memcontrol.c 159.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

249 250 251 252 253
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

254
#ifndef CONFIG_SLOB
255
/*
256
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
257 258 259 260 261
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
262
 *
263 264
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
265
 */
266 267
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
268

269 270 271 272 273 274 275 276 277 278 279 280 281
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

282 283 284 285 286 287
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
288
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 290
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
291
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 293 294
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
295
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296

297 298 299 300 301 302
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
303
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304
EXPORT_SYMBOL(memcg_kmem_enabled_key);
305

306 307
struct workqueue_struct *memcg_kmem_cache_wq;

308
#endif /* !CONFIG_SLOB */
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

327
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 329 330 331 332
		memcg = root_mem_cgroup;

	return &memcg->css;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

361 362
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363
{
364
	int nid = page_to_nid(page);
365

366
	return memcg->nodeinfo[nid];
367 368
}

369 370
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
371
{
372
	return soft_limit_tree.rb_tree_per_node[nid];
373 374
}

375
static struct mem_cgroup_tree_per_node *
376 377 378 379
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

380
	return soft_limit_tree.rb_tree_per_node[nid];
381 382
}

383 384
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
385
					 unsigned long new_usage_in_excess)
386 387 388
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
389
	struct mem_cgroup_per_node *mz_node;
390
	bool rightmost = true;
391 392 393 394 395 396 397 398 399

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
400
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401
					tree_node);
402
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
403
			p = &(*p)->rb_left;
404 405 406
			rightmost = false;
		}

407 408 409 410 411 412 413
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
414 415 416 417

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

418 419 420 421 422
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

423 424
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
425 426 427
{
	if (!mz->on_tree)
		return;
428 429 430 431

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

432 433 434 435
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

436 437
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
438
{
439 440 441
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
442
	__mem_cgroup_remove_exceeded(mz, mctz);
443
	spin_unlock_irqrestore(&mctz->lock, flags);
444 445
}

446 447 448
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
449
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 451 452 453 454 455 456
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
457 458 459

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
460
	unsigned long excess;
461 462
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
463

464
	mctz = soft_limit_tree_from_page(page);
465 466
	if (!mctz)
		return;
467 468 469 470 471
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472
		mz = mem_cgroup_page_nodeinfo(memcg, page);
473
		excess = soft_limit_excess(memcg);
474 475 476 477 478
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
479 480 481
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
482 483
			/* if on-tree, remove it */
			if (mz->on_tree)
484
				__mem_cgroup_remove_exceeded(mz, mctz);
485 486 487 488
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
489
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
490
			spin_unlock_irqrestore(&mctz->lock, flags);
491 492 493 494 495 496
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
497 498 499
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
500

501
	for_each_node(nid) {
502 503
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
504 505
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
506 507 508
	}
}

509 510
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511
{
512
	struct mem_cgroup_per_node *mz;
513 514 515

retry:
	mz = NULL;
516
	if (!mctz->rb_rightmost)
517 518
		goto done;		/* Nothing to reclaim from */

519 520
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
521 522 523 524 525
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
526
	__mem_cgroup_remove_exceeded(mz, mctz);
527
	if (!soft_limit_excess(mz->memcg) ||
528
	    !css_tryget_online(&mz->memcg->css))
529 530 531 532 533
		goto retry;
done:
	return mz;
}

534 535
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536
{
537
	struct mem_cgroup_per_node *mz;
538

539
	spin_lock_irq(&mctz->lock);
540
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
541
	spin_unlock_irq(&mctz->lock);
542 543 544
	return mz;
}

545
/*
546 547
 * Return page count for single (non recursive) @memcg.
 *
548 549 550 551 552
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
553
 * a periodic synchronization of counter in memcg's counter.
554 555 556 557 558 559 560 561 562
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
563
 * common workload, threshold and synchronization as vmstat[] should be
564
 * implemented.
565 566
 *
 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
567
 */
568

569
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
570
				      int event)
571 572 573 574
{
	unsigned long val = 0;
	int cpu;

575
	for_each_possible_cpu(cpu)
576
		val += per_cpu(memcg->stat->events[event], cpu);
577 578 579
	return val;
}

580
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
581
					 struct page *page,
582
					 bool compound, int nr_pages)
583
{
584 585 586 587
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
588
	if (PageAnon(page))
589
		__this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
590
	else {
591
		__this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
592
		if (PageSwapBacked(page))
593
			__this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
594
	}
595

596 597
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
598
		__this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
599
	}
600

601 602
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
603
		__this_cpu_inc(memcg->stat->events[PGPGIN]);
604
	else {
605
		__this_cpu_inc(memcg->stat->events[PGPGOUT]);
606 607
		nr_pages = -nr_pages; /* for event */
	}
608

609
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
610 611
}

612 613
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
614
{
615
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
616
	unsigned long nr = 0;
617
	enum lru_list lru;
618

619
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
620

621 622 623
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
624
		nr += mem_cgroup_get_lru_size(lruvec, lru);
625 626
	}
	return nr;
627
}
628

629
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
630
			unsigned int lru_mask)
631
{
632
	unsigned long nr = 0;
633
	int nid;
634

635
	for_each_node_state(nid, N_MEMORY)
636 637
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
638 639
}

640 641
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
642 643 644
{
	unsigned long val, next;

645
	val = __this_cpu_read(memcg->stat->nr_page_events);
646
	next = __this_cpu_read(memcg->stat->targets[target]);
647
	/* from time_after() in jiffies.h */
648
	if ((long)(next - val) < 0) {
649 650 651 652
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
653 654 655
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
656 657 658 659 660 661 662 663
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
664
	}
665
	return false;
666 667 668 669 670 671
}

/*
 * Check events in order.
 *
 */
672
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
673 674
{
	/* threshold event is triggered in finer grain than soft limit */
675 676
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
677
		bool do_softlimit;
678
		bool do_numainfo __maybe_unused;
679

680 681
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
682 683 684 685
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
686
		mem_cgroup_threshold(memcg);
687 688
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
689
#if MAX_NUMNODES > 1
690
		if (unlikely(do_numainfo))
691
			atomic_inc(&memcg->numainfo_events);
692
#endif
693
	}
694 695
}

696
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
697
{
698 699 700 701 702 703 704 705
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

706
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
707
}
M
Michal Hocko 已提交
708
EXPORT_SYMBOL(mem_cgroup_from_task);
709

710
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
711
{
712
	struct mem_cgroup *memcg = NULL;
713

714 715
	rcu_read_lock();
	do {
716 717 718 719 720 721
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
722
			memcg = root_mem_cgroup;
723 724 725 726 727
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
728
	} while (!css_tryget_online(&memcg->css));
729
	rcu_read_unlock();
730
	return memcg;
731 732
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
750
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
751
				   struct mem_cgroup *prev,
752
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
753
{
M
Michal Hocko 已提交
754
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
755
	struct cgroup_subsys_state *css = NULL;
756
	struct mem_cgroup *memcg = NULL;
757
	struct mem_cgroup *pos = NULL;
758

759 760
	if (mem_cgroup_disabled())
		return NULL;
761

762 763
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
764

765
	if (prev && !reclaim)
766
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
767

768 769
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
770
			goto out;
771
		return root;
772
	}
K
KAMEZAWA Hiroyuki 已提交
773

774
	rcu_read_lock();
M
Michal Hocko 已提交
775

776
	if (reclaim) {
777
		struct mem_cgroup_per_node *mz;
778

779
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
780 781 782 783 784
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

785
		while (1) {
786
			pos = READ_ONCE(iter->position);
787 788
			if (!pos || css_tryget(&pos->css))
				break;
789
			/*
790 791 792 793 794 795
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
796
			 */
797 798
			(void)cmpxchg(&iter->position, pos, NULL);
		}
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
816
		}
K
KAMEZAWA Hiroyuki 已提交
817

818 819 820 821 822 823
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
824

825 826
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
827

828 829
		if (css_tryget(css))
			break;
830

831
		memcg = NULL;
832
	}
833 834 835

	if (reclaim) {
		/*
836 837 838
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
839
		 */
840 841
		(void)cmpxchg(&iter->position, pos, memcg);

842 843 844 845 846 847 848
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
849
	}
850

851 852
out_unlock:
	rcu_read_unlock();
853
out:
854 855 856
	if (prev && prev != root)
		css_put(&prev->css);

857
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
858
}
K
KAMEZAWA Hiroyuki 已提交
859

860 861 862 863 864 865 866
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
867 868 869 870 871 872
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
873

874 875 876 877
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
878 879
	struct mem_cgroup_per_node *mz;
	int nid;
880 881 882 883
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
884 885 886 887 888
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
889 890 891 892 893
			}
		}
	}
}

894 895 896 897 898 899
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
900
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
901
	     iter != NULL;				\
902
	     iter = mem_cgroup_iter(root, iter, NULL))
903

904
#define for_each_mem_cgroup(iter)			\
905
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
906
	     iter != NULL;				\
907
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

934
		css_task_iter_start(&iter->css, 0, &it);
935 936 937 938 939 940 941 942 943 944 945
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

946
/**
947
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
948
 * @page: the page
949
 * @zone: zone of the page
950 951 952 953
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
954
 */
M
Mel Gorman 已提交
955
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
956
{
957
	struct mem_cgroup_per_node *mz;
958
	struct mem_cgroup *memcg;
959
	struct lruvec *lruvec;
960

961
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
962
		lruvec = &pgdat->lruvec;
963 964
		goto out;
	}
965

966
	memcg = page->mem_cgroup;
967
	/*
968
	 * Swapcache readahead pages are added to the LRU - and
969
	 * possibly migrated - before they are charged.
970
	 */
971 972
	if (!memcg)
		memcg = root_mem_cgroup;
973

974
	mz = mem_cgroup_page_nodeinfo(memcg, page);
975 976 977 978 979 980 981
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
982 983
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
984
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
985
}
986

987
/**
988 989 990
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
991
 * @zid: zone id of the accounted pages
992
 * @nr_pages: positive when adding or negative when removing
993
 *
994 995 996
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
997
 */
998
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
999
				int zid, int nr_pages)
1000
{
1001
	struct mem_cgroup_per_node *mz;
1002
	unsigned long *lru_size;
1003
	long size;
1004 1005 1006 1007

	if (mem_cgroup_disabled())
		return;

1008
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1009
	lru_size = &mz->lru_zone_size[zid][lru];
1010 1011 1012 1013 1014

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1015 1016 1017
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1018 1019 1020 1021 1022 1023
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1024
}
1025

1026
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1027
{
1028
	struct mem_cgroup *task_memcg;
1029
	struct task_struct *p;
1030
	bool ret;
1031

1032
	p = find_lock_task_mm(task);
1033
	if (p) {
1034
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1035 1036 1037 1038 1039 1040 1041
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1042
		rcu_read_lock();
1043 1044
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1045
		rcu_read_unlock();
1046
	}
1047 1048
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1049 1050 1051
	return ret;
}

1052
/**
1053
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1054
 * @memcg: the memory cgroup
1055
 *
1056
 * Returns the maximum amount of memory @mem can be charged with, in
1057
 * pages.
1058
 */
1059
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1060
{
1061 1062 1063
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1064

1065
	count = page_counter_read(&memcg->memory);
1066
	limit = READ_ONCE(memcg->memory.limit);
1067 1068 1069
	if (count < limit)
		margin = limit - count;

1070
	if (do_memsw_account()) {
1071
		count = page_counter_read(&memcg->memsw);
1072
		limit = READ_ONCE(memcg->memsw.limit);
1073 1074
		if (count <= limit)
			margin = min(margin, limit - count);
1075 1076
		else
			margin = 0;
1077 1078 1079
	}

	return margin;
1080 1081
}

1082
/*
Q
Qiang Huang 已提交
1083
 * A routine for checking "mem" is under move_account() or not.
1084
 *
Q
Qiang Huang 已提交
1085 1086 1087
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1088
 */
1089
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1090
{
1091 1092
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1093
	bool ret = false;
1094 1095 1096 1097 1098 1099 1100 1101 1102
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1103

1104 1105
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1106 1107
unlock:
	spin_unlock(&mc.lock);
1108 1109 1110
	return ret;
}

1111
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1112 1113
{
	if (mc.moving_task && current != mc.moving_task) {
1114
		if (mem_cgroup_under_move(memcg)) {
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1149
#define K(x) ((x) << (PAGE_SHIFT-10))
1150
/**
1151
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1152 1153 1154 1155 1156 1157 1158 1159
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1160 1161
	struct mem_cgroup *iter;
	unsigned int i;
1162 1163 1164

	rcu_read_lock();

1165 1166 1167 1168 1169 1170 1171 1172
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1173
	pr_cont_cgroup_path(memcg->css.cgroup);
1174
	pr_cont("\n");
1175 1176 1177

	rcu_read_unlock();

1178 1179 1180 1181 1182 1183 1184 1185 1186
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1187 1188

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1189 1190
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1191 1192
		pr_cont(":");

1193 1194
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1195
				continue;
1196
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1197
				K(memcg_page_state(iter, memcg1_stats[i])));
1198 1199 1200 1201 1202 1203 1204 1205
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1206 1207
}

1208 1209 1210 1211
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1212
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1213 1214
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1215 1216
	struct mem_cgroup *iter;

1217
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1218
		num++;
1219 1220 1221
	return num;
}

D
David Rientjes 已提交
1222 1223 1224
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1225
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1226
{
1227
	unsigned long limit;
1228

1229
	limit = memcg->memory.limit;
1230
	if (mem_cgroup_swappiness(memcg)) {
1231
		unsigned long memsw_limit;
1232
		unsigned long swap_limit;
1233

1234
		memsw_limit = memcg->memsw.limit;
1235 1236 1237
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1238 1239
	}
	return limit;
D
David Rientjes 已提交
1240 1241
}

1242
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1243
				     int order)
1244
{
1245 1246 1247
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1248
		.memcg = memcg,
1249 1250 1251
		.gfp_mask = gfp_mask,
		.order = order,
	};
1252
	bool ret;
1253

1254
	mutex_lock(&oom_lock);
1255
	ret = out_of_memory(&oc);
1256
	mutex_unlock(&oom_lock);
1257
	return ret;
1258 1259
}

1260 1261
#if MAX_NUMNODES > 1

1262 1263
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1264
 * @memcg: the target memcg
1265 1266 1267 1268 1269 1270 1271
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1272
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1273 1274
		int nid, bool noswap)
{
1275
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1276 1277 1278
		return true;
	if (noswap || !total_swap_pages)
		return false;
1279
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1280 1281 1282 1283
		return true;
	return false;

}
1284 1285 1286 1287 1288 1289 1290

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1291
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1292 1293
{
	int nid;
1294 1295 1296 1297
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1298
	if (!atomic_read(&memcg->numainfo_events))
1299
		return;
1300
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1301 1302 1303
		return;

	/* make a nodemask where this memcg uses memory from */
1304
	memcg->scan_nodes = node_states[N_MEMORY];
1305

1306
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1307

1308 1309
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1310
	}
1311

1312 1313
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1328
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1329 1330 1331
{
	int node;

1332 1333
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1334

1335
	node = next_node_in(node, memcg->scan_nodes);
1336
	/*
1337 1338 1339
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1340 1341 1342 1343
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1344
	memcg->last_scanned_node = node;
1345 1346 1347
	return node;
}
#else
1348
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1349 1350 1351 1352 1353
{
	return 0;
}
#endif

1354
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1355
				   pg_data_t *pgdat,
1356 1357 1358 1359 1360 1361 1362 1363 1364
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1365
		.pgdat = pgdat,
1366 1367 1368
		.priority = 0,
	};

1369
	excess = soft_limit_excess(root_memcg);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1395
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1396
					pgdat, &nr_scanned);
1397
		*total_scanned += nr_scanned;
1398
		if (!soft_limit_excess(root_memcg))
1399
			break;
1400
	}
1401 1402
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1403 1404
}

1405 1406 1407 1408 1409 1410
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1411 1412
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1413 1414 1415 1416
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1417
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1418
{
1419
	struct mem_cgroup *iter, *failed = NULL;
1420

1421 1422
	spin_lock(&memcg_oom_lock);

1423
	for_each_mem_cgroup_tree(iter, memcg) {
1424
		if (iter->oom_lock) {
1425 1426 1427 1428 1429
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1430 1431
			mem_cgroup_iter_break(memcg, iter);
			break;
1432 1433
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1434
	}
K
KAMEZAWA Hiroyuki 已提交
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1447
		}
1448 1449
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1450 1451 1452 1453

	spin_unlock(&memcg_oom_lock);

	return !failed;
1454
}
1455

1456
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1457
{
K
KAMEZAWA Hiroyuki 已提交
1458 1459
	struct mem_cgroup *iter;

1460
	spin_lock(&memcg_oom_lock);
1461
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1462
	for_each_mem_cgroup_tree(iter, memcg)
1463
		iter->oom_lock = false;
1464
	spin_unlock(&memcg_oom_lock);
1465 1466
}

1467
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1468 1469 1470
{
	struct mem_cgroup *iter;

1471
	spin_lock(&memcg_oom_lock);
1472
	for_each_mem_cgroup_tree(iter, memcg)
1473 1474
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1475 1476
}

1477
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1478 1479 1480
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1481 1482
	/*
	 * When a new child is created while the hierarchy is under oom,
1483
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1484
	 */
1485
	spin_lock(&memcg_oom_lock);
1486
	for_each_mem_cgroup_tree(iter, memcg)
1487 1488 1489
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1490 1491
}

K
KAMEZAWA Hiroyuki 已提交
1492 1493
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1494
struct oom_wait_info {
1495
	struct mem_cgroup *memcg;
1496
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1497 1498
};

1499
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1500 1501
	unsigned mode, int sync, void *arg)
{
1502 1503
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1504 1505 1506
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1507
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1508

1509 1510
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1511 1512 1513 1514
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1515
static void memcg_oom_recover(struct mem_cgroup *memcg)
1516
{
1517 1518 1519 1520 1521 1522 1523 1524 1525
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1526
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1527 1528
}

1529
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1530
{
1531
	if (!current->memcg_may_oom)
1532
		return;
K
KAMEZAWA Hiroyuki 已提交
1533
	/*
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1546
	 */
1547
	css_get(&memcg->css);
T
Tejun Heo 已提交
1548 1549 1550
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1551 1552 1553 1554
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1555
 * @handle: actually kill/wait or just clean up the OOM state
1556
 *
1557 1558
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1559
 *
1560
 * Memcg supports userspace OOM handling where failed allocations must
1561 1562 1563 1564
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1565
 * the end of the page fault to complete the OOM handling.
1566 1567
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1568
 * completed, %false otherwise.
1569
 */
1570
bool mem_cgroup_oom_synchronize(bool handle)
1571
{
T
Tejun Heo 已提交
1572
	struct mem_cgroup *memcg = current->memcg_in_oom;
1573
	struct oom_wait_info owait;
1574
	bool locked;
1575 1576 1577

	/* OOM is global, do not handle */
	if (!memcg)
1578
		return false;
1579

1580
	if (!handle)
1581
		goto cleanup;
1582 1583 1584 1585 1586

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1587
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1588

1589
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1600 1601
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1602
	} else {
1603
		schedule();
1604 1605 1606 1607 1608
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1609 1610 1611 1612 1613 1614 1615 1616
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1617
cleanup:
T
Tejun Heo 已提交
1618
	current->memcg_in_oom = NULL;
1619
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1620
	return true;
1621 1622
}

1623
/**
1624 1625
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1626
 *
1627
 * This function protects unlocked LRU pages from being moved to
1628 1629 1630 1631 1632
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1633
 */
1634
struct mem_cgroup *lock_page_memcg(struct page *page)
1635 1636
{
	struct mem_cgroup *memcg;
1637
	unsigned long flags;
1638

1639 1640 1641 1642
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1643 1644 1645 1646 1647 1648 1649
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1650 1651 1652
	rcu_read_lock();

	if (mem_cgroup_disabled())
1653
		return NULL;
1654
again:
1655
	memcg = page->mem_cgroup;
1656
	if (unlikely(!memcg))
1657
		return NULL;
1658

Q
Qiang Huang 已提交
1659
	if (atomic_read(&memcg->moving_account) <= 0)
1660
		return memcg;
1661

1662
	spin_lock_irqsave(&memcg->move_lock, flags);
1663
	if (memcg != page->mem_cgroup) {
1664
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1665 1666
		goto again;
	}
1667 1668 1669 1670

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1671
	 * the task who has the lock for unlock_page_memcg().
1672 1673 1674
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1675

1676
	return memcg;
1677
}
1678
EXPORT_SYMBOL(lock_page_memcg);
1679

1680
/**
1681 1682 1683 1684
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1685
 */
1686
void __unlock_page_memcg(struct mem_cgroup *memcg)
1687
{
1688 1689 1690 1691 1692 1693 1694 1695
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1696

1697
	rcu_read_unlock();
1698
}
1699 1700 1701 1702 1703 1704 1705 1706 1707

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1708
EXPORT_SYMBOL(unlock_page_memcg);
1709

1710 1711 1712 1713
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1714
#define CHARGE_BATCH	32U
1715 1716
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1717
	unsigned int nr_pages;
1718
	struct work_struct work;
1719
	unsigned long flags;
1720
#define FLUSHING_CACHED_CHARGE	0
1721 1722
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1723
static DEFINE_MUTEX(percpu_charge_mutex);
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1735
 */
1736
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1737 1738
{
	struct memcg_stock_pcp *stock;
1739
	unsigned long flags;
1740
	bool ret = false;
1741

