memcontrol.c 146.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
G
Glauber Costa 已提交
69
#include <net/tcp_memcontrol.h>
70
#include "slab.h"
B
Balbir Singh 已提交
71

72 73
#include <asm/uaccess.h>

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79 80
struct mem_cgroup *root_mem_cgroup __read_mostly;

81
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
82

83
/* Whether the swap controller is active */
A
Andrew Morton 已提交
84
#ifdef CONFIG_MEMCG_SWAP
85 86
int do_swap_account __read_mostly;
#else
87
#define do_swap_account		0
88 89
#endif

90 91 92 93 94 95
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

96 97 98
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
99
	"rss_huge",
100
	"mapped_file",
101
	"dirty",
102
	"writeback",
103 104 105 106 107 108 109 110 111 112
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

113 114 115 116 117 118 119 120
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

121 122 123
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
145 146 147 148 149
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
150

151 152 153
/*
 * cgroup_event represents events which userspace want to receive.
 */
154
struct mem_cgroup_event {
155
	/*
156
	 * memcg which the event belongs to.
157
	 */
158
	struct mem_cgroup *memcg;
159 160 161 162 163 164 165 166
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
167 168 169 170 171
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
172
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
173
			      struct eventfd_ctx *eventfd, const char *args);
174 175 176 177 178
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
179
	void (*unregister_event)(struct mem_cgroup *memcg,
180
				 struct eventfd_ctx *eventfd);
181 182 183 184 185 186 187 188 189 190
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

191 192
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
193

194 195
/* Stuffs for move charges at task migration. */
/*
196
 * Types of charges to be moved.
197
 */
198 199 200
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
201

202 203
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
204
	spinlock_t	  lock; /* for from, to */
205 206
	struct mem_cgroup *from;
	struct mem_cgroup *to;
207
	unsigned long flags;
208
	unsigned long precharge;
209
	unsigned long moved_charge;
210
	unsigned long moved_swap;
211 212 213
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
214
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
215 216
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
217

218 219 220 221
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
222
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
223
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
224

225 226
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
227
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
228
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
229
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
230 231 232
	NR_CHARGE_TYPE,
};

233
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
234 235 236 237
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
238
	_KMEM,
G
Glauber Costa 已提交
239 240
};

241 242
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
243
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
244 245
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
246

247 248 249 250 251 252 253
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

254 255 256 257 258 259 260 261 262 263 264 265 266
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

267 268 269 270 271
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

272 273 274 275 276 277
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
278 279
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
280
	return memcg->css.id;
L
Li Zefan 已提交
281 282
}

283 284 285 286 287 288
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
289 290 291 292
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

293
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
294 295 296
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
297
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
298
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
299

300 301 302
struct static_key memcg_sockets_enabled_key;
EXPORT_SYMBOL(memcg_sockets_enabled_key);

G
Glauber Costa 已提交
303 304
void sock_update_memcg(struct sock *sk)
{
305 306 307 308 309 310 311 312 313 314
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
315 316 317
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
318
		return;
G
Glauber Costa 已提交
319
	}
320 321 322

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
323 324 325 326
	if (memcg != root_mem_cgroup &&
	    memcg->tcp_mem.active &&
	    css_tryget_online(&memcg->css))
		sk->sk_memcg = memcg;
327
	rcu_read_unlock();
G
Glauber Costa 已提交
328 329 330 331 332
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
333 334
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
G
Glauber Costa 已提交
335
}
G
Glauber Costa 已提交
336

337 338
/**
 * mem_cgroup_charge_skmem - charge socket memory
339
 * @memcg: memcg to charge
340 341
 * @nr_pages: number of pages to charge
 *
342 343
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
344
 */
345
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
346 347 348
{
	struct page_counter *counter;

349
	if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
350
				    nr_pages, &counter)) {
351
		memcg->tcp_mem.memory_pressure = 0;
352 353
		return true;
	}
354 355
	page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
	memcg->tcp_mem.memory_pressure = 1;
356 357 358 359 360
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
361
 * @memcg - memcg to uncharge
362 363
 * @nr_pages - number of pages to uncharge
 */
364
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
365
{
366
	page_counter_uncharge(&memcg->tcp_mem.memory_allocated, nr_pages);
367 368
}

369 370
#endif

371
#ifdef CONFIG_MEMCG_KMEM
372
/*
373
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
374 375 376 377 378
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
379
 *
380 381
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
382
 */
383 384
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
385

386 387 388 389 390 391 392 393 394 395 396 397 398
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

399 400 401 402 403 404
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
405
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
406 407
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
408
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
409 410 411
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
412
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
413

414 415 416 417 418 419
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
420
struct static_key memcg_kmem_enabled_key;
421
EXPORT_SYMBOL(memcg_kmem_enabled_key);
422 423 424

#endif /* CONFIG_MEMCG_KMEM */

425
static struct mem_cgroup_per_zone *
426
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
427
{
428 429 430
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

431
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
432 433
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

460
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
461 462 463 464 465 466
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

495
static struct mem_cgroup_per_zone *
496
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
497
{
498 499
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
500

501
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

519 520
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
521
					 unsigned long new_usage_in_excess)
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

551 552
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
553 554 555 556 557 558 559
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

