memcontrol.c 118.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
56
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
57

58
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
59
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 61 62 63 64 65
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

66 67 68 69 70 71 72 73 74
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75

76 77 78 79 80 81 82 83
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
84
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
85
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86 87
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
90 91 92 93 94 95 96 97

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

98 99 100 101
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
102 103 104
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
105 106
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
107 108

	struct zone_reclaim_stat reclaim_stat;
109 110 111 112
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
113 114
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
115 116 117 118 119 120 121 122 123 124 125 126
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

147 148 149 150 151
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
152
/* For threshold */
153 154
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
155
	int current_threshold;
156 157 158 159 160
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
161 162 163 164 165 166 167 168 169 170 171 172

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
173 174 175 176 177
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
178 179

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
180
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
181

B
Balbir Singh 已提交
182 183 184 185 186 187 188
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
189 190 191
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
192 193 194 195 196 197 198
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
199 200 201 202
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
203 204 205 206
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
207
	struct mem_cgroup_lru_info info;
208

K
KOSAKI Motohiro 已提交
209 210 211 212 213
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

214
	/*
215
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
216
	 * reclaimed from.
217
	 */
K
KAMEZAWA Hiroyuki 已提交
218
	int last_scanned_child;
219 220 221 222
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
223
	atomic_t	oom_lock;
224
	atomic_t	refcnt;
225

K
KOSAKI Motohiro 已提交
226
	unsigned int	swappiness;
227 228
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
229

230 231 232
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

233 234 235 236
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
237
	struct mem_cgroup_thresholds thresholds;
238

239
	/* thresholds for mem+swap usage. RCU-protected */
240
	struct mem_cgroup_thresholds memsw_thresholds;
241

K
KAMEZAWA Hiroyuki 已提交
242 243 244
	/* For oom notifier event fd */
	struct list_head oom_notify;

245 246 247 248 249
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
250
	/*
251
	 * percpu counter.
252
	 */
253
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
254 255
};

256 257 258 259 260 261
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
262
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
263
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
264 265 266
	NR_MOVE_TYPE,
};

267 268 269 270 271
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
272
	unsigned long moved_charge;
273
	unsigned long moved_swap;
274 275 276 277 278
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
279

D
Daisuke Nishimura 已提交
280 281 282 283 284 285
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

286 287 288 289 290 291
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

292 293 294 295 296 297 298
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

299 300 301
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
302
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
303
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
304
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
305
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
306 307 308
	NR_CHARGE_TYPE,
};

309 310 311 312
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
313 314
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
315

316 317 318
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
319
#define _OOM_TYPE		(2)
320 321 322
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
323 324
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
325

326 327 328 329 330 331 332
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
333 334
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
335

336 337
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
338
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
339
static void drain_all_stock_async(void);
340

341 342 343 344 345 346
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

347 348 349 350 351
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
381
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
382
				struct mem_cgroup_per_zone *mz,
383 384
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
385 386 387 388 389 390 391 392
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

393 394 395
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
412 413 414 415 416 417 418 419 420 421 422 423 424
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

425 426 427 428 429 430
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
431
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
432 433 434 435 436 437
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
438
	unsigned long long excess;
439 440
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
441 442
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
443 444 445
	mctz = soft_limit_tree_from_page(page);

	/*
446 447
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
448
	 */
449 450
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
451
		excess = res_counter_soft_limit_excess(&mem->res);
452 453 454 455
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
456
		if (excess || mz->on_tree) {
457 458 459 460 461
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
462 463
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
464
			 */
465
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
466 467
			spin_unlock(&mctz->lock);
		}
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

486 487 488 489 490 491 492 493 494
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
495
	struct mem_cgroup_per_zone *mz;
496 497

retry:
498
	mz = NULL;
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

548 549 550 551
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
552
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
553 554
}

555 556 557
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
558
{
559
	int val = (charge) ? 1 : -1;
560

561 562
	preempt_disable();

563
	if (PageCgroupCache(pc))
564
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
565
	else
566
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
567 568

	if (charge)
569
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
570
	else
571
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
572
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
573

574
	preempt_enable();
575 576
}

K
KAMEZAWA Hiroyuki 已提交
577
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
578
					enum lru_list idx)
579 580 581 582 583 584 585 586 587 588 589
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
590 591
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

615
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
616 617 618 619 620 621
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

622
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
623
{
624 625 626 627 628 629 630 631
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

632 633 634 635
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

636 637 638
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
639 640 641

	if (!mm)
		return NULL;
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

692 693 694 695 696
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
710

K
KAMEZAWA Hiroyuki 已提交
711 712 713 714
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
715

716
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
717 718 719
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
720
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
721
		return;
722
	VM_BUG_ON(!pc->mem_cgroup);
723 724 725 726
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
727
	mz = page_cgroup_zoneinfo(pc);
728
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
729 730 731
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
732 733
	list_del_init(&pc->lru);
	return;
734 735
}

K
KAMEZAWA Hiroyuki 已提交
736
void mem_cgroup_del_lru(struct page *page)
737
{
K
KAMEZAWA Hiroyuki 已提交
738 739
	mem_cgroup_del_lru_list(page, page_lru(page));
}
740

K
KAMEZAWA Hiroyuki 已提交
741 742 743 744
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
745

746
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
747
		return;
748

K
KAMEZAWA Hiroyuki 已提交
749
	pc = lookup_page_cgroup(page);
750 751 752 753
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
754
	smp_rmb();
755 756
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
757 758 759
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
760 761
}

K
KAMEZAWA Hiroyuki 已提交
762
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
763
{
K
KAMEZAWA Hiroyuki 已提交
764 765
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
766

767
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
768 769
		return;
	pc = lookup_page_cgroup(page);
770
	VM_BUG_ON(PageCgroupAcctLRU(pc));
771 772 773 774
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
775 776
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
777
		return;
778

K
KAMEZAWA Hiroyuki 已提交
779
	mz = page_cgroup_zoneinfo(pc);
780
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
781 782 783
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
784 785
	list_add(&pc->lru, &mz->lists[lru]);
}
786

K
KAMEZAWA Hiroyuki 已提交
787
/*
788 789 790 791 792
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
793
 */
794
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
795
{
796 797 798 799 800 801 802 803 804 805 806 807
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
808 809
}

810 811 812 813 814 815 816 817
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
818
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
819 820 821 822 823
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
824 825 826
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
827
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
828 829 830
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
831 832
}

833 834 835
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
836
	struct mem_cgroup *curr = NULL;
837 838

	task_lock(task);
839 840 841
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
842
	task_unlock(task);
843 844
	if (!curr)
		return 0;
845 846 847 848 849 850 851
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
852 853 854 855
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
856 857 858
	return ret;
}

859
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
860 861 862
{
	unsigned long active;
	unsigned long inactive;
863 864
	unsigned long gb;
	unsigned long inactive_ratio;
865

K
KAMEZAWA Hiroyuki 已提交
866 867
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
868

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
896 897 898 899 900
		return 1;

	return 0;
}

901 902 903 904 905 906 907 908 909 910 911
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

912 913 914 915 916 917 918 919 920 921 922
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
943 944 945 946 947 948 949 950
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
951 952 953 954 955 956 957
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

958 959 960 961 962
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
963
					int active, int file)
964 965 966 967 968 969
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
970
	struct page_cgroup *pc, *tmp;
971 972 973
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
974
	int lru = LRU_FILE * file + active;
975
	int ret;
976

977
	BUG_ON(!mem_cont);
978
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
979
	src = &mz->lists[lru];
980

981 982
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
983
		if (scan >= nr_to_scan)
984
			break;
K
KAMEZAWA Hiroyuki 已提交
985 986

		page = pc->page;
987 988
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
989
		if (unlikely(!PageLRU(page)))
990 991
			continue;

H
Hugh Dickins 已提交
992
		scan++;
993 994 995
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
996
			list_move(&page->lru, dst);
997
			mem_cgroup_del_lru(page);
998
			nr_taken++;
999 1000 1001 1002 1003 1004 1005
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1006 1007 1008 1009 1010 1011 1012
		}
	}

	*scanned = scan;
	return nr_taken;
}

1013 1014 1015
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1044 1045 1046 1047 1048 1049
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1050 1051

/**
1052
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1071
	if (!memcg || !p)
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

D
David Rientjes 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1147
/*
K
KAMEZAWA Hiroyuki 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1190 1191
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1192 1193 1194
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1195 1196
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1197 1198
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1199
						struct zone *zone,
1200 1201
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1202
{
K
KAMEZAWA Hiroyuki 已提交
1203 1204 1205
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1206 1207
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1208 1209
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1210

1211 1212 1213 1214
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1215
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1216
		victim = mem_cgroup_select_victim(root_mem);
1217
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1218
			loop++;
1219 1220
			if (loop >= 1)
				drain_all_stock_async();
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1244
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1245 1246
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1247 1248
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1249
		/* we use swappiness of local cgroup */
1250 1251 1252 1253 1254 1255 1256
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1257
		css_put(&victim->css);
1258 1259 1260 1261 1262 1263 1264
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1265
		total += ret;
1266 1267 1268 1269
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1270
			return 1 + total;
1271
	}
K
KAMEZAWA Hiroyuki 已提交
1272
	return total;
1273 1274
}

K
KAMEZAWA Hiroyuki 已提交
1275
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1276
{
K
KAMEZAWA Hiroyuki 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1295

K
KAMEZAWA Hiroyuki 已提交
1296 1297 1298 1299 1300
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1301
}
1302

K
KAMEZAWA Hiroyuki 已提交
1303
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1304
{
K
KAMEZAWA Hiroyuki 已提交
1305 1306 1307 1308 1309 1310
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1311 1312 1313
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1314 1315 1316 1317 1318 1319 1320 1321
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1358 1359
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1360
	if (atomic_read(&mem->oom_lock))
1361 1362 1363
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1364 1365 1366 1367
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1368
{
K
KAMEZAWA Hiroyuki 已提交
1369
	struct oom_wait_info owait;
1370
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1371

K
KAMEZAWA Hiroyuki 已提交
1372 1373 1374 1375 1376
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1377
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1378 1379 1380 1381 1382 1383 1384 1385
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1386 1387 1388 1389
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1390
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1391 1392
	mutex_unlock(&memcg_oom_mutex);

1393 1394
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1395
		mem_cgroup_out_of_memory(mem, mask);
1396
	} else {
K
KAMEZAWA Hiroyuki 已提交
1397
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1398
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1399 1400 1401
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1402
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1403 1404 1405 1406 1407 1408 1409
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1410 1411
}

1412 1413 1414 1415
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1416
void mem_cgroup_update_file_mapped(struct page *page, int val)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1427
	if (!mem || !PageCgroupUsed(pc))
1428 1429 1430
		goto done;

	/*
1431
	 * Preemption is already disabled. We can use __this_cpu_xxx
1432
	 */
1433 1434 1435 1436 1437 1438 1439
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		ClearPageCgroupFileMapped(pc);
	}
1440 1441 1442 1443

done:
	unlock_page_cgroup(pc);
}
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1506
 * This will be consumed by consume_stock() function, later.
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1572 1573 1574
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1575
 */
1576
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1577
			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1578
{
1579
	struct mem_cgroup *mem, *mem_over_limit;
1580
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1581
	struct res_counter *fail_res;
1582
	int csize = CHARGE_SIZE;
1583

K
KAMEZAWA Hiroyuki 已提交
1584 1585 1586 1587 1588 1589 1590 1591
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1592

1593
	/*
1594 1595
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1596 1597 1598
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1599 1600 1601
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1602
		*memcg = mem;
1603
	} else {
1604
		css_get(&mem->css);
1605
	}
1606 1607 1608
	if (unlikely(!mem))
		return 0;

1609
	VM_BUG_ON(css_is_removed(&mem->css));
1610 1611
	if (mem_cgroup_is_root(mem))
		goto done;
1612

1613
	while (1) {
1614
		int ret = 0;
1615
		unsigned long flags = 0;
1616

1617
		if (consume_stock(mem))
1618
			goto done;
1619 1620

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1621 1622 1623
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1624
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1625 1626 1627
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1628
			res_counter_uncharge(&mem->res, csize);
1629
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1630 1631 1632 1633 1634 1635 1636
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1637 1638 1639 1640 1641
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1642
		if (!(gfp_mask & __GFP_WAIT))
1643
			goto nomem;
1644

1645 1646
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1647 1648
		if (ret)
			continue;
1649 1650

		/*
1651 1652 1653 1654 1655
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1656
		 *
1657
		 */
1658 1659
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1701
		if (!nr_retries--) {
K
KAMEZAWA Hiroyuki 已提交
1702 1703 1704 1705 1706
			if (!oom)
				goto nomem;
			if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
				nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
				continue;
1707
			}
K
KAMEZAWA Hiroyuki 已提交
1708 1709 1710
			/* When we reach here, current task is dying .*/
			css_put(&mem->css);
			goto bypass;
1711
		}
1712
	}
1713 1714
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
1715
done:
1716 1717 1718 1719
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1720 1721 1722
bypass:
	*memcg = NULL;
	return 0;
1723
}
1724

1725 1726 1727 1728 1729
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1730 1731
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1732 1733
{
	if (!mem_cgroup_is_root(mem)) {
1734
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1735
		if (do_swap_account)
1736 1737 1738 1739
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1740
	}
1741 1742 1743 1744 1745 1746
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1747 1748
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1768
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1769
{
1770
	struct mem_cgroup *mem = NULL;
1771
	struct page_cgroup *pc;
1772
	unsigned short id;
1773 1774
	swp_entry_t ent;

1775 1776 1777
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1778
	lock_page_cgroup(pc);
1779
	if (PageCgroupUsed(pc)) {
1780
		mem = pc->mem_cgroup;
1781 1782
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1783
	} else if (PageSwapCache(page)) {
1784
		ent.val = page_private(page);
1785 1786 1787 1788 1789 1790
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1791
	}
1792
	unlock_page_cgroup(pc);
1793 1794 1795
	return mem;
}

1796
/*
1797
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1808 1809 1810 1811

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1812
		mem_cgroup_cancel_charge(mem);
1813
		return;
1814
	}
1815

1816
	pc->mem_cgroup = mem;
1817 1818 1819 1820 1821 1822 1823
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1824
	smp_wmb();
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1838

K
KAMEZAWA Hiroyuki 已提交
1839
	mem_cgroup_charge_statistics(mem, pc, true);
1840 1841

	unlock_page_cgroup(pc);
1842 1843 1844 1845 1846
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1847
	memcg_check_events(mem, pc->page);
1848
}
1849

1850
/**
1851
 * __mem_cgroup_move_account - move account of the page
1852 1853 1854
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1855
 * @uncharge: whether we should call uncharge and css_put against @from.
1856 1857
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1858
 * - page is not on LRU (isolate_page() is useful.)
1859
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1860
 *
1861 1862 1863 1864
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1865 1866
 */

1867
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1868
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1869 1870
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1871
	VM_BUG_ON(PageLRU(pc->page));
1872 1873 1874
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1875

1876
	if (PageCgroupFileMapped(pc)) {
1877 1878 1879 1880 1881
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1882
	}
1883 1884 1885 1886
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1887

1888
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1889 1890
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1891 1892 1893
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1894 1895 1896
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1897
	 */
1898 1899 1900 1901 1902 1903 1904
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1905
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1906 1907 1908 1909
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1910
		__mem_cgroup_move_account(pc, from, to, uncharge);
1911 1912 1913
		ret = 0;
	}
	unlock_page_cgroup(pc);
1914 1915 1916 1917 1918
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1930
	struct page *page = pc->page;
1931 1932 1933 1934 1935 1936 1937 1938 1939
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1940 1941 1942 1943 1944
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1945

1946
	parent = mem_cgroup_from_cont(pcg);
1947
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1948
	if (ret || !parent)
1949
		goto put_back;
1950

1951 1952 1953
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1954
put_back:
K
KAMEZAWA Hiroyuki 已提交
1955
	putback_lru_page(page);
1956
put:
1957
	put_page(page);
1958
out:
1959 1960 1961
	return ret;
}

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1983
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1984
	if (ret || !mem)
1985 1986 1987
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1988 1989 1990
	return 0;
}

1991 1992
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1993
{
1994
	if (mem_cgroup_disabled())
1995
		return 0;
1996 1997
	if (PageCompound(page))
		return 0;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2009
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2010
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2011 2012
}

D
Daisuke Nishimura 已提交
2013 2014 2015 2016
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2017 2018
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2019
{
2020 2021 2022
	struct mem_cgroup *mem = NULL;
	int ret;

2023
	if (mem_cgroup_disabled())
2024
		return 0;
2025 2026
	if (PageCompound(page))
		return 0;
2027 2028 2029 2030 2031 2032 2033 2034
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2035 2036
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2037 2038 2039 2040
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2041 2042 2043 2044 2045 2046 2047

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2048 2049
			return 0;
		}
2050
		unlock_page_cgroup(pc);
2051 2052
	}

2053
	if (unlikely(!mm && !mem))
2054
		mm = &init_mm;
2055

2056 2057
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2058
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2059

D
Daisuke Nishimura 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2069 2070

	return ret;
2071 2072
}

2073 2074 2075
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2076
 * struct page_cgroup is acquired. This refcnt will be consumed by
2077 2078
 * "commit()" or removed by "cancel()"
 */
2079 2080 2081 2082 2083
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2084
	int ret;
2085

2086
	if (mem_cgroup_disabled())
2087 2088 2089 2090 2091 2092
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2093 2094 2095
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2096 2097
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2098
		goto charge_cur_mm;
2099
	mem = try_get_mem_cgroup_from_page(page);
2100 2101
	if (!mem)
		goto charge_cur_mm;
2102
	*ptr = mem;
2103
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2104 2105 2106
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2107 2108 2109
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2110
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2111 2112
}

D
Daisuke Nishimura 已提交
2113 2114 2115
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2116 2117 2118
{
	struct page_cgroup *pc;

2119
	if (mem_cgroup_disabled())
2120 2121 2122
		return;
	if (!ptr)
		return;
2123
	cgroup_exclude_rmdir(&ptr->css);
2124
	pc = lookup_page_cgroup(page);
2125
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2126
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2127
	mem_cgroup_lru_add_after_commit_swapcache(page);
2128 2129 2130
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2131 2132 2133
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2134
	 */
2135
	if (do_swap_account && PageSwapCache(page)) {
2136
		swp_entry_t ent = {.val = page_private(page)};
2137
		unsigned short id;
2138
		struct mem_cgroup *memcg;
2139 2140 2141 2142

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2143
		if (memcg) {
2144 2145 2146 2147
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2148
			if (!mem_cgroup_is_root(memcg))
2149
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2150
			mem_cgroup_swap_statistics(memcg, false);
2151 2152
			mem_cgroup_put(memcg);
		}
2153
		rcu_read_unlock();
2154
	}
2155 2156 2157 2158 2159 2160
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2161 2162
}

D
Daisuke Nishimura 已提交
2163 2164 2165 2166 2167 2168
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2169 2170
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2171
	if (mem_cgroup_disabled())
2172 2173 2174
		return;
	if (!mem)
		return;
2175
	mem_cgroup_cancel_charge(mem);
2176 2177
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2222 2223
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2224 2225
	return;
}
2226

2227
/*
2228
 * uncharge if !page_mapped(page)
2229
 */
2230
static struct mem_cgroup *
2231
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2232
{
H
Hugh Dickins 已提交
2233
	struct page_cgroup *pc;
2234
	struct mem_cgroup *mem = NULL;
2235
	struct mem_cgroup_per_zone *mz;
2236

2237
	if (mem_cgroup_disabled())
2238
		return NULL;
2239

K
KAMEZAWA Hiroyuki 已提交
2240
	if (PageSwapCache(page))
2241
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2242

2243
	/*
2244
	 * Check if our page_cgroup is valid
2245
	 */
2246 2247
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2248
		return NULL;
2249

2250
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2251

2252 2253
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2254 2255 2256 2257 2258
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2259
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2260 2261
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2273
	}
K
KAMEZAWA Hiroyuki 已提交
2274

2275 2276
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2277 2278
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2279
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2280

2281
	ClearPageCgroupUsed(pc);
2282 2283 2284 2285 2286 2287
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2288

2289
	mz = page_cgroup_zoneinfo(pc);
2290
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2291

2292
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2293 2294 2295
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2296

2297
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2298 2299 2300

unlock_out:
	unlock_page_cgroup(pc);
2301
	return NULL;
2302 2303
}

2304 2305
void mem_cgroup_uncharge_page(struct page *page)
{
2306 2307 2308 2309 2310
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2311 2312 2313 2314 2315 2316
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2317
	VM_BUG_ON(page->mapping);
2318 2319 2320
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2361
	memcg_oom_recover(batch->memcg);
2362 2363 2364 2365
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2366
#ifdef CONFIG_SWAP
2367
/*
2368
 * called after __delete_from_swap_cache() and drop "page" account.
2369 2370
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2371 2372
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2373 2374
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2375 2376 2377 2378 2379 2380
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2381 2382

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2383
	if (do_swap_account && swapout && memcg) {
2384
		swap_cgroup_record(ent, css_id(&memcg->css));
2385 2386
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2387
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2388
		css_put(&memcg->css);
2389
}
2390
#endif
2391 2392 2393 2394 2395 2396 2397

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2398
{
2399
	struct mem_cgroup *memcg;
2400
	unsigned short id;
2401 2402 2403 2404

	if (!do_swap_account)
		return;

2405 2406 2407
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2408
	if (memcg) {
2409 2410 2411 2412
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2413
		if (!mem_cgroup_is_root(memcg))
2414
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2415
		mem_cgroup_swap_statistics(memcg, false);
2416 2417
		mem_cgroup_put(memcg);
	}
2418
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2419
}
2420 2421 2422 2423 2424 2425

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2426
 * @need_fixup: whether we should fixup res_counters and refcounts.
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2437
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2438 2439 2440 2441 2442 2443 2444 2445
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2446
		mem_cgroup_swap_statistics(to, true);
2447
		/*
2448 2449 2450 2451 2452 2453
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2454 2455
		 */
		mem_cgroup_get(to);
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2468 2469 2470 2471 2472 2473
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2474
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2475 2476 2477
{
	return -EINVAL;
}
2478
#endif
K
KAMEZAWA Hiroyuki 已提交
2479

2480
/*
2481 2482
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2483
 */
2484 2485
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2486 2487
{
	struct page_cgroup *pc;
2488
	struct mem_cgroup *mem = NULL;
2489
	enum charge_type ctype;
2490
	int ret = 0;
2491

2492
	if (mem_cgroup_disabled())
2493 2494
		return 0;

2495 2496 2497
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2498 2499
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2531
	}
2532
	unlock_page_cgroup(pc);
2533 2534 2535 2536 2537 2538
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2539

A
Andrea Arcangeli 已提交
2540
	*ptr = mem;
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2554
	}
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2569
	return ret;
2570
}
2571

2572
/* remove redundant charge if migration failed*/
2573
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2574
	struct page *oldpage, struct page *newpage)
2575
{
2576
	struct page *used, *unused;
2577 2578 2579 2580
	struct page_cgroup *pc;

	if (!mem)
		return;
2581
	/* blocks rmdir() */
2582
	cgroup_exclude_rmdir(&mem->css);
2583 2584
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2585 2586
		used = oldpage;
		unused = newpage;
2587
	} else {
2588
		used = newpage;
2589 2590
		unused = oldpage;
	}
2591
	/*
2592 2593 2594
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2595
	 */
2596 2597 2598 2599
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2600

2601 2602 2603 2604 2605
	if (unused != oldpage)
		pc = lookup_page_cgroup(unused);
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

	pc = lookup_page_cgroup(used);
2606
	/*
2607 2608 2609 2610 2611 2612
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2613
	 */
2614 2615
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2616
	/*
2617 2618
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2619 2620 2621 2622
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2623
}
2624

2625
/*
2626 2627 2628 2629 2630 2631
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2632
 */
2633
int mem_cgroup_shmem_charge_fallback(struct page *page,
2634 2635
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2636
{
2637
	struct mem_cgroup *mem = NULL;
2638
	int ret;
2639

2640
	if (mem_cgroup_disabled())
2641
		return 0;
2642

2643 2644 2645
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2646

2647
	return ret;
2648 2649
}

2650 2651
static DEFINE_MUTEX(set_limit_mutex);

2652
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2653
				unsigned long long val)
2654
{
2655
	int retry_count;
2656
	u64 memswlimit, memlimit;
2657
	int ret = 0;
2658 2659
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2660
	int enlarge;
2661 2662 2663 2664 2665 2666 2667 2668 2669

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2670

2671
	enlarge = 0;
2672
	while (retry_count) {
2673 2674 2675 2676
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2687 2688
			break;
		}
2689 2690 2691 2692 2693

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2694
		ret = res_counter_set_limit(&memcg->res, val);
2695 2696 2697 2698 2699 2700
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2701 2702 2703 2704 2705
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2706
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2707
						MEM_CGROUP_RECLAIM_SHRINK);
2708 2709 2710 2711 2712 2713
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2714
	}
2715 2716
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2717

2718 2719 2720
	return ret;
}

L
Li Zefan 已提交
2721 2722
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2723
{
2724
	int retry_count;
2725
	u64 memlimit, memswlimit, oldusage, curusage;
2726 2727
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2728
	int enlarge = 0;
2729

2730 2731 2732
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
2750 2751 2752
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
2753
		ret = res_counter_set_limit(&memcg->memsw, val);
2754 2755 2756 2757 2758 2759
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2760 2761 2762 2763 2764
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2765
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2766 2767
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2768
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2769
		/* Usage is reduced ? */
2770
		if (curusage >= oldusage)
2771
			retry_count--;
2772 2773
		else
			oldusage = curusage;
2774
	}
2775 2776
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2777 2778 2779
	return ret;
}

2780 2781 2782 2783 2784 2785 2786 2787 2788
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2789
	unsigned long long excess;
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2842
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2843 2844 2845 2846 2847 2848 2849 2850
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2851 2852
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2871 2872 2873 2874
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2875
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2876
				int node, int zid, enum lru_list lru)
2877
{
K
KAMEZAWA Hiroyuki 已提交
2878 2879
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2880
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2881
	unsigned long flags, loop;
2882
	struct list_head *list;
2883
	int ret = 0;
2884

K
KAMEZAWA Hiroyuki 已提交
2885 2886
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2887
	list = &mz->lists[lru];
2888

2889 2890 2891 2892 2893 2894
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2895
		spin_lock_irqsave(&zone->lru_lock, flags);
2896
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2897
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2898
			break;
2899 2900 2901 2902
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2903
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2904
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2905 2906
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2907
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2908

K
KAMEZAWA Hiroyuki 已提交
2909
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2910
		if (ret == -ENOMEM)
2911
			break;
2912 2913 2914 2915 2916 2917 2918

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2919
	}
K
KAMEZAWA Hiroyuki 已提交
2920

2921 2922 2923
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2924 2925 2926 2927 2928 2929
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2930
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2931
{
2932 2933 2934
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2935
	struct cgroup *cgrp = mem->css.cgroup;
2936

2937
	css_get(&mem->css);
2938 2939

	shrink = 0;
2940 2941 2942
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2943
move_account:
2944
	do {
2945
		ret = -EBUSY;
2946 2947 2948 2949
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2950
			goto out;
2951 2952
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2953
		drain_all_stock_sync();
2954
		ret = 0;
2955
		for_each_node_state(node, N_HIGH_MEMORY) {
2956
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2957
				enum lru_list l;
2958 2959
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2960
							node, zid, l);
2961 2962 2963
					if (ret)
						break;
				}
2964
			}
2965 2966 2967
			if (ret)
				break;
		}
2968
		memcg_oom_recover(mem);
2969 2970 2971
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2972
		cond_resched();
2973 2974
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2975 2976 2977
out:
	css_put(&mem->css);
	return ret;
2978 2979

try_to_free:
2980 2981
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2982 2983 2984
		ret = -EBUSY;
		goto out;
	}
2985 2986
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2987 2988 2989 2990
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2991 2992 2993 2994 2995

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2996 2997
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2998
		if (!progress) {
2999
			nr_retries--;
3000
			/* maybe some writeback is necessary */
3001
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3002
		}
3003 3004

	}
K
KAMEZAWA Hiroyuki 已提交
3005
	lru_add_drain();
3006
	/* try move_account...there may be some *locked* pages. */
3007
	goto move_account;
3008 3009
}

3010 3011 3012 3013 3014 3015
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3034
	 * If parent's use_hierarchy is set, we can't make any modifications
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3054 3055 3056 3057 3058 3059 3060 3061 3062
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
3063
	d->val += mem_cgroup_read_stat(mem, d->idx);
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3103
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3104
{
3105
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3106
	u64 val;
3107 3108 3109 3110 3111 3112
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3113 3114 3115
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3116
			val = res_counter_read_u64(&mem->res, name);
3117 3118
		break;
	case _MEMSWAP:
3119 3120 3121
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3122
			val = res_counter_read_u64(&mem->memsw, name);
3123 3124 3125 3126 3127 3128
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3129
}
3130 3131 3132 3133
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3134 3135
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3136
{
3137
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3138
	int type, name;
3139 3140 3141
	unsigned long long val;
	int ret;

3142 3143 3144
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3145
	case RES_LIMIT:
3146 3147 3148 3149
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3150 3151
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3152 3153 3154
		if (ret)
			break;
		if (type == _MEM)
3155
			ret = mem_cgroup_resize_limit(memcg, val);
3156 3157
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3158
		break;
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3173 3174 3175 3176 3177
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3178 3179
}

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3208
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3209 3210
{
	struct mem_cgroup *mem;
3211
	int type, name;
3212 3213

	mem = mem_cgroup_from_cont(cont);
3214 3215 3216
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3217
	case RES_MAX_USAGE:
3218 3219 3220 3221
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3222 3223
		break;
	case RES_FAILCNT:
3224 3225 3226 3227
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3228 3229
		break;
	}
3230

3231
	return 0;
3232 3233
}

3234 3235 3236 3237 3238 3239
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3240
#ifdef CONFIG_MMU
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3259 3260 3261 3262 3263 3264 3265
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3266

K
KAMEZAWA Hiroyuki 已提交
3267 3268 3269 3270 3271

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3272
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3273 3274
	MCS_PGPGIN,
	MCS_PGPGOUT,
3275
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3286 3287
};

K
KAMEZAWA Hiroyuki 已提交
3288 3289 3290 3291 3292 3293
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3294
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3295 3296
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3297
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3312
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3313
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3314
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3315
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3316
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3317
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3318
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3319
	s->stat[MCS_PGPGIN] += val;
3320
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3321
	s->stat[MCS_PGPGOUT] += val;
3322
	if (do_swap_account) {
3323
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3324 3325
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3347 3348
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3349 3350
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3351
	struct mcs_total_stat mystat;
3352 3353
	int i;

K
KAMEZAWA Hiroyuki 已提交
3354 3355
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3356

3357 3358 3359
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3360
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3361
	}
L
Lee Schermerhorn 已提交
3362

K
KAMEZAWA Hiroyuki 已提交
3363
	/* Hierarchical information */
3364 3365 3366 3367 3368 3369 3370
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3371

K
KAMEZAWA Hiroyuki 已提交
3372 3373
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3374 3375 3376
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3377
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3378
	}
K
KAMEZAWA Hiroyuki 已提交
3379

K
KOSAKI Motohiro 已提交
3380
#ifdef CONFIG_DEBUG_VM
3381
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3409 3410 3411
	return 0;
}

K
KOSAKI Motohiro 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3424

K
KOSAKI Motohiro 已提交
3425 3426 3427 3428 3429 3430 3431
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3432 3433 3434

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3435 3436
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3437 3438
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3439
		return -EINVAL;
3440
	}
K
KOSAKI Motohiro 已提交
3441 3442 3443 3444 3445

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3446 3447
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3448 3449 3450
	return 0;
}

3451 3452 3453 3454 3455 3456 3457 3458
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3459
		t = rcu_dereference(memcg->thresholds.primary);
3460
	else
3461
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3473
	i = t->current_threshold;
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3497
	t->current_threshold = i - 1;
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3533 3534
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3535 3536
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3537 3538
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3539
	int i, size, ret;
3540 3541 3542 3543 3544 3545

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3546

3547
	if (type == _MEM)
3548
		thresholds = &memcg->thresholds;
3549
	else if (type == _MEMSWAP)
3550
		thresholds = &memcg->memsw_thresholds;
3551 3552 3553 3554 3555 3556
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3557
	if (thresholds->primary)
3558 3559
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3560
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3561 3562

	/* Allocate memory for new array of thresholds */
3563
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3564
			GFP_KERNEL);
3565
	if (!new) {
3566 3567 3568
		ret = -ENOMEM;
		goto unlock;
	}
3569
	new->size = size;
3570 3571

	/* Copy thresholds (if any) to new array */
3572 3573
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3574
				sizeof(struct mem_cgroup_threshold));
3575 3576
	}

3577
	/* Add new threshold */
3578 3579
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3580 3581

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3582
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3583 3584 3585
			compare_thresholds, NULL);

	/* Find current threshold */
3586
	new->current_threshold = -1;
3587
	for (i = 0; i < size; i++) {
3588
		if (new->entries[i].threshold < usage) {
3589
			/*
3590 3591
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3592 3593
			 * it here.
			 */
3594
			++new->current_threshold;
3595 3596 3597
		}
	}

3598 3599 3600 3601 3602
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3603

3604
	/* To be sure that nobody uses thresholds */
3605 3606 3607 3608 3609 3610 3611 3612
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3613
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3614
	struct cftype *cft, struct eventfd_ctx *eventfd)
3615 3616
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3617 3618
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3619 3620
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3621
	int i, j, size;
3622 3623 3624

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3625
		thresholds = &memcg->thresholds;
3626
	else if (type == _MEMSWAP)
3627
		thresholds = &memcg->memsw_thresholds;
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3643 3644 3645
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3646 3647 3648
			size++;
	}

3649
	new = thresholds->spare;
3650

3651 3652
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3653 3654
		kfree(new);
		new = NULL;
3655
		goto swap_buffers;
3656 3657
	}

3658
	new->size = size;
3659 3660

	/* Copy thresholds and find current threshold */
3661 3662 3663
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3664 3665
			continue;

3666 3667
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3668
			/*
3669
			 * new->current_threshold will not be used
3670 3671 3672
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3673
			++new->current_threshold;
3674 3675 3676 3677
		}
		j++;
	}

3678
swap_buffers:
3679 3680 3681
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3682

3683
	/* To be sure that nobody uses thresholds */
3684 3685 3686 3687
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3688

K
KAMEZAWA Hiroyuki 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3714
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

/*
 */
static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
3771 3772
	if (!val)
		memcg_oom_recover(mem);
3773 3774 3775 3776
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
3777 3778
static struct cftype mem_cgroup_files[] = {
	{
3779
		.name = "usage_in_bytes",
3780
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3781
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3782 3783
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3784
	},
3785 3786
	{
		.name = "max_usage_in_bytes",
3787
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3788
		.trigger = mem_cgroup_reset,
3789 3790
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3791
	{
3792
		.name = "limit_in_bytes",
3793
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3794
		.write_string = mem_cgroup_write,
3795
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3796
	},
3797 3798 3799 3800 3801 3802
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3803 3804
	{
		.name = "failcnt",
3805
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3806
		.trigger = mem_cgroup_reset,
3807
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3808
	},
3809 3810
	{
		.name = "stat",
3811
		.read_map = mem_control_stat_show,
3812
	},
3813 3814 3815 3816
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3817 3818 3819 3820 3821
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3822 3823 3824 3825 3826
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3827 3828 3829 3830 3831
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3832 3833
	{
		.name = "oom_control",
3834 3835
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3836 3837 3838 3839
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3840 3841
};

3842 3843 3844 3845 3846 3847
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3848 3849
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3885 3886 3887
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3888
	struct mem_cgroup_per_zone *mz;
3889
	enum lru_list l;
3890
	int zone, tmp = node;
3891 3892 3893 3894 3895 3896 3897 3898
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3899 3900 3901
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3902 3903
	if (!pn)
		return 1;
3904

3905 3906
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3907 3908 3909

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3910 3911
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3912
		mz->usage_in_excess = 0;
3913 3914
		mz->on_tree = false;
		mz->mem = mem;
3915
	}
3916 3917 3918
	return 0;
}

3919 3920 3921 3922 3923
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3924 3925 3926
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3927
	int size = sizeof(struct mem_cgroup);
3928

3929
	/* Can be very big if MAX_NUMNODES is very big */
3930 3931
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3932
	else
3933
		mem = vmalloc(size);
3934

3935 3936 3937 3938
	if (!mem)
		return NULL;

	memset(mem, 0, size);
3939 3940 3941 3942 3943 3944 3945 3946
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
3947 3948 3949
	return mem;
}

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3961
static void __mem_cgroup_free(struct mem_cgroup *mem)
3962
{
K
KAMEZAWA Hiroyuki 已提交
3963 3964
	int node;

3965
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3966 3967
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3968 3969 3970
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3971 3972
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3973 3974 3975 3976 3977
		kfree(mem);
	else
		vfree(mem);
}

3978 3979 3980 3981 3982
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

3983
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3984
{
3985
	if (atomic_sub_and_test(count, &mem->refcnt)) {
3986
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3987
		__mem_cgroup_free(mem);
3988 3989 3990
		if (parent)
			mem_cgroup_put(parent);
	}
3991 3992
}

3993 3994 3995 3996 3997
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

3998 3999 4000 4001 4002 4003 4004 4005 4006
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4007

4008 4009 4010
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4011
	if (!mem_cgroup_disabled() && really_do_swap_account)
4012 4013 4014 4015 4016 4017 4018 4019
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4045
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4046 4047
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4048
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4049
	long error = -ENOMEM;
4050
	int node;
B
Balbir Singh 已提交
4051

4052 4053
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4054
		return ERR_PTR(error);
4055

4056 4057 4058
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4059

4060
	/* root ? */
4061
	if (cont->parent == NULL) {
4062
		int cpu;
4063
		enable_swap_cgroup();
4064
		parent = NULL;
4065
		root_mem_cgroup = mem;
4066 4067
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4068 4069 4070 4071 4072 4073
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4074
	} else {
4075
		parent = mem_cgroup_from_cont(cont->parent);
4076
		mem->use_hierarchy = parent->use_hierarchy;
4077
		mem->oom_kill_disable = parent->oom_kill_disable;
4078
	}
4079

4080 4081 4082
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4083 4084 4085 4086 4087 4088 4089
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4090 4091 4092 4093
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4094
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4095
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4096
	INIT_LIST_HEAD(&mem->oom_notify);
4097

K
KOSAKI Motohiro 已提交
4098 4099
	if (parent)
		mem->swappiness = get_swappiness(parent);
4100
	atomic_set(&mem->refcnt, 1);
4101
	mem->move_charge_at_immigrate = 0;
4102
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4103
	return &mem->css;
4104
free_out:
4105
	__mem_cgroup_free(mem);
4106
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4107
	return ERR_PTR(error);
B
Balbir Singh 已提交
4108 4109
}

4110
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4111 4112 4113
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4114 4115

	return mem_cgroup_force_empty(mem, false);
4116 4117
}

B
Balbir Singh 已提交
4118 4119 4120
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4121 4122 4123
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4124 4125 4126 4127 4128
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4129 4130 4131 4132 4133 4134 4135 4136
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4137 4138
}

4139
#ifdef CONFIG_MMU
4140
/* Handlers for move charge at task migration. */
4141 4142
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4143
{
4144 4145
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4146 4147
	struct mem_cgroup *mem = mc.to;

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4186
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4187 4188 4189 4190 4191
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4192 4193 4194 4195 4196 4197 4198 4199
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4200
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4201 4202 4203 4204 4205 4206
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4207 4208 4209
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4210 4211 4212 4213 4214
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4215
	swp_entry_t	ent;
4216 4217 4218 4219 4220
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4221
	MC_TARGET_SWAP,
4222 4223
};

D
Daisuke Nishimura 已提交
4224 4225
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4226
{
D
Daisuke Nishimura 已提交
4227
	struct page *page = vm_normal_page(vma, addr, ptent);
4228

D
Daisuke Nishimura 已提交
4229 4230 4231 4232 4233 4234
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4235 4236
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4255 4256
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4257
		return NULL;
4258
	}
D
Daisuke Nishimura 已提交
4259 4260 4261 4262 4263 4264
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4310 4311
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4312 4313 4314

	if (!page && !ent.val)
		return 0;
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4330 4331
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4332 4333 4334 4335
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4355 4356 4357
	return 0;
}

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4385
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4386 4387 4388 4389 4390
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4391 4392 4393
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
4394
		memcg_oom_recover(mc.to);
4395 4396 4397 4398 4399 4400 4401 4402
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4403
		memcg_oom_recover(mc.from);
4404
	}
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4428 4429
	mc.from = NULL;
	mc.to = NULL;
4430 4431
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4432 4433
}

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4452 4453 4454 4455
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4456
			VM_BUG_ON(mc.moved_charge);
4457
			VM_BUG_ON(mc.moved_swap);
4458
			VM_BUG_ON(mc.moving_task);
4459 4460 4461
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4462
			mc.moved_charge = 0;
4463
			mc.moved_swap = 0;
4464
			mc.moving_task = current;
4465 4466 4467 4468 4469

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4480
	mem_cgroup_clear_mc();
4481 4482
}

4483 4484 4485
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4486
{
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4500
		swp_entry_t ent;
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4512 4513
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4514
				mc.precharge--;
4515 4516
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4517 4518 4519 4520 4521
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4522 4523
		case MC_TARGET_SWAP:
			ent = target.ent;
4524 4525
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4526
				mc.precharge--;
4527 4528 4529
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4530
			break;
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4545
		ret = mem_cgroup_do_precharge(1);
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4578 4579
}

B
Balbir Singh 已提交
4580 4581 4582
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4583 4584
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4585
{
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4598
}
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4621

B
Balbir Singh 已提交
4622 4623 4624 4625
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4626
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4627 4628
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4629 4630
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4631
	.attach = mem_cgroup_move_task,
4632
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4633
	.use_id = 1,
B
Balbir Singh 已提交
4634
};
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif