memcontrol.c 186.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
K
KAMEZAWA Hiroyuki 已提交
58
#include "internal.h"
G
Glauber Costa 已提交
59
#include <net/sock.h>
M
Michal Hocko 已提交
60
#include <net/ip.h>
G
Glauber Costa 已提交
61
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
62

63 64
#include <asm/uaccess.h>

65 66
#include <trace/events/vmscan.h>

67
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68 69
EXPORT_SYMBOL(mem_cgroup_subsys);

70
#define MEM_CGROUP_RECLAIM_RETRIES	5
71
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
72

A
Andrew Morton 已提交
73
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
74
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
75
int do_swap_account __read_mostly;
76 77

/* for remember boot option*/
A
Andrew Morton 已提交
78
#ifdef CONFIG_MEMCG_SWAP_ENABLED
79 80 81 82 83
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

84
#else
85
#define do_swap_account		0
86 87 88
#endif


89 90 91
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
92
	"rss_huge",
93
	"mapped_file",
94
	"writeback",
95 96 97
	"swap",
};

98 99 100
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
101 102
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
103 104
	MEM_CGROUP_EVENTS_NSTATS,
};
105 106 107 108 109 110 111 112

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

113 114 115 116 117 118 119 120
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

121 122 123 124 125 126 127 128
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
129
	MEM_CGROUP_TARGET_SOFTLIMIT,
130
	MEM_CGROUP_TARGET_NUMAINFO,
131 132
	MEM_CGROUP_NTARGETS,
};
133 134 135
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
136

137
struct mem_cgroup_stat_cpu {
138
	long count[MEM_CGROUP_STAT_NSTATS];
139
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
140
	unsigned long nr_page_events;
141
	unsigned long targets[MEM_CGROUP_NTARGETS];
142 143
};

144
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
145 146 147 148
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
149
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
150 151
	unsigned long last_dead_count;

152 153 154 155
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

156 157 158 159
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
160
	struct lruvec		lruvec;
161
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
162

163 164
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

165 166 167 168
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
169
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
170
						/* use container_of	   */
171 172 173 174 175 176
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

197 198 199 200 201
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
202
/* For threshold */
203
struct mem_cgroup_threshold_ary {
204
	/* An array index points to threshold just below or equal to usage. */
205
	int current_threshold;
206 207 208 209 210
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
211 212 213 214 215 216 217 218 219 220 221 222

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
223 224 225 226 227
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
228

229 230
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
231

B
Balbir Singh 已提交
232 233 234 235 236 237 238
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
239 240 241
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
242 243 244 245 246 247 248
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
249

250 251 252
	/* vmpressure notifications */
	struct vmpressure vmpressure;

253 254 255 256
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
257

258 259 260 261
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
262 263 264 265
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
266
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
267 268 269

	bool		oom_lock;
	atomic_t	under_oom;
270
	atomic_t	oom_wakeups;
271

272
	int	swappiness;
273 274
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
275

276 277 278
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

279 280 281 282
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
283
	struct mem_cgroup_thresholds thresholds;
284

285
	/* thresholds for mem+swap usage. RCU-protected */
286
	struct mem_cgroup_thresholds memsw_thresholds;
287

K
KAMEZAWA Hiroyuki 已提交
288 289
	/* For oom notifier event fd */
	struct list_head oom_notify;
290

291 292 293 294
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
295
	unsigned long move_charge_at_immigrate;
296 297 298 299
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
300 301
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
302
	/*
303
	 * percpu counter.
304
	 */
305
	struct mem_cgroup_stat_cpu __percpu *stat;
306 307 308 309 310 311
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
312

M
Michal Hocko 已提交
313
	atomic_t	dead_count;
M
Michal Hocko 已提交
314
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
315 316
	struct tcp_memcontrol tcp_mem;
#endif
317 318 319 320 321 322 323 324
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
325 326 327 328 329 330 331

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
332

333 334
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
335 336
};

337 338 339 340 341 342
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

343 344 345
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
346
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
347
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
348 349
};

350 351 352
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
353 354 355 356 357 358

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
359 360 361 362 363 364

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

365 366 367 368 369
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

370 371 372 373 374
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

375 376
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
377 378 379 380 381
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
382 383 384 385 386 387 388 389 390
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
391 392
#endif

393 394
/* Stuffs for move charges at task migration. */
/*
395 396
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
397 398
 */
enum move_type {
399
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
400
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
401 402 403
	NR_MOVE_TYPE,
};

404 405
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
406
	spinlock_t	  lock; /* for from, to */
407 408
	struct mem_cgroup *from;
	struct mem_cgroup *to;
409
	unsigned long immigrate_flags;
410
	unsigned long precharge;
411
	unsigned long moved_charge;
412
	unsigned long moved_swap;
413 414 415
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
416
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
417 418
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
419

D
Daisuke Nishimura 已提交
420 421
static bool move_anon(void)
{
422
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
423 424
}

425 426
static bool move_file(void)
{
427
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
428 429
}

430 431 432 433
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
434
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
435
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
436

437 438
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
439
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
440
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
441
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
442 443 444
	NR_CHARGE_TYPE,
};

445
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
446 447 448 449
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
450
	_KMEM,
G
Glauber Costa 已提交
451 452
};

453 454
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
455
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
456 457
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
458

459 460 461 462 463 464 465 466
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

467 468 469 470 471 472 473
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

474 475
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
476
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
477 478
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

497 498 499 500 501
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
502
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
503
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
504 505 506

void sock_update_memcg(struct sock *sk)
{
507
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
508
		struct mem_cgroup *memcg;
509
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
510 511 512

		BUG_ON(!sk->sk_prot->proto_cgroup);

513 514 515 516 517 518 519 520 521 522
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523
			css_get(&sk->sk_cgrp->memcg->css);
524 525 526
			return;
		}

G
Glauber Costa 已提交
527 528
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
529
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 531
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
532
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
533 534 535 536 537 538 539 540
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
541
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
542 543 544
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
545
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
546 547
	}
}
G
Glauber Costa 已提交
548 549 550 551 552 553 554 555 556

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
557

558 559 560 561 562 563 564 565 566 567 568 569
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

570
#ifdef CONFIG_MEMCG_KMEM
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
589 590
int memcg_limited_groups_array_size;

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

606 607 608 609 610 611
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
612
struct static_key memcg_kmem_enabled_key;
613
EXPORT_SYMBOL(memcg_kmem_enabled_key);
614 615 616

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
617
	if (memcg_kmem_is_active(memcg)) {
618
		static_key_slow_dec(&memcg_kmem_enabled_key);
619 620
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
621 622 623 624 625
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
626 627 628 629 630 631 632 633 634 635 636 637 638
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

639
static void drain_all_stock_async(struct mem_cgroup *memcg);
640

641
static struct mem_cgroup_per_zone *
642
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
643
{
644
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
645
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
646 647
}

648
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
649
{
650
	return &memcg->css;
651 652
}

653
static struct mem_cgroup_per_zone *
654
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
655
{
656 657
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
658

659
	return mem_cgroup_zoneinfo(memcg, nid, zid);
660 661
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
839
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
840
				 enum mem_cgroup_stat_index idx)
841
{
842
	long val = 0;
843 844
	int cpu;

845 846
	get_online_cpus();
	for_each_online_cpu(cpu)
847
		val += per_cpu(memcg->stat->count[idx], cpu);
848
#ifdef CONFIG_HOTPLUG_CPU
849 850 851
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
852 853
#endif
	put_online_cpus();
854 855 856
	return val;
}

857
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
858 859 860
					 bool charge)
{
	int val = (charge) ? 1 : -1;
861
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
862 863
}

864
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
865 866 867 868 869
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

870
	get_online_cpus();
871
	for_each_online_cpu(cpu)
872
		val += per_cpu(memcg->stat->events[idx], cpu);
873
#ifdef CONFIG_HOTPLUG_CPU
874 875 876
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
877
#endif
878
	put_online_cpus();
879 880 881
	return val;
}

882
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
883
					 struct page *page,
884
					 bool anon, int nr_pages)
885
{
886 887
	preempt_disable();

888 889 890 891 892 893
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
894
				nr_pages);
895
	else
896
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
897
				nr_pages);
898

899 900 901 902
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

903 904
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
905
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
906
	else {
907
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
908 909
		nr_pages = -nr_pages; /* for event */
	}
910

911
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
912

913
	preempt_enable();
914 915
}

916
unsigned long
917
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
918 919 920 921 922 923 924 925
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
926
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
927
			unsigned int lru_mask)
928 929
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
930
	enum lru_list lru;
931 932
	unsigned long ret = 0;

933
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
934

H
Hugh Dickins 已提交
935 936 937
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
938 939 940 941 942
	}
	return ret;
}

static unsigned long
943
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
944 945
			int nid, unsigned int lru_mask)
{
946 947 948
	u64 total = 0;
	int zid;

949
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
950 951
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
952

953 954
	return total;
}
955

956
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
957
			unsigned int lru_mask)
958
{
959
	int nid;
960 961
	u64 total = 0;

962
	for_each_node_state(nid, N_MEMORY)
963
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
964
	return total;
965 966
}

967 968
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
969 970 971
{
	unsigned long val, next;

972
	val = __this_cpu_read(memcg->stat->nr_page_events);
973
	next = __this_cpu_read(memcg->stat->targets[target]);
974
	/* from time_after() in jiffies.h */
975 976 977 978 979
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
980 981 982
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
983 984 985 986 987 988 989 990
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
991
	}
992
	return false;
993 994 995 996 997 998
}

/*
 * Check events in order.
 *
 */
999
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1000
{
1001
	preempt_disable();
1002
	/* threshold event is triggered in finer grain than soft limit */
1003 1004
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1005
		bool do_softlimit;
1006
		bool do_numainfo __maybe_unused;
1007

1008 1009
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1010 1011 1012 1013 1014 1015
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1016
		mem_cgroup_threshold(memcg);
1017 1018
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1019
#if MAX_NUMNODES > 1
1020
		if (unlikely(do_numainfo))
1021
			atomic_inc(&memcg->numainfo_events);
1022
#endif
1023 1024
	} else
		preempt_enable();
1025 1026
}

1027
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1028
{
1029 1030 1031 1032 1033 1034 1035 1036
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1037
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1038 1039
}