1742
	if (nr_pages > CHARGE_BATCH)
1743
		return ret;
1744

1745 1746 1747
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1748
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1749
		stock->nr_pages -= nr_pages;
1750 1751
		ret = true;
	}
1752 1753 1754

	local_irq_restore(flags);

1755 1756 1757 1758
	return ret;
}

/*
1759
 * Returns stocks cached in percpu and reset cached information.
1760 1761 1762 1763 1764
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1765
	if (stock->nr_pages) {
1766
		page_counter_uncharge(&old->memory, stock->nr_pages);
1767
		if (do_memsw_account())
1768
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1769
		css_put_many(&old->css, stock->nr_pages);
1770
		stock->nr_pages = 0;
1771 1772 1773 1774 1775 1776
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1777 1778 1779 1780 1781 1782
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1783
	drain_stock(stock);
1784
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1785 1786

	local_irq_restore(flags);
1787 1788 1789
}

/*
1790
 * Cache charges(val) to local per_cpu area.
1791
 * This will be consumed by consume_stock() function, later.
1792
 */
1793
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1794
{
1795 1796 1797 1798
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1799

1800
	stock = this_cpu_ptr(&memcg_stock);
1801
	if (stock->cached != memcg) { /* reset if necessary */
1802
		drain_stock(stock);
1803
		stock->cached = memcg;
1804
	}
1805
	stock->nr_pages += nr_pages;
1806

1807 1808 1809
	if (stock->nr_pages > CHARGE_BATCH)
		drain_stock(stock);

1810
	local_irq_restore(flags);
1811 1812 1813
}

/*
1814
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1815
 * of the hierarchy under it.
1816
 */
1817
static void drain_all_stock(struct mem_cgroup *root_memcg)
1818
{
1819
	int cpu, curcpu;
1820

1821 1822 1823
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1824 1825
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1826
	curcpu = get_cpu();
1827 1828
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1829
		struct mem_cgroup *memcg;
1830

1831 1832
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1833
			continue;
1834
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1835
			continue;
1836 1837 1838 1839 1840 1841
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1842
	}
1843
	put_cpu();
A
Andrew Morton 已提交
1844
	put_online_cpus();
1845
	mutex_unlock(&percpu_charge_mutex);
1846 1847
}

1848
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1849 1850 1851 1852 1853
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1854
	return 0;
1855 1856
}

1857 1858 1859 1860 1861 1862 1863
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
1864
		mem_cgroup_event(memcg, MEMCG_HIGH);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1877 1878 1879 1880 1881 1882 1883
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1884
	struct mem_cgroup *memcg;
1885 1886 1887 1888

	if (likely(!nr_pages))
		return;

1889 1890
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1891 1892 1893 1894
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1895 1896
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1897
{
1898
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1899
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1900
	struct mem_cgroup *mem_over_limit;
1901
	struct page_counter *counter;
1902
	unsigned long nr_reclaimed;
1903 1904
	bool may_swap = true;
	bool drained = false;
1905

1906
	if (mem_cgroup_is_root(memcg))
1907
		return 0;
1908
retry:
1909
	if (consume_stock(memcg, nr_pages))
1910
		return 0;
1911

1912
	if (!do_memsw_account() ||
1913 1914
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1915
			goto done_restock;
1916
		if (do_memsw_account())
1917 1918
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1919
	} else {
1920
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1921
		may_swap = false;
1922
	}
1923

1924 1925 1926 1927
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1928

1929 1930 1931 1932 1933 1934
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
1935
	if (unlikely(tsk_is_oom_victim(current) ||
1936 1937
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1938
		goto force;
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1949 1950 1951
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1952
	if (!gfpflags_allow_blocking(gfp_mask))
1953
		goto nomem;
1954

1955
	mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1956

1957 1958
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1959

1960
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1961
		goto retry;
1962

1963
	if (!drained) {
1964
		drain_all_stock(mem_over_limit);
1965 1966 1967 1968
		drained = true;
		goto retry;
	}

1969 1970
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1971 1972 1973 1974 1975 1976 1977 1978 1979
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1980
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1981 1982 1983 1984 1985 1986 1987 1988
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1989 1990 1991
	if (nr_retries--)
		goto retry;

1992
	if (gfp_mask & __GFP_NOFAIL)
1993
		goto force;
1994

1995
	if (fatal_signal_pending(current))
1996
		goto force;
1997

1998
	mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1999

2000 2001
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2002
nomem:
2003
	if (!(gfp_mask & __GFP_NOFAIL))
2004
		return -ENOMEM;
2005 2006 2007 2008 2009 2010 2011
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2012
	if (do_memsw_account())
2013 2014 2015 2016
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2017 2018

done_restock:
2019
	css_get_many(&memcg->css, batch);
2020 2021
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2022

2023
	/*
2024 2025
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2026
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2027 2028 2029 2030
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2031 2032
	 */
	do {
2033
		if (page_counter_read(&memcg->memory) > memcg->high) {
2034 2035 2036 2037 2038
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2039
			current->memcg_nr_pages_over_high += batch;
2040 2041 2042
			set_notify_resume(current);
			break;
		}
2043
	} while ((memcg = parent_mem_cgroup(memcg)));
2044 2045

	return 0;
2046
}
2047

2048
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2049
{
2050 2051 2052
	if (mem_cgroup_is_root(memcg))
		return;

2053
	page_counter_uncharge(&memcg->memory, nr_pages);
2054
	if (do_memsw_account())
2055
		page_counter_uncharge(&memcg->memsw, nr_pages);
2056

2057
	css_put_many(&memcg->css, nr_pages);
2058 2059
}

2060 2061 2062 2063
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2064
	spin_lock_irq(zone_lru_lock(zone));
2065 2066 2067
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2068
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2083
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2084 2085 2086 2087
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2088
	spin_unlock_irq(zone_lru_lock(zone));
2089 2090
}

2091
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2092
			  bool lrucare)
2093
{
2094
	int isolated;
2095

2096
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2097 2098 2099 2100 2101

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2102 2103
	if (lrucare)
		lock_page_lru(page, &isolated);
2104

2105 2106
	/*
	 * Nobody should be changing or seriously looking at
2107
	 * page->mem_cgroup at this point:
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2119
	page->mem_cgroup = memcg;
2120

2121 2122
	if (lrucare)
		unlock_page_lru(page, isolated);
2123
}
2124

2125
#ifndef CONFIG_SLOB
2126
static int memcg_alloc_cache_id(void)
2127
{
2128 2129 2130
	int id, size;
	int err;

2131
	id = ida_simple_get(&memcg_cache_ida,
2132 2133 2134
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2135

2136
	if (id < memcg_nr_cache_ids)
2137 2138 2139 2140 2141 2142
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2143
	down_write(&memcg_cache_ids_sem);
2144 2145

	size = 2 * (id + 1);
2146 2147 2148 2149 2150
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2151
	err = memcg_update_all_caches(size);
2152 2153
	if (!err)
		err = memcg_update_all_list_lrus(size);
2154 2155 2156 2157 2158
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2159
	if (err) {
2160
		ida_simple_remove(&memcg_cache_ida, id);
2161 2162 2163 2164 2165 2166 2167
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2168
	ida_simple_remove(&memcg_cache_ida, id);
2169 2170
}

2171
struct memcg_kmem_cache_create_work {
2172 2173 2174 2175 2176
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2177
static void memcg_kmem_cache_create_func(struct work_struct *w)
2178
{
2179 2180
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2181 2182
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2183

2184
	memcg_create_kmem_cache(memcg, cachep);
2185

2186
	css_put(&memcg->css);
2187 2188 2189 2190 2191 2192
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2193 2194
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2195
{
2196
	struct memcg_kmem_cache_create_work *cw;
2197

2198
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2199
	if (!cw)
2200
		return;
2201 2202

	css_get(&memcg->css);
2203 2204 2205

	cw->memcg = memcg;
	cw->cachep = cachep;
2206
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2207

2208
	queue_work(memcg_kmem_cache_wq, &cw->work);
2209 2210
}

2211 2212
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2213 2214 2215 2216
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2217
	 * in __memcg_schedule_kmem_cache_create will recurse.
2218 2219 2220 2221 2222 2223 2224
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2225
	current->memcg_kmem_skip_account = 1;
2226
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2227
	current->memcg_kmem_skip_account = 0;
2228
}
2229

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2241 2242 2243
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2244 2245 2246
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2247
 *
2248 2249 2250 2251
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2252
 */
2253
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2254 2255
{
	struct mem_cgroup *memcg;
2256
	struct kmem_cache *memcg_cachep;
2257
	int kmemcg_id;
2258

2259
	VM_BUG_ON(!is_root_cache(cachep));
2260

2261
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2262 2263
		return cachep;

2264
	if (current->memcg_kmem_skip_account)
2265 2266
		return cachep;

2267
	memcg = get_mem_cgroup_from_mm(current->mm);
2268
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2269
	if (kmemcg_id < 0)
2270
		goto out;
2271

2272
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2273 2274
	if (likely(memcg_cachep))
		return memcg_cachep;
2275 2276 2277 2278 2279 2280 2281 2282 2283

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2284 2285 2286
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2287
	 */
2288
	memcg_schedule_kmem_cache_create(memcg, cachep);
2289
out:
2290
	css_put(&memcg->css);
2291
	return cachep;
2292 2293
}

2294 2295 2296 2297 2298
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2299 2300
{
	if (!is_root_cache(cachep))
2301
		css_put(&cachep->memcg_params.memcg->css);
2302 2303
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2315
{
2316 2317
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2318 2319
	int ret;

2320
	ret = try_charge(memcg, gfp, nr_pages);
2321
	if (ret)
2322
		return ret;
2323 2324 2325 2326 2327

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2328 2329
	}

2330
	page->mem_cgroup = memcg;
2331

2332
	return 0;
2333 2334
}

2335 2336 2337 2338 2339 2340 2341 2342 2343
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2344
{
2345
	struct mem_cgroup *memcg;
2346
	int ret = 0;
2347

2348 2349 2350
	if (memcg_kmem_bypass())
		return 0;

2351
	memcg = get_mem_cgroup_from_mm(current->mm);
2352
	if (!mem_cgroup_is_root(memcg)) {
2353
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2354 2355 2356
		if (!ret)
			__SetPageKmemcg(page);
	}
2357
	css_put(&memcg->css);
2358
	return ret;
2359
}
2360 2361 2362 2363 2364 2365
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2366
{
2367
	struct mem_cgroup *memcg = page->mem_cgroup;
2368
	unsigned int nr_pages = 1 << order;
2369 2370 2371 2372

	if (!memcg)
		return;

2373
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2374

2375 2376 2377
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2378
	page_counter_uncharge(&memcg->memory, nr_pages);
2379
	if (do_memsw_account())
2380
		page_counter_uncharge(&memcg->memsw, nr_pages);
2381

2382
	page->mem_cgroup = NULL;
2383 2384 2385 2386 2387

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2388
	css_put_many(&memcg->css, nr_pages);
2389
}
2390
#endif /* !CONFIG_SLOB */
2391

2392 2393 2394 2395
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2396
 * zone_lru_lock and migration entries setup in all page mappings.
2397
 */
2398
void mem_cgroup_split_huge_fixup(struct page *head)
2399
{
2400
	int i;
2401

2402 2403
	if (mem_cgroup_disabled())
		return;
2404

2405
	for (i = 1; i < HPAGE_PMD_NR; i++)
2406
		head[i].mem_cgroup = head->mem_cgroup;
2407

2408
	__this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2409
		       HPAGE_PMD_NR);
2410
}
2411
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2412

A
Andrew Morton 已提交
2413
#ifdef CONFIG_MEMCG_SWAP
2414
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2415
				       int nr_entries)
K
KAMEZAWA Hiroyuki 已提交
2416
{
2417
	this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
K
KAMEZAWA Hiroyuki 已提交
2418
}
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2431
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2432 2433 2434
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2435
				struct mem_cgroup *from, struct mem_cgroup *to)
2436 2437 2438
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2439 2440
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2441 2442

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2443 2444
		mem_cgroup_swap_statistics(from, -1);
		mem_cgroup_swap_statistics(to, 1);
2445 2446 2447 2448 2449 2450
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2451
				struct mem_cgroup *from, struct mem_cgroup *to)
2452 2453 2454
{
	return -EINVAL;
}
2455
#endif
K
KAMEZAWA Hiroyuki 已提交
2456

2457
static DEFINE_MUTEX(memcg_limit_mutex);
2458

2459
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2460
				   unsigned long limit)
2461
{
2462 2463 2464
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2465
	int retry_count;
2466
	int ret;
2467 2468 2469 2470 2471 2472

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2473 2474
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2475

2476
	oldusage = page_counter_read(&memcg->memory);
2477

2478
	do {
2479 2480 2481 2482
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2483 2484 2485 2486

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2487
			ret = -EINVAL;
2488 2489
			break;
		}
2490 2491 2492 2493
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2494 2495 2496 2497

		if (!ret)
			break;

2498 2499
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2500
		curusage = page_counter_read(&memcg->memory);
2501
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2502
		if (curusage >= oldusage)
2503 2504 2505
			retry_count--;
		else
			oldusage = curusage;
2506 2507
	} while (retry_count);

2508 2509
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2510

2511 2512 2513
	return ret;
}

L
Li Zefan 已提交
2514
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2515
					 unsigned long limit)
2516
{
2517 2518 2519
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2520
	int retry_count;
2521
	int ret;
2522

2523
	/* see mem_cgroup_resize_res_limit */
2524 2525 2526 2527 2528 2529
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2530 2531 2532 2533
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2534 2535 2536 2537

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2538 2539 2540
			ret = -EINVAL;
			break;
		}
2541 2542 2543 2544
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2545 2546 2547 2548

		if (!ret)
			break;

2549 2550
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2551
		curusage = page_counter_read(&memcg->memsw);
2552
		/* Usage is reduced ? */
2553
		if (curusage >= oldusage)
2554
			retry_count--;
2555 2556
		else
			oldusage = curusage;
2557 2558
	} while (retry_count);

2559 2560
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2561

2562 2563 2564
	return ret;
}

2565
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2566 2567 2568 2569
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2570
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2571 2572
	unsigned long reclaimed;
	int loop = 0;
2573
	struct mem_cgroup_tree_per_node *mctz;
2574
	unsigned long excess;
2575 2576 2577 2578 2579
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2580
	mctz = soft_limit_tree_node(pgdat->node_id);
2581 2582 2583 2584 2585 2586

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2587
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2588 2589
		return 0;

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2604
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2605 2606 2607
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2608
		spin_lock_irq(&mctz->lock);
2609
		__mem_cgroup_remove_exceeded(mz, mctz);
2610 2611 2612 2613 2614 2615

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2616 2617 2618
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2619
		excess = soft_limit_excess(mz->memcg);
2620 2621 2622 2623 2624 2625 2626 2627 2628
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2629
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2630
		spin_unlock_irq(&mctz->lock);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2648 2649 2650 2651 2652 2653
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2654 2655
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2656 2657 2658 2659 2660 2661
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2662 2663
}

2664
/*
2665
 * Reclaims as many pages from the given memcg as possible.
2666 2667 2668 2669 2670 2671 2672
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2673 2674
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2675
	/* try to free all pages in this cgroup */
2676
	while (nr_retries && page_counter_read(&memcg->memory)) {
2677
		int progress;
2678

2679 2680 2681
		if (signal_pending(current))
			return -EINTR;

2682 2683
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2684
		if (!progress) {
2685
			nr_retries--;
2686
			/* maybe some writeback is necessary */
2687
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2688
		}
2689 2690

	}
2691 2692

	return 0;
2693 2694
}

2695 2696 2697
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2698
{
2699
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2700

2701 2702
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2703
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2704 2705
}

2706 2707
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2708
{
2709
	return mem_cgroup_from_css(css)->use_hierarchy;
2710 2711
}

2712 2713
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2714 2715
{
	int retval = 0;
2716
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2717
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2718

2719
	if (memcg->use_hierarchy == val)
2720
		return 0;
2721

2722
	/*
2723
	 * If parent's use_hierarchy is set, we can't make any modifications
2724 2725 2726 2727 2728 2729
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2730
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2731
				(val == 1 || val == 0)) {
2732
		if (!memcg_has_children(memcg))
2733
			memcg->use_hierarchy = val;
2734 2735 2736 2737
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2738

2739 2740 2741
	return retval;
}

2742
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2743 2744
{
	struct mem_cgroup *iter;
2745
	int i;
2746

2747
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2748

2749 2750
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
2751
			stat[i] += memcg_page_state(iter, i);
2752
	}
2753 2754
}

2755
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2756 2757
{
	struct mem_cgroup *iter;
2758
	int i;
2759

2760
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2761

2762 2763
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2764
			events[i] += memcg_sum_events(iter, i);
2765
	}
2766 2767
}

2768
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2769
{
2770
	unsigned long val = 0;
2771

2772
	if (mem_cgroup_is_root(memcg)) {
2773 2774 2775
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
2776 2777
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
2778
			if (swap)
2779
				val += memcg_page_state(iter, MEMCG_SWAP);
2780
		}
2781
	} else {
2782
		if (!swap)
2783
			val = page_counter_read(&memcg->memory);
2784
		else
2785
			val = page_counter_read(&memcg->memsw);
2786
	}
2787
	return val;
2788 2789
}

2790 2791 2792 2793 2794 2795 2796
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2797

2798
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2799
			       struct cftype *cft)
B
Balbir Singh 已提交
2800
{
2801
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2802
	struct page_counter *counter;
2803

2804
	switch (MEMFILE_TYPE(cft->private)) {
2805
	case _MEM:
2806 2807
		counter = &memcg->memory;
		break;
2808
	case _MEMSWAP:
2809 2810
		counter = &memcg->memsw;
		break;
2811
	case _KMEM:
2812
		counter = &memcg->kmem;
2813
		break;
V
Vladimir Davydov 已提交
2814
	case _TCP:
2815
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2816
		break;
2817 2818 2819
	default:
		BUG();
	}
2820 2821 2822 2823

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2824
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2825
		if (counter == &memcg->memsw)
2826
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2839
}
2840

2841
#ifndef CONFIG_SLOB
2842
static int memcg_online_kmem(struct mem_cgroup *memcg)
2843 2844 2845
{
	int memcg_id;

2846 2847 2848
	if (cgroup_memory_nokmem)
		return 0;

2849
	BUG_ON(memcg->kmemcg_id >= 0);
2850
	BUG_ON(memcg->kmem_state);
2851

2852
	memcg_id = memcg_alloc_cache_id();
2853 2854
	if (memcg_id < 0)
		return memcg_id;
2855

2856
	static_branch_inc(&memcg_kmem_enabled_key);
2857
	/*
2858
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2859
	 * kmemcg_id. Setting the id after enabling static branching will
2860 2861 2862
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2863
	memcg->kmemcg_id = memcg_id;
2864
	memcg->kmem_state = KMEM_ONLINE;
2865
	INIT_LIST_HEAD(&memcg->kmem_caches);
2866 2867

	return 0;
2868 2869
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2903
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2904 2905 2906 2907 2908 2909 2910
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2911 2912
	rcu_read_unlock();

2913 2914 2915 2916 2917 2918 2919
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2920 2921 2922 2923
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2924 2925 2926 2927 2928 2929
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2930
#else
2931
static int memcg_online_kmem(struct mem_cgroup *memcg)
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2943
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2944
				   unsigned long limit)
2945
{
2946
	int ret;
2947 2948 2949 2950 2951

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2952
}
2953

V
Vladimir Davydov 已提交
2954 2955 2956 2957 2958 2959
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2960
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2961 2962 2963
	if (ret)
		goto out;

2964
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2965 2966 2967
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2968 2969 2970
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2971 2972 2973 2974 2975 2976
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2977
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2978 2979 2980 2981
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2982
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2983 2984 2985 2986 2987 2988
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2989 2990 2991 2992
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2993 2994
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2995
{
2996
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2997
	unsigned long nr_pages;
2998 2999
	int ret;

3000
	buf = strstrip(buf);
3001
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3002 3003
	if (ret)
		return ret;
3004

3005
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3006
	case RES_LIMIT:
3007 3008 3009 3010
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3011 3012 3013
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3014
			break;
3015 3016
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3017
			break;
3018 3019 3020
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3021 3022 3023
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3024
		}
3025
		break;
3026 3027 3028
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3029 3030
		break;
	}
3031
	return ret ?: nbytes;
B
Balbir Singh 已提交
3032 3033
}

3034 3035
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3036
{
3037
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3038
	struct page_counter *counter;
3039

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3050
	case _TCP:
3051
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3052
		break;
3053 3054 3055
	default:
		BUG();
	}
3056

3057
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3058
	case RES_MAX_USAGE:
3059
		page_counter_reset_watermark(counter);
3060 3061
		break;
	case RES_FAILCNT:
3062
		counter->failcnt = 0;
3063
		break;
3064 3065
	default:
		BUG();
3066
	}
3067

3068
	return nbytes;
3069 3070
}

3071
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3072 3073
					struct cftype *cft)
{
3074
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3075 3076
}

3077
#ifdef CONFIG_MMU
3078
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3079 3080
					struct cftype *cft, u64 val)
{
3081
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3082

3083
	if (val & ~MOVE_MASK)
3084
		return -EINVAL;
3085

3086
	/*
3087 3088 3089 3090
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3091
	 */
3092
	memcg->move_charge_at_immigrate = val;
3093 3094
	return 0;
}
3095
#else
3096
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3097 3098 3099 3100 3101
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3102

3103
#ifdef CONFIG_NUMA
3104
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3105
{
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3118
	int nid;
3119
	unsigned long nr;
3120
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3121

3122 3123 3124 3125 3126 3127 3128 3129 3130
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3131 3132
	}

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3148 3149 3150 3151 3152 3153
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
/* Universal VM events cgroup1 shows, original sort order */
unsigned int memcg1_events[] = {
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3169
static int memcg_stat_show(struct seq_file *m, void *v)
3170
{
3171
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3172
	unsigned long memory, memsw;
3173 3174
	struct mem_cgroup *mi;
	unsigned int i;
3175

3176
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3177 3178
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3179 3180
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3181
			continue;
3182
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3183
			   memcg_page_state(memcg, memcg1_stats[i]) *
3184
			   PAGE_SIZE);
3185
	}
L
Lee Schermerhorn 已提交
3186

3187 3188
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3189
			   memcg_sum_events(memcg, memcg1_events[i]));
3190 3191 3192 3193 3194

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3195
	/* Hierarchical information */
3196 3197 3198 3199
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3200
	}
3201 3202
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3203
	if (do_memsw_account())
3204 3205
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3206

3207
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3208
		unsigned long long val = 0;
3209

3210
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3211
			continue;
3212
		for_each_mem_cgroup_tree(mi, memcg)
3213
			val += memcg_page_state(mi, memcg1_stats[i]) *
3214 3215
			PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3216 3217
	}

3218
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3219 3220 3221
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
3222
			val += memcg_sum_events(mi, memcg1_events[i]);
3223
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3224 3225 3226 3227 3228 3229 3230 3231
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3232
	}
K
KAMEZAWA Hiroyuki 已提交
3233

K
KOSAKI Motohiro 已提交
3234 3235
#ifdef CONFIG_DEBUG_VM
	{
3236 3237
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3238
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3239 3240 3241
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3242 3243 3244
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3245

3246 3247 3248 3249 3250
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3251 3252 3253 3254
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3255 3256 3257
	}
#endif

3258 3259 3260
	return 0;
}

3261 3262
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3263
{
3264
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3265

3266
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3267 3268
}

3269 3270
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3271
{
3272
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3273

3274
	if (val > 100)
K
KOSAKI Motohiro 已提交
3275 3276
		return -EINVAL;

3277
	if (css->parent)
3278 3279 3280
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3281

K
KOSAKI Motohiro 已提交
3282 3283 3284
	return 0;
}

3285 3286 3287
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3288
	unsigned long usage;
3289 3290 3291 3292
	int i;

	rcu_read_lock();
	if (!swap)
3293
		t = rcu_dereference(memcg->thresholds.primary);
3294
	else
3295
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3296 3297 3298 3299

	if (!t)
		goto unlock;

3300
	usage = mem_cgroup_usage(memcg, swap);
3301 3302

	/*
3303
	 * current_threshold points to threshold just below or equal to usage.
3304 3305 3306
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3307
	i = t->current_threshold;
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3331
	t->current_threshold = i - 1;
3332 3333 3334 3335 3336 3337
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3338 3339
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3340
		if (do_memsw_account())
3341 3342 3343 3344
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3345 3346 3347 3348 3349 3350 3351
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3352 3353 3354 3355 3356 3357 3358
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3359 3360
}

3361
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3362 3363 3364
{
	struct mem_cgroup_eventfd_list *ev;

3365 3366
	spin_lock(&memcg_oom_lock);

3367
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3368
		eventfd_signal(ev->eventfd, 1);
3369 3370

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3371 3372 3373
	return 0;
}

3374
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3375
{
K
KAMEZAWA Hiroyuki 已提交
3376 3377
	struct mem_cgroup *iter;

3378
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3379
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3380 3381
}

3382
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3383
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3384
{
3385 3386
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3387 3388
	unsigned long threshold;
	unsigned long usage;
3389
	int i, size, ret;
3390

3391
	ret = page_counter_memparse(args, "-1", &threshold);
3392 3393 3394 3395
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3396

3397
	if (type == _MEM) {
3398
		thresholds = &memcg->thresholds;
3399
		usage = mem_cgroup_usage(memcg, false);
3400
	} else if (type == _MEMSWAP) {
3401
		thresholds = &memcg->memsw_thresholds;
3402
		usage = mem_cgroup_usage(memcg, true);
3403
	} else
3404 3405 3406
		BUG();

	/* Check if a threshold crossed before adding a new one */
3407
	if (thresholds->primary)
3408 3409
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3410
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3411 3412

	/* Allocate memory for new array of thresholds */
3413
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3414
			GFP_KERNEL);
3415
	if (!new) {
3416 3417 3418
		ret = -ENOMEM;
		goto unlock;
	}
3419
	new->size = size;
3420 3421

	/* Copy thresholds (if any) to new array */
3422 3423
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3424
				sizeof(struct mem_cgroup_threshold));
3425 3426
	}

3427
	/* Add new threshold */
3428 3429
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3430 3431

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3432
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3433 3434 3435
			compare_thresholds, NULL);

	/* Find current threshold */
3436
	new->current_threshold = -1;
3437
	for (i = 0; i < size; i++) {
3438
		if (new->entries[i].threshold <= usage) {
3439
			/*
3440 3441
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3442 3443
			 * it here.
			 */
3444
			++new->current_threshold;
3445 3446
		} else
			break;
3447 3448
	}

3449 3450 3451 3452 3453
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3454

3455
	/* To be sure that nobody uses thresholds */
3456 3457 3458 3459 3460 3461 3462 3463
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3464
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3465 3466
	struct eventfd_ctx *eventfd, const char *args)
{
3467
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3468 3469
}

3470
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3471 3472
	struct eventfd_ctx *eventfd, const char *args)
{
3473
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3474 3475
}

3476
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3477
	struct eventfd_ctx *eventfd, enum res_type type)
3478
{
3479 3480
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3481
	unsigned long usage;
3482
	int i, j, size;
3483 3484

	mutex_lock(&memcg->thresholds_lock);
3485 3486

	if (type == _MEM) {
3487
		thresholds = &memcg->thresholds;
3488
		usage = mem_cgroup_usage(memcg, false);
3489
	} else if (type == _MEMSWAP) {
3490
		thresholds = &memcg->memsw_thresholds;
3491
		usage = mem_cgroup_usage(memcg, true);
3492
	} else
3493 3494
		BUG();

3495 3496 3497
	if (!thresholds->primary)
		goto unlock;

3498 3499 3500 3501
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3502 3503 3504
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3505 3506 3507
			size++;
	}

3508
	new = thresholds->spare;
3509

3510 3511
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3512 3513
		kfree(new);
		new = NULL;
3514
		goto swap_buffers;
3515 3516
	}

3517
	new->size = size;
3518 3519

	/* Copy thresholds and find current threshold */
3520 3521 3522
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3523 3524
			continue;

3525
		new->entries[j] = thresholds->primary->entries[i];
3526
		if (new->entries[j].threshold <= usage) {
3527
			/*
3528
			 * new->current_threshold will not be used
3529 3530 3531
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3532
			++new->current_threshold;
3533 3534 3535 3536
		}
		j++;
	}

3537
swap_buffers:
3538 3539
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3540

3541
	rcu_assign_pointer(thresholds->primary, new);
3542

3543
	/* To be sure that nobody uses thresholds */
3544
	synchronize_rcu();
3545 3546 3547 3548 3549 3550

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3551
unlock:
3552 3553
	mutex_unlock(&memcg->thresholds_lock);
}
3554

3555
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3556 3557
	struct eventfd_ctx *eventfd)
{
3558
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3559 3560
}

3561
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3562 3563
	struct eventfd_ctx *eventfd)
{
3564
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3565 3566
}

3567
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3568
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3569 3570 3571 3572 3573 3574 3575
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3576
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3577 3578 3579 3580 3581

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3582
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3583
		eventfd_signal(eventfd, 1);
3584
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3585 3586 3587 3588

	return 0;
}

3589
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3590
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3591 3592 3593
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3594
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3595

3596
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3597 3598 3599 3600 3601 3602
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3603
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3604 3605
}

3606
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3607
{
3608
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3609

3610
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3611
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3612
	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3613 3614 3615
	return 0;
}

3616
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3617 3618
	struct cftype *cft, u64 val)
{
3619
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3620 3621

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3622
	if (!css->parent || !((val == 0) || (val == 1)))
3623 3624
		return -EINVAL;

3625
	memcg->oom_kill_disable = val;
3626
	if (!val)
3627
		memcg_oom_recover(memcg);
3628

3629 3630 3631
	return 0;
}

3632 3633 3634 3635 3636 3637 3638
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3649 3650 3651 3652 3653
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3664 3665 3666
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3667 3668
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3669 3670 3671
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3672 3673 3674
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3675
 *
3676 3677 3678 3679 3680
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3681
 */
3682 3683 3684
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3685 3686 3687 3688
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3689
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3690 3691

	/* this should eventually include NR_UNSTABLE_NFS */
3692
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3693 3694 3695
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3696 3697 3698 3699 3700

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3701
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3702 3703 3704 3705
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3717 3718 3719 3720
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3721 3722
#endif	/* CONFIG_CGROUP_WRITEBACK */

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3736 3737 3738 3739 3740
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3741
static void memcg_event_remove(struct work_struct *work)
3742
{
3743 3744
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3745
	struct mem_cgroup *memcg = event->memcg;
3746 3747 3748

	remove_wait_queue(event->wqh, &event->wait);

3749
	event->unregister_event(memcg, event->eventfd);
3750 3751 3752 3753 3754 3755

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3756
	css_put(&memcg->css);
3757 3758 3759 3760 3761 3762 3763
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3764
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3765
			    int sync, void *key)
3766
{
3767 3768
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3769
	struct mem_cgroup *memcg = event->memcg;
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3782
		spin_lock(&memcg->event_list_lock);
3783 3784 3785 3786 3787 3788 3789 3790
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3791
		spin_unlock(&memcg->event_list_lock);
3792 3793 3794 3795 3796
	}

	return 0;
}

3797
static void memcg_event_ptable_queue_proc(struct file *file,
3798 3799
		wait_queue_head_t *wqh, poll_table *pt)
{
3800 3801
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3802 3803 3804 3805 3806 3807

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3808 3809
 * DO NOT USE IN NEW FILES.
 *
3810 3811 3812 3813 3814
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3815 3816
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3817
{
3818
	struct cgroup_subsys_state *css = of_css(of);
3819
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3820
	struct mem_cgroup_event *event;
3821 3822 3823 3824
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3825
	const char *name;
3826 3827 3828
	char *endp;
	int ret;

3829 3830 3831
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3832 3833
	if (*endp != ' ')
		return -EINVAL;
3834
	buf = endp + 1;
3835

3836
	cfd = simple_strtoul(buf, &endp, 10);
3837 3838
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3839
	buf = endp + 1;
3840 3841 3842 3843 3844

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3845
	event->memcg = memcg;
3846
	INIT_LIST_HEAD(&event->list);
3847 3848 3849
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3875 3876 3877 3878 3879
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3880 3881
	 *
	 * DO NOT ADD NEW FILES.
3882
	 */
A
Al Viro 已提交
3883
	name = cfile.file->f_path.dentry->d_name.name;
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3895 3896
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3897 3898 3899 3900 3901
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3902
	/*
3903 3904 3905
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3906
	 */
A
Al Viro 已提交
3907
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3908
					       &memory_cgrp_subsys);
3909
	ret = -EINVAL;
3910
	if (IS_ERR(cfile_css))
3911
		goto out_put_cfile;
3912 3913
	if (cfile_css != css) {
		css_put(cfile_css);
3914
		goto out_put_cfile;
3915
	}
3916

3917
	ret = event->register_event(memcg, event->eventfd, buf);
3918 3919 3920 3921 3922
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3923 3924 3925
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3926 3927 3928 3929

	fdput(cfile);
	fdput(efile);

3930
	return nbytes;
3931 3932

out_put_css:
3933
	css_put(css);
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3946
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3947
	{
3948
		.name = "usage_in_bytes",
3949
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3950
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3951
	},
3952 3953
	{
		.name = "max_usage_in_bytes",
3954
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3955
		.write = mem_cgroup_reset,
3956
		.read_u64 = mem_cgroup_read_u64,
3957
	},
B
Balbir Singh 已提交
3958
	{
3959
		.name = "limit_in_bytes",
3960
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3961
		.write = mem_cgroup_write,
3962
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3963
	},
3964 3965 3966
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3967
		.write = mem_cgroup_write,
3968
		.read_u64 = mem_cgroup_read_u64,
3969
	},
B
Balbir Singh 已提交
3970 3971
	{
		.name = "failcnt",
3972
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3973
		.write = mem_cgroup_reset,
3974
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3975
	},
3976 3977
	{
		.name = "stat",
3978
		.seq_show = memcg_stat_show,
3979
	},
3980 3981
	{
		.name = "force_empty",
3982
		.write = mem_cgroup_force_empty_write,
3983
	},
3984 3985 3986 3987 3988
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3989
	{
3990
		.name = "cgroup.event_control",		/* XXX: for compat */
3991
		.write = memcg_write_event_control,
3992
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3993
	},
K
KOSAKI Motohiro 已提交
3994 3995 3996 3997 3998
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3999 4000 4001 4002 4003
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4004 4005
	{
		.name = "oom_control",
4006
		.seq_show = mem_cgroup_oom_control_read,
4007
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4008 4009
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4010 4011 4012
	{
		.name = "pressure_level",
	},
4013 4014 4015
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4016
		.seq_show = memcg_numa_stat_show,
4017 4018
	},
#endif
4019 4020 4021
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4022
		.write = mem_cgroup_write,
4023
		.read_u64 = mem_cgroup_read_u64,
4024 4025 4026 4027
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4028
		.read_u64 = mem_cgroup_read_u64,
4029 4030 4031 4032
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4033
		.write = mem_cgroup_reset,
4034
		.read_u64 = mem_cgroup_read_u64,
4035 4036 4037 4038
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4039
		.write = mem_cgroup_reset,
4040
		.read_u64 = mem_cgroup_read_u64,
4041
	},
4042 4043 4044
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4045 4046 4047
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4048
		.seq_show = memcg_slab_show,
4049 4050
	},
#endif
V
Vladimir Davydov 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4074
	{ },	/* terminate */
4075
};
4076

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4103
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4104
{
4105
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4106
	atomic_add(n, &memcg->id.ref);
4107 4108
}

4109
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4110
{
4111
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4112
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4113 4114 4115 4116 4117 4118 4119 4120
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4143
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4144 4145
{
	struct mem_cgroup_per_node *pn;
4146
	int tmp = node;
4147 4148 4149 4150 4151 4152 4153 4154
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4155 4156
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4157
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4158 4159
	if (!pn)
		return 1;
4160

4161 4162 4163 4164 4165 4166
	pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat) {
		kfree(pn);
		return 1;
	}

4167 4168 4169 4170 4171
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4172
	memcg->nodeinfo[node] = pn;
4173 4174 4175
	return 0;
}

4176
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4177
{
4178 4179 4180 4181
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

	free_percpu(pn->lruvec_stat);
	kfree(pn);
4182 4183
}

4184
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4185
{
4186
	int node;
4187

4188
	for_each_node(node)
4189
		free_mem_cgroup_per_node_info(memcg, node);
4190
	free_percpu(memcg->stat);
4191
	kfree(memcg);
4192
}
4193

4194 4195 4196 4197 4198 4199
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4200
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4201
{
4202
	struct mem_cgroup *memcg;
4203
	size_t size;
4204
	int node;
B
Balbir Singh 已提交
4205

4206 4207 4208 4209
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4210
	if (!memcg)
4211 4212
		return NULL;

4213 4214 4215 4216 4217 4218
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4219 4220 4221
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4222

B
Bob Liu 已提交
4223
	for_each_node(node)
4224
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4225
			goto fail;
4226

4227 4228
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4229

4230
	INIT_WORK(&memcg->high_work, high_work_func);
4231 4232 4233 4234
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4235
	vmpressure_init(&memcg->vmpressure);
4236 4237
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4238
	memcg->socket_pressure = jiffies;
4239
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4240 4241
	memcg->kmemcg_id = -1;
#endif
4242 4243 4244
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4245
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4246 4247
	return memcg;
fail:
4248 4249
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4250
	__mem_cgroup_free(memcg);
4251
	return NULL;
4252 4253
}

4254 4255
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4256
{
4257 4258 4259
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4260

4261 4262 4263
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4264

4265 4266 4267 4268 4269 4270 4271 4272
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4273
		page_counter_init(&memcg->memory, &parent->memory);
4274
		page_counter_init(&memcg->swap, &parent->swap);
4275 4276
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4277
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4278
	} else {
4279
		page_counter_init(&memcg->memory, NULL);
4280
		page_counter_init(&memcg->swap, NULL);
4281 4282
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4283
		page_counter_init(&memcg->tcpmem, NULL);
4284 4285 4286 4287 4288
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4289
		if (parent != root_mem_cgroup)
4290
			memory_cgrp_subsys.broken_hierarchy = true;
4291
	}
4292

4293 4294 4295 4296 4297 4298
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4299
	error = memcg_online_kmem(memcg);
4300 4301
	if (error)
		goto fail;
4302

4303
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4304
		static_branch_inc(&memcg_sockets_enabled_key);
4305

4306 4307 4308
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4309
	return ERR_PTR(-ENOMEM);
4310 4311
}

4312
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4313
{
4314 4315
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4316
	/* Online state pins memcg ID, memcg ID pins CSS */
4317
	atomic_set(&memcg->id.ref, 1);
4318
	css_get(css);
4319
	return 0;
B
Balbir Singh 已提交
4320 4321
}

4322
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4323
{
4324
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4325
	struct mem_cgroup_event *event, *tmp;
4326 4327 4328 4329 4330 4331

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4332 4333
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4334 4335 4336
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4337
	spin_unlock(&memcg->event_list_lock);
4338

4339 4340
	memcg->low = 0;

4341
	memcg_offline_kmem(memcg);
4342
	wb_memcg_offline(memcg);
4343 4344

	mem_cgroup_id_put(memcg);
4345 4346
}

4347 4348 4349 4350 4351 4352 4353
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4354
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4355
{
4356
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4357

4358
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4359
		static_branch_dec(&memcg_sockets_enabled_key);
4360

4361
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4362
		static_branch_dec(&memcg_sockets_enabled_key);
4363

4364 4365 4366
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4367
	memcg_free_kmem(memcg);
4368
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4369 4370
}

4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4388 4389 4390 4391 4392
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4393 4394
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4395
	memcg->soft_limit = PAGE_COUNTER_MAX;
4396
	memcg_wb_domain_size_changed(memcg);
4397 4398
}

4399
#ifdef CONFIG_MMU
4400
/* Handlers for move charge at task migration. */
4401
static int mem_cgroup_do_precharge(unsigned long count)
4402
{
4403
	int ret;
4404

4405 4406
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4407
	if (!ret) {
4408 4409 4410
		mc.precharge += count;
		return ret;
	}
4411

4412
	/* Try charges one by one with reclaim, but do not retry */
4413
	while (count--) {
4414
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4415 4416
		if (ret)
			return ret;
4417
		mc.precharge++;
4418
		cond_resched();
4419
	}
4420
	return 0;
4421 4422 4423 4424
}

union mc_target {
	struct page	*page;
4425
	swp_entry_t	ent;
4426 4427 4428
};

enum mc_target_type {
4429
	MC_TARGET_NONE = 0,
4430
	MC_TARGET_PAGE,
4431
	MC_TARGET_SWAP,
4432
	MC_TARGET_DEVICE,
4433 4434
};

D
Daisuke Nishimura 已提交
4435 4436
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4437
{
4438
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4439

D
Daisuke Nishimura 已提交
4440 4441 4442
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4443
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4444
			return NULL;
4445 4446 4447 4448
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4449 4450 4451 4452 4453 4454
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4455
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4456
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4457
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4458 4459 4460 4461
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4462
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4463
		return NULL;
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4481 4482 4483 4484
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4485
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4486
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4487 4488 4489 4490
		entry->val = ent.val;

	return page;
}
4491 4492
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4493
			pte_t ptent, swp_entry_t *entry)
4494 4495 4496 4497
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4498

4499 4500 4501 4502 4503 4504 4505 4506 4507
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4508
	if (!(mc.flags & MOVE_FILE))
4509 4510 4511
		return NULL;

	mapping = vma->vm_file->f_mapping;
4512
	pgoff = linear_page_index(vma, addr);
4513 4514

	/* page is moved even if it's not RSS of this task(page-faulted). */
4515 4516
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4517 4518 4519 4520
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4521
			if (do_memsw_account())
4522
				*entry = swp;
4523 4524
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4525 4526 4527 4528 4529
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4530
#endif
4531 4532 4533
	return page;
}

4534 4535 4536
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4537
 * @compound: charge the page as compound or small page
4538 4539 4540
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4541
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4542 4543 4544 4545 4546
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4547
				   bool compound,
4548 4549 4550 4551
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4552
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4553
	int ret;
4554
	bool anon;
4555 4556 4557

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4558
	VM_BUG_ON(compound && !PageTransHuge(page));
4559 4560

	/*
4561
	 * Prevent mem_cgroup_migrate() from looking at
4562
	 * page->mem_cgroup of its source page while we change it.
4563
	 */
4564
	ret = -EBUSY;
4565 4566 4567 4568 4569 4570 4571
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4572 4573
	anon = PageAnon(page);

4574 4575
	spin_lock_irqsave(&from->move_lock, flags);

4576
	if (!anon && page_mapped(page)) {
4577 4578
		__this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
		__this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4579 4580
	}

4581 4582
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4583
	 * mod_memcg_page_state will serialize updates to PageDirty.
4584 4585 4586 4587 4588 4589
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4590
			__this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4591
				       nr_pages);
4592
			__this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4593 4594 4595 4596
				       nr_pages);
		}
	}

4597
	if (PageWriteback(page)) {
4598 4599
		__this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
		__this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4615
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4616
	memcg_check_events(to, page);
4617
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4618 4619 4620 4621 4622 4623 4624 4625
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4641 4642 4643 4644 4645
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4646 4647
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4648 4649 4650 4651
 *
 * Called with pte lock held.
 */

4652
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4653 4654 4655
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4656
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4657 4658 4659 4660 4661
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4662
		page = mc_handle_swap_pte(vma, ptent, &ent);
4663
	else if (pte_none(ptent))
4664
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4665 4666

	if (!page && !ent.val)
4667
		return ret;
4668 4669
	if (page) {
		/*
4670
		 * Do only loose check w/o serialization.
4671
		 * mem_cgroup_move_account() checks the page is valid or
4672
		 * not under LRU exclusion.
4673
		 */
4674
		if (page->mem_cgroup == mc.from) {
4675
			ret = MC_TARGET_PAGE;
4676 4677
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4678
				ret = MC_TARGET_DEVICE;
4679 4680 4681 4682 4683 4684
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4685 4686 4687 4688 4689
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4690
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4691 4692 4693
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4694 4695 4696 4697
	}
	return ret;
}

4698 4699
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4700 4701
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4702 4703 4704 4705 4706 4707 4708 4709
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4710 4711 4712 4713 4714
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4715
	page = pmd_page(pmd);
4716
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4717
	if (!(mc.flags & MOVE_ANON))
4718
		return ret;
4719
	if (page->mem_cgroup == mc.from) {
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4736 4737 4738 4739
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4740
	struct vm_area_struct *vma = walk->vma;
4741 4742 4743
	pte_t *pte;
	spinlock_t *ptl;

4744 4745
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4746 4747 4748 4749 4750
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
4751 4752
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4753
		spin_unlock(ptl);
4754
		return 0;
4755
	}
4756

4757 4758
	if (pmd_trans_unstable(pmd))
		return 0;
4759 4760
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4761
		if (get_mctgt_type(vma, addr, *pte, NULL))
4762 4763 4764 4765
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4766 4767 4768
	return 0;
}

4769 4770 4771 4772
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4773 4774 4775 4776
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4777
	down_read(&mm->mmap_sem);
4778 4779
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4780
	up_read(&mm->mmap_sem);
4781 4782 4783 4784 4785 4786 4787 4788 4789

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4790 4791 4792 4793 4794
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4795 4796
}

4797 4798
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4799
{
4800 4801 4802
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4803
	/* we must uncharge all the leftover precharges from mc.to */
4804
	if (mc.precharge) {
4805
		cancel_charge(mc.to, mc.precharge);
4806 4807 4808 4809 4810 4811 4812
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4813
		cancel_charge(mc.from, mc.moved_charge);
4814
		mc.moved_charge = 0;
4815
	}
4816 4817 4818
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4819
		if (!mem_cgroup_is_root(mc.from))
4820
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4821

4822 4823
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4824
		/*
4825 4826
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4827
		 */
4828
		if (!mem_cgroup_is_root(mc.to))
4829 4830
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4831 4832
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4833

4834 4835
		mc.moved_swap = 0;
	}
4836 4837 4838 4839 4840 4841 4842
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4843 4844
	struct mm_struct *mm = mc.mm;

4845 4846 4847 4848 4849 4850
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4851
	spin_lock(&mc.lock);
4852 4853
	mc.from = NULL;
	mc.to = NULL;
4854
	mc.mm = NULL;
4855
	spin_unlock(&mc.lock);
4856 4857

	mmput(mm);
4858 4859
}

4860
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4861
{
4862
	struct cgroup_subsys_state *css;
4863
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4864
	struct mem_cgroup *from;
4865
	struct task_struct *leader, *p;
4866
	struct mm_struct *mm;
4867
	unsigned long move_flags;
4868
	int ret = 0;
4869

4870 4871
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4872 4873
		return 0;

4874 4875 4876 4877 4878 4879 4880
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4881
	cgroup_taskset_for_each_leader(leader, css, tset) {
4882 4883
		WARN_ON_ONCE(p);
		p = leader;
4884
		memcg = mem_cgroup_from_css(css);
4885 4886 4887 4888
	}
	if (!p)
		return 0;

4889 4890 4891 4892 4893 4894 4895 4896 4897
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4914
		mc.mm = mm;
4915 4916 4917 4918 4919 4920 4921 4922 4923
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4924 4925
	} else {
		mmput(mm);
4926 4927 4928 4929
	}
	return ret;
}

4930
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4931
{
4932 4933
	if (mc.to)
		mem_cgroup_clear_mc();
4934 4935
}

4936 4937 4938
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4939
{
4940
	int ret = 0;
4941
	struct vm_area_struct *vma = walk->vma;
4942 4943
	pte_t *pte;
	spinlock_t *ptl;
4944 4945 4946
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4947

4948 4949
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4950
		if (mc.precharge < HPAGE_PMD_NR) {
4951
			spin_unlock(ptl);
4952 4953 4954 4955 4956 4957
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4958
				if (!mem_cgroup_move_account(page, true,
4959
							     mc.from, mc.to)) {
4960 4961 4962 4963 4964 4965
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
4966 4967 4968 4969 4970 4971 4972 4973
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
4974
		}
4975
		spin_unlock(ptl);
4976
		return 0;
4977 4978
	}

4979 4980
	if (pmd_trans_unstable(pmd))
		return 0;
4981 4982 4983 4984
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4985
		bool device = false;
4986
		swp_entry_t ent;
4987 4988 4989 4990

		if (!mc.precharge)
			break;

4991
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4992 4993 4994
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
4995 4996
		case MC_TARGET_PAGE:
			page = target.page;
4997 4998 4999 5000 5001 5002 5003 5004
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5005
			if (!device && isolate_lru_page(page))
5006
				goto put;
5007 5008
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5009
				mc.precharge--;
5010 5011
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5012
			}
5013 5014
			if (!device)
				putback_lru_page(page);
5015
put:			/* get_mctgt_type() gets the page */
5016 5017
			put_page(page);
			break;
5018 5019
		case MC_TARGET_SWAP:
			ent = target.ent;
5020
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5021
				mc.precharge--;
5022 5023 5024
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5025
			break;
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5040
		ret = mem_cgroup_do_precharge(1);
5041 5042 5043 5044 5045 5046 5047
		if (!ret)
			goto retry;
	}

	return ret;
}

5048
static void mem_cgroup_move_charge(void)
5049
{
5050 5051
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5052
		.mm = mc.mm,
5053
	};
5054 5055

	lru_add_drain_all();
5056
	/*
5057 5058 5059
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5060 5061 5062
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5063
retry:
5064
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5076 5077 5078 5079
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5080 5081
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5082
	up_read(&mc.mm->mmap_sem);
5083
	atomic_dec(&mc.from->moving_account);
5084 5085
}

5086
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5087
{
5088 5089
	if (mc.to) {
		mem_cgroup_move_charge();
5090
		mem_cgroup_clear_mc();
5091
	}
B
Balbir Singh 已提交
5092
}
5093
#else	/* !CONFIG_MMU */
5094
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5095 5096 5097
{
	return 0;
}
5098
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5099 5100
{
}
5101
static void mem_cgroup_move_task(void)
5102 5103 5104
{
}
#endif
B
Balbir Singh 已提交
5105

5106 5107
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5108 5109
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5110
 */
5111
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5112 5113
{
	/*
5114
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5115 5116 5117
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5118
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5119 5120 5121
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5122 5123
}

5124 5125 5126
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5127 5128 5129
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5130 5131 5132 5133 5134
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5135
	unsigned long low = READ_ONCE(memcg->low);
5136 5137

	if (low == PAGE_COUNTER_MAX)
5138
		seq_puts(m, "max\n");
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5153
	err = page_counter_memparse(buf, "max", &low);
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5165
	unsigned long high = READ_ONCE(memcg->high);
5166 5167

	if (high == PAGE_COUNTER_MAX)
5168
		seq_puts(m, "max\n");
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5179
	unsigned long nr_pages;
5180 5181 5182 5183
	unsigned long high;
	int err;

	buf = strstrip(buf);
5184
	err = page_counter_memparse(buf, "max", &high);
5185 5186 5187 5188 5189
	if (err)
		return err;

	memcg->high = high;

5190 5191 5192 5193 5194
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5195
	memcg_wb_domain_size_changed(memcg);
5196 5197 5198 5199 5200 5201
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5202
	unsigned long max = READ_ONCE(memcg->memory.limit);
5203 5204

	if (max == PAGE_COUNTER_MAX)
5205
		seq_puts(m, "max\n");
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5216 5217
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5218 5219 5220 5221
	unsigned long max;
	int err;

	buf = strstrip(buf);
5222
	err = page_counter_memparse(buf, "max", &max);
5223 5224 5225
	if (err)
		return err;

5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5252
		mem_cgroup_event(memcg, MEMCG_OOM);
5253 5254 5255
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5256

5257
	memcg_wb_domain_size_changed(memcg);
5258 5259 5260 5261 5262 5263 5264
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5265 5266 5267 5268
	seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5269
	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5270 5271 5272 5273

	return 0;
}

5274 5275 5276
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5277 5278
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5292 5293 5294
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5295
	seq_printf(m, "anon %llu\n",
5296
		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5297
	seq_printf(m, "file %llu\n",
5298
		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5299
	seq_printf(m, "kernel_stack %llu\n",
5300
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5301
	seq_printf(m, "slab %llu\n",
5302 5303
		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5304
	seq_printf(m, "sock %llu\n",
5305
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5306

5307
	seq_printf(m, "shmem %llu\n",
5308
		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5309
	seq_printf(m, "file_mapped %llu\n",
5310
		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5311
	seq_printf(m, "file_dirty %llu\n",
5312
		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5313
	seq_printf(m, "file_writeback %llu\n",
5314
		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5326
	seq_printf(m, "slab_reclaimable %llu\n",
5327
		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5328
	seq_printf(m, "slab_unreclaimable %llu\n",
5329
		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5330

5331 5332
	/* Accumulated memory events */

5333 5334
	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5335

5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
		   events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
		   events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);

5346
	seq_printf(m, "workingset_refault %lu\n",
5347
		   stat[WORKINGSET_REFAULT]);
5348
	seq_printf(m, "workingset_activate %lu\n",
5349
		   stat[WORKINGSET_ACTIVATE]);
5350
	seq_printf(m, "workingset_nodereclaim %lu\n",
5351
		   stat[WORKINGSET_NODERECLAIM]);
5352

5353 5354 5355
	return 0;
}

5356 5357 5358
static struct cftype memory_files[] = {
	{
		.name = "current",
5359
		.flags = CFTYPE_NOT_ON_ROOT,
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5383
		.file_offset = offsetof(struct mem_cgroup, events_file),
5384 5385
		.seq_show = memory_events_show,
	},
5386 5387 5388 5389 5390
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5391 5392 5393
	{ }	/* terminate */
};

5394
struct cgroup_subsys memory_cgrp_subsys = {
5395
	.css_alloc = mem_cgroup_css_alloc,
5396
	.css_online = mem_cgroup_css_online,
5397
	.css_offline = mem_cgroup_css_offline,
5398
	.css_released = mem_cgroup_css_released,
5399
	.css_free = mem_cgroup_css_free,
5400
	.css_reset = mem_cgroup_css_reset,
5401 5402
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5403
	.post_attach = mem_cgroup_move_task,
5404
	.bind = mem_cgroup_bind,
5405 5406
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5407
	.early_init = 0,
B
Balbir Singh 已提交
5408
};
5409

5410 5411
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
5412
 * @root: the top ancestor of the sub-tree being checked
5413 5414 5415
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
 * ancestors up to (but not including) @root, is below the normal range.
 *
 * @root is exclusive; it is never low when looked at directly and isn't
 * checked when traversing the hierarchy.
 *
 * Excluding @root enables using memory.low to prioritize memory usage
 * between cgroups within a subtree of the hierarchy that is limited by
 * memory.high or memory.max.
 *
 * For example, given cgroup A with children B and C:
 *
 *    A
 *   / \
 *  B   C
 *
 * and
 *
 *  1. A/memory.current > A/memory.high
 *  2. A/B/memory.current < A/B/memory.low
 *  3. A/C/memory.current >= A/C/memory.low
 *
 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
 * should reclaim from 'C' until 'A' is no longer high or until we can
 * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5442 5443 5444 5445 5446 5447
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

5448 5449 5450
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
5451 5452
		return false;

5453
	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
M
Michal Hocko 已提交
5454
		if (page_counter_read(&memcg->memory) >= memcg->low)
5455 5456
			return false;
	}
5457

5458 5459 5460
	return true;
}

5461 5462 5463 5464 5465 5466
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5467
 * @compound: charge the page as compound or small page
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5480 5481
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5482 5483
{
	struct mem_cgroup *memcg = NULL;
5484
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5498
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5499
		if (compound_head(page)->mem_cgroup)
5500
			goto out;
5501

5502
		if (do_swap_account) {
5503 5504 5505 5506 5507 5508 5509 5510 5511
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5530
 * @compound: charge the page as compound or small page
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5543
			      bool lrucare, bool compound)
5544
{
5545
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5560 5561 5562
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5563
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5564 5565
	memcg_check_events(memcg, page);
	local_irq_enable();
5566

5567
	if (do_memsw_account() && PageSwapCache(page)) {
5568 5569 5570 5571 5572 5573
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5574
		mem_cgroup_uncharge_swap(entry, nr_pages);
5575 5576 5577 5578 5579 5580 5581
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5582
 * @compound: charge the page as compound or small page
5583 5584 5585
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5586 5587
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5588
{
5589
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5616
{
5617 5618 5619 5620 5621 5622
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5623 5624
	unsigned long flags;

5625 5626
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5627
		if (do_memsw_account())
5628 5629 5630 5631
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
5632
	}
5633 5634

	local_irq_save(flags);
5635 5636 5637 5638 5639 5640 5641
	__this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
	__this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
	__this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
	__this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
	__this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
	__this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
	memcg_check_events(ug->memcg, ug->dummy_page);
5642
	local_irq_restore(flags);
5643

5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
5692 5693 5694 5695
}

static void uncharge_list(struct list_head *page_list)
{
5696
	struct uncharge_gather ug;
5697
	struct list_head *next;
5698 5699

	uncharge_gather_clear(&ug);
5700

5701 5702 5703 5704
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5705 5706
	next = page_list->next;
	do {
5707 5708
		struct page *page;

5709 5710 5711
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

5712
		uncharge_page(page, &ug);
5713 5714
	} while (next != page_list);

5715 5716
	if (ug.memcg)
		uncharge_batch(&ug);
5717 5718
}

5719 5720 5721 5722 5723 5724 5725 5726 5727
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
5728 5729
	struct uncharge_gather ug;

5730 5731 5732
	if (mem_cgroup_disabled())
		return;

5733
	/* Don't touch page->lru of any random page, pre-check: */
5734
	if (!page->mem_cgroup)
5735 5736
		return;

5737 5738 5739
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
5740
}
5741

5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5753

5754 5755
	if (!list_empty(page_list))
		uncharge_list(page_list);
5756 5757 5758
}

/**
5759 5760 5761
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5762
 *
5763 5764
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5765 5766 5767
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5768
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5769
{
5770
	struct mem_cgroup *memcg;
5771 5772
	unsigned int nr_pages;
	bool compound;
5773
	unsigned long flags;
5774 5775 5776 5777

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5778 5779
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5780 5781 5782 5783 5784

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5785
	if (newpage->mem_cgroup)
5786 5787
		return;

5788
	/* Swapcache readahead pages can get replaced before being charged */
5789
	memcg = oldpage->mem_cgroup;
5790
	if (!memcg)
5791 5792
		return;

5793 5794 5795 5796 5797 5798 5799 5800
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5801

5802
	commit_charge(newpage, memcg, false);
5803

5804
	local_irq_save(flags);
5805 5806
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5807
	local_irq_restore(flags);
5808 5809
}

5810
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5811 5812
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5813
void mem_cgroup_sk_alloc(struct sock *sk)
5814 5815 5816
{
	struct mem_cgroup *memcg;

5817 5818 5819 5820 5821
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5837 5838
	if (memcg == root_mem_cgroup)
		goto out;
5839
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5840 5841
		goto out;
	if (css_tryget_online(&memcg->css))
5842
		sk->sk_memcg = memcg;
5843
out:
5844 5845 5846
	rcu_read_unlock();
}

5847
void mem_cgroup_sk_free(struct sock *sk)
5848
{
5849 5850
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5863
	gfp_t gfp_mask = GFP_KERNEL;
5864

5865
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5866
		struct page_counter *fail;
5867

5868 5869
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5870 5871
			return true;
		}
5872 5873
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5874
		return false;
5875
	}
5876

5877 5878 5879 5880
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5881 5882
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5883 5884 5885 5886
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5897
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5898
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5899 5900
		return;
	}
5901

5902 5903
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5904
	refill_stock(memcg, nr_pages);
5905 5906
}

5907 5908 5909 5910 5911 5912 5913 5914 5915
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5916 5917
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5918 5919 5920 5921
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5922

5923
/*
5924 5925
 * subsys_initcall() for memory controller.
 *
5926 5927 5928 5929
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5930 5931 5932
 */
static int __init mem_cgroup_init(void)
{
5933 5934
	int cpu, node;

5935 5936 5937
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5938 5939 5940
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5941
	 */
5942 5943
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5944 5945
#endif

5946 5947
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5959
		rtpn->rb_root = RB_ROOT;
5960
		rtpn->rb_rightmost = NULL;
5961
		spin_lock_init(&rtpn->lock);
5962 5963 5964
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5965 5966 5967
	return 0;
}
subsys_initcall(mem_cgroup_init);
5968 5969

#ifdef CONFIG_MEMCG_SWAP
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5988 5989 5990 5991 5992 5993 5994 5995 5996
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5997
	struct mem_cgroup *memcg, *swap_memcg;
5998
	unsigned int nr_entries;
5999 6000 6001 6002 6003
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6004
	if (!do_memsw_account())
6005 6006 6007 6008 6009 6010 6011 6012
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6013 6014 6015 6016 6017 6018
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6019 6020 6021 6022 6023 6024
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6025
	VM_BUG_ON_PAGE(oldid, page);
6026
	mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6027 6028 6029 6030

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6031
		page_counter_uncharge(&memcg->memory, nr_entries);
6032

6033 6034
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6035 6036
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6037 6038
	}

6039 6040 6041 6042 6043 6044 6045
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
6046 6047
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6048
	memcg_check_events(memcg, page);
6049 6050 6051

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
6052 6053
}

6054 6055
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6056 6057 6058
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6059
 * Try to charge @page's memcg for the swap space at @entry.
6060 6061 6062 6063 6064
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6065
	unsigned int nr_pages = hpage_nr_pages(page);
6066
	struct page_counter *counter;
6067
	struct mem_cgroup *memcg;
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6079 6080
	memcg = mem_cgroup_id_get_online(memcg);

6081
	if (!mem_cgroup_is_root(memcg) &&
6082
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6083
		mem_cgroup_id_put(memcg);
6084
		return -ENOMEM;
6085
	}
6086

6087 6088 6089 6090
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6091
	VM_BUG_ON_PAGE(oldid, page);
6092
	mem_cgroup_swap_statistics(memcg, nr_pages);
6093 6094 6095 6096

	return 0;
}

6097
/**
6098
 * mem_cgroup_uncharge_swap - uncharge swap space
6099
 * @entry: swap entry to uncharge
6100
 * @nr_pages: the amount of swap space to uncharge
6101
 */
6102
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6103 6104 6105 6106
{
	struct mem_cgroup *memcg;
	unsigned short id;

6107
	if (!do_swap_account)
6108 6109
		return;

6110
	id = swap_cgroup_record(entry, 0, nr_pages);
6111
	rcu_read_lock();
6112
	memcg = mem_cgroup_from_id(id);
6113
	if (memcg) {
6114 6115
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6116
				page_counter_uncharge(&memcg->swap, nr_pages);
6117
			else
6118
				page_counter_uncharge(&memcg->memsw, nr_pages);
6119
		}
6120 6121
		mem_cgroup_swap_statistics(memcg, -nr_pages);
		mem_cgroup_id_put_many(memcg, nr_pages);
6122 6123 6124 6125
	}
	rcu_read_unlock();
}

6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6266 6267
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6268 6269 6270 6271 6272 6273 6274 6275
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */