memcontrol.c 146.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110 111
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
112
	MEM_CGROUP_TARGET_NUMAINFO,
113 114 115 116
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
117
#define NUMAINFO_EVENTS_TARGET	(1024)
118

119
struct mem_cgroup_stat_cpu {
120
	long count[MEM_CGROUP_STAT_NSTATS];
121
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122
	unsigned long targets[MEM_CGROUP_NTARGETS];
123 124
};

125 126 127 128 129 130 131
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

132 133 134 135
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
136
	struct lruvec		lruvec;
137
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
138

139 140
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
141
	struct zone_reclaim_stat reclaim_stat;
142 143 144 145
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
146
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
147
						/* use container_of	   */
148 149 150 151 152 153 154 155 156 157
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

178 179 180 181 182
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
183
/* For threshold */
184 185
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
186
	int current_threshold;
187 188 189 190 191
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
192 193 194 195 196 197 198 199 200 201 202 203

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
204 205 206 207 208
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
209

210 211
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212

B
Balbir Singh 已提交
213 214 215 216 217 218 219
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
220 221 222
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
223 224 225 226 227 228 229
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

254 255 256 257
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
258
	struct mem_cgroup_lru_info info;
259 260 261
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
262 263
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
264
#endif
265 266 267 268
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
269 270 271 272

	bool		oom_lock;
	atomic_t	under_oom;

273
	atomic_t	refcnt;
274

275
	int	swappiness;
276 277
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
278

279 280 281
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

282 283 284 285
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
286
	struct mem_cgroup_thresholds thresholds;
287

288
	/* thresholds for mem+swap usage. RCU-protected */
289
	struct mem_cgroup_thresholds memsw_thresholds;
290

K
KAMEZAWA Hiroyuki 已提交
291 292
	/* For oom notifier event fd */
	struct list_head oom_notify;
293

294 295 296 297 298
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
299 300 301 302
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
303 304
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
305
	/*
306
	 * percpu counter.
307
	 */
308
	struct mem_cgroup_stat_cpu *stat;
309 310 311 312 313 314
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
315 316 317 318

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
319 320
};

321 322 323 324 325 326
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
327
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
328
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
329 330 331
	NR_MOVE_TYPE,
};

332 333
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
334
	spinlock_t	  lock; /* for from, to */
335 336 337
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
338
	unsigned long moved_charge;
339
	unsigned long moved_swap;
340 341 342
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
343
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 345
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
346

D
Daisuke Nishimura 已提交
347 348 349 350 351 352
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

353 354 355 356 357 358
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

359 360 361 362 363 364 365
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

366 367 368
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
369
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
370
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
371
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
372
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
373 374 375
	NR_CHARGE_TYPE,
};

376
/* for encoding cft->private value on file */
377 378 379
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
380 381 382
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
383 384
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
385

386 387 388 389 390 391 392 393
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

394 395
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
396 397 398 399

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
400
#include <net/ip.h>
G
Glauber Costa 已提交
401 402 403 404

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
405
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
406 407 408 409
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

410 411 412 413 414 415 416 417 418 419 420 421 422 423
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
437
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
438 439 440 441 442 443
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
444

445
#ifdef CONFIG_INET
G
Glauber Costa 已提交
446 447 448 449 450 451 452 453
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
454 455 456
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

457
static void drain_all_stock_async(struct mem_cgroup *memcg);
458

459
static struct mem_cgroup_per_zone *
460
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
461
{
462
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463 464
}

465
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
466
{
467
	return &memcg->css;
468 469
}

470
static struct mem_cgroup_per_zone *
471
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
472
{
473 474
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
475

476
	return mem_cgroup_zoneinfo(memcg, nid, zid);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
495
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496
				struct mem_cgroup_per_zone *mz,
497 498
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
499 500 501 502 503 504 505 506
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

507 508 509
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
526 527 528
}

static void
529
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 531 532 533 534 535 536 537 538
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

539
static void
540
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 542 543 544
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
545
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 547 548 549
	spin_unlock(&mctz->lock);
}


550
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551
{
552
	unsigned long long excess;
553 554
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
555 556
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
557 558 559
	mctz = soft_limit_tree_from_page(page);

	/*
560 561
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
562
	 */
563 564 565
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
566 567 568 569
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
570
		if (excess || mz->on_tree) {
571 572 573
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
574
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
575
			/*
576 577
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
578
			 */
579
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 581
			spin_unlock(&mctz->lock);
		}
582 583 584
	}
}

585
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586 587 588 589 590
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
591
	for_each_node(node) {
592
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
594
			mctz = soft_limit_tree_node_zone(node, zone);
595
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
596 597 598 599
		}
	}
}

600 601 602 603
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
604
	struct mem_cgroup_per_zone *mz;
605 606

retry:
607
	mz = NULL;
608 609 610 611 612 613 614 615 616 617
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
618 619 620
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
656
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657
				 enum mem_cgroup_stat_index idx)
658
{
659
	long val = 0;
660 661
	int cpu;

662 663
	get_online_cpus();
	for_each_online_cpu(cpu)
664
		val += per_cpu(memcg->stat->count[idx], cpu);
665
#ifdef CONFIG_HOTPLUG_CPU
666 667 668
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
669 670
#endif
	put_online_cpus();
671 672 673
	return val;
}

674
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 676 677
					 bool charge)
{
	int val = (charge) ? 1 : -1;
678
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679 680
}

681
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 683 684 685 686 687
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
688
		val += per_cpu(memcg->stat->events[idx], cpu);
689
#ifdef CONFIG_HOTPLUG_CPU
690 691 692
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
693 694 695 696
#endif
	return val;
}

697
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698
					 bool anon, int nr_pages)
699
{
700 701
	preempt_disable();

702 703 704 705 706 707
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708
				nr_pages);
709
	else
710
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711
				nr_pages);
712

713 714
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
715
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716
	else {
717
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 719
		nr_pages = -nr_pages; /* for event */
	}
720

721
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
722

723
	preempt_enable();
724 725
}

726
unsigned long
727
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728
			unsigned int lru_mask)
729 730
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
731
	enum lru_list lru;
732 733
	unsigned long ret = 0;

734
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
735

H
Hugh Dickins 已提交
736 737 738
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
739 740 741 742 743
	}
	return ret;
}

static unsigned long
744
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 746
			int nid, unsigned int lru_mask)
{
747 748 749
	u64 total = 0;
	int zid;

750
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 752
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
753

754 755
	return total;
}
756

757
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758
			unsigned int lru_mask)
759
{
760
	int nid;
761 762
	u64 total = 0;

763
	for_each_node_state(nid, N_HIGH_MEMORY)
764
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765
	return total;
766 767
}

768 769
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
770 771 772
{
	unsigned long val, next;

773 774
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
775
	/* from time_after() in jiffies.h */
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
792
	}
793
	return false;
794 795 796 797 798 799
}

/*
 * Check events in order.
 *
 */
800
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
801
{
802
	preempt_disable();
803
	/* threshold event is triggered in finer grain than soft limit */
804 805
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
806 807
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
808 809 810 811 812 813 814 815 816

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

817
		mem_cgroup_threshold(memcg);
818
		if (unlikely(do_softlimit))
819
			mem_cgroup_update_tree(memcg, page);
820
#if MAX_NUMNODES > 1
821
		if (unlikely(do_numainfo))
822
			atomic_inc(&memcg->numainfo_events);
823
#endif
824 825
	} else
		preempt_enable();
826 827
}

G
Glauber Costa 已提交
828
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
829 830 831 832 833 834
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

835
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
836
{
837 838 839 840 841 842 843 844
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

845 846 847 848
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

849
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
850
{
851
	struct mem_cgroup *memcg = NULL;
852 853 854

	if (!mm)
		return NULL;
855 856 857 858 859 860 861
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
862 863
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
864
			break;
865
	} while (!css_tryget(&memcg->css));
866
	rcu_read_unlock();
867
	return memcg;
868 869
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
890
{
891 892
	struct mem_cgroup *memcg = NULL;
	int id = 0;
893

894 895 896
	if (mem_cgroup_disabled())
		return NULL;

897 898
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
899

900 901
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
902

903 904
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
905

906 907 908 909 910
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
911

912
	while (!memcg) {
913
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914
		struct cgroup_subsys_state *css;
915

916 917 918 919 920 921 922 923 924 925 926
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
927

928 929 930 931 932 933 934 935
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
936 937
		rcu_read_unlock();

938 939 940 941 942 943 944
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
945 946 947 948 949

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
950
}
K
KAMEZAWA Hiroyuki 已提交
951

952 953 954 955 956 957 958
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
959 960 961 962 963 964
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
965

966 967 968 969 970 971
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
972
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
973
	     iter != NULL;				\
974
	     iter = mem_cgroup_iter(root, iter, NULL))
975

976
#define for_each_mem_cgroup(iter)			\
977
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
978
	     iter != NULL;				\
979
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
980

981
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
982
{
983
	return (memcg == root_mem_cgroup);
984 985
}

986 987
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
988
	struct mem_cgroup *memcg;
989 990 991 992 993

	if (!mm)
		return;

	rcu_read_lock();
994 995
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
996 997 998 999
		goto out;

	switch (idx) {
	case PGFAULT:
1000 1001 1002 1003
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 1005 1006 1007 1008 1009 1010 1011 1012
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1062 1063
{
	struct mem_cgroup_per_zone *mz;
1064 1065
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1066

1067
	if (mem_cgroup_disabled())
1068 1069
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1070
	pc = lookup_page_cgroup(page);
1071
	memcg = pc->mem_cgroup;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1085 1086
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1087
	mz->lru_size[lru] += 1 << compound_order(page);
1088
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1089
}
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1100
 */
1101
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1102 1103
{
	struct mem_cgroup_per_zone *mz;
1104
	struct mem_cgroup *memcg;
1105 1106 1107 1108 1109 1110
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1111 1112
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1113 1114
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1115 1116
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1117 1118
}

1119
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1120
{
1121
	mem_cgroup_lru_del_list(page, page_lru(page));
1122 1123
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1142
{
1143 1144 1145
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1146
}
1147

1148
/*
1149
 * Checks whether given mem is same or in the root_mem_cgroup's
1150 1151
 * hierarchy subtree
 */
1152 1153
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1154
{
1155
	bool ret;
1156

1157 1158 1159 1160 1161 1162 1163 1164
	if (root_memcg == memcg)
		return true;
	if (!root_memcg->use_hierarchy)
		return false;
	rcu_read_lock();
	ret = css_is_ancestor(&memcg->css, &root_memcg->css);
	rcu_read_unlock();
	return ret;
1165 1166
}

1167
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1168 1169
{
	int ret;
1170
	struct mem_cgroup *curr = NULL;
1171
	struct task_struct *p;
1172

1173
	p = find_lock_task_mm(task);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1189 1190
	if (!curr)
		return 0;
1191
	/*
1192
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1193
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1194 1195
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1196
	 */
1197
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1198
	css_put(&curr->css);
1199 1200 1201
	return ret;
}

1202
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1203
{
1204 1205 1206
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1207
	unsigned long inactive;
1208
	unsigned long active;
1209
	unsigned long gb;
1210

1211 1212 1213 1214
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1215

1216 1217 1218 1219 1220 1221
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1222
	return inactive * inactive_ratio < active;
1223 1224
}

1225
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1226 1227 1228
{
	unsigned long active;
	unsigned long inactive;
1229 1230
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1231

1232 1233 1234 1235
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1236 1237 1238 1239

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1240 1241 1242
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1243
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1260 1261
	if (!PageCgroupUsed(pc))
		return NULL;
1262 1263
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1264
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1265 1266 1267
	return &mz->reclaim_stat;
}

1268 1269 1270
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1271
/**
1272 1273
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1274
 *
1275
 * Returns the maximum amount of memory @mem can be charged with, in
1276
 * pages.
1277
 */
1278
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1279
{
1280 1281
	unsigned long long margin;

1282
	margin = res_counter_margin(&memcg->res);
1283
	if (do_swap_account)
1284
		margin = min(margin, res_counter_margin(&memcg->memsw));
1285
	return margin >> PAGE_SHIFT;
1286 1287
}

1288
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1289 1290 1291 1292 1293 1294 1295
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1296
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1297 1298
}

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1313 1314 1315 1316

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1317
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1318
{
1319
	atomic_inc(&memcg_moving);
1320
	atomic_inc(&memcg->moving_account);
1321 1322 1323
	synchronize_rcu();
}

1324
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1325
{
1326 1327 1328 1329
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1330 1331
	if (memcg) {
		atomic_dec(&memcg_moving);
1332
		atomic_dec(&memcg->moving_account);
1333
	}
1334
}
1335

1336 1337 1338
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1339 1340
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1341 1342 1343 1344 1345 1346 1347
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1348
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1349 1350
{
	VM_BUG_ON(!rcu_read_lock_held());
1351
	return atomic_read(&memcg->moving_account) > 0;
1352
}
1353

1354
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1355
{
1356 1357
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1358
	bool ret = false;
1359 1360 1361 1362 1363 1364 1365 1366 1367
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1368

1369 1370
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1371 1372
unlock:
	spin_unlock(&mc.lock);
1373 1374 1375
	return ret;
}

1376
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1377 1378
{
	if (mc.moving_task && current != mc.moving_task) {
1379
		if (mem_cgroup_under_move(memcg)) {
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1392 1393 1394 1395
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1396
 * see mem_cgroup_stolen(), too.
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1410
/**
1411
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1430
	if (!memcg || !p)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1476 1477 1478 1479
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1480
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1481 1482
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1483 1484
	struct mem_cgroup *iter;

1485
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1486
		num++;
1487 1488 1489
	return num;
}

D
David Rientjes 已提交
1490 1491 1492 1493 1494 1495 1496 1497
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1498 1499 1500
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1501 1502 1503 1504 1505 1506 1507 1508
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1555
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1556 1557
		int nid, bool noswap)
{
1558
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1559 1560 1561
		return true;
	if (noswap || !total_swap_pages)
		return false;
1562
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1563 1564 1565 1566
		return true;
	return false;

}
1567 1568 1569 1570 1571 1572 1573 1574
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1575
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1576 1577
{
	int nid;
1578 1579 1580 1581
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1582
	if (!atomic_read(&memcg->numainfo_events))
1583
		return;
1584
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1585 1586 1587
		return;

	/* make a nodemask where this memcg uses memory from */
1588
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1589 1590 1591

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1592 1593
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1594
	}
1595

1596 1597
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1612
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1613 1614 1615
{
	int node;

1616 1617
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1618

1619
	node = next_node(node, memcg->scan_nodes);
1620
	if (node == MAX_NUMNODES)
1621
		node = first_node(memcg->scan_nodes);
1622 1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1631
	memcg->last_scanned_node = node;
1632 1633 1634
	return node;
}

1635 1636 1637 1638 1639 1640
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1641
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1642 1643 1644 1645 1646 1647 1648
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1649 1650
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1651
		     nid < MAX_NUMNODES;
1652
		     nid = next_node(nid, memcg->scan_nodes)) {
1653

1654
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1655 1656 1657 1658 1659 1660 1661
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1662
		if (node_isset(nid, memcg->scan_nodes))
1663
			continue;
1664
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1665 1666 1667 1668 1669
			return true;
	}
	return false;
}

1670
#else
1671
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1672 1673 1674
{
	return 0;
}
1675

1676
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1677
{
1678
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1679
}
1680 1681
#endif

1682 1683 1684 1685
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1686
{
1687
	struct mem_cgroup *victim = NULL;
1688
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1689
	int loop = 0;
1690
	unsigned long excess;
1691
	unsigned long nr_scanned;
1692 1693 1694 1695
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1696

1697
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1698

1699
	while (1) {
1700
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1701
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1702
			loop++;
1703 1704 1705 1706 1707 1708
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1709
				if (!total)
1710 1711
					break;
				/*
L
Lucas De Marchi 已提交
1712
				 * We want to do more targeted reclaim.
1713 1714 1715 1716 1717
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1718
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1719 1720
					break;
			}
1721
			continue;
1722
		}
1723
		if (!mem_cgroup_reclaimable(victim, false))
1724
			continue;
1725 1726 1727 1728
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1729
			break;
1730
	}
1731
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1732
	return total;
1733 1734
}

K
KAMEZAWA Hiroyuki 已提交
1735 1736 1737
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1738
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1739
 */
1740
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1741
{
1742
	struct mem_cgroup *iter, *failed = NULL;
1743

1744
	for_each_mem_cgroup_tree(iter, memcg) {
1745
		if (iter->oom_lock) {
1746 1747 1748 1749 1750
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1751 1752
			mem_cgroup_iter_break(memcg, iter);
			break;
1753 1754
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1755
	}
K
KAMEZAWA Hiroyuki 已提交
1756

1757
	if (!failed)
1758
		return true;
1759 1760 1761 1762 1763

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1764
	for_each_mem_cgroup_tree(iter, memcg) {
1765
		if (iter == failed) {
1766 1767
			mem_cgroup_iter_break(memcg, iter);
			break;
1768 1769 1770
		}
		iter->oom_lock = false;
	}
1771
	return false;
1772
}
1773

1774
/*
1775
 * Has to be called with memcg_oom_lock
1776
 */
1777
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1778
{
K
KAMEZAWA Hiroyuki 已提交
1779 1780
	struct mem_cgroup *iter;

1781
	for_each_mem_cgroup_tree(iter, memcg)
1782 1783 1784 1785
		iter->oom_lock = false;
	return 0;
}

1786
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1787 1788 1789
{
	struct mem_cgroup *iter;

1790
	for_each_mem_cgroup_tree(iter, memcg)
1791 1792 1793
		atomic_inc(&iter->under_oom);
}

1794
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1795 1796 1797
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1798 1799 1800 1801 1802
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1803
	for_each_mem_cgroup_tree(iter, memcg)
1804
		atomic_add_unless(&iter->under_oom, -1, 0);
1805 1806
}

1807
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1808 1809
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1810
struct oom_wait_info {
1811
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1812 1813 1814 1815 1816 1817
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1818 1819
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1820 1821 1822
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1823
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1824 1825

	/*
1826
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1827 1828
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1829 1830
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1831 1832 1833 1834
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1835
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1836
{
1837 1838
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1839 1840
}

1841
static void memcg_oom_recover(struct mem_cgroup *memcg)
1842
{
1843 1844
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1845 1846
}

K
KAMEZAWA Hiroyuki 已提交
1847 1848 1849
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1850
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1851
{
K
KAMEZAWA Hiroyuki 已提交
1852
	struct oom_wait_info owait;
1853
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1854

1855
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1856 1857 1858 1859
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1860
	need_to_kill = true;
1861
	mem_cgroup_mark_under_oom(memcg);
1862

1863
	/* At first, try to OOM lock hierarchy under memcg.*/
1864
	spin_lock(&memcg_oom_lock);
1865
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1866 1867 1868 1869 1870
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1871
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1872
	if (!locked || memcg->oom_kill_disable)
1873 1874
		need_to_kill = false;
	if (locked)
1875
		mem_cgroup_oom_notify(memcg);
1876
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1877

1878 1879
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1880
		mem_cgroup_out_of_memory(memcg, mask, order);
1881
	} else {
K
KAMEZAWA Hiroyuki 已提交
1882
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1883
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1884
	}
1885
	spin_lock(&memcg_oom_lock);
1886
	if (locked)
1887 1888
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1889
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1890

1891
	mem_cgroup_unmark_under_oom(memcg);
1892

K
KAMEZAWA Hiroyuki 已提交
1893 1894 1895
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1896
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1897
	return true;
1898 1899
}

1900 1901 1902
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1920 1921
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1922
 */
1923

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1939
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1940
	 */
1941
	if (!mem_cgroup_stolen(memcg))
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1964 1965
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1966
{
1967
	struct mem_cgroup *memcg;
1968
	struct page_cgroup *pc = lookup_page_cgroup(page);
1969
	unsigned long uninitialized_var(flags);
1970

1971
	if (mem_cgroup_disabled())
1972
		return;
1973

1974 1975
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1976
		return;
1977 1978

	switch (idx) {
1979 1980
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1981 1982 1983
		break;
	default:
		BUG();
1984
	}
1985

1986
	this_cpu_add(memcg->stat->count[idx], val);
1987
}
1988

1989 1990 1991 1992
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1993
#define CHARGE_BATCH	32U
1994 1995
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1996
	unsigned int nr_pages;
1997
	struct work_struct work;
1998 1999
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2000 2001
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2002
static DEFINE_MUTEX(percpu_charge_mutex);
2003 2004

/*
2005
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2006 2007 2008 2009
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2010
static bool consume_stock(struct mem_cgroup *memcg)
2011 2012 2013 2014 2015
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2016
	if (memcg == stock->cached && stock->nr_pages)
2017
		stock->nr_pages--;
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2031 2032 2033 2034
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2035
		if (do_swap_account)
2036 2037
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2050
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2051 2052 2053 2054
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2055
 * This will be consumed by consume_stock() function, later.
2056
 */
2057
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2058 2059 2060
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2061
	if (stock->cached != memcg) { /* reset if necessary */
2062
		drain_stock(stock);
2063
		stock->cached = memcg;
2064
	}
2065
	stock->nr_pages += nr_pages;
2066 2067 2068 2069
	put_cpu_var(memcg_stock);
}

/*
2070
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2071 2072
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2073
 */
2074
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2075
{
2076
	int cpu, curcpu;
2077

2078 2079
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2080
	curcpu = get_cpu();
2081 2082
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2083
		struct mem_cgroup *memcg;
2084

2085 2086
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2087
			continue;
2088
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2089
			continue;
2090 2091 2092 2093 2094 2095
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2096
	}
2097
	put_cpu();
2098 2099 2100 2101 2102 2103

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2104
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2105 2106 2107
			flush_work(&stock->work);
	}
out:
2108
 	put_online_cpus();
2109 2110 2111 2112 2113 2114 2115 2116
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2117
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2118
{
2119 2120 2121 2122 2123
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2124
	drain_all_stock(root_memcg, false);
2125
	mutex_unlock(&percpu_charge_mutex);
2126 2127 2128
}

/* This is a synchronous drain interface. */
2129
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2130 2131
{
	/* called when force_empty is called */
2132
	mutex_lock(&percpu_charge_mutex);
2133
	drain_all_stock(root_memcg, true);
2134
	mutex_unlock(&percpu_charge_mutex);
2135 2136
}

2137 2138 2139 2140
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2141
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2142 2143 2144
{
	int i;

2145
	spin_lock(&memcg->pcp_counter_lock);
2146
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2147
		long x = per_cpu(memcg->stat->count[i], cpu);
2148

2149 2150
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2151
	}
2152
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2153
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2154

2155 2156
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2157
	}
2158
	spin_unlock(&memcg->pcp_counter_lock);
2159 2160 2161
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2162 2163 2164 2165 2166
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2167
	struct mem_cgroup *iter;
2168

2169
	if (action == CPU_ONLINE)
2170 2171
		return NOTIFY_OK;

2172
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2173
		return NOTIFY_OK;
2174

2175
	for_each_mem_cgroup(iter)
2176 2177
		mem_cgroup_drain_pcp_counter(iter, cpu);

2178 2179 2180 2181 2182
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2193
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2194
				unsigned int nr_pages, bool oom_check)
2195
{
2196
	unsigned long csize = nr_pages * PAGE_SIZE;
2197 2198 2199 2200 2201
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2202
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2203 2204 2205 2206

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2207
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2208 2209 2210
		if (likely(!ret))
			return CHARGE_OK;

2211
		res_counter_uncharge(&memcg->res, csize);
2212 2213 2214 2215
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2216
	/*
2217 2218
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2219 2220 2221 2222
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2223
	if (nr_pages == CHARGE_BATCH)
2224 2225 2226 2227 2228
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2229
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2230
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2231
		return CHARGE_RETRY;
2232
	/*
2233 2234 2235 2236 2237 2238 2239
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2240
	 */
2241
	if (nr_pages == 1 && ret)
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2255
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2256 2257 2258 2259 2260
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2261
/*
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2281
 */
2282
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2283
				   gfp_t gfp_mask,
2284
				   unsigned int nr_pages,
2285
				   struct mem_cgroup **ptr,
2286
				   bool oom)
2287
{
2288
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2289
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2290
	struct mem_cgroup *memcg = NULL;
2291
	int ret;
2292

K
KAMEZAWA Hiroyuki 已提交
2293 2294 2295 2296 2297 2298 2299 2300
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2301

2302
	/*
2303 2304
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2305 2306 2307
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2308
	if (!*ptr && !mm)
2309
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2310
again:
2311 2312 2313 2314
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2315
			goto done;
2316
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2317
			goto done;
2318
		css_get(&memcg->css);
2319
	} else {
K
KAMEZAWA Hiroyuki 已提交
2320
		struct task_struct *p;
2321

K
KAMEZAWA Hiroyuki 已提交
2322 2323 2324
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2325
		 * Because we don't have task_lock(), "p" can exit.
2326
		 * In that case, "memcg" can point to root or p can be NULL with
2327 2328 2329 2330 2331 2332
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2333
		 */
2334
		memcg = mem_cgroup_from_task(p);
2335 2336 2337
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2338 2339 2340
			rcu_read_unlock();
			goto done;
		}
2341
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2354
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2355 2356 2357 2358 2359
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2360

2361 2362
	do {
		bool oom_check;
2363

2364
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2365
		if (fatal_signal_pending(current)) {
2366
			css_put(&memcg->css);
2367
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2368
		}
2369

2370 2371 2372 2373
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2374
		}
2375

2376
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2377 2378 2379 2380
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2381
			batch = nr_pages;
2382 2383
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2384
			goto again;
2385
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2386
			css_put(&memcg->css);
2387 2388
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2389
			if (!oom) {
2390
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2391
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2392
			}
2393 2394 2395 2396
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2397
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2398
			goto bypass;
2399
		}
2400 2401
	} while (ret != CHARGE_OK);

2402
	if (batch > nr_pages)
2403 2404
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2405
done:
2406
	*ptr = memcg;
2407 2408
	return 0;
nomem:
2409
	*ptr = NULL;
2410
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2411
bypass:
2412 2413
	*ptr = root_mem_cgroup;
	return -EINTR;
2414
}
2415

2416 2417 2418 2419 2420
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2421
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2422
				       unsigned int nr_pages)
2423
{
2424
	if (!mem_cgroup_is_root(memcg)) {
2425 2426
		unsigned long bytes = nr_pages * PAGE_SIZE;

2427
		res_counter_uncharge(&memcg->res, bytes);
2428
		if (do_swap_account)
2429
			res_counter_uncharge(&memcg->memsw, bytes);
2430
	}
2431 2432
}

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2452
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2453
{
2454
	struct mem_cgroup *memcg = NULL;
2455
	struct page_cgroup *pc;
2456
	unsigned short id;
2457 2458
	swp_entry_t ent;

2459 2460 2461
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2462
	lock_page_cgroup(pc);
2463
	if (PageCgroupUsed(pc)) {
2464 2465 2466
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2467
	} else if (PageSwapCache(page)) {
2468
		ent.val = page_private(page);
2469
		id = lookup_swap_cgroup_id(ent);
2470
		rcu_read_lock();
2471 2472 2473
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2474
		rcu_read_unlock();
2475
	}
2476
	unlock_page_cgroup(pc);
2477
	return memcg;
2478 2479
}

2480
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2481
				       struct page *page,
2482
				       unsigned int nr_pages,
2483 2484
				       enum charge_type ctype,
				       bool lrucare)
2485
{
2486
	struct page_cgroup *pc = lookup_page_cgroup(page);
2487 2488
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;
2489
	bool anon;
2490

2491 2492 2493
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2494
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2495 2496 2497 2498 2499 2500
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2516
	pc->mem_cgroup = memcg;
2517 2518 2519 2520 2521 2522 2523
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2524
	smp_wmb();
2525
	SetPageCgroupUsed(pc);
2526

2527 2528 2529 2530 2531 2532 2533 2534 2535
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2536 2537 2538 2539 2540 2541
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2542
	unlock_page_cgroup(pc);
2543

2544 2545 2546 2547 2548
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2549
	memcg_check_events(memcg, page);
2550
}
2551

2552 2553
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2554
#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2555 2556
/*
 * Because tail pages are not marked as "used", set it. We're under
2557 2558 2559
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2560
 */
2561
void mem_cgroup_split_huge_fixup(struct page *head)
2562 2563
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2564 2565
	struct page_cgroup *pc;
	int i;
2566

2567 2568
	if (mem_cgroup_disabled())
		return;
2569 2570 2571 2572 2573 2574
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2575
}
2576
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2577

2578
/**
2579
 * mem_cgroup_move_account - move account of the page
2580
 * @page: the page
2581
 * @nr_pages: number of regular pages (>1 for huge pages)
2582 2583 2584
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2585
 * @uncharge: whether we should call uncharge and css_put against @from.
2586 2587
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2588
 * - page is not on LRU (isolate_page() is useful.)
2589
 * - compound_lock is held when nr_pages > 1
2590
 *
2591
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2592
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2593 2594
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2595
 */
2596 2597 2598 2599 2600 2601
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2602
{
2603 2604
	unsigned long flags;
	int ret;
2605
	bool anon = PageAnon(page);
2606

2607
	VM_BUG_ON(from == to);
2608
	VM_BUG_ON(PageLRU(page));
2609 2610 2611 2612 2613 2614 2615
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2616
	if (nr_pages > 1 && !PageTransHuge(page))
2617 2618 2619 2620 2621 2622 2623 2624
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2625
	move_lock_mem_cgroup(from, &flags);
2626

2627
	if (!anon && page_mapped(page)) {
2628 2629 2630 2631 2632
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2633
	}
2634
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2635 2636
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2637
		__mem_cgroup_cancel_charge(from, nr_pages);
2638

2639
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2640
	pc->mem_cgroup = to;
2641
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2642 2643 2644
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2645
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2646
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2647
	 * status here.
2648
	 */
2649
	move_unlock_mem_cgroup(from, &flags);
2650 2651
	ret = 0;
unlock:
2652
	unlock_page_cgroup(pc);
2653 2654 2655
	/*
	 * check events
	 */
2656 2657
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2658
out:
2659 2660 2661 2662 2663 2664 2665
	return ret;
}

/*
 * move charges to its parent.
 */

2666 2667
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2668 2669 2670 2671 2672 2673
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2674
	unsigned int nr_pages;
2675
	unsigned long uninitialized_var(flags);
2676 2677 2678 2679 2680 2681
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2682 2683 2684 2685 2686
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2687

2688
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2689

2690
	parent = mem_cgroup_from_cont(pcg);
2691
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2692
	if (ret)
2693
		goto put_back;
2694

2695
	if (nr_pages > 1)
2696 2697
		flags = compound_lock_irqsave(page);

2698
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2699
	if (ret)
2700
		__mem_cgroup_cancel_charge(parent, nr_pages);
2701

2702
	if (nr_pages > 1)
2703
		compound_unlock_irqrestore(page, flags);
2704
put_back:
K
KAMEZAWA Hiroyuki 已提交
2705
	putback_lru_page(page);
2706
put:
2707
	put_page(page);
2708
out:
2709 2710 2711
	return ret;
}

2712 2713 2714 2715 2716 2717 2718
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2719
				gfp_t gfp_mask, enum charge_type ctype)
2720
{
2721
	struct mem_cgroup *memcg = NULL;
2722
	unsigned int nr_pages = 1;
2723
	bool oom = true;
2724
	int ret;
A
Andrea Arcangeli 已提交
2725

A
Andrea Arcangeli 已提交
2726
	if (PageTransHuge(page)) {
2727
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2728
		VM_BUG_ON(!PageTransHuge(page));
2729 2730 2731 2732 2733
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2734
	}
2735

2736
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2737
	if (ret == -ENOMEM)
2738
		return ret;
2739
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2740 2741 2742
	return 0;
}

2743 2744
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2745
{
2746
	if (mem_cgroup_disabled())
2747
		return 0;
2748 2749 2750
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2751
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2752
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2753 2754
}

D
Daisuke Nishimura 已提交
2755 2756 2757 2758
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2759 2760
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2761
{
2762
	struct mem_cgroup *memcg = NULL;
2763
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2764 2765
	int ret;

2766
	if (mem_cgroup_disabled())
2767
		return 0;
2768 2769
	if (PageCompound(page))
		return 0;
2770

2771
	if (unlikely(!mm))
2772
		mm = &init_mm;
2773 2774
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2775

2776
	if (!PageSwapCache(page))
2777
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2778
	else { /* page is swapcache/shmem */
2779
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2780
		if (!ret)
2781 2782
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2783
	return ret;
2784 2785
}

2786 2787 2788
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2789
 * struct page_cgroup is acquired. This refcnt will be consumed by
2790 2791
 * "commit()" or removed by "cancel()"
 */
2792 2793
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2794
				 gfp_t mask, struct mem_cgroup **memcgp)
2795
{
2796
	struct mem_cgroup *memcg;
2797
	int ret;
2798

2799
	*memcgp = NULL;
2800

2801
	if (mem_cgroup_disabled())
2802 2803 2804 2805 2806 2807
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2808 2809 2810
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2811 2812
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2813
		goto charge_cur_mm;
2814 2815
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2816
		goto charge_cur_mm;
2817 2818
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2819
	css_put(&memcg->css);
2820 2821
	if (ret == -EINTR)
		ret = 0;
2822
	return ret;
2823 2824 2825
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2826 2827 2828 2829
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2830 2831
}

D
Daisuke Nishimura 已提交
2832
static void
2833
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2834
					enum charge_type ctype)
2835
{
2836
	if (mem_cgroup_disabled())
2837
		return;
2838
	if (!memcg)
2839
		return;
2840
	cgroup_exclude_rmdir(&memcg->css);
2841

2842
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2843 2844 2845
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2846 2847 2848
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2849
	 */
2850
	if (do_swap_account && PageSwapCache(page)) {
2851
		swp_entry_t ent = {.val = page_private(page)};
2852
		struct mem_cgroup *swap_memcg;
2853 2854 2855 2856
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2857 2858
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2859 2860 2861 2862
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2863 2864 2865 2866 2867
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2868
		}
2869
		rcu_read_unlock();
2870
	}
2871 2872 2873 2874 2875
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2876
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2877 2878
}

2879 2880
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2881
{
2882 2883
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2884 2885
}

2886
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2887
{
2888
	if (mem_cgroup_disabled())
2889
		return;
2890
	if (!memcg)
2891
		return;
2892
	__mem_cgroup_cancel_charge(memcg, 1);
2893 2894
}

2895
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2896 2897
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2898 2899 2900
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2901

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2913
		batch->memcg = memcg;
2914 2915
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2916
	 * In those cases, all pages freed continuously can be expected to be in
2917 2918 2919 2920 2921 2922 2923 2924
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2925
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2926 2927
		goto direct_uncharge;

2928 2929 2930 2931 2932
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2933
	if (batch->memcg != memcg)
2934 2935
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2936
	batch->nr_pages++;
2937
	if (uncharge_memsw)
2938
		batch->memsw_nr_pages++;
2939 2940
	return;
direct_uncharge:
2941
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2942
	if (uncharge_memsw)
2943 2944 2945
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2946
}
2947

2948
/*
2949
 * uncharge if !page_mapped(page)
2950
 */
2951
static struct mem_cgroup *
2952
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2953
{
2954
	struct mem_cgroup *memcg = NULL;
2955 2956
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2957
	bool anon;
2958

2959
	if (mem_cgroup_disabled())
2960
		return NULL;
2961

K
KAMEZAWA Hiroyuki 已提交
2962
	if (PageSwapCache(page))
2963
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2964

A
Andrea Arcangeli 已提交
2965
	if (PageTransHuge(page)) {
2966
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2967 2968
		VM_BUG_ON(!PageTransHuge(page));
	}
2969
	/*
2970
	 * Check if our page_cgroup is valid
2971
	 */
2972
	pc = lookup_page_cgroup(page);
2973
	if (unlikely(!PageCgroupUsed(pc)))
2974
		return NULL;
2975

2976
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2977

2978
	memcg = pc->mem_cgroup;
2979

K
KAMEZAWA Hiroyuki 已提交
2980 2981 2982
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2983 2984
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2985 2986
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2987 2988 2989 2990 2991
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2992 2993
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2994
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2995 2996
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3008
	}
K
KAMEZAWA Hiroyuki 已提交
3009

3010
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3011

3012
	ClearPageCgroupUsed(pc);
3013 3014 3015 3016 3017 3018
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3019

3020
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3021
	/*
3022
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3023 3024
	 * will never be freed.
	 */
3025
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3026
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3027 3028
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3029
	}
3030 3031
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3032

3033
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3034 3035 3036

unlock_out:
	unlock_page_cgroup(pc);
3037
	return NULL;
3038 3039
}

3040 3041
void mem_cgroup_uncharge_page(struct page *page)
{
3042 3043 3044
	/* early check. */
	if (page_mapped(page))
		return;
3045
	VM_BUG_ON(page->mapping && !PageAnon(page));
3046 3047 3048 3049 3050 3051
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3052
	VM_BUG_ON(page->mapping);
3053 3054 3055
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3070 3071
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3092 3093 3094 3095 3096 3097
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3098
	memcg_oom_recover(batch->memcg);
3099 3100 3101 3102
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3103
#ifdef CONFIG_SWAP
3104
/*
3105
 * called after __delete_from_swap_cache() and drop "page" account.
3106 3107
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3108 3109
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3110 3111
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3112 3113 3114 3115 3116 3117
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3118

K
KAMEZAWA Hiroyuki 已提交
3119 3120 3121 3122 3123
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3124
		swap_cgroup_record(ent, css_id(&memcg->css));
3125
}
3126
#endif
3127 3128 3129 3130 3131 3132 3133

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3134
{
3135
	struct mem_cgroup *memcg;
3136
	unsigned short id;
3137 3138 3139 3140

	if (!do_swap_account)
		return;

3141 3142 3143
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3144
	if (memcg) {
3145 3146 3147 3148
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3149
		if (!mem_cgroup_is_root(memcg))
3150
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3151
		mem_cgroup_swap_statistics(memcg, false);
3152 3153
		mem_cgroup_put(memcg);
	}
3154
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3155
}
3156 3157 3158 3159 3160 3161

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3162
 * @need_fixup: whether we should fixup res_counters and refcounts.
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3173
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3174 3175 3176 3177 3178 3179 3180 3181
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3182
		mem_cgroup_swap_statistics(to, true);
3183
		/*
3184 3185 3186 3187 3188 3189
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3190 3191
		 */
		mem_cgroup_get(to);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3203 3204 3205 3206 3207 3208
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3209
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3210 3211 3212
{
	return -EINVAL;
}
3213
#endif
K
KAMEZAWA Hiroyuki 已提交
3214

3215
/*
3216 3217
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3218
 */
3219
int mem_cgroup_prepare_migration(struct page *page,
3220
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3221
{
3222
	struct mem_cgroup *memcg = NULL;
3223
	struct page_cgroup *pc;
3224
	enum charge_type ctype;
3225
	int ret = 0;
3226

3227
	*memcgp = NULL;
3228

A
Andrea Arcangeli 已提交
3229
	VM_BUG_ON(PageTransHuge(page));
3230
	if (mem_cgroup_disabled())
3231 3232
		return 0;

3233 3234 3235
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3236 3237
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3269
	}
3270
	unlock_page_cgroup(pc);
3271 3272 3273 3274
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3275
	if (!memcg)
3276
		return 0;
3277

3278 3279
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3280
	css_put(&memcg->css);/* drop extra refcnt */
3281
	if (ret) {
3282 3283 3284 3285 3286 3287 3288 3289 3290
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3291
		/* we'll need to revisit this error code (we have -EINTR) */
3292
		return -ENOMEM;
3293
	}
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3306
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3307
	return ret;
3308
}
3309

3310
/* remove redundant charge if migration failed*/
3311
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3312
	struct page *oldpage, struct page *newpage, bool migration_ok)
3313
{
3314
	struct page *used, *unused;
3315
	struct page_cgroup *pc;
3316
	bool anon;
3317

3318
	if (!memcg)
3319
		return;
3320
	/* blocks rmdir() */
3321
	cgroup_exclude_rmdir(&memcg->css);
3322
	if (!migration_ok) {
3323 3324
		used = oldpage;
		unused = newpage;
3325
	} else {
3326
		used = newpage;
3327 3328
		unused = oldpage;
	}
3329
	/*
3330 3331 3332
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3333
	 */
3334 3335 3336 3337
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3338 3339 3340 3341
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3342

3343
	/*
3344 3345 3346 3347 3348 3349
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3350
	 */
3351
	if (anon)
3352
		mem_cgroup_uncharge_page(used);
3353
	/*
3354 3355
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3356 3357 3358
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3359
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3360
}
3361

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
3381
	mem_cgroup_charge_statistics(memcg, false, -1);
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3393
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3394 3395
}

3396 3397 3398 3399 3400 3401
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3402 3403 3404 3405 3406
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3426
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3427 3428 3429 3430 3431
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3432 3433
static DEFINE_MUTEX(set_limit_mutex);

3434
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3435
				unsigned long long val)
3436
{
3437
	int retry_count;
3438
	u64 memswlimit, memlimit;
3439
	int ret = 0;
3440 3441
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3442
	int enlarge;
3443 3444 3445 3446 3447 3448 3449 3450 3451

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3452

3453
	enlarge = 0;
3454
	while (retry_count) {
3455 3456 3457 3458
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3459 3460 3461
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3462
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3463 3464 3465 3466 3467 3468
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3469 3470
			break;
		}
3471 3472 3473 3474 3475

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3476
		ret = res_counter_set_limit(&memcg->res, val);
3477 3478 3479 3480 3481 3482
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3483 3484 3485 3486 3487
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3488 3489
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3490 3491 3492 3493 3494 3495
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3496
	}
3497 3498
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3499

3500 3501 3502
	return ret;
}

L
Li Zefan 已提交
3503 3504
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3505
{
3506
	int retry_count;
3507
	u64 memlimit, memswlimit, oldusage, curusage;
3508 3509
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3510
	int enlarge = 0;
3511

3512 3513 3514
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3515 3516 3517 3518 3519 3520 3521 3522
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3523
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3524 3525 3526 3527 3528 3529 3530 3531
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3532 3533 3534
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3535
		ret = res_counter_set_limit(&memcg->memsw, val);
3536 3537 3538 3539 3540 3541
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3542 3543 3544 3545 3546
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3547 3548 3549
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3550
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3551
		/* Usage is reduced ? */
3552
		if (curusage >= oldusage)
3553
			retry_count--;
3554 3555
		else
			oldusage = curusage;
3556
	}
3557 3558
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3559 3560 3561
	return ret;
}

3562
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3563 3564
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3565 3566 3567 3568 3569 3570
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3571
	unsigned long long excess;
3572
	unsigned long nr_scanned;
3573 3574 3575 3576

	if (order > 0)
		return 0;

3577
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3591
		nr_scanned = 0;
3592
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3593
						    gfp_mask, &nr_scanned);
3594
		nr_reclaimed += reclaimed;
3595
		*total_scanned += nr_scanned;
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3618
				if (next_mz == mz)
3619
					css_put(&next_mz->memcg->css);
3620
				else /* next_mz == NULL or other memcg */
3621 3622 3623
					break;
			} while (1);
		}
3624 3625
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3626 3627 3628 3629 3630 3631 3632 3633
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3634
		/* If excess == 0, no tree ops */
3635
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3636
		spin_unlock(&mctz->lock);
3637
		css_put(&mz->memcg->css);
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3650
		css_put(&next_mz->memcg->css);
3651 3652 3653
	return nr_reclaimed;
}

3654 3655 3656 3657
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3658
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3659
				int node, int zid, enum lru_list lru)
3660
{
K
KAMEZAWA Hiroyuki 已提交
3661 3662
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3663
	struct list_head *list;
3664 3665
	struct page *busy;
	struct zone *zone;
3666
	int ret = 0;
3667

K
KAMEZAWA Hiroyuki 已提交
3668
	zone = &NODE_DATA(node)->node_zones[zid];
3669
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3670
	list = &mz->lruvec.lists[lru];
3671

3672
	loop = mz->lru_size[lru];
3673 3674 3675 3676
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3677
		struct page_cgroup *pc;
3678 3679
		struct page *page;

3680
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3681
		spin_lock_irqsave(&zone->lru_lock, flags);
3682
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3683
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3684
			break;
3685
		}
3686 3687 3688
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3689
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3690
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3691 3692
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3693
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3694

3695
		pc = lookup_page_cgroup(page);
3696

3697
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3698
		if (ret == -ENOMEM || ret == -EINTR)
3699
			break;
3700 3701 3702

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3703
			busy = page;
3704 3705 3706
			cond_resched();
		} else
			busy = NULL;
3707
	}
K
KAMEZAWA Hiroyuki 已提交
3708

3709 3710 3711
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3712 3713 3714 3715 3716 3717
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3718
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3719
{
3720 3721 3722
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3723
	struct cgroup *cgrp = memcg->css.cgroup;
3724

3725
	css_get(&memcg->css);
3726 3727

	shrink = 0;
3728 3729 3730
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3731
move_account:
3732
	do {
3733
		ret = -EBUSY;
3734 3735 3736 3737
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3738
			goto out;
3739 3740
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3741
		drain_all_stock_sync(memcg);
3742
		ret = 0;
3743
		mem_cgroup_start_move(memcg);
3744
		for_each_node_state(node, N_HIGH_MEMORY) {
3745
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3746 3747
				enum lru_list lru;
				for_each_lru(lru) {
3748
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3749
							node, zid, lru);
3750 3751 3752
					if (ret)
						break;
				}
3753
			}
3754 3755 3756
			if (ret)
				break;
		}
3757 3758
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3759 3760 3761
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3762
		cond_resched();
3763
	/* "ret" should also be checked to ensure all lists are empty. */
3764
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3765
out:
3766
	css_put(&memcg->css);
3767
	return ret;
3768 3769

try_to_free:
3770 3771
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3772 3773 3774
		ret = -EBUSY;
		goto out;
	}
3775 3776
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3777 3778
	/* try to free all pages in this cgroup */
	shrink = 1;
3779
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3780
		int progress;
3781 3782 3783 3784 3785

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3786
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3787
						false);
3788
		if (!progress) {
3789
			nr_retries--;
3790
			/* maybe some writeback is necessary */
3791
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3792
		}
3793 3794

	}
K
KAMEZAWA Hiroyuki 已提交
3795
	lru_add_drain();
3796
	/* try move_account...there may be some *locked* pages. */
3797
	goto move_account;
3798 3799
}

3800 3801 3802 3803 3804 3805
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3806 3807 3808 3809 3810 3811 3812 3813 3814
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3815
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3816
	struct cgroup *parent = cont->parent;
3817
	struct mem_cgroup *parent_memcg = NULL;
3818 3819

	if (parent)
3820
		parent_memcg = mem_cgroup_from_cont(parent);
3821 3822 3823

	cgroup_lock();
	/*
3824
	 * If parent's use_hierarchy is set, we can't make any modifications
3825 3826 3827 3828 3829 3830
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3831
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3832 3833
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3834
			memcg->use_hierarchy = val;
3835 3836 3837 3838 3839 3840 3841 3842 3843
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3844

3845
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3846
					       enum mem_cgroup_stat_index idx)
3847
{
K
KAMEZAWA Hiroyuki 已提交
3848
	struct mem_cgroup *iter;
3849
	long val = 0;
3850

3851
	/* Per-cpu values can be negative, use a signed accumulator */
3852
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3853 3854 3855 3856 3857
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3858 3859
}

3860
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3861
{
K
KAMEZAWA Hiroyuki 已提交
3862
	u64 val;
3863

3864
	if (!mem_cgroup_is_root(memcg)) {
3865
		if (!swap)
3866
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3867
		else
3868
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3869 3870
	}

3871 3872
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3873

K
KAMEZAWA Hiroyuki 已提交
3874
	if (swap)
3875
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3876 3877 3878 3879

	return val << PAGE_SHIFT;
}

3880 3881 3882
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3883
{
3884
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3885
	char str[64];
3886
	u64 val;
3887
	int type, name, len;
3888 3889 3890

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3891 3892 3893 3894

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3895 3896
	switch (type) {
	case _MEM:
3897
		if (name == RES_USAGE)
3898
			val = mem_cgroup_usage(memcg, false);
3899
		else
3900
			val = res_counter_read_u64(&memcg->res, name);
3901 3902
		break;
	case _MEMSWAP:
3903
		if (name == RES_USAGE)
3904
			val = mem_cgroup_usage(memcg, true);
3905
		else
3906
			val = res_counter_read_u64(&memcg->memsw, name);
3907 3908 3909 3910
		break;
	default:
		BUG();
	}
3911 3912 3913

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3914
}
3915 3916 3917 3918
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3919 3920
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3921
{
3922
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3923
	int type, name;
3924 3925 3926
	unsigned long long val;
	int ret;

3927 3928
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3929 3930 3931 3932

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3933
	switch (name) {
3934
	case RES_LIMIT:
3935 3936 3937 3938
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3939 3940
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3941 3942 3943
		if (ret)
			break;
		if (type == _MEM)
3944
			ret = mem_cgroup_resize_limit(memcg, val);
3945 3946
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3947
		break;
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3962 3963 3964 3965 3966
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3967 3968
}

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3996
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3997
{
3998
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3999
	int type, name;
4000

4001 4002
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4003 4004 4005 4006

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4007
	switch (name) {
4008
	case RES_MAX_USAGE:
4009
		if (type == _MEM)
4010
			res_counter_reset_max(&memcg->res);
4011
		else
4012
			res_counter_reset_max(&memcg->memsw);
4013 4014
		break;
	case RES_FAILCNT:
4015
		if (type == _MEM)
4016
			res_counter_reset_failcnt(&memcg->res);
4017
		else
4018
			res_counter_reset_failcnt(&memcg->memsw);
4019 4020
		break;
	}
4021

4022
	return 0;
4023 4024
}

4025 4026 4027 4028 4029 4030
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4031
#ifdef CONFIG_MMU
4032 4033 4034
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4035
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4036 4037 4038 4039 4040 4041 4042 4043 4044

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4045
	memcg->move_charge_at_immigrate = val;
4046 4047 4048 4049
	cgroup_unlock();

	return 0;
}
4050 4051 4052 4053 4054 4055 4056
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4057

K
KAMEZAWA Hiroyuki 已提交
4058 4059 4060 4061 4062

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4063
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4064 4065
	MCS_PGPGIN,
	MCS_PGPGOUT,
4066
	MCS_SWAP,
4067 4068
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4079 4080
};

K
KAMEZAWA Hiroyuki 已提交
4081 4082 4083 4084 4085 4086
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4087
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4088 4089
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4090
	{"swap", "total_swap"},
4091 4092
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4093 4094 4095 4096 4097 4098 4099 4100
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4101
static void
4102
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4103 4104 4105 4106
{
	s64 val;

	/* per cpu stat */
4107
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4108
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4109
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4110
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4111
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4112
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4113
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4114
	s->stat[MCS_PGPGIN] += val;
4115
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4116
	s->stat[MCS_PGPGOUT] += val;
4117
	if (do_swap_account) {
4118
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4119 4120
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4121
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4122
	s->stat[MCS_PGFAULT] += val;
4123
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4124
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4125 4126

	/* per zone stat */
4127
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4128
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4129
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4130
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4131
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4132
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4133
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4134
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4135
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4136 4137 4138 4139
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4140
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4141
{
K
KAMEZAWA Hiroyuki 已提交
4142 4143
	struct mem_cgroup *iter;

4144
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4145
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4146 4147
}

4148 4149 4150 4151 4152 4153 4154
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
4155
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4156

4157
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4158 4159
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4160
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4161 4162 4163 4164
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4165
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4166 4167
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4168
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4169
				LRU_ALL_FILE);
4170 4171 4172 4173
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4174
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4175 4176
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4177
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4178
				LRU_ALL_ANON);
4179 4180 4181 4182
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4183
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4184 4185
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4186
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4187
				BIT(LRU_UNEVICTABLE));
4188 4189 4190 4191 4192 4193 4194
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4195 4196
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4197
{
4198
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4199
	struct mcs_total_stat mystat;
4200 4201
	int i;

K
KAMEZAWA Hiroyuki 已提交
4202
	memset(&mystat, 0, sizeof(mystat));
4203
	mem_cgroup_get_local_stat(memcg, &mystat);
4204

4205

4206 4207 4208
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4209
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4210
	}
L
Lee Schermerhorn 已提交
4211

K
KAMEZAWA Hiroyuki 已提交
4212
	/* Hierarchical information */
4213 4214
	{
		unsigned long long limit, memsw_limit;
4215
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4216 4217 4218 4219
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4220

K
KAMEZAWA Hiroyuki 已提交
4221
	memset(&mystat, 0, sizeof(mystat));
4222
	mem_cgroup_get_total_stat(memcg, &mystat);
4223 4224 4225
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4226
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4227
	}
K
KAMEZAWA Hiroyuki 已提交
4228

K
KOSAKI Motohiro 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4238
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
K
KOSAKI Motohiro 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4256 4257 4258
	return 0;
}

K
KOSAKI Motohiro 已提交
4259 4260 4261 4262
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4263
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4264 4265 4266 4267 4268 4269 4270
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4271

K
KOSAKI Motohiro 已提交
4272 4273 4274 4275 4276 4277 4278
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4279 4280 4281

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4282 4283
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4284 4285
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4286
		return -EINVAL;
4287
	}
K
KOSAKI Motohiro 已提交
4288 4289 4290

	memcg->swappiness = val;

4291 4292
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4293 4294 4295
	return 0;
}

4296 4297 4298 4299 4300 4301 4302 4303
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4304
		t = rcu_dereference(memcg->thresholds.primary);
4305
	else
4306
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4318
	i = t->current_threshold;
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4342
	t->current_threshold = i - 1;
4343 4344 4345 4346 4347 4348
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4349 4350 4351 4352 4353 4354 4355
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4366
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4367 4368 4369
{
	struct mem_cgroup_eventfd_list *ev;

4370
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4371 4372 4373 4374
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4375
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4376
{
K
KAMEZAWA Hiroyuki 已提交
4377 4378
	struct mem_cgroup *iter;

4379
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4380
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4381 4382 4383 4384
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4385 4386
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4387 4388
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4389 4390
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4391
	int i, size, ret;
4392 4393 4394 4395 4396 4397

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4398

4399
	if (type == _MEM)
4400
		thresholds = &memcg->thresholds;
4401
	else if (type == _MEMSWAP)
4402
		thresholds = &memcg->memsw_thresholds;
4403 4404 4405 4406 4407 4408
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4409
	if (thresholds->primary)
4410 4411
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4412
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4413 4414

	/* Allocate memory for new array of thresholds */
4415
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4416
			GFP_KERNEL);
4417
	if (!new) {
4418 4419 4420
		ret = -ENOMEM;
		goto unlock;
	}
4421
	new->size = size;
4422 4423

	/* Copy thresholds (if any) to new array */
4424 4425
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4426
				sizeof(struct mem_cgroup_threshold));
4427 4428
	}

4429
	/* Add new threshold */
4430 4431
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4432 4433

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4434
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4435 4436 4437
			compare_thresholds, NULL);

	/* Find current threshold */
4438
	new->current_threshold = -1;
4439
	for (i = 0; i < size; i++) {
4440
		if (new->entries[i].threshold < usage) {
4441
			/*
4442 4443
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4444 4445
			 * it here.
			 */
4446
			++new->current_threshold;
4447 4448 4449
		}
	}

4450 4451 4452 4453 4454
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4455

4456
	/* To be sure that nobody uses thresholds */
4457 4458 4459 4460 4461 4462 4463 4464
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4465
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4466
	struct cftype *cft, struct eventfd_ctx *eventfd)
4467 4468
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4469 4470
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4471 4472
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4473
	int i, j, size;
4474 4475 4476

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4477
		thresholds = &memcg->thresholds;
4478
	else if (type == _MEMSWAP)
4479
		thresholds = &memcg->memsw_thresholds;
4480 4481 4482
	else
		BUG();

4483 4484 4485
	if (!thresholds->primary)
		goto unlock;

4486 4487 4488 4489 4490 4491
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4492 4493 4494
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4495 4496 4497
			size++;
	}

4498
	new = thresholds->spare;
4499

4500 4501
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4502 4503
		kfree(new);
		new = NULL;
4504
		goto swap_buffers;
4505 4506
	}

4507
	new->size = size;
4508 4509

	/* Copy thresholds and find current threshold */
4510 4511 4512
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4513 4514
			continue;

4515 4516
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4517
			/*
4518
			 * new->current_threshold will not be used
4519 4520 4521
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4522
			++new->current_threshold;
4523 4524 4525 4526
		}
		j++;
	}

4527
swap_buffers:
4528 4529
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4530 4531 4532 4533 4534 4535
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4536
	rcu_assign_pointer(thresholds->primary, new);
4537

4538
	/* To be sure that nobody uses thresholds */
4539
	synchronize_rcu();
4540
unlock:
4541 4542
	mutex_unlock(&memcg->thresholds_lock);
}
4543

K
KAMEZAWA Hiroyuki 已提交
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4556
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4557 4558 4559 4560 4561

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4562
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4563
		eventfd_signal(eventfd, 1);
4564
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4565 4566 4567 4568

	return 0;
}

4569
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4570 4571
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4572
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4573 4574 4575 4576 4577
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4578
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4579

4580
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4581 4582 4583 4584 4585 4586
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4587
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4588 4589
}

4590 4591 4592
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4593
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4594

4595
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4596

4597
	if (atomic_read(&memcg->under_oom))
4598 4599 4600 4601 4602 4603 4604 4605 4606
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4607
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4619
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4620 4621 4622
		cgroup_unlock();
		return -EINVAL;
	}
4623
	memcg->oom_kill_disable = val;
4624
	if (!val)
4625
		memcg_oom_recover(memcg);
4626 4627 4628 4629
	cgroup_unlock();
	return 0;
}

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4646
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4647
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4648
{
4649
	return mem_cgroup_sockets_init(memcg, ss);
4650 4651
};

4652
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4653
{
4654
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4655
}
4656
#else
4657
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4658 4659 4660
{
	return 0;
}
G
Glauber Costa 已提交
4661

4662
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4663 4664
{
}
4665 4666
#endif

B
Balbir Singh 已提交
4667 4668
static struct cftype mem_cgroup_files[] = {
	{
4669
		.name = "usage_in_bytes",
4670
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4671
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4672 4673
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4674
	},
4675 4676
	{
		.name = "max_usage_in_bytes",
4677
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4678
		.trigger = mem_cgroup_reset,
4679
		.read = mem_cgroup_read,
4680
	},
B
Balbir Singh 已提交
4681
	{
4682
		.name = "limit_in_bytes",
4683
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4684
		.write_string = mem_cgroup_write,
4685
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4686
	},
4687 4688 4689 4690
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4691
		.read = mem_cgroup_read,
4692
	},
B
Balbir Singh 已提交
4693 4694
	{
		.name = "failcnt",
4695
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4696
		.trigger = mem_cgroup_reset,
4697
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4698
	},
4699 4700
	{
		.name = "stat",
4701
		.read_map = mem_control_stat_show,
4702
	},
4703 4704 4705 4706
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4707 4708 4709 4710 4711
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4712 4713 4714 4715 4716
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4717 4718 4719 4720 4721
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4722 4723
	{
		.name = "oom_control",
4724 4725
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4726 4727 4728 4729
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4730 4731 4732 4733
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4734
		.mode = S_IRUGO,
4735 4736
	},
#endif
4737 4738 4739 4740
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4741
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4742 4743
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4744 4745 4746 4747 4748
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4749
		.read = mem_cgroup_read,
4750 4751 4752 4753 4754
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4755
		.read = mem_cgroup_read,
4756 4757 4758 4759 4760
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4761
		.read = mem_cgroup_read,
4762 4763
	},
#endif
4764
	{ },	/* terminate */
4765
};
4766

4767
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4768 4769
{
	struct mem_cgroup_per_node *pn;
4770
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
4771
	enum lru_list lru;
4772
	int zone, tmp = node;
4773 4774 4775 4776 4777 4778 4779 4780
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4781 4782
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4783
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4784 4785
	if (!pn)
		return 1;
4786 4787 4788

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
H
Hugh Dickins 已提交
4789 4790
		for_each_lru(lru)
			INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4791
		mz->usage_in_excess = 0;
4792
		mz->on_tree = false;
4793
		mz->memcg = memcg;
4794
	}
4795
	memcg->info.nodeinfo[node] = pn;
4796 4797 4798
	return 0;
}

4799
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4800
{
4801
	kfree(memcg->info.nodeinfo[node]);
4802 4803
}

4804 4805
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4806
	struct mem_cgroup *memcg;
4807
	int size = sizeof(struct mem_cgroup);
4808

4809
	/* Can be very big if MAX_NUMNODES is very big */
4810
	if (size < PAGE_SIZE)
4811
		memcg = kzalloc(size, GFP_KERNEL);
4812
	else
4813
		memcg = vzalloc(size);
4814

4815
	if (!memcg)
4816 4817
		return NULL;

4818 4819
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4820
		goto out_free;
4821 4822
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4823 4824 4825

out_free:
	if (size < PAGE_SIZE)
4826
		kfree(memcg);
4827
	else
4828
		vfree(memcg);
4829
	return NULL;
4830 4831
}

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4864
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4865
{
K
KAMEZAWA Hiroyuki 已提交
4866 4867
	int node;

4868 4869
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4870

B
Bob Liu 已提交
4871
	for_each_node(node)
4872
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4873

4874
	free_percpu(memcg->stat);
4875
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4876
		kfree_rcu(memcg, rcu_freeing);
4877
	else
4878
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4879 4880
}

4881
static void mem_cgroup_get(struct mem_cgroup *memcg)
4882
{
4883
	atomic_inc(&memcg->refcnt);
4884 4885
}

4886
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4887
{
4888 4889 4890
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4891 4892 4893
		if (parent)
			mem_cgroup_put(parent);
	}
4894 4895
}

4896
static void mem_cgroup_put(struct mem_cgroup *memcg)
4897
{
4898
	__mem_cgroup_put(memcg, 1);
4899 4900
}

4901 4902 4903
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4904
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4905
{
4906
	if (!memcg->res.parent)
4907
		return NULL;
4908
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4909
}
G
Glauber Costa 已提交
4910
EXPORT_SYMBOL(parent_mem_cgroup);
4911

4912 4913 4914
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4915
	if (!mem_cgroup_disabled() && really_do_swap_account)
4916 4917 4918 4919 4920 4921 4922 4923
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4924 4925 4926 4927 4928 4929
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4930
	for_each_node(node) {
4931 4932 4933 4934 4935
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4936
			goto err_cleanup;
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4947 4948

err_cleanup:
B
Bob Liu 已提交
4949
	for_each_node(node) {
4950 4951 4952 4953 4954 4955 4956
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4957 4958
}

L
Li Zefan 已提交
4959
static struct cgroup_subsys_state * __ref
4960
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4961
{
4962
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4963
	long error = -ENOMEM;
4964
	int node;
B
Balbir Singh 已提交
4965

4966 4967
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4968
		return ERR_PTR(error);
4969

B
Bob Liu 已提交
4970
	for_each_node(node)
4971
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4972
			goto free_out;
4973

4974
	/* root ? */
4975
	if (cont->parent == NULL) {
4976
		int cpu;
4977
		enable_swap_cgroup();
4978
		parent = NULL;
4979 4980
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4981
		root_mem_cgroup = memcg;
4982 4983 4984 4985 4986
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4987
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4988
	} else {
4989
		parent = mem_cgroup_from_cont(cont->parent);
4990 4991
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4992
	}
4993

4994
	if (parent && parent->use_hierarchy) {
4995 4996
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4997 4998 4999 5000 5001 5002 5003
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5004
	} else {
5005 5006
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5007
	}
5008 5009
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5010

K
KOSAKI Motohiro 已提交
5011
	if (parent)
5012 5013 5014 5015
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5016
	spin_lock_init(&memcg->move_lock);
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5028
	return &memcg->css;
5029
free_out:
5030
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5031
	return ERR_PTR(error);
B
Balbir Singh 已提交
5032 5033
}

5034
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5035
{
5036
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5037

5038
	return mem_cgroup_force_empty(memcg, false);
5039 5040
}

5041
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5042
{
5043
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5044

5045
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5046

5047
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5048 5049
}

5050
#ifdef CONFIG_MMU
5051
/* Handlers for move charge at task migration. */
5052 5053
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5054
{
5055 5056
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5057
	struct mem_cgroup *memcg = mc.to;
5058

5059
	if (mem_cgroup_is_root(memcg)) {
5060 5061 5062 5063 5064 5065 5066 5067
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5068
		 * "memcg" cannot be under rmdir() because we've already checked
5069 5070 5071 5072
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5073
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5074
			goto one_by_one;
5075
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5076
						PAGE_SIZE * count, &dummy)) {
5077
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5094 5095
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5096
		if (ret)
5097
			/* mem_cgroup_clear_mc() will do uncharge later */
5098
			return ret;
5099 5100
		mc.precharge++;
	}
5101 5102 5103 5104
	return ret;
}

/**
5105
 * get_mctgt_type - get target type of moving charge
5106 5107 5108
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5109
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5110 5111 5112 5113 5114 5115
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5116 5117 5118
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5119 5120 5121 5122 5123
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5124
	swp_entry_t	ent;
5125 5126 5127
};

enum mc_target_type {
5128
	MC_TARGET_NONE = 0,
5129
	MC_TARGET_PAGE,
5130
	MC_TARGET_SWAP,
5131 5132
};

D
Daisuke Nishimura 已提交
5133 5134
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5135
{
D
Daisuke Nishimura 已提交
5136
	struct page *page = vm_normal_page(vma, addr, ptent);
5137

D
Daisuke Nishimura 已提交
5138 5139 5140 5141
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5142
		if (!move_anon() || page_mapcount(page) > 2)
D
Daisuke Nishimura 已提交
5143
			return NULL;
5144 5145
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5164 5165
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5166
		return NULL;
5167
	}
D
Daisuke Nishimura 已提交
5168 5169 5170 5171 5172 5173
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5195 5196 5197 5198 5199 5200
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5201
		if (do_swap_account)
5202 5203
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5204
	}
5205
#endif
5206 5207 5208
	return page;
}

5209
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5210 5211 5212 5213
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5214
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5215 5216 5217 5218 5219 5220
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5221 5222
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5223 5224

	if (!page && !ent.val)
5225
		return ret;
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5241 5242
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5243
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5244 5245 5246
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5247 5248 5249 5250
	}
	return ret;
}

5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5286 5287 5288 5289 5290 5291 5292 5293
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5294 5295 5296 5297
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5298
		return 0;
5299
	}
5300

5301 5302
	if (pmd_trans_unstable(pmd))
		return 0;
5303 5304
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5305
		if (get_mctgt_type(vma, addr, *pte, NULL))
5306 5307 5308 5309
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5310 5311 5312
	return 0;
}

5313 5314 5315 5316 5317
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5318
	down_read(&mm->mmap_sem);
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5330
	up_read(&mm->mmap_sem);
5331 5332 5333 5334 5335 5336 5337 5338 5339

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5340 5341 5342 5343 5344
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5345 5346
}

5347 5348
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5349
{
5350 5351 5352
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5353
	/* we must uncharge all the leftover precharges from mc.to */
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5365
	}
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5400
	spin_lock(&mc.lock);
5401 5402
	mc.from = NULL;
	mc.to = NULL;
5403
	spin_unlock(&mc.lock);
5404
	mem_cgroup_end_move(from);
5405 5406
}

5407 5408
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5409
{
5410
	struct task_struct *p = cgroup_taskset_first(tset);
5411
	int ret = 0;
5412
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5413

5414
	if (memcg->move_charge_at_immigrate) {
5415 5416 5417
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5418
		VM_BUG_ON(from == memcg);
5419 5420 5421 5422 5423

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5424 5425 5426 5427
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5428
			VM_BUG_ON(mc.moved_charge);
5429
			VM_BUG_ON(mc.moved_swap);
5430
			mem_cgroup_start_move(from);
5431
			spin_lock(&mc.lock);
5432
			mc.from = from;
5433
			mc.to = memcg;
5434
			spin_unlock(&mc.lock);
5435
			/* We set mc.moving_task later */
5436 5437 5438 5439

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5440 5441
		}
		mmput(mm);
5442 5443 5444 5445
	}
	return ret;
}

5446 5447
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5448
{
5449
	mem_cgroup_clear_mc();
5450 5451
}

5452 5453 5454
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5455
{
5456 5457 5458 5459
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5460 5461 5462 5463
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5464

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5476
		if (mc.precharge < HPAGE_PMD_NR) {
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
							     pc, mc.from, mc.to,
							     false)) {
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5496
		return 0;
5497 5498
	}

5499 5500
	if (pmd_trans_unstable(pmd))
		return 0;
5501 5502 5503 5504
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5505
		swp_entry_t ent;
5506 5507 5508 5509

		if (!mc.precharge)
			break;

5510
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5511 5512 5513 5514 5515
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5516 5517
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5518
				mc.precharge--;
5519 5520
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5521 5522
			}
			putback_lru_page(page);
5523
put:			/* get_mctgt_type() gets the page */
5524 5525
			put_page(page);
			break;
5526 5527
		case MC_TARGET_SWAP:
			ent = target.ent;
5528 5529
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5530
				mc.precharge--;
5531 5532 5533
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5534
			break;
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5549
		ret = mem_cgroup_do_precharge(1);
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5593
	up_read(&mm->mmap_sem);
5594 5595
}

5596 5597
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5598
{
5599
	struct task_struct *p = cgroup_taskset_first(tset);
5600
	struct mm_struct *mm = get_task_mm(p);
5601 5602

	if (mm) {
5603 5604
		if (mc.to)
			mem_cgroup_move_charge(mm);
5605 5606
		mmput(mm);
	}
5607 5608
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5609
}
5610
#else	/* !CONFIG_MMU */
5611 5612
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5613 5614 5615
{
	return 0;
}
5616 5617
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5618 5619
{
}
5620 5621
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5622 5623 5624
{
}
#endif
B
Balbir Singh 已提交
5625

B
Balbir Singh 已提交
5626 5627 5628 5629
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5630
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5631
	.destroy = mem_cgroup_destroy,
5632 5633
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5634
	.attach = mem_cgroup_move_task,
5635
	.base_cftypes = mem_cgroup_files,
5636
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5637
	.use_id = 1,
5638
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5639
};
5640 5641

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5642 5643 5644
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5645
	if (!strcmp(s, "1"))
5646
		really_do_swap_account = 1;
5647
	else if (!strcmp(s, "0"))
5648 5649 5650
		really_do_swap_account = 0;
	return 1;
}
5651
__setup("swapaccount=", enable_swap_account);
5652 5653

#endif