memcontrol.c 148.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99 100 101 102 103 104 105 106
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

107 108 109 110 111 112 113 114
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

115 116 117 118 119 120 121 122
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
123
	MEM_CGROUP_TARGET_SOFTLIMIT,
124
	MEM_CGROUP_TARGET_NUMAINFO,
125 126
	MEM_CGROUP_NTARGETS,
};
127 128 129
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
130

131
struct mem_cgroup_stat_cpu {
132
	long count[MEM_CGROUP_STAT_NSTATS];
133
	unsigned long events[MEMCG_NR_EVENTS];
134
	unsigned long nr_page_events;
135
	unsigned long targets[MEM_CGROUP_NTARGETS];
136 137
};

138 139
struct reclaim_iter {
	struct mem_cgroup *position;
140 141 142 143
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

144 145 146 147
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
148
	struct lruvec		lruvec;
149
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
150

151
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
152

153
	struct rb_node		tree_node;	/* RB tree node */
154
	unsigned long		usage_in_excess;/* Set to the value by which */
155 156
						/* the soft limit is exceeded*/
	bool			on_tree;
157
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
158
						/* use container_of	   */
159 160 161 162 163 164
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

185 186
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
187
	unsigned long threshold;
188 189
};

K
KAMEZAWA Hiroyuki 已提交
190
/* For threshold */
191
struct mem_cgroup_threshold_ary {
192
	/* An array index points to threshold just below or equal to usage. */
193
	int current_threshold;
194 195 196 197 198
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
199 200 201 202 203 204 205 206 207 208 209 210

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
211 212 213 214 215
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
216

217 218 219
/*
 * cgroup_event represents events which userspace want to receive.
 */
220
struct mem_cgroup_event {
221
	/*
222
	 * memcg which the event belongs to.
223
	 */
224
	struct mem_cgroup *memcg;
225 226 227 228 229 230 231 232
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
233 234 235 236 237
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
238
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
239
			      struct eventfd_ctx *eventfd, const char *args);
240 241 242 243 244
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
245
	void (*unregister_event)(struct mem_cgroup *memcg,
246
				 struct eventfd_ctx *eventfd);
247 248 249 250 251 252 253 254 255 256
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

257 258
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
259

B
Balbir Singh 已提交
260 261 262 263 264 265 266
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
267 268 269
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
270 271 272
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
273 274 275 276 277 278

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

279 280 281 282
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

283
	unsigned long soft_limit;
284

285 286 287
	/* vmpressure notifications */
	struct vmpressure vmpressure;

288 289 290
	/* css_online() has been completed */
	int initialized;

291 292 293 294
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
295 296 297

	bool		oom_lock;
	atomic_t	under_oom;
298
	atomic_t	oom_wakeups;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306 307
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
308
	struct mem_cgroup_thresholds thresholds;
309

310
	/* thresholds for mem+swap usage. RCU-protected */
311
	struct mem_cgroup_thresholds memsw_thresholds;
312

K
KAMEZAWA Hiroyuki 已提交
313 314
	/* For oom notifier event fd */
	struct list_head oom_notify;
315

316 317 318 319
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
320
	unsigned long move_charge_at_immigrate;
321 322 323
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
324
	atomic_t		moving_account;
325
	/* taken only while moving_account > 0 */
326 327 328
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
329
	/*
330
	 * percpu counter.
331
	 */
332
	struct mem_cgroup_stat_cpu __percpu *stat;
333 334 335 336 337 338
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
339

M
Michal Hocko 已提交
340
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
341
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
342
#endif
343 344 345 346
#if defined(CONFIG_MEMCG_KMEM)
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
347 348 349 350 351 352 353

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
354

355 356 357 358
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

359 360
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
361 362
};

363
#ifdef CONFIG_MEMCG_KMEM
364 365
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
V
Vladimir Davydov 已提交
366
	return memcg->kmemcg_id >= 0;
367
}
368 369
#endif

370 371
/* Stuffs for move charges at task migration. */
/*
372
 * Types of charges to be moved.
373
 */
374 375 376
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
377

378 379
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
380
	spinlock_t	  lock; /* for from, to */
381 382
	struct mem_cgroup *from;
	struct mem_cgroup *to;
383
	unsigned long flags;
384
	unsigned long precharge;
385
	unsigned long moved_charge;
386
	unsigned long moved_swap;
387 388 389
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
390
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
391 392
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
393

394 395 396 397
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
398
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
399
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
400

401 402
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
403
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
404
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
405
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
406 407 408
	NR_CHARGE_TYPE,
};

409
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
410 411 412 413
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
414
	_KMEM,
G
Glauber Costa 已提交
415 416
};

417 418
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
419
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
420 421
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
422

423 424 425 426 427 428 429
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

430 431
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
432
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
433 434
}

435 436 437 438 439 440 441 442 443 444 445 446 447
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

448 449 450 451 452
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

453 454 455 456 457 458
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
459 460
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
461
	return memcg->css.id;
L
Li Zefan 已提交
462 463 464 465 466 467
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

468
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
469 470 471
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
472
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
473
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
474 475 476

void sock_update_memcg(struct sock *sk)
{
477
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
478
		struct mem_cgroup *memcg;
479
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
480 481 482

		BUG_ON(!sk->sk_prot->proto_cgroup);

483 484 485 486 487 488 489 490 491 492
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
493
			css_get(&sk->sk_cgrp->memcg->css);
494 495 496
			return;
		}

G
Glauber Costa 已提交
497 498
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
499
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
500
		if (!mem_cgroup_is_root(memcg) &&
501 502
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
503
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
504 505 506 507 508 509 510 511
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
512
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
513 514 515
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
516
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
517 518
	}
}
G
Glauber Costa 已提交
519 520 521 522 523 524

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

525
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
526 527
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
528

529 530
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
531
	if (!memcg_proto_activated(&memcg->tcp_mem))
532 533 534 535 536 537 538 539 540
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

541
#ifdef CONFIG_MEMCG_KMEM
542 543
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
544 545 546 547 548
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
549 550 551 552 553 554
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
555 556
int memcg_limited_groups_array_size;

557 558 559 560 561 562
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
563
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
564 565
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
566
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
567 568 569
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
570
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
571

572 573 574 575 576 577
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
578
struct static_key memcg_kmem_enabled_key;
579
EXPORT_SYMBOL(memcg_kmem_enabled_key);
580

581 582
static void memcg_free_cache_id(int id);

583 584
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
585
	if (memcg_kmem_is_active(memcg)) {
586
		static_key_slow_dec(&memcg_kmem_enabled_key);
587
		memcg_free_cache_id(memcg->kmemcg_id);
588
	}
589 590 591 592
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
593
	WARN_ON(page_counter_read(&memcg->kmem));
594 595 596 597 598 599 600 601 602 603 604 605 606
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

607
static struct mem_cgroup_per_zone *
608
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
609
{
610 611 612
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

613
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
614 615
}

616
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
617
{
618
	return &memcg->css;
619 620
}

621
static struct mem_cgroup_per_zone *
622
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
623
{
624 625
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
626

627
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

645 646
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
647
					 unsigned long new_usage_in_excess)
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

677 678
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
679 680 681 682 683 684 685
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

686 687
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
688
{
689 690 691
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
692
	__mem_cgroup_remove_exceeded(mz, mctz);
693
	spin_unlock_irqrestore(&mctz->lock, flags);
694 695
}

696 697 698 699 700 701 702 703 704 705 706
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
707 708 709

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
710
	unsigned long excess;
711 712 713
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

714
	mctz = soft_limit_tree_from_page(page);
715 716 717 718 719
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
720
		mz = mem_cgroup_page_zoneinfo(memcg, page);
721
		excess = soft_limit_excess(memcg);
722 723 724 725 726
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
727 728 729
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
730 731
			/* if on-tree, remove it */
			if (mz->on_tree)
732
				__mem_cgroup_remove_exceeded(mz, mctz);
733 734 735 736
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
737
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
738
			spin_unlock_irqrestore(&mctz->lock, flags);
739 740 741 742 743 744 745
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
746 747
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
748

749 750 751 752
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
753
			mem_cgroup_remove_exceeded(mz, mctz);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
776
	__mem_cgroup_remove_exceeded(mz, mctz);
777
	if (!soft_limit_excess(mz->memcg) ||
778
	    !css_tryget_online(&mz->memcg->css))
779 780 781 782 783 784 785 786 787 788
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

789
	spin_lock_irq(&mctz->lock);
790
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
791
	spin_unlock_irq(&mctz->lock);
792 793 794
	return mz;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
814
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
815
				 enum mem_cgroup_stat_index idx)
816
{
817
	long val = 0;
818 819
	int cpu;

820 821
	get_online_cpus();
	for_each_online_cpu(cpu)
822
		val += per_cpu(memcg->stat->count[idx], cpu);
823
#ifdef CONFIG_HOTPLUG_CPU
824 825 826
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
827 828
#endif
	put_online_cpus();
829 830 831
	return val;
}

832
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
833 834 835 836 837
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

838
	get_online_cpus();
839
	for_each_online_cpu(cpu)
840
		val += per_cpu(memcg->stat->events[idx], cpu);
841
#ifdef CONFIG_HOTPLUG_CPU
842 843 844
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
845
#endif
846
	put_online_cpus();
847 848 849
	return val;
}

850
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
851
					 struct page *page,
852
					 int nr_pages)
853
{
854 855 856 857
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
858
	if (PageAnon(page))
859
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
860
				nr_pages);
861
	else
862
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
863
				nr_pages);
864

865 866 867 868
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

869 870
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
871
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
872
	else {
873
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
874 875
		nr_pages = -nr_pages; /* for event */
	}
876

877
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
878 879
}

880
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
881 882 883 884 885 886 887
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

888 889 890
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
891
{
892
	unsigned long nr = 0;
893 894
	int zid;

895
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
896

897 898 899 900 901 902 903 904 905 906 907 908
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
909
}
910

911
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
912
			unsigned int lru_mask)
913
{
914
	unsigned long nr = 0;
915
	int nid;
916

917
	for_each_node_state(nid, N_MEMORY)
918 919
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
920 921
}

922 923
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
924 925 926
{
	unsigned long val, next;

927
	val = __this_cpu_read(memcg->stat->nr_page_events);
928
	next = __this_cpu_read(memcg->stat->targets[target]);
929
	/* from time_after() in jiffies.h */
930 931 932 933 934
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
935 936 937
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
938 939 940 941 942 943 944 945
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
946
	}
947
	return false;
948 949 950 951 952 953
}

/*
 * Check events in order.
 *
 */
954
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
955 956
{
	/* threshold event is triggered in finer grain than soft limit */
957 958
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
959
		bool do_softlimit;
960
		bool do_numainfo __maybe_unused;
961

962 963
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
964 965 966 967
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
968
		mem_cgroup_threshold(memcg);
969 970
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
971
#if MAX_NUMNODES > 1
972
		if (unlikely(do_numainfo))
973
			atomic_inc(&memcg->numainfo_events);
974
#endif
975
	}
976 977
}

978
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
979
{
980 981 982 983 984 985 986 987
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

988
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
989 990
}

991
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
992
{
993
	struct mem_cgroup *memcg = NULL;
994

995 996
	rcu_read_lock();
	do {
997 998 999 1000 1001 1002
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1003
			memcg = root_mem_cgroup;
1004 1005 1006 1007 1008
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1009
	} while (!css_tryget_online(&memcg->css));
1010
	rcu_read_unlock();
1011
	return memcg;
1012 1013
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1031
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1032
				   struct mem_cgroup *prev,
1033
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1034
{
1035 1036
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1037
	struct mem_cgroup *memcg = NULL;
1038
	struct mem_cgroup *pos = NULL;
1039

1040 1041
	if (mem_cgroup_disabled())
		return NULL;
1042

1043 1044
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1045

1046
	if (prev && !reclaim)
1047
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1048

1049 1050
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1051
			goto out;
1052
		return root;
1053
	}
K
KAMEZAWA Hiroyuki 已提交
1054

1055
	rcu_read_lock();
M
Michal Hocko 已提交
1056

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1091
		}
K
KAMEZAWA Hiroyuki 已提交
1092

1093 1094 1095 1096 1097 1098
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1099

1100 1101
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1102

1103
		if (css_tryget(css)) {
1104 1105 1106 1107 1108 1109 1110
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1111

1112
			css_put(css);
1113
		}
1114

1115
		memcg = NULL;
1116
	}
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1137
	}
1138

1139 1140
out_unlock:
	rcu_read_unlock();
1141
out:
1142 1143 1144
	if (prev && prev != root)
		css_put(&prev->css);

1145
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1146
}
K
KAMEZAWA Hiroyuki 已提交
1147

1148 1149 1150 1151 1152 1153 1154
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1155 1156 1157 1158 1159 1160
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1161

1162 1163 1164 1165 1166 1167
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1168
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1169
	     iter != NULL;				\
1170
	     iter = mem_cgroup_iter(root, iter, NULL))
1171

1172
#define for_each_mem_cgroup(iter)			\
1173
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1174
	     iter != NULL;				\
1175
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1176

1177
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1178
{
1179
	struct mem_cgroup *memcg;
1180 1181

	rcu_read_lock();
1182 1183
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1184 1185 1186 1187
		goto out;

	switch (idx) {
	case PGFAULT:
1188 1189 1190 1191
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1192 1193 1194 1195 1196 1197 1198
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1199
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1200

1201 1202 1203
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1204
 * @memcg: memcg of the wanted lruvec
1205 1206 1207 1208 1209 1210 1211 1212 1213
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1214
	struct lruvec *lruvec;
1215

1216 1217 1218 1219
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1220

1221
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1232 1233 1234
}

/**
1235
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1236
 * @page: the page
1237
 * @zone: zone of the page
1238 1239 1240 1241
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1242
 */
1243
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1244 1245
{
	struct mem_cgroup_per_zone *mz;
1246
	struct mem_cgroup *memcg;
1247
	struct lruvec *lruvec;
1248

1249 1250 1251 1252
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1253

1254
	memcg = page->mem_cgroup;
1255
	/*
1256
	 * Swapcache readahead pages are added to the LRU - and
1257
	 * possibly migrated - before they are charged.
1258
	 */
1259 1260
	if (!memcg)
		memcg = root_mem_cgroup;
1261

1262
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1273
}
1274

1275
/**
1276 1277 1278 1279
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1280
 *
1281 1282
 * This function must be called when a page is added to or removed from an
 * lru list.
1283
 */
1284 1285
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1286 1287
{
	struct mem_cgroup_per_zone *mz;
1288
	unsigned long *lru_size;
1289 1290 1291 1292

	if (mem_cgroup_disabled())
		return;

1293 1294 1295 1296
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1297
}
1298

1299
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1300
{
1301
	if (root == memcg)
1302
		return true;
1303
	if (!root->use_hierarchy)
1304
		return false;
1305
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1306 1307
}

1308
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1309
{
1310
	struct mem_cgroup *task_memcg;
1311
	struct task_struct *p;
1312
	bool ret;
1313

1314
	p = find_lock_task_mm(task);
1315
	if (p) {
1316
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1317 1318 1319 1320 1321 1322 1323
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1324
		rcu_read_lock();
1325 1326
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1327
		rcu_read_unlock();
1328
	}
1329 1330
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1331 1332 1333
	return ret;
}

1334
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1335
{
1336
	unsigned long inactive_ratio;
1337
	unsigned long inactive;
1338
	unsigned long active;
1339
	unsigned long gb;
1340

1341 1342
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1343

1344 1345 1346 1347 1348 1349
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1350
	return inactive * inactive_ratio < active;
1351 1352
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1367
#define mem_cgroup_from_counter(counter, member)	\
1368 1369
	container_of(counter, struct mem_cgroup, member)

1370
/**
1371
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1372
 * @memcg: the memory cgroup
1373
 *
1374
 * Returns the maximum amount of memory @mem can be charged with, in
1375
 * pages.
1376
 */
1377
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1378
{
1379 1380 1381
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1396 1397
}

1398
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1399 1400
{
	/* root ? */
1401
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1402 1403
		return vm_swappiness;

1404
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1405 1406
}

1407
/*
Q
Qiang Huang 已提交
1408
 * A routine for checking "mem" is under move_account() or not.
1409
 *
Q
Qiang Huang 已提交
1410 1411 1412
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1413
 */
1414
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1415
{
1416 1417
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1418
	bool ret = false;
1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1428

1429 1430
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1431 1432
unlock:
	spin_unlock(&mc.lock);
1433 1434 1435
	return ret;
}

1436
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1437 1438
{
	if (mc.moving_task && current != mc.moving_task) {
1439
		if (mem_cgroup_under_move(memcg)) {
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1452
#define K(x) ((x) << (PAGE_SHIFT-10))
1453
/**
1454
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1455 1456 1457 1458 1459 1460 1461 1462
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1463
	/* oom_info_lock ensures that parallel ooms do not interleave */
1464
	static DEFINE_MUTEX(oom_info_lock);
1465 1466
	struct mem_cgroup *iter;
	unsigned int i;
1467

1468
	if (!p)
1469 1470
		return;

1471
	mutex_lock(&oom_info_lock);
1472 1473
	rcu_read_lock();

T
Tejun Heo 已提交
1474 1475
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1476
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1477
	pr_cont_cgroup_path(memcg->css.cgroup);
1478
	pr_cont("\n");
1479 1480 1481

	rcu_read_unlock();

1482 1483 1484 1485 1486 1487 1488 1489 1490
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1491 1492

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1493 1494
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1510
	mutex_unlock(&oom_info_lock);
1511 1512
}

1513 1514 1515 1516
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1517
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1518 1519
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1520 1521
	struct mem_cgroup *iter;

1522
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1523
		num++;
1524 1525 1526
	return num;
}

D
David Rientjes 已提交
1527 1528 1529
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1530
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1531
{
1532
	unsigned long limit;
1533

1534
	limit = memcg->memory.limit;
1535
	if (mem_cgroup_swappiness(memcg)) {
1536
		unsigned long memsw_limit;
1537

1538 1539
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1540 1541
	}
	return limit;
D
David Rientjes 已提交
1542 1543
}

1544 1545
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1546 1547 1548 1549 1550 1551 1552
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1553
	/*
1554 1555 1556
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1557
	 */
1558
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1559
		mark_tsk_oom_victim(current);
1560 1561 1562 1563
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1564
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1565
	for_each_mem_cgroup_tree(iter, memcg) {
1566
		struct css_task_iter it;
1567 1568
		struct task_struct *task;

1569 1570
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1583
				css_task_iter_end(&it);
1584 1585 1586 1587 1588 1589 1590 1591
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1604
		}
1605
		css_task_iter_end(&it);
1606 1607 1608 1609 1610 1611 1612 1613 1614
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1615 1616
#if MAX_NUMNODES > 1

1617 1618
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1619
 * @memcg: the target memcg
1620 1621 1622 1623 1624 1625 1626
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1627
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1628 1629
		int nid, bool noswap)
{
1630
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1631 1632 1633
		return true;
	if (noswap || !total_swap_pages)
		return false;
1634
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1635 1636 1637 1638
		return true;
	return false;

}
1639 1640 1641 1642 1643 1644 1645

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1646
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1647 1648
{
	int nid;
1649 1650 1651 1652
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1653
	if (!atomic_read(&memcg->numainfo_events))
1654
		return;
1655
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1656 1657 1658
		return;

	/* make a nodemask where this memcg uses memory from */
1659
	memcg->scan_nodes = node_states[N_MEMORY];
1660

1661
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1662

1663 1664
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1665
	}
1666

1667 1668
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1683
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1684 1685 1686
{
	int node;

1687 1688
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1689

1690
	node = next_node(node, memcg->scan_nodes);
1691
	if (node == MAX_NUMNODES)
1692
		node = first_node(memcg->scan_nodes);
1693 1694 1695 1696 1697 1698 1699 1700 1701
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1702
	memcg->last_scanned_node = node;
1703 1704 1705
	return node;
}
#else
1706
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1707 1708 1709 1710 1711
{
	return 0;
}
#endif

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1727
	excess = soft_limit_excess(root_memcg);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1756
		if (!soft_limit_excess(root_memcg))
1757
			break;
1758
	}
1759 1760
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1761 1762
}

1763 1764 1765 1766 1767 1768
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1769 1770
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1771 1772 1773 1774
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1775
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1776
{
1777
	struct mem_cgroup *iter, *failed = NULL;
1778

1779 1780
	spin_lock(&memcg_oom_lock);

1781
	for_each_mem_cgroup_tree(iter, memcg) {
1782
		if (iter->oom_lock) {
1783 1784 1785 1786 1787
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1788 1789
			mem_cgroup_iter_break(memcg, iter);
			break;
1790 1791
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1792
	}
K
KAMEZAWA Hiroyuki 已提交
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1805
		}
1806 1807
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1808 1809 1810 1811

	spin_unlock(&memcg_oom_lock);

	return !failed;
1812
}
1813

1814
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1815
{
K
KAMEZAWA Hiroyuki 已提交
1816 1817
	struct mem_cgroup *iter;

1818
	spin_lock(&memcg_oom_lock);
1819
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1820
	for_each_mem_cgroup_tree(iter, memcg)
1821
		iter->oom_lock = false;
1822
	spin_unlock(&memcg_oom_lock);
1823 1824
}

1825
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1826 1827 1828
{
	struct mem_cgroup *iter;

1829
	for_each_mem_cgroup_tree(iter, memcg)
1830 1831 1832
		atomic_inc(&iter->under_oom);
}

1833
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1834 1835 1836
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1837 1838 1839 1840 1841
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1842
	for_each_mem_cgroup_tree(iter, memcg)
1843
		atomic_add_unless(&iter->under_oom, -1, 0);
1844 1845
}

K
KAMEZAWA Hiroyuki 已提交
1846 1847
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1848
struct oom_wait_info {
1849
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1850 1851 1852 1853 1854 1855
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1856 1857
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1861
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1862

1863 1864
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1865 1866 1867 1868
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1869
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1870
{
1871
	atomic_inc(&memcg->oom_wakeups);
1872 1873
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1874 1875
}

1876
static void memcg_oom_recover(struct mem_cgroup *memcg)
1877
{
1878 1879
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1880 1881
}

1882
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1883
{
1884 1885
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1886
	/*
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1899
	 */
1900 1901 1902 1903
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1904 1905 1906 1907
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1908
 * @handle: actually kill/wait or just clean up the OOM state
1909
 *
1910 1911
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1912
 *
1913
 * Memcg supports userspace OOM handling where failed allocations must
1914 1915 1916 1917
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1918
 * the end of the page fault to complete the OOM handling.
1919 1920
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1921
 * completed, %false otherwise.
1922
 */
1923
bool mem_cgroup_oom_synchronize(bool handle)
1924
{
1925
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1926
	struct oom_wait_info owait;
1927
	bool locked;
1928 1929 1930

	/* OOM is global, do not handle */
	if (!memcg)
1931
		return false;
1932

1933
	if (!handle || oom_killer_disabled)
1934
		goto cleanup;
1935 1936 1937 1938 1939 1940

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1941

1942
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1956
		schedule();
1957 1958 1959 1960 1961
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1962 1963 1964 1965 1966 1967 1968 1969
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1970 1971
cleanup:
	current->memcg_oom.memcg = NULL;
1972
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1973
	return true;
1974 1975
}

1976 1977 1978
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1979
 *
1980 1981 1982
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1983
 *
1984
 *   memcg = mem_cgroup_begin_page_stat(page);
1985 1986
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1987
 *   mem_cgroup_end_page_stat(memcg);
1988
 */
1989
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1990 1991
{
	struct mem_cgroup *memcg;
1992
	unsigned long flags;
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
2006 2007 2008 2009
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2010
again:
2011
	memcg = page->mem_cgroup;
2012
	if (unlikely(!memcg))
2013 2014
		return NULL;

Q
Qiang Huang 已提交
2015
	if (atomic_read(&memcg->moving_account) <= 0)
2016
		return memcg;
2017

2018
	spin_lock_irqsave(&memcg->move_lock, flags);
2019
	if (memcg != page->mem_cgroup) {
2020
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2021 2022
		goto again;
	}
2023 2024 2025 2026 2027 2028 2029 2030

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2031 2032

	return memcg;
2033 2034
}

2035 2036 2037 2038
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2039
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2040
{
2041 2042 2043 2044 2045 2046 2047 2048
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2049

2050
	rcu_read_unlock();
2051 2052
}

2053 2054 2055 2056 2057 2058 2059 2060 2061
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2062
				 enum mem_cgroup_stat_index idx, int val)
2063
{
2064
	VM_BUG_ON(!rcu_read_lock_held());
2065

2066 2067
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2068
}
2069

2070 2071 2072 2073
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2074
#define CHARGE_BATCH	32U
2075 2076
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2077
	unsigned int nr_pages;
2078
	struct work_struct work;
2079
	unsigned long flags;
2080
#define FLUSHING_CACHED_CHARGE	0
2081 2082
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2083
static DEFINE_MUTEX(percpu_charge_mutex);
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2095
 */
2096
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2097 2098
{
	struct memcg_stock_pcp *stock;
2099
	bool ret = false;
2100

2101
	if (nr_pages > CHARGE_BATCH)
2102
		return ret;
2103

2104
	stock = &get_cpu_var(memcg_stock);
2105
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2106
		stock->nr_pages -= nr_pages;
2107 2108
		ret = true;
	}
2109 2110 2111 2112 2113
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2114
 * Returns stocks cached in percpu and reset cached information.
2115 2116 2117 2118 2119
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2120
	if (stock->nr_pages) {
2121
		page_counter_uncharge(&old->memory, stock->nr_pages);
2122
		if (do_swap_account)
2123
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2124
		css_put_many(&old->css, stock->nr_pages);
2125
		stock->nr_pages = 0;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2136
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2137
	drain_stock(stock);
2138
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2139 2140 2141
}

/*
2142
 * Cache charges(val) to local per_cpu area.
2143
 * This will be consumed by consume_stock() function, later.
2144
 */
2145
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2146 2147 2148
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2149
	if (stock->cached != memcg) { /* reset if necessary */
2150
		drain_stock(stock);
2151
		stock->cached = memcg;
2152
	}
2153
	stock->nr_pages += nr_pages;
2154 2155 2156 2157
	put_cpu_var(memcg_stock);
}

/*
2158
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2159
 * of the hierarchy under it.
2160
 */
2161
static void drain_all_stock(struct mem_cgroup *root_memcg)
2162
{
2163
	int cpu, curcpu;
2164

2165 2166 2167
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2168 2169
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2170
	curcpu = get_cpu();
2171 2172
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2173
		struct mem_cgroup *memcg;
2174

2175 2176
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2177
			continue;
2178
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2179
			continue;
2180 2181 2182 2183 2184 2185
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2186
	}
2187
	put_cpu();
A
Andrew Morton 已提交
2188
	put_online_cpus();
2189
	mutex_unlock(&percpu_charge_mutex);
2190 2191
}

2192 2193 2194 2195
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2196
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2197 2198 2199
{
	int i;

2200
	spin_lock(&memcg->pcp_counter_lock);
2201
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2202
		long x = per_cpu(memcg->stat->count[i], cpu);
2203

2204 2205
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2206
	}
2207
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2208
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2209

2210 2211
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2212
	}
2213
	spin_unlock(&memcg->pcp_counter_lock);
2214 2215
}

2216
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2217 2218 2219 2220 2221
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2222
	struct mem_cgroup *iter;
2223

2224
	if (action == CPU_ONLINE)
2225 2226
		return NOTIFY_OK;

2227
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2228
		return NOTIFY_OK;
2229

2230
	for_each_mem_cgroup(iter)
2231 2232
		mem_cgroup_drain_pcp_counter(iter, cpu);

2233 2234 2235 2236 2237
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2238 2239
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2240
{
2241
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2242
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2243
	struct mem_cgroup *mem_over_limit;
2244
	struct page_counter *counter;
2245
	unsigned long nr_reclaimed;
2246 2247
	bool may_swap = true;
	bool drained = false;
2248
	int ret = 0;
2249

2250 2251
	if (mem_cgroup_is_root(memcg))
		goto done;
2252
retry:
2253 2254
	if (consume_stock(memcg, nr_pages))
		goto done;
2255

2256
	if (!do_swap_account ||
2257 2258
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2259
			goto done_restock;
2260
		if (do_swap_account)
2261 2262
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2263
	} else {
2264
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2265
		may_swap = false;
2266
	}
2267

2268 2269 2270 2271
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2272

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2287 2288
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2289

2290 2291
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2292 2293
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2294

2295
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2296
		goto retry;
2297

2298
	if (!drained) {
2299
		drain_all_stock(mem_over_limit);
2300 2301 2302 2303
		drained = true;
		goto retry;
	}

2304 2305
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2306 2307 2308 2309 2310 2311 2312 2313 2314
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2315
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2316 2317 2318 2319 2320 2321 2322 2323
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2324 2325 2326
	if (nr_retries--)
		goto retry;