560 561
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
562
{
563 564 565
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
566
	__mem_cgroup_remove_exceeded(mz, mctz);
567
	spin_unlock_irqrestore(&mctz->lock, flags);
568 569
}

570 571 572
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
573
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
574 575 576 577 578 579 580
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
581 582 583

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
584
	unsigned long excess;
585 586 587
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

588
	mctz = soft_limit_tree_from_page(page);
589 590 591 592 593
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
594
		mz = mem_cgroup_page_zoneinfo(memcg, page);
595
		excess = soft_limit_excess(memcg);
596 597 598 599 600
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
601 602 603
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
604 605
			/* if on-tree, remove it */
			if (mz->on_tree)
606
				__mem_cgroup_remove_exceeded(mz, mctz);
607 608 609 610
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
611
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
612
			spin_unlock_irqrestore(&mctz->lock, flags);
613 614 615 616 617 618 619
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
620 621
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
622

623 624 625 626
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
627
			mem_cgroup_remove_exceeded(mz, mctz);
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
650
	__mem_cgroup_remove_exceeded(mz, mctz);
651
	if (!soft_limit_excess(mz->memcg) ||
652
	    !css_tryget_online(&mz->memcg->css))
653 654 655 656 657 658 659 660 661 662
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

663
	spin_lock_irq(&mctz->lock);
664
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
665
	spin_unlock_irq(&mctz->lock);
666 667 668
	return mz;
}

669
/*
670 671
 * Return page count for single (non recursive) @memcg.
 *
672 673 674 675 676
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
677
 * a periodic synchronization of counter in memcg's counter.
678 679 680 681 682 683 684 685 686
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
687
 * common workload, threshold and synchronization as vmstat[] should be
688 689
 * implemented.
 */
690 691
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
692
{
693
	long val = 0;
694 695
	int cpu;

696
	/* Per-cpu values can be negative, use a signed accumulator */
697
	for_each_possible_cpu(cpu)
698
		val += per_cpu(memcg->stat->count[idx], cpu);
699 700 701 702 703 704
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
705 706 707
	return val;
}

708
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 710 711 712 713
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

714
	for_each_possible_cpu(cpu)
715
		val += per_cpu(memcg->stat->events[idx], cpu);
716 717 718
	return val;
}

719
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
720
					 struct page *page,
721
					 int nr_pages)
722
{
723 724 725 726
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
727
	if (PageAnon(page))
728
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
729
				nr_pages);
730
	else
731
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
732
				nr_pages);
733

734 735 736 737
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

738 739
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
740
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
741
	else {
742
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
743 744
		nr_pages = -nr_pages; /* for event */
	}
745

746
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747 748
}

749 750 751
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
752
{
753
	unsigned long nr = 0;
754 755
	int zid;

756
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
757

758 759 760 761 762 763 764 765 766 767 768 769
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
770
}
771

772
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
773
			unsigned int lru_mask)
774
{
775
	unsigned long nr = 0;
776
	int nid;
777

778
	for_each_node_state(nid, N_MEMORY)
779 780
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
781 782
}

783 784
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
785 786 787
{
	unsigned long val, next;

788
	val = __this_cpu_read(memcg->stat->nr_page_events);
789
	next = __this_cpu_read(memcg->stat->targets[target]);
790
	/* from time_after() in jiffies.h */
791 792 793 794 795
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
796 797 798
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
799 800 801 802 803 804 805 806
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
807
	}
808
	return false;
809 810 811 812 813 814
}

/*
 * Check events in order.
 *
 */
815
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
816 817
{
	/* threshold event is triggered in finer grain than soft limit */
818 819
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
820
		bool do_softlimit;
821
		bool do_numainfo __maybe_unused;
822

823 824
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
825 826 827 828
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
829
		mem_cgroup_threshold(memcg);
830 831
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
832
#if MAX_NUMNODES > 1
833
		if (unlikely(do_numainfo))
834
			atomic_inc(&memcg->numainfo_events);
835
#endif
836
	}
837 838
}

839
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
840
{
841 842 843 844 845 846 847 848
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

849
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
850
}
M
Michal Hocko 已提交
851
EXPORT_SYMBOL(mem_cgroup_from_task);
852

853
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
854
{
855
	struct mem_cgroup *memcg = NULL;
856

857 858
	rcu_read_lock();
	do {
859 860 861 862 863 864
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
865
			memcg = root_mem_cgroup;
866 867 868 869 870
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
871
	} while (!css_tryget_online(&memcg->css));
872
	rcu_read_unlock();
873
	return memcg;
874 875
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
893
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
894
				   struct mem_cgroup *prev,
895
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
896
{
M
Michal Hocko 已提交
897
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
898
	struct cgroup_subsys_state *css = NULL;
899
	struct mem_cgroup *memcg = NULL;
900
	struct mem_cgroup *pos = NULL;
901

902 903
	if (mem_cgroup_disabled())
		return NULL;
904

905 906
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
907

908
	if (prev && !reclaim)
909
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
910

911 912
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
913
			goto out;
914
		return root;
915
	}
K
KAMEZAWA Hiroyuki 已提交
916

917
	rcu_read_lock();
M
Michal Hocko 已提交
918

919 920 921 922 923 924 925 926 927
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

928
		while (1) {
929
			pos = READ_ONCE(iter->position);
930 931
			if (!pos || css_tryget(&pos->css))
				break;
932
			/*
933 934 935 936 937 938
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
939
			 */
940 941
			(void)cmpxchg(&iter->position, pos, NULL);
		}
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
959
		}
K
KAMEZAWA Hiroyuki 已提交
960

961 962 963 964 965 966
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
967

968 969
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
970

971
		if (css_tryget(css)) {
972 973 974 975 976 977 978
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
979

980
			css_put(css);
981
		}
982

983
		memcg = NULL;
984
	}
985 986 987

	if (reclaim) {
		/*
988 989 990
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
991
		 */
992 993
		(void)cmpxchg(&iter->position, pos, memcg);

994 995 996 997 998 999 1000
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1001
	}
1002

1003 1004
out_unlock:
	rcu_read_unlock();
1005
out:
1006 1007 1008
	if (prev && prev != root)
		css_put(&prev->css);

1009
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1010
}
K
KAMEZAWA Hiroyuki 已提交
1011

1012 1013 1014 1015 1016 1017 1018
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1019 1020 1021 1022 1023 1024
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

1048 1049 1050 1051 1052 1053
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1054
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1055
	     iter != NULL;				\
1056
	     iter = mem_cgroup_iter(root, iter, NULL))
1057

1058
#define for_each_mem_cgroup(iter)			\
1059
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1060
	     iter != NULL;				\
1061
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1062

1063 1064 1065
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1066
 * @memcg: memcg of the wanted lruvec
1067 1068 1069 1070 1071 1072 1073 1074 1075
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1076
	struct lruvec *lruvec;
1077

1078 1079 1080 1081
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1082

1083
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1094 1095 1096
}

/**
1097
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1098
 * @page: the page
1099
 * @zone: zone of the page
1100 1101 1102 1103
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1104
 */
1105
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1106 1107
{
	struct mem_cgroup_per_zone *mz;
1108
	struct mem_cgroup *memcg;
1109
	struct lruvec *lruvec;
1110

1111 1112 1113 1114
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1115

1116
	memcg = page->mem_cgroup;
1117
	/*
1118
	 * Swapcache readahead pages are added to the LRU - and
1119
	 * possibly migrated - before they are charged.
1120
	 */
1121 1122
	if (!memcg)
		memcg = root_mem_cgroup;
1123

1124
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1135
}
1136

1137
/**
1138 1139 1140 1141
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1142
 *
1143 1144
 * This function must be called when a page is added to or removed from an
 * lru list.
1145
 */
1146 1147
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1148 1149
{
	struct mem_cgroup_per_zone *mz;
1150
	unsigned long *lru_size;
1151 1152 1153 1154

	if (mem_cgroup_disabled())
		return;

1155 1156 1157 1158
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1159
}
1160

1161
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1162
{
1163
	struct mem_cgroup *task_memcg;
1164
	struct task_struct *p;
1165
	bool ret;
1166

1167
	p = find_lock_task_mm(task);
1168
	if (p) {
1169
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1170 1171 1172 1173 1174 1175 1176
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1177
		rcu_read_lock();
1178 1179
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1180
		rcu_read_unlock();
1181
	}
1182 1183
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1184 1185 1186
	return ret;
}

1187
#define mem_cgroup_from_counter(counter, member)	\
1188 1189
	container_of(counter, struct mem_cgroup, member)

1190
/**
1191
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1192
 * @memcg: the memory cgroup
1193
 *
1194
 * Returns the maximum amount of memory @mem can be charged with, in
1195
 * pages.
1196
 */
1197
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1198
{
1199 1200 1201
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1202

1203
	count = page_counter_read(&memcg->memory);
1204
	limit = READ_ONCE(memcg->memory.limit);
1205 1206 1207
	if (count < limit)
		margin = limit - count;

1208
	if (do_memsw_account()) {
1209
		count = page_counter_read(&memcg->memsw);
1210
		limit = READ_ONCE(memcg->memsw.limit);
1211 1212 1213 1214 1215
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1216 1217
}

1218
/*
Q
Qiang Huang 已提交
1219
 * A routine for checking "mem" is under move_account() or not.
1220
 *
Q
Qiang Huang 已提交
1221 1222 1223
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1224
 */
1225
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1226
{
1227 1228
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1229
	bool ret = false;
1230 1231 1232 1233 1234 1235 1236 1237 1238
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1239

1240 1241
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1242 1243
unlock:
	spin_unlock(&mc.lock);
1244 1245 1246
	return ret;
}

1247
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1248 1249
{
	if (mc.moving_task && current != mc.moving_task) {
1250
		if (mem_cgroup_under_move(memcg)) {
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1263
#define K(x) ((x) << (PAGE_SHIFT-10))
1264
/**
1265
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1266 1267 1268 1269 1270 1271 1272 1273
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1274
	/* oom_info_lock ensures that parallel ooms do not interleave */
1275
	static DEFINE_MUTEX(oom_info_lock);
1276 1277
	struct mem_cgroup *iter;
	unsigned int i;
1278

1279
	mutex_lock(&oom_info_lock);
1280 1281
	rcu_read_lock();

1282 1283 1284 1285 1286 1287 1288 1289
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1290
	pr_cont_cgroup_path(memcg->css.cgroup);
1291
	pr_cont("\n");
1292 1293 1294

	rcu_read_unlock();

