2856 2857 2858
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2859

2860 2861 2862 2863 2864 2865
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2866

2867
	/*
2868
	 * It is safe to change page->mem_cgroup here because the page
2869 2870 2871
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2872

2873
	/* caller should have done css_get */
2874
	page->mem_cgroup = to;
2875 2876
	spin_unlock_irqrestore(&from->move_lock, flags);

2877
	ret = 0;
2878 2879 2880

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2881
	memcg_check_events(to, page);
2882
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2883
	memcg_check_events(from, page);
2884 2885 2886
	local_irq_enable();
out_unlock:
	unlock_page(page);
2887
out:
2888 2889 2890
	return ret;
}

A
Andrew Morton 已提交
2891
#ifdef CONFIG_MEMCG_SWAP
2892 2893
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2894
{
2895 2896
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2897
}
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2910
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2911 2912 2913
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2914
				struct mem_cgroup *from, struct mem_cgroup *to)
2915 2916 2917
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2918 2919
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2920 2921 2922

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2923
		mem_cgroup_swap_statistics(to, true);
2924 2925 2926 2927 2928 2929
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2930
				struct mem_cgroup *from, struct mem_cgroup *to)
2931 2932 2933
{
	return -EINVAL;
}
2934
#endif
K
KAMEZAWA Hiroyuki 已提交
2935

2936
static DEFINE_MUTEX(memcg_limit_mutex);
2937

2938
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2939
				   unsigned long limit)
2940
{
2941 2942 2943
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2944
	int retry_count;
2945
	int ret;
2946 2947 2948 2949 2950 2951

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2952 2953
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2954

2955
	oldusage = page_counter_read(&memcg->memory);
2956

2957
	do {
2958 2959 2960 2961
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2962 2963 2964 2965

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2966
			ret = -EINVAL;
2967 2968
			break;
		}
2969 2970 2971 2972
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2973 2974 2975 2976

		if (!ret)
			break;

2977 2978
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2979
		curusage = page_counter_read(&memcg->memory);
2980
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2981
		if (curusage >= oldusage)
2982 2983 2984
			retry_count--;
		else
			oldusage = curusage;
2985 2986
	} while (retry_count);

2987 2988
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2989

2990 2991 2992
	return ret;
}

L
Li Zefan 已提交
2993
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2994
					 unsigned long limit)
2995
{
2996 2997 2998
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2999
	int retry_count;
3000
	int ret;
3001

3002
	/* see mem_cgroup_resize_res_limit */
3003 3004 3005 3006 3007 3008
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3009 3010 3011 3012
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3013 3014 3015 3016

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3017 3018 3019
			ret = -EINVAL;
			break;
		}
3020 3021 3022 3023
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3024 3025 3026 3027

		if (!ret)
			break;

3028 3029
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3030
		curusage = page_counter_read(&memcg->memsw);
3031
		/* Usage is reduced ? */
3032
		if (curusage >= oldusage)
3033
			retry_count--;
3034 3035
		else
			oldusage = curusage;
3036 3037
	} while (retry_count);

3038 3039
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3040

3041 3042 3043
	return ret;
}

3044 3045 3046 3047 3048 3049 3050 3051 3052
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3053
	unsigned long excess;
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3078
		spin_lock_irq(&mctz->lock);
3079
		__mem_cgroup_remove_exceeded(mz, mctz);
3080 3081 3082 3083 3084 3085

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3086 3087 3088
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3089
		excess = soft_limit_excess(mz->memcg);
3090 3091 3092 3093 3094 3095 3096 3097 3098
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3099
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3100
		spin_unlock_irq(&mctz->lock);
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3118 3119 3120 3121 3122 3123
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3124 3125
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3126 3127
	bool ret;

3128
	/*
3129 3130 3131 3132
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3133
	 */
3134 3135 3136 3137 3138 3139
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3140 3141
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3152 3153
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3154
	/* try to free all pages in this cgroup */
3155
	while (nr_retries && page_counter_read(&memcg->memory)) {
3156
		int progress;
3157

3158 3159 3160
		if (signal_pending(current))
			return -EINTR;

3161 3162
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3163
		if (!progress) {
3164
			nr_retries--;
3165
			/* maybe some writeback is necessary */
3166
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3167
		}
3168 3169

	}
3170 3171

	return 0;
3172 3173
}

3174 3175 3176
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3177
{
3178
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3179

3180 3181
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3182
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3183 3184
}

3185 3186
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3187
{
3188
	return mem_cgroup_from_css(css)->use_hierarchy;
3189 3190
}

3191 3192
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3193 3194
{
	int retval = 0;
3195
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3196
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3197

3198
	mutex_lock(&memcg_create_mutex);
3199 3200 3201 3202

	if (memcg->use_hierarchy == val)
		goto out;

3203
	/*
3204
	 * If parent's use_hierarchy is set, we can't make any modifications
3205 3206 3207 3208 3209 3210
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3211
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3212
				(val == 1 || val == 0)) {
3213
		if (!memcg_has_children(memcg))
3214
			memcg->use_hierarchy = val;
3215 3216 3217 3218
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3219 3220

out:
3221
	mutex_unlock(&memcg_create_mutex);
3222 3223 3224 3225

	return retval;
}

3226 3227
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3245 3246 3247 3248 3249 3250
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3251
		if (!swap)
3252
			val = page_counter_read(&memcg->memory);
3253
		else
3254
			val = page_counter_read(&memcg->memsw);
3255 3256 3257 3258
	}
	return val << PAGE_SHIFT;
}

3259 3260 3261 3262 3263 3264 3265
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3266

3267
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3268
			       struct cftype *cft)
B
Balbir Singh 已提交
3269
{
3270
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3271
	struct page_counter *counter;
3272

3273
	switch (MEMFILE_TYPE(cft->private)) {
3274
	case _MEM:
3275 3276
		counter = &memcg->memory;
		break;
3277
	case _MEMSWAP:
3278 3279
		counter = &memcg->memsw;
		break;
3280
	case _KMEM:
3281
		counter = &memcg->kmem;
3282
		break;
3283 3284 3285
	default:
		BUG();
	}
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3305
}
3306 3307

#ifdef CONFIG_MEMCG_KMEM
3308 3309
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3310 3311 3312 3313 3314 3315 3316
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3329
	mutex_lock(&memcg_create_mutex);
3330 3331
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3332 3333 3334 3335
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3336

3337
	memcg_id = memcg_alloc_cache_id();
3338 3339 3340 3341 3342 3343
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3344 3345
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3346
	 */
3347
	err = page_counter_limit(&memcg->kmem, nr_pages);
3348 3349 3350 3351
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3352 3353
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3354 3355 3356
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3357
	memcg->kmemcg_id = memcg_id;
3358
out:
3359 3360 3361 3362
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3363
				   unsigned long limit)
3364 3365 3366
{
	int ret;

3367
	mutex_lock(&memcg_limit_mutex);
3368
	if (!memcg_kmem_is_active(memcg))
3369
		ret = memcg_activate_kmem(memcg, limit);
3370
	else
3371 3372
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3373 3374 3375
	return ret;
}

3376
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3377
{
3378
	int ret = 0;
3379
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3380

3381 3382
	if (!parent)
		return 0;
3383

3384
	mutex_lock(&memcg_limit_mutex);
3385
	/*
3386 3387
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3388
	 */
3389
	if (memcg_kmem_is_active(parent))
3390 3391
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3392
	return ret;
3393
}
3394 3395
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3396
				   unsigned long limit)
3397 3398 3399
{
	return -EINVAL;
}
3400
#endif /* CONFIG_MEMCG_KMEM */
3401

3402 3403 3404 3405
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3406 3407
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3408
{
3409
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3410
	unsigned long nr_pages;
3411 3412
	int ret;

3413
	buf = strstrip(buf);
3414
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3415 3416
	if (ret)
		return ret;
3417

3418
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3419
	case RES_LIMIT:
3420 3421 3422 3423
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3424 3425 3426
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3427
			break;
3428 3429
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3430
			break;
3431 3432 3433 3434
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3435
		break;
3436 3437 3438
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3439 3440
		break;
	}
3441
	return ret ?: nbytes;
B
Balbir Singh 已提交
3442 3443
}

3444 3445
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3446
{
3447
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3448
	struct page_counter *counter;
3449

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3463

3464
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3465
	case RES_MAX_USAGE:
3466
		page_counter_reset_watermark(counter);
3467 3468
		break;
	case RES_FAILCNT:
3469
		counter->failcnt = 0;
3470
		break;
3471 3472
	default:
		BUG();
3473
	}
3474

3475
	return nbytes;
3476 3477
}

3478
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3479 3480
					struct cftype *cft)
{
3481
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3482 3483
}

3484
#ifdef CONFIG_MMU
3485
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3486 3487
					struct cftype *cft, u64 val)
{
3488
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3489

3490
	if (val & ~MOVE_MASK)
3491
		return -EINVAL;
3492

3493
	/*
3494 3495 3496 3497
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3498
	 */
3499
	memcg->move_charge_at_immigrate = val;
3500 3501
	return 0;
}
3502
#else
3503
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3504 3505 3506 3507 3508
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3509

3510
#ifdef CONFIG_NUMA
3511
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3512
{
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3525
	int nid;
3526
	unsigned long nr;
3527
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3528

3529 3530 3531 3532 3533 3534 3535 3536 3537
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3538 3539
	}

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3555 3556 3557 3558 3559 3560
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3561
static int memcg_stat_show(struct seq_file *m, void *v)
3562
{
3563
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3564
	unsigned long memory, memsw;
3565 3566
	struct mem_cgroup *mi;
	unsigned int i;
3567

3568 3569 3570 3571
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3572 3573
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3574
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3575
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3576
			continue;
3577 3578
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3579
	}
L
Lee Schermerhorn 已提交
3580

3581 3582 3583 3584 3585 3586 3587 3588
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3589
	/* Hierarchical information */
3590 3591 3592 3593
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3594
	}
3595 3596 3597 3598 3599
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3600

3601 3602 3603
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3604
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3605
			continue;
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3626
	}
K
KAMEZAWA Hiroyuki 已提交
3627

K
KOSAKI Motohiro 已提交
3628 3629 3630 3631
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3632
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3633 3634 3635 3636 3637
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3638
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3639
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3640

3641 3642 3643 3644
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3645
			}
3646 3647 3648 3649
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3650 3651 3652
	}
#endif

3653 3654 3655
	return 0;
}

3656 3657
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3658
{
3659
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3660

3661
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3662 3663
}

3664 3665
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3666
{
3667
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3668

3669
	if (val > 100)
K
KOSAKI Motohiro 已提交
3670 3671
		return -EINVAL;

3672
	if (css->parent)
3673 3674 3675
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3676

K
KOSAKI Motohiro 已提交
3677 3678 3679
	return 0;
}

3680 3681 3682
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3683
	unsigned long usage;
3684 3685 3686 3687
	int i;

	rcu_read_lock();
	if (!swap)
3688
		t = rcu_dereference(memcg->thresholds.primary);
3689
	else
3690
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3691 3692 3693 3694

	if (!t)
		goto unlock;

3695
	usage = mem_cgroup_usage(memcg, swap);
3696 3697

	/*
3698
	 * current_threshold points to threshold just below or equal to usage.
3699 3700 3701
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3702
	i = t->current_threshold;
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3726
	t->current_threshold = i - 1;
3727 3728 3729 3730 3731 3732
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3733 3734 3735 3736 3737 3738 3739
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3740 3741 3742 3743 3744 3745 3746
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3747 3748 3749 3750 3751 3752 3753
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3754 3755
}

3756
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3757 3758 3759
{
	struct mem_cgroup_eventfd_list *ev;

3760 3761
	spin_lock(&memcg_oom_lock);

3762
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3763
		eventfd_signal(ev->eventfd, 1);
3764 3765

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3766 3767 3768
	return 0;
}

3769
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3770
{
K
KAMEZAWA Hiroyuki 已提交
3771 3772
	struct mem_cgroup *iter;

3773
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3774
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3775 3776
}

3777
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3778
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3779
{
3780 3781
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3782 3783
	unsigned long threshold;
	unsigned long usage;
3784
	int i, size, ret;
3785

3786
	ret = page_counter_memparse(args, "-1", &threshold);
3787 3788 3789 3790
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3791

3792
	if (type == _MEM) {
3793
		thresholds = &memcg->thresholds;
3794
		usage = mem_cgroup_usage(memcg, false);
3795
	} else if (type == _MEMSWAP) {
3796
		thresholds = &memcg->memsw_thresholds;
3797
		usage = mem_cgroup_usage(memcg, true);
3798
	} else
3799 3800 3801
		BUG();

	/* Check if a threshold crossed before adding a new one */
3802
	if (thresholds->primary)
3803 3804
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3805
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3806 3807

	/* Allocate memory for new array of thresholds */
3808
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3809
			GFP_KERNEL);
3810
	if (!new) {
3811 3812 3813
		ret = -ENOMEM;
		goto unlock;
	}
3814
	new->size = size;
3815 3816

	/* Copy thresholds (if any) to new array */
3817 3818
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3819
				sizeof(struct mem_cgroup_threshold));
3820 3821
	}

3822
	/* Add new threshold */
3823 3824
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3825 3826

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3827
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3828 3829 3830
			compare_thresholds, NULL);

	/* Find current threshold */
3831
	new->current_threshold = -1;
3832
	for (i = 0; i < size; i++) {
3833
		if (new->entries[i].threshold <= usage) {
3834
			/*
3835 3836
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3837 3838
			 * it here.
			 */
3839
			++new->current_threshold;
3840 3841
		} else
			break;
3842 3843
	}

3844 3845 3846 3847 3848
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3849

3850
	/* To be sure that nobody uses thresholds */
3851 3852 3853 3854 3855 3856 3857 3858
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3859
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3860 3861
	struct eventfd_ctx *eventfd, const char *args)
{
3862
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3863 3864
}

3865
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3866 3867
	struct eventfd_ctx *eventfd, const char *args)
{
3868
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3869 3870
}

3871
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3872
	struct eventfd_ctx *eventfd, enum res_type type)
3873
{
3874 3875
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3876
	unsigned long usage;
3877
	int i, j, size;
3878 3879

	mutex_lock(&memcg->thresholds_lock);
3880 3881

	if (type == _MEM) {
3882
		thresholds = &memcg->thresholds;
3883
		usage = mem_cgroup_usage(memcg, false);
3884
	} else if (type == _MEMSWAP) {
3885
		thresholds = &memcg->memsw_thresholds;
3886
		usage = mem_cgroup_usage(memcg, true);
3887
	} else
3888 3889
		BUG();

3890 3891 3892
	if (!thresholds->primary)
		goto unlock;

3893 3894 3895 3896
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3897 3898 3899
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3900 3901 3902
			size++;
	}

3903
	new = thresholds->spare;
3904

3905 3906
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3907 3908
		kfree(new);
		new = NULL;
3909
		goto swap_buffers;
3910 3911
	}

3912
	new->size = size;
3913 3914

	/* Copy thresholds and find current threshold */
3915 3916 3917
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3918 3919
			continue;

3920
		new->entries[j] = thresholds->primary->entries[i];
3921
		if (new->entries[j].threshold <= usage) {
3922
			/*
3923
			 * new->current_threshold will not be used
3924 3925 3926
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3927
			++new->current_threshold;
3928 3929 3930 3931
		}
		j++;
	}

3932
swap_buffers:
3933 3934
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3935 3936 3937 3938 3939 3940
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3941
	rcu_assign_pointer(thresholds->primary, new);
3942

3943
	/* To be sure that nobody uses thresholds */
3944
	synchronize_rcu();
3945
unlock:
3946 3947
	mutex_unlock(&memcg->thresholds_lock);
}
3948

3949
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3950 3951
	struct eventfd_ctx *eventfd)
{
3952
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3953 3954
}

3955
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3956 3957
	struct eventfd_ctx *eventfd)
{
3958
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3959 3960
}

3961
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3962
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3963 3964 3965 3966 3967 3968 3969
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3970
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3971 3972 3973 3974 3975

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3976
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3977
		eventfd_signal(eventfd, 1);
3978
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3979 3980 3981 3982

	return 0;
}

3983
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3984
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3985 3986 3987
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3988
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3989

3990
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3991 3992 3993 3994 3995 3996
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3997
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3998 3999
}

4000
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4001
{
4002
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4003

4004 4005
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4006 4007 4008
	return 0;
}

4009
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4010 4011
	struct cftype *cft, u64 val)
{
4012
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4013 4014

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4015
	if (!css->parent || !((val == 0) || (val == 1)))
4016 4017
		return -EINVAL;

4018
	memcg->oom_kill_disable = val;
4019
	if (!val)
4020
		memcg_oom_recover(memcg);
4021

4022 4023 4024
	return 0;
}

A
Andrew Morton 已提交
4025
#ifdef CONFIG_MEMCG_KMEM
4026
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4027
{
4028 4029 4030 4031 4032
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4033

4034
	return mem_cgroup_sockets_init(memcg, ss);
4035
}
4036

4037
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4038
{
4039
	memcg_destroy_kmem_caches(memcg);
4040
	mem_cgroup_sockets_destroy(memcg);
4041
}
4042
#else
4043
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4044 4045 4046
{
	return 0;
}
G
Glauber Costa 已提交
4047

4048 4049 4050
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4051 4052
#endif

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4066 4067 4068 4069 4070
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4071
static void memcg_event_remove(struct work_struct *work)
4072
{
4073 4074
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4075
	struct mem_cgroup *memcg = event->memcg;
4076 4077 4078

	remove_wait_queue(event->wqh, &event->wait);

4079
	event->unregister_event(memcg, event->eventfd);
4080 4081 4082 4083 4084 4085

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4086
	css_put(&memcg->css);
4087 4088 4089 4090 4091 4092 4093
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4094 4095
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4096
{
4097 4098
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4099
	struct mem_cgroup *memcg = event->memcg;
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4112
		spin_lock(&memcg->event_list_lock);
4113 4114 4115 4116 4117 4118 4119 4120
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4121
		spin_unlock(&memcg->event_list_lock);
4122 4123 4124 4125 4126
	}

	return 0;
}

4127
static void memcg_event_ptable_queue_proc(struct file *file,
4128 4129
		wait_queue_head_t *wqh, poll_table *pt)
{
4130 4131
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4132 4133 4134 4135 4136 4137

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4138 4139
 * DO NOT USE IN NEW FILES.
 *
4140 4141 4142 4143 4144
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4145 4146
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4147
{
4148
	struct cgroup_subsys_state *css = of_css(of);
4149
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4150
	struct mem_cgroup_event *event;
4151 4152 4153 4154
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4155
	const char *name;
4156 4157 4158
	char *endp;
	int ret;

4159 4160 4161
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4162 4163
	if (*endp != ' ')
		return -EINVAL;
4164
	buf = endp + 1;
4165

4166
	cfd = simple_strtoul(buf, &endp, 10);
4167 4168
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4169
	buf = endp + 1;
4170 4171 4172 4173 4174

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4175
	event->memcg = memcg;
4176
	INIT_LIST_HEAD(&event->list);
4177 4178 4179
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4205 4206 4207 4208 4209
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4210 4211
	 *
	 * DO NOT ADD NEW FILES.
4212
	 */
A
Al Viro 已提交
4213
	name = cfile.file->f_path.dentry->d_name.name;
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4225 4226
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4227 4228 4229 4230 4231
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4232
	/*
4233 4234 4235
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4236
	 */
A
Al Viro 已提交
4237
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4238
					       &memory_cgrp_subsys);
4239
	ret = -EINVAL;
4240
	if (IS_ERR(cfile_css))
4241
		goto out_put_cfile;
4242 4243
	if (cfile_css != css) {
		css_put(cfile_css);
4244
		goto out_put_cfile;
4245
	}
4246

4247
	ret = event->register_event(memcg, event->eventfd, buf);
4248 4249 4250 4251 4252
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4253 4254 4255
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4256 4257 4258 4259

	fdput(cfile);
	fdput(efile);

4260
	return nbytes;
4261 4262

out_put_css:
4263
	css_put(css);
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4276
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4277
	{
4278
		.name = "usage_in_bytes",
4279
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4280
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4281
	},
4282 4283
	{
		.name = "max_usage_in_bytes",
4284
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4285
		.write = mem_cgroup_reset,
4286
		.read_u64 = mem_cgroup_read_u64,
4287
	},
B
Balbir Singh 已提交
4288
	{
4289
		.name = "limit_in_bytes",
4290
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4291
		.write = mem_cgroup_write,
4292
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4293
	},
4294 4295 4296
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4297
		.write = mem_cgroup_write,
4298
		.read_u64 = mem_cgroup_read_u64,
4299
	},
B
Balbir Singh 已提交
4300 4301
	{
		.name = "failcnt",
4302
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4303
		.write = mem_cgroup_reset,
4304
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4305
	},
4306 4307
	{
		.name = "stat",
4308
		.seq_show = memcg_stat_show,
4309
	},
4310 4311
	{
		.name = "force_empty",
4312
		.write = mem_cgroup_force_empty_write,
4313
	},
4314 4315 4316 4317 4318
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4319
	{
4320
		.name = "cgroup.event_control",		/* XXX: for compat */
4321
		.write = memcg_write_event_control,
4322 4323 4324
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4325 4326 4327 4328 4329
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4330 4331 4332 4333 4334
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4335 4336
	{
		.name = "oom_control",
4337
		.seq_show = mem_cgroup_oom_control_read,
4338
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4339 4340
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4341 4342 4343
	{
		.name = "pressure_level",
	},
4344 4345 4346
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4347
		.seq_show = memcg_numa_stat_show,
4348 4349
	},
#endif
4350 4351 4352 4353
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4354
		.write = mem_cgroup_write,
4355
		.read_u64 = mem_cgroup_read_u64,
4356 4357 4358 4359
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4360
		.read_u64 = mem_cgroup_read_u64,
4361 4362 4363 4364
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4365
		.write = mem_cgroup_reset,
4366
		.read_u64 = mem_cgroup_read_u64,
4367 4368 4369 4370
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4371
		.write = mem_cgroup_reset,
4372
		.read_u64 = mem_cgroup_read_u64,
4373
	},
4374 4375 4376
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4377 4378 4379 4380
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4381 4382
	},
#endif
4383
#endif
4384
	{ },	/* terminate */
4385
};
4386

4387 4388 4389 4390 4391
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4392
		.read_u64 = mem_cgroup_read_u64,
4393 4394 4395 4396
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4397
		.write = mem_cgroup_reset,
4398
		.read_u64 = mem_cgroup_read_u64,
4399 4400 4401 4402
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4403
		.write = mem_cgroup_write,
4404
		.read_u64 = mem_cgroup_read_u64,
4405 4406 4407 4408
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4409
		.write = mem_cgroup_reset,
4410
		.read_u64 = mem_cgroup_read_u64,
4411 4412 4413 4414
	},
	{ },	/* terminate */
};
#endif
4415
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4416 4417
{
	struct mem_cgroup_per_node *pn;
4418
	struct mem_cgroup_per_zone *mz;
4419
	int zone, tmp = node;
4420 4421 4422 4423 4424 4425 4426 4427
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4428 4429
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4430
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4431 4432
	if (!pn)
		return 1;
4433 4434 4435

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4436
		lruvec_init(&mz->lruvec);
4437 4438
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4439
		mz->memcg = memcg;
4440
	}
4441
	memcg->nodeinfo[node] = pn;
4442 4443 4444
	return 0;
}

4445
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4446
{
4447
	kfree(memcg->nodeinfo[node]);
4448 4449
}

4450 4451
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4452
	struct mem_cgroup *memcg;
4453
	size_t size;
4454

4455 4456
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4457

4458
	memcg = kzalloc(size, GFP_KERNEL);
4459
	if (!memcg)
4460 4461
		return NULL;

4462 4463
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4464
		goto out_free;
4465 4466
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4467 4468

out_free:
4469
	kfree(memcg);
4470
	return NULL;
4471 4472
}

4473
/*
4474 4475 4476 4477 4478 4479 4480 4481
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4482
 */
4483 4484

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4485
{
4486
	int node;
4487

4488
	mem_cgroup_remove_from_trees(memcg);
4489 4490 4491 4492 4493 4494

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4495
	disarm_static_keys(memcg);
4496
	kfree(memcg);
4497
}
4498

4499 4500 4501
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4502
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4503
{
4504
	if (!memcg->memory.parent)
4505
		return NULL;
4506
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4507
}
G
Glauber Costa 已提交
4508
EXPORT_SYMBOL(parent_mem_cgroup);
4509

4510 4511
static void __init mem_cgroup_soft_limit_tree_init(void)
{
4512
	int node;
4513 4514

	for_each_node(node) {
4515 4516
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;
4517

4518 4519
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);
4520 4521

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4522 4523
			struct mem_cgroup_tree_per_zone *rtpz;

4524 4525 4526 4527
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
4528
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4529 4530 4531
	}
}

L
Li Zefan 已提交
4532
static struct cgroup_subsys_state * __ref
4533
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4534
{
4535
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4536
	long error = -ENOMEM;
4537
	int node;
B
Balbir Singh 已提交
4538

4539 4540
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4541
		return ERR_PTR(error);
4542

B
Bob Liu 已提交
4543
	for_each_node(node)
4544
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4545
			goto free_out;
4546

4547
	/* root ? */
4548
	if (parent_css == NULL) {
4549
		root_mem_cgroup = memcg;
4550
		page_counter_init(&memcg->memory, NULL);
4551
		memcg->high = PAGE_COUNTER_MAX;
4552
		memcg->soft_limit = PAGE_COUNTER_MAX;
4553 4554
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4555
	}
4556

4557 4558 4559 4560 4561
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4562
	vmpressure_init(&memcg->vmpressure);
4563 4564
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4565 4566 4567
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4568 4569 4570 4571 4572 4573 4574 4575 4576

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4577
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4578
{
4579
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4580
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4581
	int ret;
4582

4583
	if (css->id > MEM_CGROUP_ID_MAX)
4584 4585
		return -ENOSPC;

T
Tejun Heo 已提交
4586
	if (!parent)
4587 4588
		return 0;

4589
	mutex_lock(&memcg_create_mutex);
4590 4591 4592 4593 4594 4595

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4596
		page_counter_init(&memcg->memory, &parent->memory);
4597
		memcg->high = PAGE_COUNTER_MAX;
4598
		memcg->soft_limit = PAGE_COUNTER_MAX;
4599 4600
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4601

4602
		/*
4603 4604
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4605
		 */
4606
	} else {
4607
		page_counter_init(&memcg->memory, NULL);
4608
		memcg->high = PAGE_COUNTER_MAX;
4609
		memcg->soft_limit = PAGE_COUNTER_MAX;
4610 4611
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4612 4613 4614 4615 4616
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4617
		if (parent != root_mem_cgroup)
4618
			memory_cgrp_subsys.broken_hierarchy = true;
4619
	}
4620
	mutex_unlock(&memcg_create_mutex);
4621

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4634 4635
}

4636
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4637
{
4638
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4639
	struct mem_cgroup_event *event, *tmp;
4640 4641 4642 4643 4644 4645

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4646 4647
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4648 4649 4650
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4651
	spin_unlock(&memcg->event_list_lock);
4652

4653
	vmpressure_cleanup(&memcg->vmpressure);
4654 4655
}

4656
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4657
{
4658
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4659

4660
	memcg_destroy_kmem(memcg);
4661
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4662 4663
}

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4681 4682 4683
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4684 4685
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4686
	memcg->soft_limit = PAGE_COUNTER_MAX;
4687 4688
}

4689
#ifdef CONFIG_MMU
4690
/* Handlers for move charge at task migration. */
4691
static int mem_cgroup_do_precharge(unsigned long count)
4692
{
4693
	int ret;
4694 4695

	/* Try a single bulk charge without reclaim first */
4696
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4697
	if (!ret) {
4698 4699 4700
		mc.precharge += count;
		return ret;
	}
4701
	if (ret == -EINTR) {
4702
		cancel_charge(root_mem_cgroup, count);
4703 4704
		return ret;
	}
4705 4706

	/* Try charges one by one with reclaim */
4707
	while (count--) {
4708
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4709 4710 4711
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4712 4713
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4714
		 */
4715
		if (ret == -EINTR)
4716
			cancel_charge(root_mem_cgroup, 1);
4717 4718
		if (ret)
			return ret;
4719
		mc.precharge++;
4720
		cond_resched();
4721
	}
4722
	return 0;
4723 4724 4725
}

/**
4726
 * get_mctgt_type - get target type of moving charge
4727 4728 4729
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4730
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4731 4732 4733 4734 4735 4736
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4737 4738 4739
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4740 4741 4742 4743 4744
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4745
	swp_entry_t	ent;
4746 4747 4748
};

enum mc_target_type {
4749
	MC_TARGET_NONE = 0,
4750
	MC_TARGET_PAGE,
4751
	MC_TARGET_SWAP,
4752 4753
};

D
Daisuke Nishimura 已提交
4754 4755
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4756
{
D
Daisuke Nishimura 已提交
4757
	struct page *page = vm_normal_page(vma, addr, ptent);
4758

D
Daisuke Nishimura 已提交
4759 4760 4761
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4762
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4763
			return NULL;
4764 4765 4766 4767
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4768 4769 4770 4771 4772 4773
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4774
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4775 4776 4777 4778 4779 4780
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4781
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4782
		return NULL;
4783 4784 4785 4786
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4787
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4788 4789 4790 4791 4792
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4793 4794 4795 4796 4797 4798 4799
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4800

4801 4802 4803 4804 4805 4806 4807 4808 4809
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4810
	if (!(mc.flags & MOVE_FILE))
4811 4812 4813
		return NULL;

	mapping = vma->vm_file->f_mapping;
4814
	pgoff = linear_page_index(vma, addr);
4815 4816

	/* page is moved even if it's not RSS of this task(page-faulted). */
4817 4818
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4831
#endif
4832 4833 4834
	return page;
}

4835
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4836 4837 4838
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4839
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4840 4841 4842 4843 4844 4845
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4846
	else if (pte_none(ptent))
4847
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4848 4849

	if (!page && !ent.val)
4850
		return ret;
4851 4852
	if (page) {
		/*
4853
		 * Do only loose check w/o serialization.
4854
		 * mem_cgroup_move_account() checks the page is valid or
4855
		 * not under LRU exclusion.
4856
		 */
4857
		if (page->mem_cgroup == mc.from) {
4858 4859 4860 4861 4862 4863 4864
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4865 4866
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4867
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4868 4869 4870
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4871 4872 4873 4874
	}
	return ret;
}

4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4888
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4889
	if (!(mc.flags & MOVE_ANON))
4890
		return ret;
4891
	if (page->mem_cgroup == mc.from) {
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4908 4909 4910 4911 4912 4913 4914 4915
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4916
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4917 4918
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4919
		spin_unlock(ptl);
4920
		return 0;
4921
	}
4922

4923 4924
	if (pmd_trans_unstable(pmd))
		return 0;
4925 4926
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4927
		if (get_mctgt_type(vma, addr, *pte, NULL))
4928 4929 4930 4931
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4932 4933 4934
	return 0;
}

4935 4936 4937 4938 4939
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4940
	down_read(&mm->mmap_sem);
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4952
	up_read(&mm->mmap_sem);
4953 4954 4955 4956 4957 4958 4959 4960 4961

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4962 4963 4964 4965 4966
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4967 4968
}

4969 4970
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4971
{
4972 4973 4974
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4975
	/* we must uncharge all the leftover precharges from mc.to */
4976
	if (mc.precharge) {
4977
		cancel_charge(mc.to, mc.precharge);
4978 4979 4980 4981 4982 4983 4984
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4985
		cancel_charge(mc.from, mc.moved_charge);
4986
		mc.moved_charge = 0;
4987
	}
4988 4989 4990
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4991
		if (!mem_cgroup_is_root(mc.from))
4992
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4993

4994
		/*
4995 4996
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4997
		 */
4998
		if (!mem_cgroup_is_root(mc.to))
4999 5000
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5001
		css_put_many(&mc.from->css, mc.moved_swap);
5002

L
Li Zefan 已提交
5003
		/* we've already done css_get(mc.to) */
5004 5005
		mc.moved_swap = 0;
	}
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5019
	spin_lock(&mc.lock);
5020 5021
	mc.from = NULL;
	mc.to = NULL;
5022
	spin_unlock(&mc.lock);
5023 5024
}

5025
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5026
				 struct cgroup_taskset *tset)
5027
{
5028
	struct task_struct *p = cgroup_taskset_first(tset);
5029
	int ret = 0;
5030
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5031
	unsigned long move_flags;
5032

5033 5034 5035 5036 5037
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5038 5039
	move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
	if (move_flags) {
5040 5041 5042
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5043
		VM_BUG_ON(from == memcg);
5044 5045 5046 5047 5048

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5049 5050 5051 5052
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5053
			VM_BUG_ON(mc.moved_charge);
5054
			VM_BUG_ON(mc.moved_swap);
5055

5056
			spin_lock(&mc.lock);
5057
			mc.from = from;
5058
			mc.to = memcg;
5059
			mc.flags = move_flags;
5060
			spin_unlock(&mc.lock);
5061
			/* We set mc.moving_task later */
5062 5063 5064 5065

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5066 5067
		}
		mmput(mm);
5068 5069 5070 5071
	}
	return ret;
}

5072
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5073
				     struct cgroup_taskset *tset)
5074
{
5075 5076
	if (mc.to)
		mem_cgroup_clear_mc();
5077 5078
}

5079 5080 5081
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5082
{
5083 5084 5085 5086
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5087 5088 5089
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5090

5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5101
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5102
		if (mc.precharge < HPAGE_PMD_NR) {
5103
			spin_unlock(ptl);
5104 5105 5106 5107 5108 5109 5110
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5111
							     mc.from, mc.to)) {
5112 5113 5114 5115 5116 5117 5118
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5119
		spin_unlock(ptl);
5120
		return 0;
5121 5122
	}

5123 5124
	if (pmd_trans_unstable(pmd))
		return 0;
5125 5126 5127 5128
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5129
		swp_entry_t ent;
5130 5131 5132 5133

		if (!mc.precharge)
			break;

5134
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5135 5136 5137 5138
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5139
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5140
				mc.precharge--;
5141 5142
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5143 5144
			}
			putback_lru_page(page);
5145
put:			/* get_mctgt_type() gets the page */
5146 5147
			put_page(page);
			break;
5148 5149
		case MC_TARGET_SWAP:
			ent = target.ent;
5150
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5151
				mc.precharge--;
5152 5153 5154
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5155
			break;
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5170
		ret = mem_cgroup_do_precharge(1);
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5183 5184 5185 5186 5187 5188 5189
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5221
	up_read(&mm->mmap_sem);
5222
	atomic_dec(&mc.from->moving_account);
5223 5224
}

5225
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5226
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5227
{
5228
	struct task_struct *p = cgroup_taskset_first(tset);
5229
	struct mm_struct *mm = get_task_mm(p);
5230 5231

	if (mm) {
5232 5233
		if (mc.to)
			mem_cgroup_move_charge(mm);
5234 5235
		mmput(mm);
	}
5236 5237
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5238
}
5239
#else	/* !CONFIG_MMU */
5240
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5241
				 struct cgroup_taskset *tset)
5242 5243 5244
{
	return 0;
}
5245
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5246
				     struct cgroup_taskset *tset)
5247 5248
{
}
5249
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5250
				 struct cgroup_taskset *tset)
5251 5252 5253
{
}
#endif
B
Balbir Singh 已提交
5254

5255 5256
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5257 5258
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5259
 */
5260
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5261 5262
{
	/*
5263
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5264 5265 5266
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5267
	if (cgroup_on_dfl(root_css->cgroup))
5268
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5269 5270
}

5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &low);
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &high);
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &max);
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5412
struct cgroup_subsys memory_cgrp_subsys = {
5413
	.css_alloc = mem_cgroup_css_alloc,
5414
	.css_online = mem_cgroup_css_online,
5415 5416
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5417
	.css_reset = mem_cgroup_css_reset,
5418 5419
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5420
	.attach = mem_cgroup_move_task,
5421
	.bind = mem_cgroup_bind,
5422 5423
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5424
	.early_init = 0,
B
Balbir Singh 已提交
5425
};
5426

A
Andrew Morton 已提交
5427
#ifdef CONFIG_MEMCG_SWAP
5428 5429
static int __init enable_swap_account(char *s)
{
5430
	if (!strcmp(s, "1"))
5431
		really_do_swap_account = 1;
5432
	else if (!strcmp(s, "0"))
5433 5434 5435
		really_do_swap_account = 0;
	return 1;
}
5436
__setup("swapaccount=", enable_swap_account);
5437

5438 5439
static void __init memsw_file_init(void)
{
5440 5441
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5442 5443 5444 5445 5446 5447 5448 5449
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5450
}
5451

5452
#else
5453
static void __init enable_swap_cgroup(void)
5454 5455
{
}
5456
#endif
5457

5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

	if (page_counter_read(&memcg->memory) > memcg->low)
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

		if (page_counter_read(&memcg->memory) > memcg->low)
			return false;
	}
	return true;
}

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5518
	struct mem_cgroup *memcg;
5519 5520 5521 5522 5523 5524 5525 5526
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

5527
	memcg = page->mem_cgroup;
5528 5529

	/* Readahead page, never charged */
5530
	if (!memcg)
5531 5532
		return;

5533
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5534
	VM_BUG_ON_PAGE(oldid, page);
5535 5536
	mem_cgroup_swap_statistics(memcg, true);

5537
	page->mem_cgroup = NULL;
5538

5539 5540 5541 5542 5543
	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5544

5545 5546
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5567
		if (!mem_cgroup_is_root(memcg))
5568
			page_counter_uncharge(&memcg->memsw, 1);
5569 5570 5571 5572 5573 5574 5575
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5611
		if (page->mem_cgroup)
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5672 5673
	commit_charge(page, memcg, lrucare);

5674 5675 5676 5677 5678
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5679 5680 5681 5682
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5724 5725 5726 5727
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5728
	unsigned long nr_pages = nr_anon + nr_file;
5729 5730
	unsigned long flags;

5731
	if (!mem_cgroup_is_root(memcg)) {
5732 5733 5734
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5735 5736
		memcg_oom_recover(memcg);
	}
5737 5738 5739 5740 5741 5742

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5743
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5744 5745
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5746 5747

	if (!mem_cgroup_is_root(memcg))
5748
		css_put_many(&memcg->css, nr_pages);
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5771
		if (!page->mem_cgroup)
5772 5773 5774 5775
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5776
		 * page->mem_cgroup at this point, we have fully
5777
		 * exclusive access to the page.
5778 5779
		 */

5780
		if (memcg != page->mem_cgroup) {
5781
			if (memcg) {
5782 5783 5784
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5785
			}
5786
			memcg = page->mem_cgroup;
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5800
		page->mem_cgroup = NULL;
5801 5802 5803 5804 5805

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5806 5807
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5808 5809
}

5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5822
	/* Don't touch page->lru of any random page, pre-check: */
5823
	if (!page->mem_cgroup)
5824 5825
		return;

5826 5827 5828
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5829

5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5841

5842 5843
	if (!list_empty(page_list))
		uncharge_list(page_list);
5844 5845 5846 5847 5848 5849
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5850
 * @lrucare: either or both pages might be on the LRU already
5851 5852 5853 5854 5855 5856 5857 5858
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5859
	struct mem_cgroup *memcg;
5860 5861 5862 5863 5864 5865 5866
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5867 5868
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5869 5870 5871 5872 5873

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5874
	if (newpage->mem_cgroup)
5875 5876
		return;

5877 5878 5879 5880 5881 5882
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5883
	memcg = oldpage->mem_cgroup;
5884
	if (!memcg)
5885 5886 5887 5888 5889
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5890
	oldpage->mem_cgroup = NULL;
5891 5892 5893 5894

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5895
	commit_charge(newpage, memcg, lrucare);
5896 5897
}

5898
/*
5899 5900 5901 5902 5903 5904
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5905 5906 5907 5908
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5909
	enable_swap_cgroup();
5910
	mem_cgroup_soft_limit_tree_init();
5911
	memcg_stock_init();
5912 5913 5914
	return 0;
}
subsys_initcall(mem_cgroup_init);