2327 2328 2329
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2330 2331 2332
	if (fatal_signal_pending(current))
		goto bypass;

2333 2334
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2335
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2336
nomem:
2337
	if (!(gfp_mask & __GFP_NOFAIL))
2338
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2339
bypass:
2340
	return -EINTR;
2341 2342

done_restock:
2343
	css_get_many(&memcg->css, batch);
2344 2345
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2356
done:
2357
	return ret;
2358
}
2359

2360
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2361
{
2362 2363 2364
	if (mem_cgroup_is_root(memcg))
		return;

2365
	page_counter_uncharge(&memcg->memory, nr_pages);
2366
	if (do_swap_account)
2367
		page_counter_uncharge(&memcg->memsw, nr_pages);
2368

2369
	css_put_many(&memcg->css, nr_pages);
2370 2371
}

2372 2373
/*
 * A helper function to get mem_cgroup from ID. must be called under
2374 2375 2376
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2377 2378 2379 2380 2381 2382
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2383
	return mem_cgroup_from_id(id);
2384 2385
}

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2396
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2397
{
2398
	struct mem_cgroup *memcg;
2399
	unsigned short id;
2400 2401
	swp_entry_t ent;

2402
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2403

2404
	memcg = page->mem_cgroup;
2405 2406
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2407
			memcg = NULL;
2408
	} else if (PageSwapCache(page)) {
2409
		ent.val = page_private(page);
2410
		id = lookup_swap_cgroup_id(ent);
2411
		rcu_read_lock();
2412
		memcg = mem_cgroup_lookup(id);
2413
		if (memcg && !css_tryget_online(&memcg->css))
2414
			memcg = NULL;
2415
		rcu_read_unlock();
2416
	}
2417
	return memcg;
2418 2419
}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2451
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2452
			  bool lrucare)
2453
{
2454
	int isolated;
2455

2456
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2457 2458 2459 2460 2461

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2462 2463
	if (lrucare)
		lock_page_lru(page, &isolated);
2464

2465 2466
	/*
	 * Nobody should be changing or seriously looking at
2467
	 * page->mem_cgroup at this point:
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2479
	page->mem_cgroup = memcg;
2480

2481 2482
	if (lrucare)
		unlock_page_lru(page, isolated);
2483
}
2484

2485
#ifdef CONFIG_MEMCG_KMEM
2486 2487
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2488
{
2489
	struct page_counter *counter;
2490 2491
	int ret = 0;

2492 2493
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2494 2495
		return ret;

2496
	ret = try_charge(memcg, gfp, nr_pages);
2497 2498
	if (ret == -EINTR)  {
		/*
2499 2500 2501 2502 2503 2504
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2505 2506 2507
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2508 2509 2510
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2511 2512
		 * directed to the root cgroup in memcontrol.h
		 */
2513
		page_counter_charge(&memcg->memory, nr_pages);
2514
		if (do_swap_account)
2515
			page_counter_charge(&memcg->memsw, nr_pages);
2516
		css_get_many(&memcg->css, nr_pages);
2517 2518
		ret = 0;
	} else if (ret)
2519
		page_counter_uncharge(&memcg->kmem, nr_pages);
2520 2521 2522 2523

	return ret;
}

2524
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2525
{
2526
	page_counter_uncharge(&memcg->memory, nr_pages);
2527
	if (do_swap_account)
2528
		page_counter_uncharge(&memcg->memsw, nr_pages);
2529

2530
	page_counter_uncharge(&memcg->kmem, nr_pages);
2531

2532
	css_put_many(&memcg->css, nr_pages);
2533 2534
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2545
static int memcg_alloc_cache_id(void)
2546
{
2547 2548 2549 2550 2551 2552 2553
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2554

2555 2556 2557 2558 2559 2560 2561 2562 2563
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2564 2565 2566 2567 2568
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	err = memcg_update_all_caches(size);
	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2580 2581 2582 2583 2584 2585 2586 2587 2588
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2589
	memcg_limited_groups_array_size = num;
2590 2591
}

2592
struct memcg_kmem_cache_create_work {
2593 2594 2595 2596 2597
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2598
static void memcg_kmem_cache_create_func(struct work_struct *w)
2599
{
2600 2601
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2602 2603
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2604

2605
	memcg_create_kmem_cache(memcg, cachep);
2606

2607
	css_put(&memcg->css);
2608 2609 2610 2611 2612 2613
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2614 2615
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2616
{
2617
	struct memcg_kmem_cache_create_work *cw;
2618

2619
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2620
	if (!cw)
2621
		return;
2622 2623

	css_get(&memcg->css);
2624 2625 2626

	cw->memcg = memcg;
	cw->cachep = cachep;
2627
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2628 2629 2630 2631

	schedule_work(&cw->work);
}

2632 2633
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2634 2635 2636 2637
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2638
	 * in __memcg_schedule_kmem_cache_create will recurse.
2639 2640 2641 2642 2643 2644 2645
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2646
	current->memcg_kmem_skip_account = 1;
2647
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2648
	current->memcg_kmem_skip_account = 0;
2649
}
2650

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2664
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2665 2666
{
	struct mem_cgroup *memcg;
2667
	struct kmem_cache *memcg_cachep;
2668 2669 2670 2671

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2672
	if (current->memcg_kmem_skip_account)
2673 2674
		return cachep;

2675
	memcg = get_mem_cgroup_from_mm(current->mm);
2676
	if (!memcg_kmem_is_active(memcg))
2677
		goto out;
2678

2679
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2680 2681
	if (likely(memcg_cachep))
		return memcg_cachep;
2682 2683 2684 2685 2686 2687 2688 2689 2690

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2691 2692 2693
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2694
	 */
2695
	memcg_schedule_kmem_cache_create(memcg, cachep);
2696
out:
2697
	css_put(&memcg->css);
2698
	return cachep;
2699 2700
}

2701 2702 2703 2704 2705 2706
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
		css_put(&cachep->memcg_params->memcg->css);
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2728

2729
	memcg = get_mem_cgroup_from_mm(current->mm);
2730

2731
	if (!memcg_kmem_is_active(memcg)) {
2732 2733 2734 2735
		css_put(&memcg->css);
		return true;
	}

2736
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2751
		memcg_uncharge_kmem(memcg, 1 << order);
2752 2753
		return;
	}
2754
	page->mem_cgroup = memcg;
2755 2756 2757 2758
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2759
	struct mem_cgroup *memcg = page->mem_cgroup;
2760 2761 2762 2763

	if (!memcg)
		return;

2764
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2765

2766
	memcg_uncharge_kmem(memcg, 1 << order);
2767
	page->mem_cgroup = NULL;
2768 2769 2770
}
#endif /* CONFIG_MEMCG_KMEM */

2771 2772 2773 2774
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2775 2776 2777
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2778
 */
2779
void mem_cgroup_split_huge_fixup(struct page *head)
2780
{
2781
	int i;
2782

2783 2784
	if (mem_cgroup_disabled())
		return;
2785

2786
	for (i = 1; i < HPAGE_PMD_NR; i++)
2787
		head[i].mem_cgroup = head->mem_cgroup;
2788

2789
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2790
		       HPAGE_PMD_NR);
2791
}
2792
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2793

2794
/**
2795
 * mem_cgroup_move_account - move account of the page
2796
 * @page: the page
2797
 * @nr_pages: number of regular pages (>1 for huge pages)
2798 2799 2800 2801
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2802
 * - page is not on LRU (isolate_page() is useful.)
2803
 * - compound_lock is held when nr_pages > 1
2804
 *
2805 2806
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2807
 */
2808 2809 2810
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2811
				   struct mem_cgroup *to)
2812
{
2813 2814
	unsigned long flags;
	int ret;
2815

2816
	VM_BUG_ON(from == to);
2817
	VM_BUG_ON_PAGE(PageLRU(page), page);
2818 2819 2820 2821 2822 2823 2824
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2825
	if (nr_pages > 1 && !PageTransHuge(page))
2826 2827
		goto out;

2828
	/*
2829
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2830 2831 2832 2833 2834
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2835 2836

	ret = -EINVAL;
2837
	if (page->mem_cgroup != from)
2838
		goto out_unlock;
2839

2840
	spin_lock_irqsave(&from->move_lock, flags);
2841

2842
	if (!PageAnon(page) && page_mapped(page)) {
2843 2844 2845 2846 2847
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2848

2849 2850 2851 2852 2853 2854
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2855

2856
	/*
2857
	 * It is safe to change page->mem_cgroup here because the page
2858 2859 2860
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2861

2862
	/* caller should have done css_get */
2863
	page->mem_cgroup = to;
2864 2865
	spin_unlock_irqrestore(&from->move_lock, flags);

2866
	ret = 0;
2867 2868 2869

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2870
	memcg_check_events(to, page);
2871
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2872
	memcg_check_events(from, page);
2873 2874 2875
	local_irq_enable();
out_unlock:
	unlock_page(page);
2876
out:
2877 2878 2879
	return ret;
}

A
Andrew Morton 已提交
2880
#ifdef CONFIG_MEMCG_SWAP
2881 2882
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2883
{
2884 2885
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2886
}
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2899
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2900 2901 2902
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2903
				struct mem_cgroup *from, struct mem_cgroup *to)
2904 2905 2906
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2907 2908
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2909 2910 2911

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2912
		mem_cgroup_swap_statistics(to, true);
2913 2914 2915 2916 2917 2918
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2919
				struct mem_cgroup *from, struct mem_cgroup *to)
2920 2921 2922
{
	return -EINVAL;
}
2923
#endif
K
KAMEZAWA Hiroyuki 已提交
2924

2925
static DEFINE_MUTEX(memcg_limit_mutex);
2926

2927
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2928
				   unsigned long limit)
2929
{
2930 2931 2932
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2933
	int retry_count;
2934
	int ret;
2935 2936 2937 2938 2939 2940

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2941 2942
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2943

2944
	oldusage = page_counter_read(&memcg->memory);
2945

2946
	do {
2947 2948 2949 2950
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2951 2952 2953 2954

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2955
			ret = -EINVAL;
2956 2957
			break;
		}
2958 2959 2960 2961
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2962 2963 2964 2965

		if (!ret)
			break;

2966 2967
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2968
		curusage = page_counter_read(&memcg->memory);
2969
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2970
		if (curusage >= oldusage)
2971 2972 2973
			retry_count--;
		else
			oldusage = curusage;
2974 2975
	} while (retry_count);

2976 2977
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2978

2979 2980 2981
	return ret;
}

L
Li Zefan 已提交
2982
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2983
					 unsigned long limit)
2984
{
2985 2986 2987
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2988
	int retry_count;
2989
	int ret;
2990

2991
	/* see mem_cgroup_resize_res_limit */
2992 2993 2994 2995 2996 2997
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2998 2999 3000 3001
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3002 3003 3004 3005

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3006 3007 3008
			ret = -EINVAL;
			break;
		}
3009 3010 3011 3012
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3013 3014 3015 3016

		if (!ret)
			break;

3017 3018
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3019
		curusage = page_counter_read(&memcg->memsw);
3020
		/* Usage is reduced ? */
3021
		if (curusage >= oldusage)
3022
			retry_count--;
3023 3024
		else
			oldusage = curusage;
3025 3026
	} while (retry_count);

3027 3028
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3029

3030 3031 3032
	return ret;
}

3033 3034 3035 3036 3037 3038 3039 3040 3041
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3042
	unsigned long excess;
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3067
		spin_lock_irq(&mctz->lock);
3068
		__mem_cgroup_remove_exceeded(mz, mctz);
3069 3070 3071 3072 3073 3074

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3075 3076 3077
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3078
		excess = soft_limit_excess(mz->memcg);
3079 3080 3081 3082 3083 3084 3085 3086 3087
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3088
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3089
		spin_unlock_irq(&mctz->lock);
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3107 3108 3109 3110 3111 3112
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3113 3114
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3115 3116
	bool ret;

3117
	/*
3118 3119 3120 3121
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3122
	 */
3123 3124 3125 3126 3127 3128
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3129 3130
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3141 3142
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3143
	/* try to free all pages in this cgroup */
3144
	while (nr_retries && page_counter_read(&memcg->memory)) {
3145
		int progress;
3146

3147 3148 3149
		if (signal_pending(current))
			return -EINTR;

3150 3151
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3152
		if (!progress) {
3153
			nr_retries--;
3154
			/* maybe some writeback is necessary */
3155
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3156
		}
3157 3158

	}
3159 3160

	return 0;
3161 3162
}

3163 3164 3165
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3166
{
3167
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3168

3169 3170
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3171
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3172 3173
}

3174 3175
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3176
{
3177
	return mem_cgroup_from_css(css)->use_hierarchy;
3178 3179
}

3180 3181
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3182 3183
{
	int retval = 0;
3184
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3185
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3186

3187
	mutex_lock(&memcg_create_mutex);
3188 3189 3190 3191

	if (memcg->use_hierarchy == val)
		goto out;

3192
	/*
3193
	 * If parent's use_hierarchy is set, we can't make any modifications
3194 3195 3196 3197 3198 3199
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3200
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3201
				(val == 1 || val == 0)) {
3202
		if (!memcg_has_children(memcg))
3203
			memcg->use_hierarchy = val;
3204 3205 3206 3207
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3208 3209

out:
3210
	mutex_unlock(&memcg_create_mutex);
3211 3212 3213 3214

	return retval;
}

3215 3216
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3234 3235 3236 3237 3238 3239
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3240
		if (!swap)
3241
			val = page_counter_read(&memcg->memory);
3242
		else
3243
			val = page_counter_read(&memcg->memsw);
3244 3245 3246 3247
	}
	return val << PAGE_SHIFT;
}

3248 3249 3250 3251 3252 3253 3254
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3255

3256
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3257
			       struct cftype *cft)
B
Balbir Singh 已提交
3258
{
3259
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3260
	struct page_counter *counter;
3261

3262
	switch (MEMFILE_TYPE(cft->private)) {
3263
	case _MEM:
3264 3265
		counter = &memcg->memory;
		break;
3266
	case _MEMSWAP:
3267 3268
		counter = &memcg->memsw;
		break;
3269
	case _KMEM:
3270
		counter = &memcg->kmem;
3271
		break;
3272 3273 3274
	default:
		BUG();
	}
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3294
}
3295 3296

#ifdef CONFIG_MEMCG_KMEM
3297 3298
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3299 3300 3301 3302 3303 3304 3305
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3318
	mutex_lock(&memcg_create_mutex);
3319 3320
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3321 3322 3323 3324
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3325

3326
	memcg_id = memcg_alloc_cache_id();
3327 3328 3329 3330 3331 3332
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3333 3334
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3335
	 */
3336
	err = page_counter_limit(&memcg->kmem, nr_pages);
3337 3338 3339 3340
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3341 3342
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3343 3344 3345
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3346
	memcg->kmemcg_id = memcg_id;
3347
out:
3348 3349 3350 3351
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3352
				   unsigned long limit)
3353 3354 3355
{
	int ret;

3356
	mutex_lock(&memcg_limit_mutex);
3357
	if (!memcg_kmem_is_active(memcg))
3358
		ret = memcg_activate_kmem(memcg, limit);
3359
	else
3360 3361
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3362 3363 3364
	return ret;
}

3365
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3366
{
3367
	int ret = 0;
3368
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3369

3370 3371
	if (!parent)
		return 0;
3372

3373
	mutex_lock(&memcg_limit_mutex);
3374
	/*
3375 3376
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3377
	 */
3378
	if (memcg_kmem_is_active(parent))
3379 3380
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3381
	return ret;
3382
}
3383 3384
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3385
				   unsigned long limit)
3386 3387 3388
{
	return -EINVAL;
}
3389
#endif /* CONFIG_MEMCG_KMEM */
3390

3391 3392 3393 3394
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3395 3396
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3397
{
3398
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3399
	unsigned long nr_pages;
3400 3401
	int ret;

3402
	buf = strstrip(buf);
3403
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3404 3405
	if (ret)
		return ret;
3406

3407
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3408
	case RES_LIMIT:
3409 3410 3411 3412
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3413 3414 3415
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3416
			break;
3417 3418
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3419
			break;
3420 3421 3422 3423
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3424
		break;
3425 3426 3427
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3428 3429
		break;
	}
3430
	return ret ?: nbytes;
B
Balbir Singh 已提交
3431 3432
}

3433 3434
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3435
{
3436
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3437
	struct page_counter *counter;
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3452

3453
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3454
	case RES_MAX_USAGE:
3455
		page_counter_reset_watermark(counter);
3456 3457
		break;
	case RES_FAILCNT:
3458
		counter->failcnt = 0;
3459
		break;
3460 3461
	default:
		BUG();
3462
	}
3463

3464
	return nbytes;
3465 3466
}

3467
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3468 3469
					struct cftype *cft)
{
3470
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3471 3472
}

3473
#ifdef CONFIG_MMU
3474
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3475 3476
					struct cftype *cft, u64 val)
{
3477
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3478

3479
	if (val & ~MOVE_MASK)
3480
		return -EINVAL;
3481

3482
	/*
3483 3484 3485 3486
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3487
	 */
3488
	memcg->move_charge_at_immigrate = val;
3489 3490
	return 0;
}
3491
#else
3492
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3493 3494 3495 3496 3497
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3498

3499
#ifdef CONFIG_NUMA
3500
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3501
{
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3514
	int nid;
3515
	unsigned long nr;
3516
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3517

3518 3519 3520 3521 3522 3523 3524 3525 3526
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3527 3528
	}

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3544 3545 3546 3547 3548 3549
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3550
static int memcg_stat_show(struct seq_file *m, void *v)
3551
{
3552
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3553
	unsigned long memory, memsw;
3554 3555
	struct mem_cgroup *mi;
	unsigned int i;
3556

3557 3558 3559 3560
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3561 3562
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3563
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3564
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3565
			continue;
3566 3567
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3568
	}
L
Lee Schermerhorn 已提交
3569

3570 3571 3572 3573 3574 3575 3576 3577
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3578
	/* Hierarchical information */
3579 3580 3581 3582
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3583
	}
3584 3585 3586 3587 3588
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3589

3590 3591 3592
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3593
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3594
			continue;
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3615
	}
K
KAMEZAWA Hiroyuki 已提交
3616

K
KOSAKI Motohiro 已提交
3617 3618 3619 3620
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3621
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3622 3623 3624 3625 3626
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3627
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3628
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3629

3630 3631 3632 3633
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3634
			}
3635 3636 3637 3638
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3639 3640 3641
	}
#endif

3642 3643 3644
	return 0;
}

3645 3646
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3647
{
3648
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3649

3650
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3651 3652
}

3653 3654
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3655
{
3656
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3657

3658
	if (val > 100)
K
KOSAKI Motohiro 已提交
3659 3660
		return -EINVAL;

3661
	if (css->parent)
3662 3663 3664
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3665

K
KOSAKI Motohiro 已提交
3666 3667 3668
	return 0;
}

3669 3670 3671
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3672
	unsigned long usage;
3673 3674 3675 3676
	int i;

	rcu_read_lock();
	if (!swap)
3677
		t = rcu_dereference(memcg->thresholds.primary);
3678
	else
3679
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3680 3681 3682 3683

	if (!t)
		goto unlock;

3684
	usage = mem_cgroup_usage(memcg, swap);
3685 3686

	/*
3687
	 * current_threshold points to threshold just below or equal to usage.
3688 3689 3690
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3691
	i = t->current_threshold;
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3715
	t->current_threshold = i - 1;
3716 3717 3718 3719 3720 3721
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3722 3723 3724 3725 3726 3727 3728
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3729 3730 3731 3732 3733 3734 3735
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3736 3737 3738 3739 3740 3741 3742
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3743 3744
}

3745
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3746 3747 3748
{
	struct mem_cgroup_eventfd_list *ev;

3749 3750
	spin_lock(&memcg_oom_lock);

3751
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3752
		eventfd_signal(ev->eventfd, 1);
3753 3754

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3755 3756 3757
	return 0;
}

3758
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3759
{
K
KAMEZAWA Hiroyuki 已提交
3760 3761
	struct mem_cgroup *iter;

3762
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3763
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3764 3765
}

3766
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3767
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3768
{
3769 3770
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3771 3772
	unsigned long threshold;
	unsigned long usage;
3773
	int i, size, ret;
3774

3775
	ret = page_counter_memparse(args, "-1", &threshold);
3776 3777 3778 3779
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3780

3781
	if (type == _MEM) {
3782
		thresholds = &memcg->thresholds;
3783
		usage = mem_cgroup_usage(memcg, false);
3784
	} else if (type == _MEMSWAP) {
3785
		thresholds = &memcg->memsw_thresholds;
3786
		usage = mem_cgroup_usage(memcg, true);
3787
	} else
3788 3789 3790
		BUG();

	/* Check if a threshold crossed before adding a new one */
3791
	if (thresholds->primary)
3792 3793
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3794
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3795 3796

	/* Allocate memory for new array of thresholds */
3797
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3798
			GFP_KERNEL);
3799
	if (!new) {
3800 3801 3802
		ret = -ENOMEM;
		goto unlock;
	}
3803
	new->size = size;
3804 3805

	/* Copy thresholds (if any) to new array */
3806 3807
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3808
				sizeof(struct mem_cgroup_threshold));
3809 3810
	}

3811
	/* Add new threshold */
3812 3813
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3814 3815

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3816
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3817 3818 3819
			compare_thresholds, NULL);

	/* Find current threshold */
3820
	new->current_threshold = -1;
3821
	for (i = 0; i < size; i++) {
3822
		if (new->entries[i].threshold <= usage) {
3823
			/*
3824 3825
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3826 3827
			 * it here.
			 */
3828
			++new->current_threshold;
3829 3830
		} else
			break;
3831 3832
	}

3833 3834 3835 3836 3837
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3838

3839
	/* To be sure that nobody uses thresholds */
3840 3841 3842 3843 3844 3845 3846 3847
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3848
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3849 3850
	struct eventfd_ctx *eventfd, const char *args)
{
3851
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3852 3853
}

3854
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3855 3856
	struct eventfd_ctx *eventfd, const char *args)
{
3857
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3858 3859
}

3860
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3861
	struct eventfd_ctx *eventfd, enum res_type type)
3862
{
3863 3864
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3865
	unsigned long usage;
3866
	int i, j, size;
3867 3868

	mutex_lock(&memcg->thresholds_lock);
3869 3870

	if (type == _MEM) {
3871
		thresholds = &memcg->thresholds;
3872
		usage = mem_cgroup_usage(memcg, false);
3873
	} else if (type == _MEMSWAP) {
3874
		thresholds = &memcg->memsw_thresholds;
3875
		usage = mem_cgroup_usage(memcg, true);
3876
	} else
3877 3878
		BUG();

3879 3880 3881
	if (!thresholds->primary)
		goto unlock;

3882 3883 3884 3885
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3886 3887 3888
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3889 3890 3891
			size++;
	}

3892
	new = thresholds->spare;
3893

3894 3895
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3896 3897
		kfree(new);
		new = NULL;
3898
		goto swap_buffers;
3899 3900
	}

3901
	new->size = size;
3902 3903

	/* Copy thresholds and find current threshold */
3904 3905 3906
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3907 3908
			continue;

3909
		new->entries[j] = thresholds->primary->entries[i];
3910
		if (new->entries[j].threshold <= usage) {
3911
			/*
3912
			 * new->current_threshold will not be used
3913 3914 3915
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3916
			++new->current_threshold;
3917 3918 3919 3920
		}
		j++;
	}

3921
swap_buffers:
3922 3923
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3924 3925 3926 3927 3928 3929
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3930
	rcu_assign_pointer(thresholds->primary, new);
3931

3932
	/* To be sure that nobody uses thresholds */
3933
	synchronize_rcu();
3934
unlock:
3935 3936
	mutex_unlock(&memcg->thresholds_lock);
}
3937

3938
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3939 3940
	struct eventfd_ctx *eventfd)
{
3941
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3942 3943
}

3944
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3945 3946
	struct eventfd_ctx *eventfd)
{
3947
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3948 3949
}

3950
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3951
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3952 3953 3954 3955 3956 3957 3958
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3959
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3960 3961 3962 3963 3964

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3965
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3966
		eventfd_signal(eventfd, 1);
3967
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3968 3969 3970 3971

	return 0;
}

3972
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3973
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3974 3975 3976
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3977
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3978

3979
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3980 3981 3982 3983 3984 3985
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3986
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3987 3988
}

3989
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3990
{
3991
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3992

3993 3994
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3995 3996 3997
	return 0;
}

3998
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3999 4000
	struct cftype *cft, u64 val)
{
4001
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4002 4003

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4004
	if (!css->parent || !((val == 0) || (val == 1)))
4005 4006
		return -EINVAL;

4007
	memcg->oom_kill_disable = val;
4008
	if (!val)
4009
		memcg_oom_recover(memcg);
4010

4011 4012 4013
	return 0;
}

A
Andrew Morton 已提交
4014
#ifdef CONFIG_MEMCG_KMEM
4015
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4016
{
4017 4018 4019 4020 4021
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4022

4023
	return mem_cgroup_sockets_init(memcg, ss);
4024
}
4025

4026
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4027
{
4028
	memcg_destroy_kmem_caches(memcg);
4029
	mem_cgroup_sockets_destroy(memcg);
4030
}
4031
#else
4032
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4033 4034 4035
{
	return 0;
}
G
Glauber Costa 已提交
4036

4037 4038 4039
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4040 4041
#endif

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4055 4056 4057 4058 4059
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4060
static void memcg_event_remove(struct work_struct *work)
4061
{
4062 4063
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4064
	struct mem_cgroup *memcg = event->memcg;
4065 4066 4067

	remove_wait_queue(event->wqh, &event->wait);

4068
	event->unregister_event(memcg, event->eventfd);
4069 4070 4071 4072 4073 4074

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4075
	css_put(&memcg->css);
4076 4077 4078 4079 4080 4081 4082
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4083 4084
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4085
{
4086 4087
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4088
	struct mem_cgroup *memcg = event->memcg;
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4101
		spin_lock(&memcg->event_list_lock);
4102 4103 4104 4105 4106 4107 4108 4109
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4110
		spin_unlock(&memcg->event_list_lock);
4111 4112 4113 4114 4115
	}

	return 0;
}

4116
static void memcg_event_ptable_queue_proc(struct file *file,
4117 4118
		wait_queue_head_t *wqh, poll_table *pt)
{
4119 4120
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4121 4122 4123 4124 4125 4126

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4127 4128
 * DO NOT USE IN NEW FILES.
 *
4129 4130 4131 4132 4133
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4134 4135
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4136
{
4137
	struct cgroup_subsys_state *css = of_css(of);
4138
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4139
	struct mem_cgroup_event *event;
4140 4141 4142 4143
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4144
	const char *name;
4145 4146 4147
	char *endp;
	int ret;

4148 4149 4150
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4151 4152
	if (*endp != ' ')
		return -EINVAL;
4153
	buf = endp + 1;
4154

4155
	cfd = simple_strtoul(buf, &endp, 10);
4156 4157
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4158
	buf = endp + 1;
4159 4160 4161 4162 4163

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4164
	event->memcg = memcg;
4165
	INIT_LIST_HEAD(&event->list);
4166 4167 4168
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4194 4195 4196 4197 4198
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4199 4200
	 *
	 * DO NOT ADD NEW FILES.
4201
	 */
A
Al Viro 已提交
4202
	name = cfile.file->f_path.dentry->d_name.name;
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4214 4215
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4216 4217 4218 4219 4220
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4221
	/*
4222 4223 4224
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4225
	 */
A
Al Viro 已提交
4226
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4227
					       &memory_cgrp_subsys);
4228
	ret = -EINVAL;
4229
	if (IS_ERR(cfile_css))
4230
		goto out_put_cfile;
4231 4232
	if (cfile_css != css) {
		css_put(cfile_css);
4233
		goto out_put_cfile;
4234
	}
4235

4236
	ret = event->register_event(memcg, event->eventfd, buf);
4237 4238 4239 4240 4241
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4242 4243 4244
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4245 4246 4247 4248

	fdput(cfile);
	fdput(efile);

4249
	return nbytes;
4250 4251

out_put_css:
4252
	css_put(css);
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4265
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4266
	{
4267
		.name = "usage_in_bytes",
4268
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4269
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4270
	},
4271 4272
	{
		.name = "max_usage_in_bytes",
4273
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4274
		.write = mem_cgroup_reset,
4275
		.read_u64 = mem_cgroup_read_u64,
4276
	},
B
Balbir Singh 已提交
4277
	{
4278
		.name = "limit_in_bytes",
4279
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4280
		.write = mem_cgroup_write,
4281
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4282
	},
4283 4284 4285
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4286
		.write = mem_cgroup_write,
4287
		.read_u64 = mem_cgroup_read_u64,
4288
	},
B
Balbir Singh 已提交
4289 4290
	{
		.name = "failcnt",
4291
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4292
		.write = mem_cgroup_reset,
4293
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4294
	},
4295 4296
	{
		.name = "stat",
4297
		.seq_show = memcg_stat_show,
4298
	},
4299 4300
	{
		.name = "force_empty",
4301
		.write = mem_cgroup_force_empty_write,
4302
	},
4303 4304 4305 4306 4307
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4308
	{
4309
		.name = "cgroup.event_control",		/* XXX: for compat */
4310
		.write = memcg_write_event_control,
4311 4312 4313
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4314 4315 4316 4317 4318
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4319 4320 4321 4322 4323
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4324 4325
	{
		.name = "oom_control",
4326
		.seq_show = mem_cgroup_oom_control_read,
4327
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4328 4329
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4330 4331 4332
	{
		.name = "pressure_level",
	},
4333 4334 4335
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4336
		.seq_show = memcg_numa_stat_show,
4337 4338
	},
#endif
4339 4340 4341 4342
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4343
		.write = mem_cgroup_write,
4344
		.read_u64 = mem_cgroup_read_u64,
4345 4346 4347 4348
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4349
		.read_u64 = mem_cgroup_read_u64,
4350 4351 4352 4353
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4354
		.write = mem_cgroup_reset,
4355
		.read_u64 = mem_cgroup_read_u64,
4356 4357 4358 4359
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4360
		.write = mem_cgroup_reset,
4361
		.read_u64 = mem_cgroup_read_u64,
4362
	},
4363 4364 4365
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4366 4367 4368 4369
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4370 4371
	},
#endif
4372
#endif
4373
	{ },	/* terminate */
4374
};
4375

4376 4377 4378 4379 4380
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4381
		.read_u64 = mem_cgroup_read_u64,
4382 4383 4384 4385
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4386
		.write = mem_cgroup_reset,
4387
		.read_u64 = mem_cgroup_read_u64,
4388 4389 4390 4391
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4392
		.write = mem_cgroup_write,
4393
		.read_u64 = mem_cgroup_read_u64,
4394 4395 4396 4397
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4398
		.write = mem_cgroup_reset,
4399
		.read_u64 = mem_cgroup_read_u64,
4400 4401 4402 4403
	},
	{ },	/* terminate */
};
#endif
4404
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4405 4406
{
	struct mem_cgroup_per_node *pn;
4407
	struct mem_cgroup_per_zone *mz;
4408
	int zone, tmp = node;
4409 4410 4411 4412 4413 4414 4415 4416
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4417 4418
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4419
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4420 4421
	if (!pn)
		return 1;
4422 4423 4424

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4425
		lruvec_init(&mz->lruvec);
4426 4427
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4428
		mz->memcg = memcg;
4429
	}
4430
	memcg->nodeinfo[node] = pn;
4431 4432 4433
	return 0;
}

4434
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4435
{
4436
	kfree(memcg->nodeinfo[node]);
4437 4438
}

4439 4440
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4441
	struct mem_cgroup *memcg;
4442
	size_t size;
4443

4444 4445
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4446

4447
	memcg = kzalloc(size, GFP_KERNEL);
4448
	if (!memcg)
4449 4450
		return NULL;

4451 4452
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4453
		goto out_free;
4454 4455
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4456 4457

out_free:
4458
	kfree(memcg);
4459
	return NULL;
4460 4461
}

4462
/*
4463 4464 4465 4466 4467 4468 4469 4470
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4471
 */
4472 4473

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4474
{
4475
	int node;
4476

4477
	mem_cgroup_remove_from_trees(memcg);
4478 4479 4480 4481 4482 4483

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4484
	disarm_static_keys(memcg);
4485
	kfree(memcg);
4486
}
4487

4488 4489 4490
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4491
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4492
{
4493
	if (!memcg->memory.parent)
4494
		return NULL;
4495
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4496
}
G
Glauber Costa 已提交
4497
EXPORT_SYMBOL(parent_mem_cgroup);
4498

L
Li Zefan 已提交
4499
static struct cgroup_subsys_state * __ref
4500
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4501
{
4502
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4503
	long error = -ENOMEM;
4504
	int node;
B
Balbir Singh 已提交
4505

4506 4507
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4508
		return ERR_PTR(error);
4509

B
Bob Liu 已提交
4510
	for_each_node(node)
4511
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4512
			goto free_out;
4513

4514
	/* root ? */
4515
	if (parent_css == NULL) {
4516
		root_mem_cgroup = memcg;
4517
		page_counter_init(&memcg->memory, NULL);
4518
		memcg->high = PAGE_COUNTER_MAX;
4519
		memcg->soft_limit = PAGE_COUNTER_MAX;
4520 4521
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4522
	}
4523

4524 4525 4526 4527 4528
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4529
	vmpressure_init(&memcg->vmpressure);
4530 4531
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4532 4533 4534
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4535 4536 4537 4538 4539 4540 4541 4542 4543

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4544
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4545
{
4546
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4547
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4548
	int ret;
4549

4550
	if (css->id > MEM_CGROUP_ID_MAX)
4551 4552
		return -ENOSPC;

T
Tejun Heo 已提交
4553
	if (!parent)
4554 4555
		return 0;

4556
	mutex_lock(&memcg_create_mutex);
4557 4558 4559 4560 4561 4562

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4563
		page_counter_init(&memcg->memory, &parent->memory);
4564
		memcg->high = PAGE_COUNTER_MAX;
4565
		memcg->soft_limit = PAGE_COUNTER_MAX;
4566 4567
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4568

4569
		/*
4570 4571
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4572
		 */
4573
	} else {
4574
		page_counter_init(&memcg->memory, NULL);
4575
		memcg->high = PAGE_COUNTER_MAX;
4576
		memcg->soft_limit = PAGE_COUNTER_MAX;
4577 4578
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4579 4580 4581 4582 4583
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4584
		if (parent != root_mem_cgroup)
4585
			memory_cgrp_subsys.broken_hierarchy = true;
4586
	}
4587
	mutex_unlock(&memcg_create_mutex);
4588

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4601 4602
}

4603
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4604
{
4605
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4606
	struct mem_cgroup_event *event, *tmp;
4607 4608 4609 4610 4611 4612

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4613 4614
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4615 4616 4617
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4618
	spin_unlock(&memcg->event_list_lock);
4619

4620
	vmpressure_cleanup(&memcg->vmpressure);
4621 4622
}

4623
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4624
{
4625
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4626

4627
	memcg_destroy_kmem(memcg);
4628
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4629 4630
}

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4648 4649 4650
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4651 4652
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4653
	memcg->soft_limit = PAGE_COUNTER_MAX;
4654 4655
}

4656
#ifdef CONFIG_MMU
4657
/* Handlers for move charge at task migration. */
4658
static int mem_cgroup_do_precharge(unsigned long count)
4659
{
4660
	int ret;
4661 4662

	/* Try a single bulk charge without reclaim first */
4663
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4664
	if (!ret) {
4665 4666 4667
		mc.precharge += count;
		return ret;
	}
4668
	if (ret == -EINTR) {
4669
		cancel_charge(root_mem_cgroup, count);
4670 4671
		return ret;
	}
4672 4673

	/* Try charges one by one with reclaim */
4674
	while (count--) {
4675
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4676 4677 4678
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4679 4680
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4681
		 */
4682
		if (ret == -EINTR)
4683
			cancel_charge(root_mem_cgroup, 1);
4684 4685
		if (ret)
			return ret;
4686
		mc.precharge++;
4687
		cond_resched();
4688
	}
4689
	return 0;
4690 4691 4692
}

/**
4693
 * get_mctgt_type - get target type of moving charge
4694 4695 4696
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4697
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4698 4699 4700 4701 4702 4703
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4704 4705 4706
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4707 4708 4709 4710 4711
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4712
	swp_entry_t	ent;
4713 4714 4715
};

enum mc_target_type {
4716
	MC_TARGET_NONE = 0,
4717
	MC_TARGET_PAGE,
4718
	MC_TARGET_SWAP,
4719 4720
};

D
Daisuke Nishimura 已提交
4721 4722
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4723
{
D
Daisuke Nishimura 已提交
4724
	struct page *page = vm_normal_page(vma, addr, ptent);
4725

D
Daisuke Nishimura 已提交
4726 4727 4728
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4729
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4730
			return NULL;
4731 4732 4733 4734
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4735 4736 4737 4738 4739 4740
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4741
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4742 4743 4744 4745 4746 4747
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4748
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4749
		return NULL;
4750 4751 4752 4753
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4754
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4755 4756 4757 4758 4759
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4760 4761 4762 4763 4764 4765 4766
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4767

4768 4769 4770 4771 4772 4773 4774 4775 4776
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4777
	if (!(mc.flags & MOVE_FILE))
4778 4779 4780
		return NULL;

	mapping = vma->vm_file->f_mapping;
4781
	pgoff = linear_page_index(vma, addr);
4782 4783

	/* page is moved even if it's not RSS of this task(page-faulted). */
4784 4785
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4798
#endif
4799 4800 4801
	return page;
}

4802
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4803 4804 4805
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4806
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4807 4808 4809 4810 4811 4812
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4813
	else if (pte_none(ptent))
4814
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4815 4816

	if (!page && !ent.val)
4817
		return ret;
4818 4819
	if (page) {
		/*
4820
		 * Do only loose check w/o serialization.
4821
		 * mem_cgroup_move_account() checks the page is valid or
4822
		 * not under LRU exclusion.
4823
		 */
4824
		if (page->mem_cgroup == mc.from) {
4825 4826 4827 4828 4829 4830 4831
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4832 4833
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4834
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4835 4836 4837
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4838 4839 4840 4841
	}
	return ret;
}

4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4855
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4856
	if (!(mc.flags & MOVE_ANON))
4857
		return ret;
4858
	if (page->mem_cgroup == mc.from) {
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4875 4876 4877 4878 4879 4880 4881 4882
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4883
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4884 4885
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4886
		spin_unlock(ptl);
4887
		return 0;
4888
	}
4889

4890 4891
	if (pmd_trans_unstable(pmd))
		return 0;
4892 4893
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4894
		if (get_mctgt_type(vma, addr, *pte, NULL))
4895 4896 4897 4898
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4899 4900 4901
	return 0;
}

4902 4903 4904 4905 4906
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4907
	down_read(&mm->mmap_sem);
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4919
	up_read(&mm->mmap_sem);
4920 4921 4922 4923 4924 4925 4926 4927 4928

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4929 4930 4931 4932 4933
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4934 4935
}

4936 4937
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4938
{
4939 4940 4941
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4942
	/* we must uncharge all the leftover precharges from mc.to */
4943
	if (mc.precharge) {
4944
		cancel_charge(mc.to, mc.precharge);
4945 4946 4947 4948 4949 4950 4951
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4952
		cancel_charge(mc.from, mc.moved_charge);
4953
		mc.moved_charge = 0;
4954
	}
4955 4956 4957
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4958
		if (!mem_cgroup_is_root(mc.from))
4959
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4960

4961
		/*
4962 4963
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4964
		 */
4965
		if (!mem_cgroup_is_root(mc.to))
4966 4967
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4968
		css_put_many(&mc.from->css, mc.moved_swap);
4969

L
Li Zefan 已提交
4970
		/* we've already done css_get(mc.to) */
4971 4972
		mc.moved_swap = 0;
	}
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4986
	spin_lock(&mc.lock);
4987 4988
	mc.from = NULL;
	mc.to = NULL;
4989
	spin_unlock(&mc.lock);
4990 4991
}

4992
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4993
				 struct cgroup_taskset *tset)
4994
{
4995
	struct task_struct *p = cgroup_taskset_first(tset);
4996
	int ret = 0;
4997
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4998
	unsigned long move_flags;
4999

5000 5001 5002 5003 5004
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5005 5006
	move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
	if (move_flags) {
5007 5008 5009
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5010
		VM_BUG_ON(from == memcg);
5011 5012 5013 5014 5015

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5016 5017 5018 5019
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5020
			VM_BUG_ON(mc.moved_charge);
5021
			VM_BUG_ON(mc.moved_swap);
5022

5023
			spin_lock(&mc.lock);
5024
			mc.from = from;
5025
			mc.to = memcg;
5026
			mc.flags = move_flags;
5027
			spin_unlock(&mc.lock);
5028
			/* We set mc.moving_task later */
5029 5030 5031 5032

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5033 5034
		}
		mmput(mm);
5035 5036 5037 5038
	}
	return ret;
}

5039
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5040
				     struct cgroup_taskset *tset)
5041
{
5042 5043
	if (mc.to)
		mem_cgroup_clear_mc();
5044 5045
}

5046 5047 5048
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5049
{
5050 5051 5052 5053
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5054 5055 5056
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5057

5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5068
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5069
		if (mc.precharge < HPAGE_PMD_NR) {
5070
			spin_unlock(ptl);
5071 5072 5073 5074 5075 5076 5077
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5078
							     mc.from, mc.to)) {
5079 5080 5081 5082 5083 5084 5085
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5086
		spin_unlock(ptl);
5087
		return 0;
5088 5089
	}

5090 5091
	if (pmd_trans_unstable(pmd))
		return 0;
5092 5093 5094 5095
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5096
		swp_entry_t ent;
5097 5098 5099 5100

		if (!mc.precharge)
			break;

5101
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5102 5103 5104 5105
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5106
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5107
				mc.precharge--;
5108 5109
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5110 5111
			}
			putback_lru_page(page);
5112
put:			/* get_mctgt_type() gets the page */
5113 5114
			put_page(page);
			break;
5115 5116
		case MC_TARGET_SWAP:
			ent = target.ent;
5117
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5118
				mc.precharge--;
5119 5120 5121
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5122
			break;
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5137
		ret = mem_cgroup_do_precharge(1);
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5150 5151 5152 5153 5154 5155 5156
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5188
	up_read(&mm->mmap_sem);
5189
	atomic_dec(&mc.from->moving_account);
5190 5191
}

5192
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5193
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5194
{
5195
	struct task_struct *p = cgroup_taskset_first(tset);
5196
	struct mm_struct *mm = get_task_mm(p);
5197 5198

	if (mm) {
5199 5200
		if (mc.to)
			mem_cgroup_move_charge(mm);
5201 5202
		mmput(mm);
	}
5203 5204
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5205
}
5206
#else	/* !CONFIG_MMU */
5207
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5208
				 struct cgroup_taskset *tset)
5209 5210 5211
{
	return 0;
}
5212
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5213
				     struct cgroup_taskset *tset)
5214 5215
{
}
5216
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5217
				 struct cgroup_taskset *tset)
5218 5219 5220
{
}
#endif
B
Balbir Singh 已提交
5221

5222 5223
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5224 5225
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5226
 */
5227
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5228 5229
{
	/*
5230
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5231 5232 5233
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5234
	if (cgroup_on_dfl(root_css->cgroup))
5235
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5236 5237
}

5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &low);
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &high);
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &max);
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5379
struct cgroup_subsys memory_cgrp_subsys = {
5380
	.css_alloc = mem_cgroup_css_alloc,
5381
	.css_online = mem_cgroup_css_online,
5382 5383
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5384
	.css_reset = mem_cgroup_css_reset,
5385 5386
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5387
	.attach = mem_cgroup_move_task,
5388
	.bind = mem_cgroup_bind,
5389 5390
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5391
	.early_init = 0,
B
Balbir Singh 已提交
5392
};
5393

A
Andrew Morton 已提交
5394
#ifdef CONFIG_MEMCG_SWAP
5395 5396
static int __init enable_swap_account(char *s)
{
5397
	if (!strcmp(s, "1"))
5398
		really_do_swap_account = 1;
5399
	else if (!strcmp(s, "0"))
5400 5401 5402
		really_do_swap_account = 0;
	return 1;
}
5403
__setup("swapaccount=", enable_swap_account);
5404

5405 5406
static void __init memsw_file_init(void)
{
5407 5408
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5409 5410 5411 5412 5413 5414 5415 5416
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5417
}
5418

5419
#else
5420
static void __init enable_swap_cgroup(void)
5421 5422
{
}
5423
#endif
5424

5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

	if (page_counter_read(&memcg->memory) > memcg->low)
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

		if (page_counter_read(&memcg->memory) > memcg->low)
			return false;
	}
	return true;
}

5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5485
	struct mem_cgroup *memcg;
5486 5487 5488 5489 5490 5491 5492 5493
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

5494
	memcg = page->mem_cgroup;
5495 5496

	/* Readahead page, never charged */
5497
	if (!memcg)
5498 5499
		return;

5500
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5501
	VM_BUG_ON_PAGE(oldid, page);
5502 5503
	mem_cgroup_swap_statistics(memcg, true);

5504
	page->mem_cgroup = NULL;
5505

5506 5507 5508 5509 5510
	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5511

5512 5513
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5534
		if (!mem_cgroup_is_root(memcg))
5535
			page_counter_uncharge(&memcg->memsw, 1);
5536 5537 5538 5539 5540 5541 5542
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5578
		if (page->mem_cgroup)
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5639 5640
	commit_charge(page, memcg, lrucare);

5641 5642 5643 5644 5645
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5646 5647 5648 5649
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5691 5692 5693 5694
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5695
	unsigned long nr_pages = nr_anon + nr_file;
5696 5697
	unsigned long flags;

5698
	if (!mem_cgroup_is_root(memcg)) {
5699 5700 5701
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5702 5703
		memcg_oom_recover(memcg);
	}
5704 5705 5706 5707 5708 5709

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5710
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5711 5712
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5713 5714

	if (!mem_cgroup_is_root(memcg))
5715
		css_put_many(&memcg->css, nr_pages);
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5738
		if (!page->mem_cgroup)
5739 5740 5741 5742
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5743
		 * page->mem_cgroup at this point, we have fully
5744
		 * exclusive access to the page.
5745 5746
		 */

5747
		if (memcg != page->mem_cgroup) {
5748
			if (memcg) {
5749 5750 5751
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5752
			}
5753
			memcg = page->mem_cgroup;
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5767
		page->mem_cgroup = NULL;
5768 5769 5770 5771 5772

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5773 5774
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5775 5776
}

5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5789
	/* Don't touch page->lru of any random page, pre-check: */
5790
	if (!page->mem_cgroup)
5791 5792
		return;

5793 5794 5795
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5796

5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5808

5809 5810
	if (!list_empty(page_list))
		uncharge_list(page_list);
5811 5812 5813 5814 5815 5816
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5817
 * @lrucare: either or both pages might be on the LRU already
5818 5819 5820 5821 5822 5823 5824 5825
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5826
	struct mem_cgroup *memcg;
5827 5828 5829 5830 5831 5832 5833
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5834 5835
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5836 5837 5838 5839 5840

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5841
	if (newpage->mem_cgroup)
5842 5843
		return;

5844 5845 5846 5847 5848 5849
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5850
	memcg = oldpage->mem_cgroup;
5851
	if (!memcg)
5852 5853 5854 5855 5856
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5857
	oldpage->mem_cgroup = NULL;
5858 5859 5860 5861

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5862
	commit_charge(newpage, memcg, lrucare);
5863 5864
}

5865
/*
5866 5867 5868 5869 5870 5871
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5872 5873 5874
 */
static int __init mem_cgroup_init(void)
{
5875 5876
	int cpu, node;

5877
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5900
	enable_swap_cgroup();
5901

5902 5903 5904
	return 0;
}
subsys_initcall(mem_cgroup_init);