1040
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1041
{
1042
	struct mem_cgroup *memcg = NULL;
1043 1044 1045

	if (!mm)
		return NULL;
1046 1047 1048 1049 1050 1051 1052
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1053 1054
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1055
			break;
1056
	} while (!css_tryget(&memcg->css));
1057
	rcu_read_unlock();
1058
	return memcg;
1059 1060
}

1061 1062 1063 1064 1065 1066 1067
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1068
		struct mem_cgroup *last_visited)
1069
{
1070
	struct cgroup_subsys_state *prev_css, *next_css;
1071

1072
	prev_css = last_visited ? &last_visited->css : NULL;
1073
skip_node:
1074
	next_css = css_next_descendant_pre(prev_css, &root->css);
1075 1076 1077 1078 1079 1080 1081 1082

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1083 1084 1085
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1086 1087 1088
		if (css_tryget(&mem->css))
			return mem;
		else {
1089
			prev_css = next_css;
1090 1091 1092 1093 1094 1095 1096
			goto skip_node;
		}
	}

	return NULL;
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1166
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1167
				   struct mem_cgroup *prev,
1168
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1169
{
1170
	struct mem_cgroup *memcg = NULL;
1171
	struct mem_cgroup *last_visited = NULL;
1172

1173 1174
	if (mem_cgroup_disabled())
		return NULL;
1175

1176 1177
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1178

1179
	if (prev && !reclaim)
1180
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1181

1182 1183
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1184
			goto out_css_put;
1185
		return root;
1186
	}
K
KAMEZAWA Hiroyuki 已提交
1187

1188
	rcu_read_lock();
1189
	while (!memcg) {
1190
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1191
		int uninitialized_var(seq);
1192

1193 1194 1195 1196 1197 1198 1199
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1200
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1201
				iter->last_visited = NULL;
1202 1203
				goto out_unlock;
			}
M
Michal Hocko 已提交
1204

1205
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1206
		}
K
KAMEZAWA Hiroyuki 已提交
1207

1208
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1209

1210
		if (reclaim) {
1211
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1212

M
Michal Hocko 已提交
1213
			if (!memcg)
1214 1215 1216 1217
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1218

1219
		if (prev && !memcg)
1220
			goto out_unlock;
1221
	}
1222 1223
out_unlock:
	rcu_read_unlock();
1224 1225 1226 1227
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1228
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1229
}
K
KAMEZAWA Hiroyuki 已提交
1230

1231 1232 1233 1234 1235 1236 1237
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1238 1239 1240 1241 1242 1243
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1244

1245 1246 1247 1248 1249 1250
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1251
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1252
	     iter != NULL;				\
1253
	     iter = mem_cgroup_iter(root, iter, NULL))
1254

1255
#define for_each_mem_cgroup(iter)			\
1256
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1257
	     iter != NULL;				\
1258
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1259

1260
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1261
{
1262
	struct mem_cgroup *memcg;
1263 1264

	rcu_read_lock();
1265 1266
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1267 1268 1269 1270
		goto out;

	switch (idx) {
	case PGFAULT:
1271 1272 1273 1274
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1275 1276 1277 1278 1279 1280 1281
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1282
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1283

1284 1285 1286
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1287
 * @memcg: memcg of the wanted lruvec
1288 1289 1290 1291 1292 1293 1294 1295 1296
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1297
	struct lruvec *lruvec;
1298

1299 1300 1301 1302
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1303 1304

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1315 1316
}

K
KAMEZAWA Hiroyuki 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1330

1331
/**
1332
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1333
 * @page: the page
1334
 * @zone: zone of the page
1335
 */
1336
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1337 1338
{
	struct mem_cgroup_per_zone *mz;
1339 1340
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1341
	struct lruvec *lruvec;
1342

1343 1344 1345 1346
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1347

K
KAMEZAWA Hiroyuki 已提交
1348
	pc = lookup_page_cgroup(page);
1349
	memcg = pc->mem_cgroup;
1350 1351

	/*
1352
	 * Surreptitiously switch any uncharged offlist page to root:
1353 1354 1355 1356 1357 1358 1359
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1360
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1361 1362
		pc->mem_cgroup = memcg = root_mem_cgroup;

1363
	mz = page_cgroup_zoneinfo(memcg, page);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1374
}
1375

1376
/**
1377 1378 1379 1380
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1381
 *
1382 1383
 * This function must be called when a page is added to or removed from an
 * lru list.
1384
 */
1385 1386
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1387 1388
{
	struct mem_cgroup_per_zone *mz;
1389
	unsigned long *lru_size;
1390 1391 1392 1393

	if (mem_cgroup_disabled())
		return;

1394 1395 1396 1397
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1398
}
1399

1400
/*
1401
 * Checks whether given mem is same or in the root_mem_cgroup's
1402 1403
 * hierarchy subtree
 */
1404 1405
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1406
{
1407 1408
	if (root_memcg == memcg)
		return true;
1409
	if (!root_memcg->use_hierarchy || !memcg)
1410
		return false;
1411 1412 1413 1414 1415 1416 1417 1418
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1419
	rcu_read_lock();
1420
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1421 1422
	rcu_read_unlock();
	return ret;
1423 1424
}

1425 1426
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1427
{
1428
	struct mem_cgroup *curr = NULL;
1429
	struct task_struct *p;
1430
	bool ret;
1431

1432
	p = find_lock_task_mm(task);
1433 1434 1435 1436 1437 1438 1439 1440 1441
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1442
		rcu_read_lock();
1443 1444 1445
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1446
		rcu_read_unlock();
1447
	}
1448
	if (!curr)
1449
		return false;
1450
	/*
1451
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1452
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1453 1454
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1455
	 */
1456
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1457
	css_put(&curr->css);
1458 1459 1460
	return ret;
}

1461
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1462
{
1463
	unsigned long inactive_ratio;
1464
	unsigned long inactive;
1465
	unsigned long active;
1466
	unsigned long gb;
1467

1468 1469
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1470

1471 1472 1473 1474 1475 1476
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1477
	return inactive * inactive_ratio < active;
1478 1479
}

1480 1481 1482
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1483
/**
1484
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1485
 * @memcg: the memory cgroup
1486
 *
1487
 * Returns the maximum amount of memory @mem can be charged with, in
1488
 * pages.
1489
 */
1490
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1491
{
1492 1493
	unsigned long long margin;

1494
	margin = res_counter_margin(&memcg->res);
1495
	if (do_swap_account)
1496
		margin = min(margin, res_counter_margin(&memcg->memsw));
1497
	return margin >> PAGE_SHIFT;
1498 1499
}

1500
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1501 1502
{
	/* root ? */
T
Tejun Heo 已提交
1503
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1504 1505
		return vm_swappiness;

1506
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1507 1508
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1523 1524 1525 1526

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1527
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1528
{
1529
	atomic_inc(&memcg_moving);
1530
	atomic_inc(&memcg->moving_account);
1531 1532 1533
	synchronize_rcu();
}

1534
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1535
{
1536 1537 1538 1539
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1540 1541
	if (memcg) {
		atomic_dec(&memcg_moving);
1542
		atomic_dec(&memcg->moving_account);
1543
	}
1544
}
1545

1546 1547 1548
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1549 1550
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1551 1552 1553 1554 1555 1556 1557
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1558
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1559 1560
{
	VM_BUG_ON(!rcu_read_lock_held());
1561
	return atomic_read(&memcg->moving_account) > 0;
1562
}
1563

1564
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1565
{
1566 1567
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1568
	bool ret = false;
1569 1570 1571 1572 1573 1574 1575 1576 1577
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1578

1579 1580
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1581 1582
unlock:
	spin_unlock(&mc.lock);
1583 1584 1585
	return ret;
}

1586
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1587 1588
{
	if (mc.moving_task && current != mc.moving_task) {
1589
		if (mem_cgroup_under_move(memcg)) {
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1602 1603 1604 1605
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1606
 * see mem_cgroup_stolen(), too.
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1620
#define K(x) ((x) << (PAGE_SHIFT-10))
1621
/**
1622
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1640 1641
	struct mem_cgroup *iter;
	unsigned int i;
1642

1643
	if (!p)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1662
	pr_info("Task in %s killed", memcg_name);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1675
	pr_cont(" as a result of limit of %s\n", memcg_name);
1676 1677
done:

1678
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1679 1680 1681
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1682
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1683 1684 1685
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1686
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1687 1688 1689
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1714 1715
}

1716 1717 1718 1719
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1720
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1721 1722
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1723 1724
	struct mem_cgroup *iter;

1725
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1726
		num++;
1727 1728 1729
	return num;
}

D
David Rientjes 已提交
1730 1731 1732
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1733
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1734 1735 1736
{
	u64 limit;

1737 1738
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1739
	/*
1740
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1741
	 */
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1756 1757
}

1758 1759
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1760 1761 1762 1763 1764 1765 1766
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1767
	/*
1768 1769 1770
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1771
	 */
1772
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1773 1774 1775 1776 1777
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1778 1779
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1780
		struct css_task_iter it;
1781 1782
		struct task_struct *task;

1783 1784
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1797
				css_task_iter_end(&it);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1814
		css_task_iter_end(&it);
1815 1816 1817 1818 1819 1820 1821 1822 1823
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1860 1861
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1862
 * @memcg: the target memcg
1863 1864 1865 1866 1867 1868 1869
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1870
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1871 1872
		int nid, bool noswap)
{
1873
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1874 1875 1876
		return true;
	if (noswap || !total_swap_pages)
		return false;
1877
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1878 1879 1880 1881
		return true;
	return false;

}
1882
#if MAX_NUMNODES > 1
1883 1884 1885 1886 1887 1888 1889

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1890
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1891 1892
{
	int nid;
1893 1894 1895 1896
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1897
	if (!atomic_read(&memcg->numainfo_events))
1898
		return;
1899
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1900 1901 1902
		return;

	/* make a nodemask where this memcg uses memory from */
1903
	memcg->scan_nodes = node_states[N_MEMORY];
1904

1905
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1906

1907 1908
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1909
	}
1910

1911 1912
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1927
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1928 1929 1930
{
	int node;

1931 1932
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1933

1934
	node = next_node(node, memcg->scan_nodes);
1935
	if (node == MAX_NUMNODES)
1936
		node = first_node(memcg->scan_nodes);
1937 1938 1939 1940 1941 1942 1943 1944 1945
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1946
	memcg->last_scanned_node = node;
1947 1948 1949
	return node;
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1985
#else
1986
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1987 1988 1989
{
	return 0;
}
1990

1991 1992 1993 1994
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1995 1996
#endif

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2045
	}
2046 2047
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2048 2049
}

2050 2051 2052 2053 2054 2055
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2056 2057
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2058 2059 2060 2061
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2062
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2063
{
2064
	struct mem_cgroup *iter, *failed = NULL;
2065

2066 2067
	spin_lock(&memcg_oom_lock);

2068
	for_each_mem_cgroup_tree(iter, memcg) {
2069
		if (iter->oom_lock) {
2070 2071 2072 2073 2074
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2075 2076
			mem_cgroup_iter_break(memcg, iter);
			break;
2077 2078
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2079
	}
K
KAMEZAWA Hiroyuki 已提交
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2092
		}
2093 2094
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2095 2096 2097 2098

	spin_unlock(&memcg_oom_lock);

	return !failed;
2099
}
2100

2101
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2102
{
K
KAMEZAWA Hiroyuki 已提交
2103 2104
	struct mem_cgroup *iter;

2105
	spin_lock(&memcg_oom_lock);
2106
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2107
	for_each_mem_cgroup_tree(iter, memcg)
2108
		iter->oom_lock = false;
2109
	spin_unlock(&memcg_oom_lock);
2110 2111
}

2112
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2113 2114 2115
{
	struct mem_cgroup *iter;

2116
	for_each_mem_cgroup_tree(iter, memcg)
2117 2118 2119
		atomic_inc(&iter->under_oom);
}

2120
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2121 2122 2123
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2124 2125 2126 2127 2128
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2129
	for_each_mem_cgroup_tree(iter, memcg)
2130
		atomic_add_unless(&iter->under_oom, -1, 0);
2131 2132
}

K
KAMEZAWA Hiroyuki 已提交
2133 2134
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2135
struct oom_wait_info {
2136
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2137 2138 2139 2140 2141 2142
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2143 2144
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2145 2146 2147
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2148
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2149 2150

	/*
2151
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2152 2153
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2154 2155
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2156 2157 2158 2159
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2160
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2161
{
2162
	atomic_inc(&memcg->oom_wakeups);
2163 2164
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2165 2166
}

2167
static void memcg_oom_recover(struct mem_cgroup *memcg)
2168
{
2169 2170
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2171 2172
}

2173
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2174
{
2175 2176
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2177
	/*
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2190
	 */
2191 2192 2193 2194
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2195 2196 2197 2198
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2199
 * @handle: actually kill/wait or just clean up the OOM state
2200
 *
2201 2202
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2203
 *
2204
 * Memcg supports userspace OOM handling where failed allocations must
2205 2206 2207 2208
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2209
 * the end of the page fault to complete the OOM handling.
2210 2211
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2212
 * completed, %false otherwise.
2213
 */
2214
bool mem_cgroup_oom_synchronize(bool handle)
2215
{
2216
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2217
	struct oom_wait_info owait;
2218
	bool locked;
2219 2220 2221

	/* OOM is global, do not handle */
	if (!memcg)
2222
		return false;
2223

2224 2225
	if (!handle)
		goto cleanup;
2226 2227 2228 2229 2230 2231

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2232

2233
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2247
		schedule();
2248 2249 2250 2251 2252
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2253 2254 2255 2256 2257 2258 2259 2260
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2261 2262
cleanup:
	current->memcg_oom.memcg = NULL;
2263
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2264
	return true;
2265 2266
}

2267 2268 2269
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2287 2288
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2289
 */
2290

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2304
	 * need to take move_lock_mem_cgroup(). Because we already hold
2305
	 * rcu_read_lock(), any calls to move_account will be delayed until
2306
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2307
	 */
2308
	if (!mem_cgroup_stolen(memcg))
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2326
	 * should take move_lock_mem_cgroup().
2327 2328 2329 2330
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2331
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2332
				 enum mem_cgroup_stat_index idx, int val)
2333
{
2334
	struct mem_cgroup *memcg;
2335
	struct page_cgroup *pc = lookup_page_cgroup(page);
2336
	unsigned long uninitialized_var(flags);
2337

2338
	if (mem_cgroup_disabled())
2339
		return;
2340

2341
	VM_BUG_ON(!rcu_read_lock_held());
2342 2343
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344
		return;
2345

2346
	this_cpu_add(memcg->stat->count[idx], val);
2347
}
2348

2349 2350 2351 2352
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2353
#define CHARGE_BATCH	32U
2354 2355
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2356
	unsigned int nr_pages;
2357
	struct work_struct work;
2358
	unsigned long flags;
2359
#define FLUSHING_CACHED_CHARGE	0
2360 2361
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2362
static DEFINE_MUTEX(percpu_charge_mutex);
2363

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2374
 */
2375
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2376 2377 2378 2379
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2380 2381 2382
	if (nr_pages > CHARGE_BATCH)
		return false;

2383
	stock = &get_cpu_var(memcg_stock);
2384 2385
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2399 2400 2401 2402
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2403
		if (do_swap_account)
2404 2405
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2418
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2419 2420
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2432 2433
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2434
 * This will be consumed by consume_stock() function, later.
2435
 */
2436
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2437 2438 2439
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2440
	if (stock->cached != memcg) { /* reset if necessary */
2441
		drain_stock(stock);
2442
		stock->cached = memcg;
2443
	}
2444
	stock->nr_pages += nr_pages;
2445 2446 2447 2448
	put_cpu_var(memcg_stock);
}

/*
2449
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2450 2451
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2452
 */
2453
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2454
{
2455
	int cpu, curcpu;
2456

2457 2458
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2459
	curcpu = get_cpu();
2460 2461
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462
		struct mem_cgroup *memcg;
2463

2464 2465
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2466
			continue;
2467
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2468
			continue;
2469 2470 2471 2472 2473 2474
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2475
	}
2476
	put_cpu();
2477 2478 2479 2480 2481 2482

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2483
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2484 2485 2486
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2487
	put_online_cpus();
2488 2489 2490 2491 2492 2493 2494 2495
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2496
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2497
{
2498 2499 2500 2501 2502
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2503
	drain_all_stock(root_memcg, false);
2504
	mutex_unlock(&percpu_charge_mutex);
2505 2506 2507
}

/* This is a synchronous drain interface. */
2508
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2509 2510
{
	/* called when force_empty is called */
2511
	mutex_lock(&percpu_charge_mutex);
2512
	drain_all_stock(root_memcg, true);
2513
	mutex_unlock(&percpu_charge_mutex);
2514 2515
}

2516 2517 2518 2519
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2520
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2521 2522 2523
{
	int i;

2524
	spin_lock(&memcg->pcp_counter_lock);
2525
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2526
		long x = per_cpu(memcg->stat->count[i], cpu);
2527

2528 2529
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2530
	}
2531
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2532
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2533

2534 2535
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2536
	}
2537
	spin_unlock(&memcg->pcp_counter_lock);
2538 2539
}

2540
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2541 2542 2543 2544 2545
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2546
	struct mem_cgroup *iter;
2547

2548
	if (action == CPU_ONLINE)
2549 2550
		return NOTIFY_OK;

2551
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2552
		return NOTIFY_OK;
2553

2554
	for_each_mem_cgroup(iter)
2555 2556
		mem_cgroup_drain_pcp_counter(iter, cpu);

2557 2558 2559 2560 2561
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2562 2563 2564 2565 2566 2567 2568 2569 2570

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2571
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2572
				unsigned int nr_pages, unsigned int min_pages,
2573
				bool invoke_oom)
2574
{
2575
	unsigned long csize = nr_pages * PAGE_SIZE;
2576 2577 2578 2579 2580
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2581
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2582 2583 2584 2585

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2586
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2587 2588 2589
		if (likely(!ret))
			return CHARGE_OK;

2590
		res_counter_uncharge(&memcg->res, csize);
2591 2592 2593 2594
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2595 2596 2597 2598
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2599
	if (nr_pages > min_pages)
2600 2601 2602 2603 2604
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2605 2606 2607
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2608
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2609
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2610
		return CHARGE_RETRY;
2611
	/*
2612 2613 2614 2615 2616 2617 2618
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2619
	 */
2620
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2621 2622 2623 2624 2625 2626 2627 2628 2629
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2630 2631
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2632

2633
	return CHARGE_NOMEM;
2634 2635
}

2636
/*
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2656
 */
2657
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2658
				   gfp_t gfp_mask,
2659
				   unsigned int nr_pages,
2660
				   struct mem_cgroup **ptr,
2661
				   bool oom)
2662
{
2663
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2664
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2665
	struct mem_cgroup *memcg = NULL;
2666
	int ret;
2667

K
KAMEZAWA Hiroyuki 已提交
2668 2669 2670 2671 2672 2673 2674 2675
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2676

2677 2678 2679
	if (unlikely(task_in_memcg_oom(current)))
		goto bypass;

2680
	/*
2681 2682
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2683
	 * thread group leader migrates. It's possible that mm is not
2684
	 * set, if so charge the root memcg (happens for pagecache usage).
2685
	 */
2686
	if (!*ptr && !mm)
2687
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2688
again:
2689 2690 2691
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2692
			goto done;
2693
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2694
			goto done;
2695
		css_get(&memcg->css);
2696
	} else {
K
KAMEZAWA Hiroyuki 已提交
2697
		struct task_struct *p;
2698

K
KAMEZAWA Hiroyuki 已提交
2699 2700 2701
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2702
		 * Because we don't have task_lock(), "p" can exit.
2703
		 * In that case, "memcg" can point to root or p can be NULL with
2704 2705 2706 2707 2708 2709
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2710
		 */
2711
		memcg = mem_cgroup_from_task(p);
2712 2713 2714
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2715 2716 2717
			rcu_read_unlock();
			goto done;
		}
2718
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2731
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2732 2733 2734 2735 2736
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2737

2738
	do {
2739
		bool invoke_oom = oom && !nr_oom_retries;
2740

2741
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2742
		if (fatal_signal_pending(current)) {
2743
			css_put(&memcg->css);
2744
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2745
		}
2746

2747 2748
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2749 2750 2751 2752
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2753
			batch = nr_pages;
2754 2755
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2756
			goto again;
2757
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2758
			css_put(&memcg->css);
2759 2760
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2761
			if (!oom || invoke_oom) {
2762
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2763
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2764
			}
2765 2766
			nr_oom_retries--;
			break;
2767
		}
2768 2769
	} while (ret != CHARGE_OK);

2770
	if (batch > nr_pages)
2771 2772
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2773
done:
2774
	*ptr = memcg;
2775 2776
	return 0;
nomem:
2777 2778 2779 2780
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2781
bypass:
2782 2783
	*ptr = root_mem_cgroup;
	return -EINTR;
2784
}
2785

2786 2787 2788 2789 2790
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2791
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2792
				       unsigned int nr_pages)
2793
{
2794
	if (!mem_cgroup_is_root(memcg)) {
2795 2796
		unsigned long bytes = nr_pages * PAGE_SIZE;

2797
		res_counter_uncharge(&memcg->res, bytes);
2798
		if (do_swap_account)
2799
			res_counter_uncharge(&memcg->memsw, bytes);
2800
	}
2801 2802
}

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2821 2822
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2823 2824 2825
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2837
	return mem_cgroup_from_css(css);
2838 2839
}

2840
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2841
{
2842
	struct mem_cgroup *memcg = NULL;
2843
	struct page_cgroup *pc;
2844
	unsigned short id;
2845 2846
	swp_entry_t ent;

2847 2848 2849
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2850
	lock_page_cgroup(pc);
2851
	if (PageCgroupUsed(pc)) {
2852 2853 2854
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2855
	} else if (PageSwapCache(page)) {
2856
		ent.val = page_private(page);
2857
		id = lookup_swap_cgroup_id(ent);
2858
		rcu_read_lock();
2859 2860 2861
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2862
		rcu_read_unlock();
2863
	}
2864
	unlock_page_cgroup(pc);
2865
	return memcg;
2866 2867
}

2868
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2869
				       struct page *page,
2870
				       unsigned int nr_pages,
2871 2872
				       enum charge_type ctype,
				       bool lrucare)
2873
{
2874
	struct page_cgroup *pc = lookup_page_cgroup(page);
2875
	struct zone *uninitialized_var(zone);
2876
	struct lruvec *lruvec;
2877
	bool was_on_lru = false;
2878
	bool anon;
2879

2880
	lock_page_cgroup(pc);
2881
	VM_BUG_ON(PageCgroupUsed(pc));
2882 2883 2884 2885
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2886 2887 2888 2889 2890 2891 2892 2893 2894

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2895
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2896
			ClearPageLRU(page);
2897
			del_page_from_lru_list(page, lruvec, page_lru(page));
2898 2899 2900 2901
			was_on_lru = true;
		}
	}

2902
	pc->mem_cgroup = memcg;
2903 2904 2905 2906 2907 2908
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2909
	 */
K
KAMEZAWA Hiroyuki 已提交
2910
	smp_wmb();
2911
	SetPageCgroupUsed(pc);
2912

2913 2914
	if (lrucare) {
		if (was_on_lru) {
2915
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2916 2917
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2918
			add_page_to_lru_list(page, lruvec, page_lru(page));
2919 2920 2921 2922
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2923
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2924 2925 2926 2927
		anon = true;
	else
		anon = false;

2928
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2929
	unlock_page_cgroup(pc);
2930

2931
	/*
2932 2933 2934
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2935
	 */
2936
	memcg_check_events(memcg, page);
2937
}
2938

2939 2940
static DEFINE_MUTEX(set_limit_mutex);

2941 2942 2943 2944 2945 2946 2947
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2961
#ifdef CONFIG_SLABINFO
2962 2963
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2964
{
2965
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2994
				      &_memcg, oom_gfp_allowed(gfp));
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3028 3029 3030 3031 3032

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3033 3034 3035 3036 3037 3038 3039 3040
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3041
	if (memcg_kmem_test_and_clear_dead(memcg))
3042
		css_put(&memcg->css);
3043 3044
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3128 3129
static void kmem_cache_destroy_work_func(struct work_struct *w);

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3141
		size += offsetof(struct memcg_cache_params, memcg_caches);
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3181 3182
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3183
{
3184
	size_t size;
3185 3186 3187 3188

	if (!memcg_kmem_enabled())
		return 0;

3189 3190
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3191
		size += memcg_limited_groups_array_size * sizeof(void *);
3192 3193
	} else
		size = sizeof(struct memcg_cache_params);
3194

3195 3196 3197 3198
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3199
	if (memcg) {
3200
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3201
		s->memcg_params->root_cache = root_cache;
3202 3203
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3204 3205 3206
	} else
		s->memcg_params->is_root_cache = true;

3207 3208 3209 3210 3211
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3236
	css_put(&memcg->css);
3237
out:
3238 3239 3240
	kfree(s->memcg_params);
}

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3302 3303 3304 3305 3306 3307 3308 3309
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3330 3331 3332 3333 3334 3335 3336
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3337 3338 3339 3340 3341 3342 3343 3344 3345
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3346

3347 3348 3349
/*
 * Called with memcg_cache_mutex held
 */
3350 3351 3352 3353
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3354
	static char *tmp_name = NULL;
3355

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3374

3375
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3376
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3377

3378 3379 3380
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3396 3397
	if (new_cachep) {
		css_put(&memcg->css);
3398
		goto out;
3399
	}
3400 3401 3402 3403

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3404
		css_put(&memcg->css);
3405 3406 3407
		goto out;
	}

G
Glauber Costa 已提交
3408
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3460
		cancel_work_sync(&c->memcg_params->destroy);
3461 3462 3463 3464 3465
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3466 3467 3468 3469 3470 3471
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3501 3502
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3503 3504 3505 3506
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3507 3508
	if (cw == NULL) {
		css_put(&memcg->css);
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3559 3560 3561
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3562 3563 3564 3565
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3566
		goto out;
3567 3568 3569 3570 3571 3572 3573 3574

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3575 3576 3577
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3578 3579
	}

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3607 3608 3609
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3646 3647 3648
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3733 3734 3735 3736
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3737 3738
#endif /* CONFIG_MEMCG_KMEM */

3739 3740
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3741
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3742 3743
/*
 * Because tail pages are not marked as "used", set it. We're under
3744 3745 3746
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3747
 */
3748
void mem_cgroup_split_huge_fixup(struct page *head)
3749 3750
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3751
	struct page_cgroup *pc;
3752
	struct mem_cgroup *memcg;
3753
	int i;
3754

3755 3756
	if (mem_cgroup_disabled())
		return;
3757 3758

	memcg = head_pc->mem_cgroup;
3759 3760
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3761
		pc->mem_cgroup = memcg;
3762 3763 3764
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3765 3766
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3767
}
3768
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3769

3770 3771 3772 3773 3774 3775 3776 3777
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3778
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3779 3780 3781 3782
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3783
/**
3784
 * mem_cgroup_move_account - move account of the page
3785
 * @page: the page
3786
 * @nr_pages: number of regular pages (>1 for huge pages)
3787 3788 3789 3790 3791
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3792
 * - page is not on LRU (isolate_page() is useful.)
3793
 * - compound_lock is held when nr_pages > 1
3794
 *
3795 3796
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3797
 */
3798 3799 3800 3801
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3802
				   struct mem_cgroup *to)
3803
{
3804 3805
	unsigned long flags;
	int ret;
3806
	bool anon = PageAnon(page);
3807

3808
	VM_BUG_ON(from == to);
3809
	VM_BUG_ON(PageLRU(page));
3810 3811 3812 3813 3814 3815 3816
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3817
	if (nr_pages > 1 && !PageTransHuge(page))
3818 3819 3820 3821 3822 3823 3824 3825
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3826
	move_lock_mem_cgroup(from, &flags);
3827

3828 3829 3830 3831 3832 3833 3834 3835
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3836
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3837

3838
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3839
	pc->mem_cgroup = to;
3840
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3841
	move_unlock_mem_cgroup(from, &flags);
3842 3843
	ret = 0;
unlock:
3844
	unlock_page_cgroup(pc);
3845 3846 3847
	/*
	 * check events
	 */
3848 3849
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3850
out:
3851 3852 3853
	return ret;
}

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3874
 */
3875 3876
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3877
				  struct mem_cgroup *child)
3878 3879
{
	struct mem_cgroup *parent;
3880
	unsigned int nr_pages;
3881
	unsigned long uninitialized_var(flags);
3882 3883
	int ret;

3884
	VM_BUG_ON(mem_cgroup_is_root(child));
3885

3886 3887 3888 3889 3890
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3891

3892
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3893

3894 3895 3896 3897 3898 3899
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3900

3901 3902
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3903
		flags = compound_lock_irqsave(page);
3904
	}
3905

3906
	ret = mem_cgroup_move_account(page, nr_pages,
3907
				pc, child, parent);
3908 3909
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3910

3911
	if (nr_pages > 1)
3912
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3913
	putback_lru_page(page);
3914
put:
3915
	put_page(page);
3916
out:
3917 3918 3919
	return ret;
}

3920 3921 3922 3923 3924 3925 3926
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3927
				gfp_t gfp_mask, enum charge_type ctype)
3928
{
3929
	struct mem_cgroup *memcg = NULL;
3930
	unsigned int nr_pages = 1;
3931
	bool oom = true;
3932
	int ret;
A
Andrea Arcangeli 已提交
3933

A
Andrea Arcangeli 已提交
3934
	if (PageTransHuge(page)) {
3935
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3936
		VM_BUG_ON(!PageTransHuge(page));
3937 3938 3939 3940 3941
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3942
	}
3943

3944
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3945
	if (ret == -ENOMEM)
3946
		return ret;
3947
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3948 3949 3950
	return 0;
}

3951 3952
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3953
{
3954
	if (mem_cgroup_disabled())
3955
		return 0;
3956 3957 3958
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3959
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3960
					MEM_CGROUP_CHARGE_TYPE_ANON);
3961 3962
}

3963 3964 3965
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3966
 * struct page_cgroup is acquired. This refcnt will be consumed by
3967 3968
 * "commit()" or removed by "cancel()"
 */
3969 3970 3971 3972
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3973
{
3974
	struct mem_cgroup *memcg;
3975
	struct page_cgroup *pc;
3976
	int ret;
3977

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3988 3989
	if (!do_swap_account)
		goto charge_cur_mm;
3990 3991
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3992
		goto charge_cur_mm;
3993 3994
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3995
	css_put(&memcg->css);
3996 3997
	if (ret == -EINTR)
		ret = 0;
3998
	return ret;
3999
charge_cur_mm:
4000 4001 4002 4003
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4004 4005
}

4006 4007 4008 4009 4010 4011
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4026 4027 4028
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4029 4030 4031 4032 4033 4034 4035 4036 4037
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4038
static void
4039
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4040
					enum charge_type ctype)
4041
{
4042
	if (mem_cgroup_disabled())
4043
		return;
4044
	if (!memcg)
4045
		return;
4046

4047
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4048 4049 4050
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4051 4052 4053
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4054
	 */
4055
	if (do_swap_account && PageSwapCache(page)) {
4056
		swp_entry_t ent = {.val = page_private(page)};
4057
		mem_cgroup_uncharge_swap(ent);
4058
	}
4059 4060
}

4061 4062
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4063
{
4064
	__mem_cgroup_commit_charge_swapin(page, memcg,
4065
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4066 4067
}

4068 4069
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4070
{
4071 4072 4073 4074
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4075
	if (mem_cgroup_disabled())
4076 4077 4078 4079 4080 4081 4082
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4083 4084
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4085 4086 4087 4088
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4089 4090
}

4091
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4092 4093
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4094 4095 4096
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4097

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4109
		batch->memcg = memcg;
4110 4111
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4112
	 * In those cases, all pages freed continuously can be expected to be in
4113 4114 4115 4116 4117 4118 4119 4120
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4121
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4122 4123
		goto direct_uncharge;

4124 4125 4126 4127 4128
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4129
	if (batch->memcg != memcg)
4130 4131
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4132
	batch->nr_pages++;
4133
	if (uncharge_memsw)
4134
		batch->memsw_nr_pages++;
4135 4136
	return;
direct_uncharge:
4137
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4138
	if (uncharge_memsw)
4139 4140 4141
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4142
}
4143

4144
/*
4145
 * uncharge if !page_mapped(page)
4146
 */
4147
static struct mem_cgroup *
4148 4149
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4150
{
4151
	struct mem_cgroup *memcg = NULL;
4152 4153
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4154
	bool anon;
4155

4156
	if (mem_cgroup_disabled())
4157
		return NULL;
4158

A
Andrea Arcangeli 已提交
4159
	if (PageTransHuge(page)) {
4160
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4161 4162
		VM_BUG_ON(!PageTransHuge(page));
	}
4163
	/*
4164
	 * Check if our page_cgroup is valid
4165
	 */
4166
	pc = lookup_page_cgroup(page);
4167
	if (unlikely(!PageCgroupUsed(pc)))
4168
		return NULL;
4169

4170
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4171

4172
	memcg = pc->mem_cgroup;
4173

K
KAMEZAWA Hiroyuki 已提交
4174 4175 4176
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4177 4178
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4179
	switch (ctype) {
4180
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4181 4182 4183 4184 4185
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4186 4187
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4188
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4189
		/* See mem_cgroup_prepare_migration() */
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4211
	}
K
KAMEZAWA Hiroyuki 已提交
4212

4213
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4214

4215
	ClearPageCgroupUsed(pc);
4216 4217 4218 4219 4220 4221
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4222

4223
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4224
	/*
4225
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4226
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4227
	 */
4228
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4229
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4230
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4231
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4232
	}
4233 4234 4235 4236 4237 4238
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4239
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4240

4241
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4242 4243 4244

unlock_out:
	unlock_page_cgroup(pc);
4245
	return NULL;
4246 4247
}

4248 4249
void mem_cgroup_uncharge_page(struct page *page)
{
4250 4251 4252
	/* early check. */
	if (page_mapped(page))
		return;
4253
	VM_BUG_ON(page->mapping && !PageAnon(page));
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4266 4267
	if (PageSwapCache(page))
		return;
4268
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4269 4270 4271 4272 4273
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4274
	VM_BUG_ON(page->mapping);
4275
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4276 4277
}

4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4292 4293
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4314 4315 4316 4317 4318 4319
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4320
	memcg_oom_recover(batch->memcg);
4321 4322 4323 4324
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4325
#ifdef CONFIG_SWAP
4326
/*
4327
 * called after __delete_from_swap_cache() and drop "page" account.
4328 4329
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4330 4331
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4332 4333
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4334 4335 4336 4337 4338
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4339
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4340

K
KAMEZAWA Hiroyuki 已提交
4341 4342
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4343
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4344 4345
	 */
	if (do_swap_account && swapout && memcg)
4346
		swap_cgroup_record(ent, css_id(&memcg->css));
4347
}
4348
#endif
4349

A
Andrew Morton 已提交
4350
#ifdef CONFIG_MEMCG_SWAP
4351 4352 4353 4354 4355
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4356
{
4357
	struct mem_cgroup *memcg;
4358
	unsigned short id;
4359 4360 4361 4362

	if (!do_swap_account)
		return;

4363 4364 4365
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4366
	if (memcg) {
4367 4368 4369 4370
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4371
		if (!mem_cgroup_is_root(memcg))
4372
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4373
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4374
		css_put(&memcg->css);
4375
	}
4376
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4377
}
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4394
				struct mem_cgroup *from, struct mem_cgroup *to)
4395 4396 4397 4398 4399 4400 4401 4402
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4403
		mem_cgroup_swap_statistics(to, true);
4404
		/*
4405 4406 4407
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4408 4409 4410 4411 4412 4413
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4414
		 */
L
Li Zefan 已提交
4415
		css_get(&to->css);
4416 4417 4418 4419 4420 4421
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4422
				struct mem_cgroup *from, struct mem_cgroup *to)
4423 4424 4425
{
	return -EINVAL;
}
4426
#endif
K
KAMEZAWA Hiroyuki 已提交
4427

4428
/*
4429 4430
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4431
 */
4432 4433
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4434
{
4435
	struct mem_cgroup *memcg = NULL;
4436
	unsigned int nr_pages = 1;
4437
	struct page_cgroup *pc;
4438
	enum charge_type ctype;
4439

4440
	*memcgp = NULL;
4441

4442
	if (mem_cgroup_disabled())
4443
		return;
4444

4445 4446 4447
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4448 4449 4450
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4451 4452
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4484
	}
4485
	unlock_page_cgroup(pc);
4486 4487 4488 4489
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4490
	if (!memcg)
4491
		return;
4492

4493
	*memcgp = memcg;
4494 4495 4496 4497 4498 4499 4500
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4501
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4502
	else
4503
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4504 4505 4506 4507 4508
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4509
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4510
}
4511

4512
/* remove redundant charge if migration failed*/
4513
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4514
	struct page *oldpage, struct page *newpage, bool migration_ok)
4515
{
4516
	struct page *used, *unused;
4517
	struct page_cgroup *pc;
4518
	bool anon;
4519

4520
	if (!memcg)
4521
		return;
4522

4523
	if (!migration_ok) {
4524 4525
		used = oldpage;
		unused = newpage;
4526
	} else {
4527
		used = newpage;
4528 4529
		unused = oldpage;
	}
4530
	anon = PageAnon(used);
4531 4532 4533 4534
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4535
	css_put(&memcg->css);
4536
	/*
4537 4538 4539
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4540
	 */
4541 4542 4543 4544 4545
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4546
	/*
4547 4548 4549 4550 4551 4552
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4553
	 */
4554
	if (anon)
4555
		mem_cgroup_uncharge_page(used);
4556
}
4557

4558 4559 4560 4561 4562 4563 4564 4565
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4566
	struct mem_cgroup *memcg = NULL;
4567 4568 4569 4570 4571 4572 4573 4574 4575
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4576 4577
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4578
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4579 4580
		ClearPageCgroupUsed(pc);
	}
4581 4582
	unlock_page_cgroup(pc);

4583 4584 4585 4586 4587 4588
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4589 4590 4591 4592 4593
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4594
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4595 4596
}

4597 4598 4599 4600 4601 4602
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4603 4604 4605 4606 4607
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4627 4628
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4629 4630 4631 4632
	}
}
#endif

4633
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4634
				unsigned long long val)
4635
{
4636
	int retry_count;
4637
	u64 memswlimit, memlimit;
4638
	int ret = 0;
4639 4640
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4641
	int enlarge;
4642 4643 4644 4645 4646 4647 4648 4649 4650

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4651

4652
	enlarge = 0;
4653
	while (retry_count) {
4654 4655 4656 4657
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4658 4659 4660
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4661
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4662 4663 4664 4665 4666 4667
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4668 4669
			break;
		}
4670 4671 4672 4673 4674

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4675
		ret = res_counter_set_limit(&memcg->res, val);
4676 4677 4678 4679 4680 4681
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4682 4683 4684 4685 4686
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4687 4688
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4689 4690
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4691
		if (curusage >= oldusage)
4692 4693 4694
			retry_count--;
		else
			oldusage = curusage;
4695
	}
4696 4697
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4698

4699 4700 4701
	return ret;
}

L
Li Zefan 已提交
4702 4703
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4704
{
4705
	int retry_count;
4706
	u64 memlimit, memswlimit, oldusage, curusage;
4707 4708
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4709
	int enlarge = 0;
4710

4711
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4712
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4713
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4714 4715 4716 4717 4718 4719 4720 4721
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4722
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4723 4724 4725 4726 4727 4728 4729 4730
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4731 4732 4733
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4734
		ret = res_counter_set_limit(&memcg->memsw, val);
4735 4736 4737 4738 4739 4740
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4741 4742 4743 4744 4745
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4746 4747 4748
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4749
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4750
		/* Usage is reduced ? */
4751
		if (curusage >= oldusage)
4752
			retry_count--;
4753 4754
		else
			oldusage = curusage;
4755
	}
4756 4757
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4758 4759 4760
	return ret;
}

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4853 4854 4855 4856 4857 4858 4859
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4860
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4861 4862
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4863
 */
4864
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4865
				int node, int zid, enum lru_list lru)
4866
{
4867
	struct lruvec *lruvec;
4868
	unsigned long flags;
4869
	struct list_head *list;
4870 4871
	struct page *busy;
	struct zone *zone;
4872

K
KAMEZAWA Hiroyuki 已提交
4873
	zone = &NODE_DATA(node)->node_zones[zid];
4874 4875
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4876

4877
	busy = NULL;
4878
	do {
4879
		struct page_cgroup *pc;
4880 4881
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4882
		spin_lock_irqsave(&zone->lru_lock, flags);
4883
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4884
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4885
			break;
4886
		}
4887 4888 4889
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4890
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4891
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4892 4893
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4894
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4895

4896
		pc = lookup_page_cgroup(page);
4897

4898
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4899
			/* found lock contention or "pc" is obsolete. */
4900
			busy = page;
4901 4902 4903
			cond_resched();
		} else
			busy = NULL;
4904
	} while (!list_empty(list));
4905 4906 4907
}

/*
4908 4909
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4910
 * This enables deleting this mem_cgroup.
4911 4912
 *
 * Caller is responsible for holding css reference on the memcg.
4913
 */
4914
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4915
{
4916
	int node, zid;
4917
	u64 usage;
4918

4919
	do {
4920 4921
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4922 4923
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4924
		for_each_node_state(node, N_MEMORY) {
4925
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4926 4927
				enum lru_list lru;
				for_each_lru(lru) {
4928
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4929
							node, zid, lru);
4930
				}
4931
			}
4932
		}
4933 4934
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4935
		cond_resched();
4936

4937
		/*
4938 4939 4940 4941 4942
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4943 4944 4945 4946 4947 4948
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4949 4950 4951
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4952 4953
}

4954 4955
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4966 4967
}

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4978

4979
	/* returns EBUSY if there is a task or if we come here twice. */
4980 4981 4982
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4983 4984
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4985
	/* try to free all pages in this cgroup */
4986
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4987
		int progress;
4988

4989 4990 4991
		if (signal_pending(current))
			return -EINTR;

4992
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4993
						false);
4994
		if (!progress) {
4995
			nr_retries--;
4996
			/* maybe some writeback is necessary */
4997
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4998
		}
4999 5000

	}
K
KAMEZAWA Hiroyuki 已提交
5001
	lru_add_drain();
5002 5003 5004
	mem_cgroup_reparent_charges(memcg);

	return 0;
5005 5006
}

5007 5008
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5009
{
5010
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5011

5012 5013
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5014
	return mem_cgroup_force_empty(memcg);
5015 5016
}

5017 5018
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5019
{
5020
	return mem_cgroup_from_css(css)->use_hierarchy;
5021 5022
}

5023 5024
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5025 5026
{
	int retval = 0;
5027
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5028
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5029

5030
	mutex_lock(&memcg_create_mutex);
5031 5032 5033 5034

	if (memcg->use_hierarchy == val)
		goto out;

5035
	/*
5036
	 * If parent's use_hierarchy is set, we can't make any modifications
5037 5038 5039 5040 5041 5042
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5043
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5044
				(val == 1 || val == 0)) {
5045
		if (list_empty(&memcg->css.cgroup->children))
5046
			memcg->use_hierarchy = val;
5047 5048 5049 5050
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5051 5052

out:
5053
	mutex_unlock(&memcg_create_mutex);
5054 5055 5056 5057

	return retval;
}

5058

5059
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5060
					       enum mem_cgroup_stat_index idx)
5061
{
K
KAMEZAWA Hiroyuki 已提交
5062
	struct mem_cgroup *iter;
5063
	long val = 0;
5064

5065
	/* Per-cpu values can be negative, use a signed accumulator */
5066
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5067 5068 5069 5070 5071
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5072 5073
}

5074
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5075
{
K
KAMEZAWA Hiroyuki 已提交
5076
	u64 val;
5077

5078
	if (!mem_cgroup_is_root(memcg)) {
5079
		if (!swap)
5080
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5081
		else
5082
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5083 5084
	}

5085 5086 5087 5088
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5089 5090
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5091

K
KAMEZAWA Hiroyuki 已提交
5092
	if (swap)
5093
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5094 5095 5096 5097

	return val << PAGE_SHIFT;
}

5098 5099 5100
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5101
{
5102
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5103
	char str[64];
5104
	u64 val;
G
Glauber Costa 已提交
5105 5106
	int name, len;
	enum res_type type;
5107 5108 5109

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5110

5111 5112
	switch (type) {
	case _MEM:
5113
		if (name == RES_USAGE)
5114
			val = mem_cgroup_usage(memcg, false);
5115
		else
5116
			val = res_counter_read_u64(&memcg->res, name);
5117 5118
		break;
	case _MEMSWAP:
5119
		if (name == RES_USAGE)
5120
			val = mem_cgroup_usage(memcg, true);
5121
		else
5122
			val = res_counter_read_u64(&memcg->memsw, name);
5123
		break;
5124 5125 5126
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5127 5128 5129
	default:
		BUG();
	}
5130 5131 5132

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5133
}
5134

5135
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5136 5137 5138
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5139
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5152
	mutex_lock(&memcg_create_mutex);
5153
	mutex_lock(&set_limit_mutex);
5154
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5155
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5156 5157 5158 5159 5160 5161
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5162 5163
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5164
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5165 5166
			goto out;
		}
5167 5168 5169 5170 5171 5172
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5173 5174 5175 5176
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5177
	mutex_unlock(&memcg_create_mutex);
5178 5179 5180 5181
#endif
	return ret;
}

5182
#ifdef CONFIG_MEMCG_KMEM
5183
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5184
{
5185
	int ret = 0;
5186 5187
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5188 5189
		goto out;

5190
	memcg->kmem_account_flags = parent->kmem_account_flags;
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5201 5202 5203 5204
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5205 5206 5207
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5208 5209 5210 5211
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5212
	memcg_stop_kmem_account();
5213
	ret = memcg_update_cache_sizes(memcg);
5214
	memcg_resume_kmem_account();
5215 5216 5217
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5218
}
5219
#endif /* CONFIG_MEMCG_KMEM */
5220

5221 5222 5223 5224
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5225
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5226
			    const char *buffer)
B
Balbir Singh 已提交
5227
{
5228
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5229 5230
	enum res_type type;
	int name;
5231 5232 5233
	unsigned long long val;
	int ret;

5234 5235
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5236

5237
	switch (name) {
5238
	case RES_LIMIT:
5239 5240 5241 5242
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5243 5244
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5245 5246 5247
		if (ret)
			break;
		if (type == _MEM)
5248
			ret = mem_cgroup_resize_limit(memcg, val);
5249
		else if (type == _MEMSWAP)
5250
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5251
		else if (type == _KMEM)
5252
			ret = memcg_update_kmem_limit(css, val);
5253 5254
		else
			return -EINVAL;
5255
		break;
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5270 5271 5272 5273 5274
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5275 5276
}

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5287 5288
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5301
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5302
{
5303
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5304 5305
	int name;
	enum res_type type;
5306

5307 5308
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5309

5310
	switch (name) {
5311
	case RES_MAX_USAGE:
5312
		if (type == _MEM)
5313
			res_counter_reset_max(&memcg->res);
5314
		else if (type == _MEMSWAP)
5315
			res_counter_reset_max(&memcg->memsw);
5316 5317 5318 5319
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5320 5321
		break;
	case RES_FAILCNT:
5322
		if (type == _MEM)
5323
			res_counter_reset_failcnt(&memcg->res);
5324
		else if (type == _MEMSWAP)
5325
			res_counter_reset_failcnt(&memcg->memsw);
5326 5327 5328 5329
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5330 5331
		break;
	}
5332

5333
	return 0;
5334 5335
}

5336
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5337 5338
					struct cftype *cft)
{
5339
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5340 5341
}

5342
#ifdef CONFIG_MMU
5343
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5344 5345
					struct cftype *cft, u64 val)
{
5346
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5347 5348 5349

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5350

5351
	/*
5352 5353 5354 5355
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5356
	 */
5357
	memcg->move_charge_at_immigrate = val;
5358 5359
	return 0;
}
5360
#else
5361
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5362 5363 5364 5365 5366
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5367

5368
#ifdef CONFIG_NUMA
5369 5370
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5371 5372 5373 5374
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5375
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5376

5377
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5378
	seq_printf(m, "total=%lu", total_nr);
5379
	for_each_node_state(nid, N_MEMORY) {
5380
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5381 5382 5383 5384
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5385
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5386
	seq_printf(m, "file=%lu", file_nr);
5387
	for_each_node_state(nid, N_MEMORY) {
5388
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5389
				LRU_ALL_FILE);
5390 5391 5392 5393
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5394
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5395
	seq_printf(m, "anon=%lu", anon_nr);
5396
	for_each_node_state(nid, N_MEMORY) {
5397
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5398
				LRU_ALL_ANON);
5399 5400 5401 5402
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5403
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5404
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5405
	for_each_node_state(nid, N_MEMORY) {
5406
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5407
				BIT(LRU_UNEVICTABLE));
5408 5409 5410 5411 5412 5413 5414
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5415 5416 5417 5418 5419
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5420
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5421
				 struct seq_file *m)
5422
{
5423
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5424 5425
	struct mem_cgroup *mi;
	unsigned int i;
5426

5427
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5428
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5429
			continue;
5430 5431
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5432
	}
L
Lee Schermerhorn 已提交
5433

5434 5435 5436 5437 5438 5439 5440 5441
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5442
	/* Hierarchical information */
5443 5444
	{
		unsigned long long limit, memsw_limit;
5445
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5446
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5447
		if (do_swap_account)
5448 5449
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5450
	}
K
KOSAKI Motohiro 已提交
5451

5452 5453 5454
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5455
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5456
			continue;
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5477
	}
K
KAMEZAWA Hiroyuki 已提交
5478

K
KOSAKI Motohiro 已提交
5479 5480 5481 5482
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5483
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5484 5485 5486 5487 5488
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5489
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5490
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5491

5492 5493 5494 5495
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5496
			}
5497 5498 5499 5500
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5501 5502 5503
	}
#endif

5504 5505 5506
	return 0;
}

5507 5508
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5509
{
5510
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5511

5512
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5513 5514
}

5515 5516
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5517
{
5518
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5519
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5520

T
Tejun Heo 已提交
5521
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5522 5523
		return -EINVAL;

5524
	mutex_lock(&memcg_create_mutex);
5525

K
KOSAKI Motohiro 已提交
5526
	/* If under hierarchy, only empty-root can set this value */
5527
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5528
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5529
		return -EINVAL;
5530
	}
K
KOSAKI Motohiro 已提交
5531 5532 5533

	memcg->swappiness = val;

5534
	mutex_unlock(&memcg_create_mutex);
5535

K
KOSAKI Motohiro 已提交
5536 5537 5538
	return 0;
}

5539 5540 5541 5542 5543 5544 5545 5546
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5547
		t = rcu_dereference(memcg->thresholds.primary);
5548
	else
5549
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5550 5551 5552 5553 5554 5555 5556

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5557
	 * current_threshold points to threshold just below or equal to usage.
5558 5559 5560
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5561
	i = t->current_threshold;
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5585
	t->current_threshold = i - 1;
5586 5587 5588 5589 5590 5591
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5592 5593 5594 5595 5596 5597 5598
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5599 5600 5601 5602 5603 5604 5605
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5606 5607 5608 5609 5610 5611 5612
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5613 5614
}

5615
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5616 5617 5618
{
	struct mem_cgroup_eventfd_list *ev;

5619
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5620 5621 5622 5623
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5624
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5625
{
K
KAMEZAWA Hiroyuki 已提交
5626 5627
	struct mem_cgroup *iter;

5628
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5629
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5630 5631
}

5632
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5633
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5634
{
5635
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5636 5637
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5638
	enum res_type type = MEMFILE_TYPE(cft->private);
5639
	u64 threshold, usage;
5640
	int i, size, ret;
5641 5642 5643 5644 5645 5646

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5647

5648
	if (type == _MEM)
5649
		thresholds = &memcg->thresholds;
5650
	else if (type == _MEMSWAP)
5651
		thresholds = &memcg->memsw_thresholds;
5652 5653 5654 5655 5656 5657
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5658
	if (thresholds->primary)
5659 5660
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5661
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5662 5663

	/* Allocate memory for new array of thresholds */
5664
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5665
			GFP_KERNEL);
5666
	if (!new) {
5667 5668 5669
		ret = -ENOMEM;
		goto unlock;
	}
5670
	new->size = size;
5671 5672

	/* Copy thresholds (if any) to new array */
5673 5674
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5675
				sizeof(struct mem_cgroup_threshold));
5676 5677
	}

5678
	/* Add new threshold */
5679 5680
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5681 5682

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5683
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5684 5685 5686
			compare_thresholds, NULL);

	/* Find current threshold */
5687
	new->current_threshold = -1;
5688
	for (i = 0; i < size; i++) {
5689
		if (new->entries[i].threshold <= usage) {
5690
			/*
5691 5692
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5693 5694
			 * it here.
			 */
5695
			++new->current_threshold;
5696 5697
		} else
			break;
5698 5699
	}

5700 5701 5702 5703 5704
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5705

5706
	/* To be sure that nobody uses thresholds */
5707 5708 5709 5710 5711 5712 5713 5714
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5715
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5716
	struct cftype *cft, struct eventfd_ctx *eventfd)
5717
{
5718
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5719 5720
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5721
	enum res_type type = MEMFILE_TYPE(cft->private);
5722
	u64 usage;
5723
	int i, j, size;
5724 5725 5726

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5727
		thresholds = &memcg->thresholds;
5728
	else if (type == _MEMSWAP)
5729
		thresholds = &memcg->memsw_thresholds;
5730 5731 5732
	else
		BUG();

5733 5734 5735
	if (!thresholds->primary)
		goto unlock;

5736 5737 5738 5739 5740 5741
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5742 5743 5744
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5745 5746 5747
			size++;
	}

5748
	new = thresholds->spare;
5749

5750 5751
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5752 5753
		kfree(new);
		new = NULL;
5754
		goto swap_buffers;
5755 5756
	}

5757
	new->size = size;
5758 5759

	/* Copy thresholds and find current threshold */
5760 5761 5762
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5763 5764
			continue;

5765
		new->entries[j] = thresholds->primary->entries[i];
5766
		if (new->entries[j].threshold <= usage) {
5767
			/*
5768
			 * new->current_threshold will not be used
5769 5770 5771
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5772
			++new->current_threshold;
5773 5774 5775 5776
		}
		j++;
	}

5777
swap_buffers:
5778 5779
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5780 5781 5782 5783 5784 5785
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5786
	rcu_assign_pointer(thresholds->primary, new);
5787

5788
	/* To be sure that nobody uses thresholds */
5789
	synchronize_rcu();
5790
unlock:
5791 5792
	mutex_unlock(&memcg->thresholds_lock);
}
5793

5794
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5795 5796
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5797
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5798
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5799
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5800 5801 5802 5803 5804 5805

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5806
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5807 5808 5809 5810 5811

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5812
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5813
		eventfd_signal(eventfd, 1);
5814
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5815 5816 5817 5818

	return 0;
}

5819
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5820 5821
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5822
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5823
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5824
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5825 5826 5827

	BUG_ON(type != _OOM_TYPE);

5828
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5829

5830
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5831 5832 5833 5834 5835 5836
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5837
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5838 5839
}

5840
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5841 5842
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5843
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5844

5845
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5846

5847
	if (atomic_read(&memcg->under_oom))
5848 5849 5850 5851 5852 5853
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5854
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5855 5856
	struct cftype *cft, u64 val)
{
5857
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5858
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5859 5860

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5861
	if (!parent || !((val == 0) || (val == 1)))
5862 5863
		return -EINVAL;

5864
	mutex_lock(&memcg_create_mutex);
5865
	/* oom-kill-disable is a flag for subhierarchy. */
5866
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5867
		mutex_unlock(&memcg_create_mutex);
5868 5869
		return -EINVAL;
	}
5870
	memcg->oom_kill_disable = val;
5871
	if (!val)
5872
		memcg_oom_recover(memcg);
5873
	mutex_unlock(&memcg_create_mutex);
5874 5875 5876
	return 0;
}

A
Andrew Morton 已提交
5877
#ifdef CONFIG_MEMCG_KMEM
5878
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5879
{
5880 5881
	int ret;

5882
	memcg->kmemcg_id = -1;
5883 5884 5885
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5886

5887
	return mem_cgroup_sockets_init(memcg, ss);
5888
}
5889

5890
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5891
{
5892
	mem_cgroup_sockets_destroy(memcg);
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5919 5920 5921 5922 5923 5924 5925

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5926
		css_put(&memcg->css);
G
Glauber Costa 已提交
5927
}
5928
#else
5929
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5930 5931 5932
{
	return 0;
}
G
Glauber Costa 已提交
5933

5934 5935 5936 5937 5938
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5939 5940
{
}
5941 5942
#endif

B
Balbir Singh 已提交
5943 5944
static struct cftype mem_cgroup_files[] = {
	{
5945
		.name = "usage_in_bytes",
5946
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5947
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5948 5949
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5950
	},
5951 5952
	{
		.name = "max_usage_in_bytes",
5953
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5954
		.trigger = mem_cgroup_reset,
5955
		.read = mem_cgroup_read,
5956
	},
B
Balbir Singh 已提交
5957
	{
5958
		.name = "limit_in_bytes",
5959
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5960
		.write_string = mem_cgroup_write,
5961
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5962
	},
5963 5964 5965 5966
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5967
		.read = mem_cgroup_read,
5968
	},
B
Balbir Singh 已提交
5969 5970
	{
		.name = "failcnt",
5971
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5972
		.trigger = mem_cgroup_reset,
5973
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5974
	},
5975 5976
	{
		.name = "stat",
5977
		.read_seq_string = memcg_stat_show,
5978
	},
5979 5980 5981 5982
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5983 5984
	{
		.name = "use_hierarchy",
5985
		.flags = CFTYPE_INSANE,
5986 5987 5988
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5989 5990 5991 5992 5993
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5994 5995 5996 5997 5998
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5999 6000
	{
		.name = "oom_control",
6001 6002
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6003 6004 6005 6006
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6007 6008 6009 6010 6011
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6012 6013 6014
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6015
		.read_seq_string = memcg_numa_stat_show,
6016 6017
	},
#endif
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6042 6043 6044 6045 6046 6047
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6048
#endif
6049
	{ },	/* terminate */
6050
};
6051

6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6082
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6083 6084
{
	struct mem_cgroup_per_node *pn;
6085
	struct mem_cgroup_per_zone *mz;
6086
	int zone, tmp = node;
6087 6088 6089 6090 6091 6092 6093 6094
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6095 6096
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6097
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6098 6099
	if (!pn)
		return 1;
6100 6101 6102

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6103
		lruvec_init(&mz->lruvec);
6104 6105
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6106
		mz->memcg = memcg;
6107
	}
6108
	memcg->nodeinfo[node] = pn;
6109 6110 6111
	return 0;
}

6112
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6113
{
6114
	kfree(memcg->nodeinfo[node]);
6115 6116
}

6117 6118
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6119
	struct mem_cgroup *memcg;
6120
	size_t size = memcg_size();
6121

6122
	/* Can be very big if nr_node_ids is very big */
6123
	if (size < PAGE_SIZE)
6124
		memcg = kzalloc(size, GFP_KERNEL);
6125
	else
6126
		memcg = vzalloc(size);
6127

6128
	if (!memcg)
6129 6130
		return NULL;

6131 6132
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6133
		goto out_free;
6134 6135
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6136 6137 6138

out_free:
	if (size < PAGE_SIZE)
6139
		kfree(memcg);
6140
	else
6141
		vfree(memcg);
6142
	return NULL;
6143 6144
}

6145
/*
6146 6147 6148 6149 6150 6151 6152 6153
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6154
 */
6155 6156

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6157
{
6158
	int node;
6159
	size_t size = memcg_size();
6160

6161
	mem_cgroup_remove_from_trees(memcg);
6162 6163 6164 6165 6166 6167 6168
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6180
	disarm_static_keys(memcg);
6181 6182 6183 6184
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6185
}
6186

6187 6188 6189
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6190
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6191
{
6192
	if (!memcg->res.parent)
6193
		return NULL;
6194
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6195
}
G
Glauber Costa 已提交
6196
EXPORT_SYMBOL(parent_mem_cgroup);
6197

6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6221
static struct cgroup_subsys_state * __ref
6222
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6223
{
6224
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6225
	long error = -ENOMEM;
6226
	int node;
B
Balbir Singh 已提交
6227

6228 6229
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6230
		return ERR_PTR(error);
6231

B
Bob Liu 已提交
6232
	for_each_node(node)
6233
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6234
			goto free_out;
6235

6236
	/* root ? */
6237
	if (parent_css == NULL) {
6238
		root_mem_cgroup = memcg;
6239 6240 6241
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6242
	}
6243

6244 6245 6246 6247 6248
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6249
	vmpressure_init(&memcg->vmpressure);
6250 6251 6252 6253 6254 6255 6256 6257 6258

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6259
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6260
{
6261 6262
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6263 6264
	int error = 0;

T
Tejun Heo 已提交
6265
	if (!parent)
6266 6267
		return 0;

6268
	mutex_lock(&memcg_create_mutex);
6269 6270 6271 6272 6273 6274

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6275 6276
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6277
		res_counter_init(&memcg->kmem, &parent->kmem);
6278

6279
		/*
6280 6281
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6282
		 */
6283
	} else {
6284 6285
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6286
		res_counter_init(&memcg->kmem, NULL);
6287 6288 6289 6290 6291
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6292
		if (parent != root_mem_cgroup)
6293
			mem_cgroup_subsys.broken_hierarchy = true;
6294
	}
6295 6296

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6297
	mutex_unlock(&memcg_create_mutex);
6298
	return error;
B
Balbir Singh 已提交
6299 6300
}

M
Michal Hocko 已提交
6301 6302 6303 6304 6305 6306 6307 6308
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6309
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6310 6311 6312 6313 6314 6315

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6316
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6317 6318
}

6319
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6320
{
6321
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6322

6323 6324
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6325
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6326
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6327
	mem_cgroup_destroy_all_caches(memcg);
6328
	vmpressure_cleanup(&memcg->vmpressure);
6329 6330
}

6331
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6332
{
6333
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6334

6335
	memcg_destroy_kmem(memcg);
6336
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6337 6338
}

6339
#ifdef CONFIG_MMU
6340
/* Handlers for move charge at task migration. */
6341 6342
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6343
{
6344 6345
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6346
	struct mem_cgroup *memcg = mc.to;
6347

6348
	if (mem_cgroup_is_root(memcg)) {
6349 6350 6351 6352 6353 6354 6355 6356
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6357
		 * "memcg" cannot be under rmdir() because we've already checked
6358 6359 6360 6361
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6362
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6363
			goto one_by_one;
6364
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6365
						PAGE_SIZE * count, &dummy)) {
6366
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6383 6384
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6385
		if (ret)
6386
			/* mem_cgroup_clear_mc() will do uncharge later */
6387
			return ret;
6388 6389
		mc.precharge++;
	}
6390 6391 6392 6393
	return ret;
}

/**
6394
 * get_mctgt_type - get target type of moving charge
6395 6396 6397
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6398
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6399 6400 6401 6402 6403 6404
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6405 6406 6407
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6408 6409 6410 6411 6412
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6413
	swp_entry_t	ent;
6414 6415 6416
};

enum mc_target_type {
6417
	MC_TARGET_NONE = 0,
6418
	MC_TARGET_PAGE,
6419
	MC_TARGET_SWAP,
6420 6421
};

D
Daisuke Nishimura 已提交
6422 6423
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6424
{
D
Daisuke Nishimura 已提交
6425
	struct page *page = vm_normal_page(vma, addr, ptent);
6426

D
Daisuke Nishimura 已提交
6427 6428 6429 6430
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6431
		if (!move_anon())
D
Daisuke Nishimura 已提交
6432
			return NULL;
6433 6434
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6435 6436 6437 6438 6439 6440 6441
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6442
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6443 6444 6445 6446 6447 6448 6449 6450
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6451 6452 6453 6454
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6455
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6456 6457 6458 6459 6460
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6461 6462 6463 6464 6465 6466 6467
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6468

6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6488 6489 6490 6491 6492 6493
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6494
		if (do_swap_account)
6495
			*entry = swap;
6496
		page = find_get_page(swap_address_space(swap), swap.val);
6497
	}
6498
#endif
6499 6500 6501
	return page;
}

6502
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6503 6504 6505 6506
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6507
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6508 6509 6510 6511 6512 6513
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6514 6515
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6516 6517

	if (!page && !ent.val)
6518
		return ret;
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6534 6535
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6536
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6537 6538 6539
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6540 6541 6542 6543
	}
	return ret;
}

6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6579 6580 6581 6582 6583 6584 6585 6586
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6587 6588 6589 6590
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6591
		return 0;
6592
	}
6593

6594 6595
	if (pmd_trans_unstable(pmd))
		return 0;
6596 6597
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6598
		if (get_mctgt_type(vma, addr, *pte, NULL))
6599 6600 6601 6602
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6603 6604 6605
	return 0;
}

6606 6607 6608 6609 6610
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6611
	down_read(&mm->mmap_sem);
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6623
	up_read(&mm->mmap_sem);
6624 6625 6626 6627 6628 6629 6630 6631 6632

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6633 6634 6635 6636 6637
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6638 6639
}

6640 6641
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6642
{
6643 6644
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6645
	int i;
6646

6647
	/* we must uncharge all the leftover precharges from mc.to */
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6659
	}
6660 6661 6662 6663 6664 6665
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6666 6667 6668

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6669 6670 6671 6672 6673 6674 6675 6676 6677

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6678
		/* we've already done css_get(mc.to) */
6679 6680
		mc.moved_swap = 0;
	}
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6696
	spin_lock(&mc.lock);
6697 6698
	mc.from = NULL;
	mc.to = NULL;
6699
	spin_unlock(&mc.lock);
6700
	mem_cgroup_end_move(from);
6701 6702
}

6703
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6704
				 struct cgroup_taskset *tset)
6705
{
6706
	struct task_struct *p = cgroup_taskset_first(tset);
6707
	int ret = 0;
6708
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6709
	unsigned long move_charge_at_immigrate;
6710

6711 6712 6713 6714 6715 6716 6717
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6718 6719 6720
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6721
		VM_BUG_ON(from == memcg);
6722 6723 6724 6725 6726

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6727 6728 6729 6730
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6731
			VM_BUG_ON(mc.moved_charge);
6732
			VM_BUG_ON(mc.moved_swap);
6733
			mem_cgroup_start_move(from);
6734
			spin_lock(&mc.lock);
6735
			mc.from = from;
6736
			mc.to = memcg;
6737
			mc.immigrate_flags = move_charge_at_immigrate;
6738
			spin_unlock(&mc.lock);
6739
			/* We set mc.moving_task later */
6740 6741 6742 6743

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6744 6745
		}
		mmput(mm);
6746 6747 6748 6749
	}
	return ret;
}

6750
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6751
				     struct cgroup_taskset *tset)
6752
{
6753
	mem_cgroup_clear_mc();
6754 6755
}

6756 6757 6758
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6759
{
6760 6761 6762 6763
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6764 6765 6766 6767
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6768

6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6780
		if (mc.precharge < HPAGE_PMD_NR) {
6781 6782 6783 6784 6785 6786 6787 6788 6789
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6790
							pc, mc.from, mc.to)) {
6791 6792 6793 6794 6795 6796 6797 6798
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6799
		return 0;
6800 6801
	}

6802 6803
	if (pmd_trans_unstable(pmd))
		return 0;
6804 6805 6806 6807
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6808
		swp_entry_t ent;
6809 6810 6811 6812

		if (!mc.precharge)
			break;

6813
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6814 6815 6816 6817 6818
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6819
			if (!mem_cgroup_move_account(page, 1, pc,
6820
						     mc.from, mc.to)) {
6821
				mc.precharge--;
6822 6823
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6824 6825
			}
			putback_lru_page(page);
6826
put:			/* get_mctgt_type() gets the page */
6827 6828
			put_page(page);
			break;
6829 6830
		case MC_TARGET_SWAP:
			ent = target.ent;
6831
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6832
				mc.precharge--;
6833 6834 6835
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6836
			break;
6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6851
		ret = mem_cgroup_do_precharge(1);
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6895
	up_read(&mm->mmap_sem);
6896 6897
}

6898
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6899
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6900
{
6901
	struct task_struct *p = cgroup_taskset_first(tset);
6902
	struct mm_struct *mm = get_task_mm(p);
6903 6904

	if (mm) {
6905 6906
		if (mc.to)
			mem_cgroup_move_charge(mm);
6907 6908
		mmput(mm);
	}
6909 6910
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6911
}
6912
#else	/* !CONFIG_MMU */
6913
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6914
				 struct cgroup_taskset *tset)
6915 6916 6917
{
	return 0;
}
6918
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6919
				     struct cgroup_taskset *tset)
6920 6921
{
}
6922
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6923
				 struct cgroup_taskset *tset)
6924 6925 6926
{
}
#endif
B
Balbir Singh 已提交
6927

6928 6929 6930 6931
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6932
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6933 6934 6935 6936 6937 6938
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6939 6940
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6941 6942
}

B
Balbir Singh 已提交
6943 6944 6945
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6946
	.css_alloc = mem_cgroup_css_alloc,
6947
	.css_online = mem_cgroup_css_online,
6948 6949
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6950 6951
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6952
	.attach = mem_cgroup_move_task,
6953
	.bind = mem_cgroup_bind,
6954
	.base_cftypes = mem_cgroup_files,
6955
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6956
	.use_id = 1,
B
Balbir Singh 已提交
6957
};
6958

A
Andrew Morton 已提交
6959
#ifdef CONFIG_MEMCG_SWAP
6960 6961
static int __init enable_swap_account(char *s)
{
6962
	if (!strcmp(s, "1"))
6963
		really_do_swap_account = 1;
6964
	else if (!strcmp(s, "0"))
6965 6966 6967
		really_do_swap_account = 0;
	return 1;
}
6968
__setup("swapaccount=", enable_swap_account);
6969

6970 6971
static void __init memsw_file_init(void)
{
6972 6973 6974 6975 6976 6977 6978 6979 6980
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6981
}
6982

6983
#else
6984
static void __init enable_swap_cgroup(void)
6985 6986
{
}
6987
#endif
6988 6989

/*
6990 6991 6992 6993 6994 6995
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6996 6997 6998 6999
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7000
	enable_swap_cgroup();
7001
	mem_cgroup_soft_limit_tree_init();
7002
	memcg_stock_init();
7003 7004 7005
	return 0;
}
subsys_initcall(mem_cgroup_init);