1295 1296 1297 1298 1299 1300 1301 1302 1303
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1304 1305

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1306 1307
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1308 1309 1310
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1311
			if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1312
				continue;
1313
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1314 1315 1316 1317 1318 1319 1320 1321 1322
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1323
	mutex_unlock(&oom_info_lock);
1324 1325
}

1326 1327 1328 1329
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1330
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1331 1332
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1333 1334
	struct mem_cgroup *iter;

1335
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1336
		num++;
1337 1338 1339
	return num;
}

D
David Rientjes 已提交
1340 1341 1342
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1343
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1344
{
1345
	unsigned long limit;
1346

1347
	limit = memcg->memory.limit;
1348
	if (mem_cgroup_swappiness(memcg)) {
1349
		unsigned long memsw_limit;
1350

1351 1352
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1353 1354
	}
	return limit;
D
David Rientjes 已提交
1355 1356
}

1357 1358
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1359
{
1360 1361 1362 1363 1364 1365
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1366 1367 1368 1369 1370 1371
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1372 1373
	mutex_lock(&oom_lock);

1374
	/*
1375 1376 1377
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1378
	 */
1379
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1380
		mark_oom_victim(current);
1381
		goto unlock;
1382 1383
	}

1384
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1385
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1386
	for_each_mem_cgroup_tree(iter, memcg) {
1387
		struct css_task_iter it;
1388 1389
		struct task_struct *task;

1390 1391
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1392
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1403
				css_task_iter_end(&it);
1404 1405 1406
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1407
				goto unlock;
1408 1409 1410 1411
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1424
		}
1425
		css_task_iter_end(&it);
1426 1427
	}

1428 1429
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1430 1431
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1432 1433 1434
	}
unlock:
	mutex_unlock(&oom_lock);
1435 1436
}

1437 1438
#if MAX_NUMNODES > 1

1439 1440
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1441
 * @memcg: the target memcg
1442 1443 1444 1445 1446 1447 1448
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1449
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1450 1451
		int nid, bool noswap)
{
1452
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1453 1454 1455
		return true;
	if (noswap || !total_swap_pages)
		return false;
1456
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1457 1458 1459 1460
		return true;
	return false;

}
1461 1462 1463 1464 1465 1466 1467

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1468
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1469 1470
{
	int nid;
1471 1472 1473 1474
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1475
	if (!atomic_read(&memcg->numainfo_events))
1476
		return;
1477
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1478 1479 1480
		return;

	/* make a nodemask where this memcg uses memory from */
1481
	memcg->scan_nodes = node_states[N_MEMORY];
1482

1483
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1484

1485 1486
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1487
	}
1488

1489 1490
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1505
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1506 1507 1508
{
	int node;

1509 1510
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1511

1512
	node = next_node(node, memcg->scan_nodes);
1513
	if (node == MAX_NUMNODES)
1514
		node = first_node(memcg->scan_nodes);
1515 1516 1517 1518 1519 1520 1521 1522 1523
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1524
	memcg->last_scanned_node = node;
1525 1526 1527
	return node;
}
#else
1528
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1529 1530 1531 1532 1533
{
	return 0;
}
#endif

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1549
	excess = soft_limit_excess(root_memcg);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1578
		if (!soft_limit_excess(root_memcg))
1579
			break;
1580
	}
1581 1582
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1583 1584
}

1585 1586 1587 1588 1589 1590
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1591 1592
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1593 1594 1595 1596
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1597
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1598
{
1599
	struct mem_cgroup *iter, *failed = NULL;
1600

1601 1602
	spin_lock(&memcg_oom_lock);

1603
	for_each_mem_cgroup_tree(iter, memcg) {
1604
		if (iter->oom_lock) {
1605 1606 1607 1608 1609
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1610 1611
			mem_cgroup_iter_break(memcg, iter);
			break;
1612 1613
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1614
	}
K
KAMEZAWA Hiroyuki 已提交
1615

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1627
		}
1628 1629
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1630 1631 1632 1633

	spin_unlock(&memcg_oom_lock);

	return !failed;
1634
}
1635

1636
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1637
{
K
KAMEZAWA Hiroyuki 已提交
1638 1639
	struct mem_cgroup *iter;

1640
	spin_lock(&memcg_oom_lock);
1641
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1642
	for_each_mem_cgroup_tree(iter, memcg)
1643
		iter->oom_lock = false;
1644
	spin_unlock(&memcg_oom_lock);
1645 1646
}

1647
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1648 1649 1650
{
	struct mem_cgroup *iter;

1651
	spin_lock(&memcg_oom_lock);
1652
	for_each_mem_cgroup_tree(iter, memcg)
1653 1654
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1655 1656
}

1657
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1658 1659 1660
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1661 1662
	/*
	 * When a new child is created while the hierarchy is under oom,
1663
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1664
	 */
1665
	spin_lock(&memcg_oom_lock);
1666
	for_each_mem_cgroup_tree(iter, memcg)
1667 1668 1669
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1670 1671
}

K
KAMEZAWA Hiroyuki 已提交
1672 1673
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1674
struct oom_wait_info {
1675
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1676 1677 1678 1679 1680 1681
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1682 1683
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1684 1685 1686
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1687
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1688

1689 1690
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1691 1692 1693 1694
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1695
static void memcg_oom_recover(struct mem_cgroup *memcg)
1696
{
1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1706
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1707 1708
}

1709
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1710
{
T
Tejun Heo 已提交
1711
	if (!current->memcg_may_oom)
1712
		return;
K
KAMEZAWA Hiroyuki 已提交
1713
	/*
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1726
	 */
1727
	css_get(&memcg->css);
T
Tejun Heo 已提交
1728 1729 1730
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1731 1732 1733 1734
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1735
 * @handle: actually kill/wait or just clean up the OOM state
1736
 *
1737 1738
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1739
 *
1740
 * Memcg supports userspace OOM handling where failed allocations must
1741 1742 1743 1744
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1745
 * the end of the page fault to complete the OOM handling.
1746 1747
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1748
 * completed, %false otherwise.
1749
 */
1750
bool mem_cgroup_oom_synchronize(bool handle)
1751
{
T
Tejun Heo 已提交
1752
	struct mem_cgroup *memcg = current->memcg_in_oom;
1753
	struct oom_wait_info owait;
1754
	bool locked;
1755 1756 1757

	/* OOM is global, do not handle */
	if (!memcg)
1758
		return false;
1759

1760
	if (!handle || oom_killer_disabled)
1761
		goto cleanup;
1762 1763 1764 1765 1766 1767

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1768

1769
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1780 1781
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1782
	} else {
1783
		schedule();
1784 1785 1786 1787 1788
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1789 1790 1791 1792 1793 1794 1795 1796
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1797
cleanup:
T
Tejun Heo 已提交
1798
	current->memcg_in_oom = NULL;
1799
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1800
	return true;
1801 1802
}

1803 1804 1805
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1806
 *
1807 1808 1809
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1810
 *
1811
 *   memcg = mem_cgroup_begin_page_stat(page);
1812 1813
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1814
 *   mem_cgroup_end_page_stat(memcg);
1815
 */
1816
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1817 1818
{
	struct mem_cgroup *memcg;
1819
	unsigned long flags;
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1833 1834 1835 1836
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1837
again:
1838
	memcg = page->mem_cgroup;
1839
	if (unlikely(!memcg))
1840 1841
		return NULL;

Q
Qiang Huang 已提交
1842
	if (atomic_read(&memcg->moving_account) <= 0)
1843
		return memcg;
1844

1845
	spin_lock_irqsave(&memcg->move_lock, flags);
1846
	if (memcg != page->mem_cgroup) {
1847
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1848 1849
		goto again;
	}
1850 1851 1852 1853 1854 1855 1856 1857

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1858 1859

	return memcg;
1860
}
1861
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1862

1863 1864 1865 1866
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1867
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1868
{
1869 1870 1871 1872 1873 1874 1875 1876
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1877

1878
	rcu_read_unlock();
1879
}
1880
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1881

1882 1883 1884 1885
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1886
#define CHARGE_BATCH	32U
1887 1888
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1889
	unsigned int nr_pages;
1890
	struct work_struct work;
1891
	unsigned long flags;
1892
#define FLUSHING_CACHED_CHARGE	0
1893 1894
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1895
static DEFINE_MUTEX(percpu_charge_mutex);
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1907
 */
1908
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1909 1910
{
	struct memcg_stock_pcp *stock;
1911
	bool ret = false;
1912

1913
	if (nr_pages > CHARGE_BATCH)
1914
		return ret;
1915

1916
	stock = &get_cpu_var(memcg_stock);
1917
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1918
		stock->nr_pages -= nr_pages;
1919 1920
		ret = true;
	}
1921 1922 1923 1924 1925
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1926
 * Returns stocks cached in percpu and reset cached information.
1927 1928 1929 1930 1931
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1932
	if (stock->nr_pages) {
1933
		page_counter_uncharge(&old->memory, stock->nr_pages);
1934
		if (do_memsw_account())
1935
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1936
		css_put_many(&old->css, stock->nr_pages);
1937
		stock->nr_pages = 0;
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1948
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1949
	drain_stock(stock);
1950
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1951 1952 1953
}

/*
1954
 * Cache charges(val) to local per_cpu area.
1955
 * This will be consumed by consume_stock() function, later.
1956
 */
1957
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1958 1959 1960
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1961
	if (stock->cached != memcg) { /* reset if necessary */
1962
		drain_stock(stock);
1963
		stock->cached = memcg;
1964
	}
1965
	stock->nr_pages += nr_pages;
1966 1967 1968 1969
	put_cpu_var(memcg_stock);
}

/*
1970
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1971
 * of the hierarchy under it.
1972
 */
1973
static void drain_all_stock(struct mem_cgroup *root_memcg)
1974
{
1975
	int cpu, curcpu;
1976

1977 1978 1979
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1980 1981
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1982
	curcpu = get_cpu();
1983 1984
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1985
		struct mem_cgroup *memcg;
1986

1987 1988
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1989
			continue;
1990
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1991
			continue;
1992 1993 1994 1995 1996 1997
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1998
	}
1999
	put_cpu();
A
Andrew Morton 已提交
2000
	put_online_cpus();
2001
	mutex_unlock(&percpu_charge_mutex);
2002 2003
}

2004
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2005 2006 2007 2008 2009 2010
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

2011
	if (action == CPU_ONLINE)
2012 2013
		return NOTIFY_OK;

2014
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2015
		return NOTIFY_OK;
2016

2017 2018 2019 2020 2021
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg, *pos;

	if (likely(!nr_pages))
		return;

	pos = memcg = get_mem_cgroup_from_mm(current->mm);

	do {
		if (page_counter_read(&pos->memory) <= pos->high)
			continue;
		mem_cgroup_events(pos, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
	} while ((pos = parent_mem_cgroup(pos)));

	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2047 2048
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2049
{
2050
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2051
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2052
	struct mem_cgroup *mem_over_limit;
2053
	struct page_counter *counter;
2054
	unsigned long nr_reclaimed;
2055 2056
	bool may_swap = true;
	bool drained = false;
2057

2058
	if (mem_cgroup_is_root(memcg))
2059
		return 0;
2060
retry:
2061
	if (consume_stock(memcg, nr_pages))
2062
		return 0;
2063

2064
	if (!do_memsw_account() ||
2065 2066
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2067
			goto done_restock;
2068
		if (do_memsw_account())
2069 2070
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2071
	} else {
2072
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2073
		may_swap = false;
2074
	}
2075

2076 2077 2078 2079
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2090
		goto force;
2091 2092 2093 2094

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2095
	if (!gfpflags_allow_blocking(gfp_mask))
2096
		goto nomem;
2097

2098 2099
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2100 2101
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2102

2103
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2104
		goto retry;
2105

2106
	if (!drained) {
2107
		drain_all_stock(mem_over_limit);
2108 2109 2110 2111
		drained = true;
		goto retry;
	}

2112 2113
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2114 2115 2116 2117 2118 2119 2120 2121 2122
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2123
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2124 2125 2126 2127 2128 2129 2130 2131
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2132 2133 2134
	if (nr_retries--)
		goto retry;

2135
	if (gfp_mask & __GFP_NOFAIL)
2136
		goto force;
2137

2138
	if (fatal_signal_pending(current))
2139
		goto force;
2140

2141 2142
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2143 2144
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2145
nomem:
2146
	if (!(gfp_mask & __GFP_NOFAIL))
2147
		return -ENOMEM;
2148 2149 2150 2151 2152 2153 2154
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2155
	if (do_memsw_account())
2156 2157 2158 2159
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2160 2161

done_restock:
2162
	css_get_many(&memcg->css, batch);
2163 2164
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2165

2166
	/*
2167 2168
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2169
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2170 2171 2172 2173
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2174 2175
	 */
	do {
2176
		if (page_counter_read(&memcg->memory) > memcg->high) {
V
Vladimir Davydov 已提交
2177
			current->memcg_nr_pages_over_high += batch;
2178 2179 2180
			set_notify_resume(current);
			break;
		}
2181
	} while ((memcg = parent_mem_cgroup(memcg)));
2182 2183

	return 0;
2184
}
2185

2186
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2187
{
2188 2189 2190
	if (mem_cgroup_is_root(memcg))
		return;

2191
	page_counter_uncharge(&memcg->memory, nr_pages);
2192
	if (do_memsw_account())
2193
		page_counter_uncharge(&memcg->memsw, nr_pages);
2194

2195
	css_put_many(&memcg->css, nr_pages);
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2229
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2230
			  bool lrucare)
2231
{
2232
	int isolated;
2233

2234
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2235 2236 2237 2238 2239

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2240 2241
	if (lrucare)
		lock_page_lru(page, &isolated);
2242

2243 2244
	/*
	 * Nobody should be changing or seriously looking at
2245
	 * page->mem_cgroup at this point:
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2257
	page->mem_cgroup = memcg;
2258

2259 2260
	if (lrucare)
		unlock_page_lru(page, isolated);
2261
}
2262

2263
#ifdef CONFIG_MEMCG_KMEM
2264
static int memcg_alloc_cache_id(void)
2265
{
2266 2267 2268
	int id, size;
	int err;

2269
	id = ida_simple_get(&memcg_cache_ida,
2270 2271 2272
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2273

2274
	if (id < memcg_nr_cache_ids)
2275 2276 2277 2278 2279 2280
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2281
	down_write(&memcg_cache_ids_sem);
2282 2283

	size = 2 * (id + 1);
2284 2285 2286 2287 2288
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2289
	err = memcg_update_all_caches(size);
2290 2291
	if (!err)
		err = memcg_update_all_list_lrus(size);
2292 2293 2294 2295 2296
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2297
	if (err) {
2298
		ida_simple_remove(&memcg_cache_ida, id);
2299 2300 2301 2302 2303 2304 2305
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2306
	ida_simple_remove(&memcg_cache_ida, id);
2307 2308
}

2309
struct memcg_kmem_cache_create_work {
2310 2311 2312 2313 2314
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2315
static void memcg_kmem_cache_create_func(struct work_struct *w)
2316
{
2317 2318
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2319 2320
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2321

2322
	memcg_create_kmem_cache(memcg, cachep);
2323

2324
	css_put(&memcg->css);
2325 2326 2327 2328 2329 2330
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2331 2332
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2333
{
2334
	struct memcg_kmem_cache_create_work *cw;
2335

2336
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2337
	if (!cw)
2338
		return;
2339 2340

	css_get(&memcg->css);
2341 2342 2343

	cw->memcg = memcg;
	cw->cachep = cachep;
2344
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2345 2346 2347 2348

	schedule_work(&cw->work);
}

2349 2350
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2351 2352 2353 2354
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2355
	 * in __memcg_schedule_kmem_cache_create will recurse.
2356 2357 2358 2359 2360 2361 2362
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2363
	current->memcg_kmem_skip_account = 1;
2364
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2365
	current->memcg_kmem_skip_account = 0;
2366
}
2367

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2381
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2382 2383
{
	struct mem_cgroup *memcg;
2384
	struct kmem_cache *memcg_cachep;
2385
	int kmemcg_id;
2386

2387
	VM_BUG_ON(!is_root_cache(cachep));
2388

V
Vladimir Davydov 已提交
2389 2390 2391 2392 2393 2394
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2395
	if (current->memcg_kmem_skip_account)
2396 2397
		return cachep;

2398
	memcg = get_mem_cgroup_from_mm(current->mm);
2399
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2400
	if (kmemcg_id < 0)
2401
		goto out;
2402

2403
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2404 2405
	if (likely(memcg_cachep))
		return memcg_cachep;
2406 2407 2408 2409 2410 2411 2412 2413 2414

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2415 2416 2417
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2418
	 */
2419
	memcg_schedule_kmem_cache_create(memcg, cachep);
2420
out:
2421
	css_put(&memcg->css);
2422
	return cachep;
2423 2424
}

2425 2426 2427
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2428
		css_put(&cachep->memcg_params.memcg->css);
2429 2430
}

2431 2432
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2433
{
2434 2435
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2436 2437
	int ret;

2438
	if (!memcg_kmem_is_active(memcg))
2439
		return 0;
2440

2441 2442
	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
		return -ENOMEM;
2443

2444 2445 2446 2447
	ret = try_charge(memcg, gfp, nr_pages);
	if (ret) {
		page_counter_uncharge(&memcg->kmem, nr_pages);
		return ret;
2448 2449
	}

2450
	page->mem_cgroup = memcg;
2451

2452
	return 0;
2453 2454
}

2455
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2456
{
2457 2458
	struct mem_cgroup *memcg;
	int ret;
2459

2460 2461
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2462
	css_put(&memcg->css);
2463
	return ret;
2464 2465
}

2466
void __memcg_kmem_uncharge(struct page *page, int order)
2467
{
2468
	struct mem_cgroup *memcg = page->mem_cgroup;
2469
	unsigned int nr_pages = 1 << order;
2470 2471 2472 2473

	if (!memcg)
		return;

2474
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2475

2476 2477
	page_counter_uncharge(&memcg->kmem, nr_pages);
	page_counter_uncharge(&memcg->memory, nr_pages);
2478
	if (do_memsw_account())
2479
		page_counter_uncharge(&memcg->memsw, nr_pages);
2480

2481
	page->mem_cgroup = NULL;
2482
	css_put_many(&memcg->css, nr_pages);
2483
}
2484 2485
#endif /* CONFIG_MEMCG_KMEM */

2486 2487 2488 2489
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2490 2491 2492
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2493
 */
2494
void mem_cgroup_split_huge_fixup(struct page *head)
2495
{
2496
	int i;
2497

2498 2499
	if (mem_cgroup_disabled())
		return;
2500

2501
	for (i = 1; i < HPAGE_PMD_NR; i++)
2502
		head[i].mem_cgroup = head->mem_cgroup;
2503

2504
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2505
		       HPAGE_PMD_NR);
2506
}
2507
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2508

A
Andrew Morton 已提交
2509
#ifdef CONFIG_MEMCG_SWAP
2510 2511
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2512
{
2513 2514
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2515
}
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2528
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2529 2530 2531
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2532
				struct mem_cgroup *from, struct mem_cgroup *to)
2533 2534 2535
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2536 2537
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2538 2539 2540

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2541
		mem_cgroup_swap_statistics(to, true);
2542 2543 2544 2545 2546 2547
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2548
				struct mem_cgroup *from, struct mem_cgroup *to)
2549 2550 2551
{
	return -EINVAL;
}
2552
#endif
K
KAMEZAWA Hiroyuki 已提交
2553

2554
static DEFINE_MUTEX(memcg_limit_mutex);
2555

2556
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2557
				   unsigned long limit)
2558
{
2559 2560 2561
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2562
	int retry_count;
2563
	int ret;
2564 2565 2566 2567 2568 2569

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2570 2571
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2572

2573
	oldusage = page_counter_read(&memcg->memory);
2574

2575
	do {
2576 2577 2578 2579
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2580 2581 2582 2583

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2584
			ret = -EINVAL;
2585 2586
			break;
		}
2587 2588 2589 2590
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2591 2592 2593 2594

		if (!ret)
			break;

2595 2596
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2597
		curusage = page_counter_read(&memcg->memory);
2598
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2599
		if (curusage >= oldusage)
2600 2601 2602
			retry_count--;
		else
			oldusage = curusage;
2603 2604
	} while (retry_count);

2605 2606
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2607

2608 2609 2610
	return ret;
}

L
Li Zefan 已提交
2611
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2612
					 unsigned long limit)
2613
{
2614 2615 2616
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2617
	int retry_count;
2618
	int ret;
2619

2620
	/* see mem_cgroup_resize_res_limit */
2621 2622 2623 2624 2625 2626
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2627 2628 2629 2630
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2631 2632 2633 2634

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2635 2636 2637
			ret = -EINVAL;
			break;
		}
2638 2639 2640 2641
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2642 2643 2644 2645

		if (!ret)
			break;

2646 2647
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2648
		curusage = page_counter_read(&memcg->memsw);
2649
		/* Usage is reduced ? */
2650
		if (curusage >= oldusage)
2651
			retry_count--;
2652 2653
		else
			oldusage = curusage;
2654 2655
	} while (retry_count);

2656 2657
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2658

2659 2660 2661
	return ret;
}

2662 2663 2664 2665 2666 2667 2668 2669 2670
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2671
	unsigned long excess;
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2696
		spin_lock_irq(&mctz->lock);
2697
		__mem_cgroup_remove_exceeded(mz, mctz);
2698 2699 2700 2701 2702 2703

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2704 2705 2706
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2707
		excess = soft_limit_excess(mz->memcg);
2708 2709 2710 2711 2712 2713 2714 2715 2716
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2717
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2718
		spin_unlock_irq(&mctz->lock);
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2736 2737 2738 2739 2740 2741
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2742 2743
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2744 2745
	bool ret;

2746
	/*
2747 2748 2749 2750
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2751
	 */
2752 2753 2754 2755 2756 2757
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2758 2759
}

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2770 2771
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2772
	/* try to free all pages in this cgroup */
2773
	while (nr_retries && page_counter_read(&memcg->memory)) {
2774
		int progress;
2775

2776 2777 2778
		if (signal_pending(current))
			return -EINTR;

2779 2780
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2781
		if (!progress) {
2782
			nr_retries--;
2783
			/* maybe some writeback is necessary */
2784
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2785
		}
2786 2787

	}
2788 2789

	return 0;
2790 2791
}

2792 2793 2794
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2795
{
2796
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2797

2798 2799
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2800
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2801 2802
}

2803 2804
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2805
{
2806
	return mem_cgroup_from_css(css)->use_hierarchy;
2807 2808
}

2809 2810
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2811 2812
{
	int retval = 0;
2813
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2814
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2815

2816
	mutex_lock(&memcg_create_mutex);
2817 2818 2819 2820

	if (memcg->use_hierarchy == val)
		goto out;

2821
	/*
2822
	 * If parent's use_hierarchy is set, we can't make any modifications
2823 2824 2825 2826 2827 2828
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2829
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2830
				(val == 1 || val == 0)) {
2831
		if (!memcg_has_children(memcg))
2832
			memcg->use_hierarchy = val;
2833 2834 2835 2836
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2837 2838

out:
2839
	mutex_unlock(&memcg_create_mutex);
2840 2841 2842 2843

	return retval;
}

2844 2845
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2846 2847
{
	struct mem_cgroup *iter;
2848
	unsigned long val = 0;
2849 2850 2851 2852 2853 2854 2855

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2856
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2857
{
2858
	unsigned long val;
2859

2860 2861 2862 2863 2864 2865
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2866
		if (!swap)
2867
			val = page_counter_read(&memcg->memory);
2868
		else
2869
			val = page_counter_read(&memcg->memsw);
2870
	}
2871
	return val;
2872 2873
}

2874 2875 2876 2877 2878 2879 2880
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2881

2882
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2883
			       struct cftype *cft)
B
Balbir Singh 已提交
2884
{
2885
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2886
	struct page_counter *counter;
2887

2888
	switch (MEMFILE_TYPE(cft->private)) {
2889
	case _MEM:
2890 2891
		counter = &memcg->memory;
		break;
2892
	case _MEMSWAP:
2893 2894
		counter = &memcg->memsw;
		break;
2895
	case _KMEM:
2896
		counter = &memcg->kmem;
2897
		break;
2898 2899 2900
	default:
		BUG();
	}
2901 2902 2903 2904

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2905
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2906
		if (counter == &memcg->memsw)
2907
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2920
}
2921 2922

#ifdef CONFIG_MEMCG_KMEM
2923 2924
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2925 2926 2927 2928
{
	int err = 0;
	int memcg_id;

2929
	BUG_ON(memcg->kmemcg_id >= 0);
2930
	BUG_ON(memcg->kmem_acct_activated);
2931
	BUG_ON(memcg->kmem_acct_active);
2932

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2945
	mutex_lock(&memcg_create_mutex);
2946
	if (cgroup_is_populated(memcg->css.cgroup) ||
2947
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2948 2949 2950 2951
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2952

2953
	memcg_id = memcg_alloc_cache_id();
2954 2955 2956 2957 2958 2959
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2960 2961
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2962
	 */
2963
	err = page_counter_limit(&memcg->kmem, nr_pages);
2964 2965 2966 2967
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2968 2969
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2970 2971 2972
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2973
	memcg->kmemcg_id = memcg_id;
2974
	memcg->kmem_acct_activated = true;
2975
	memcg->kmem_acct_active = true;
2976
out:
2977 2978 2979 2980
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2981
				   unsigned long limit)
2982 2983 2984
{
	int ret;

2985
	mutex_lock(&memcg_limit_mutex);
2986
	if (!memcg_kmem_is_active(memcg))
2987
		ret = memcg_activate_kmem(memcg, limit);
2988
	else
2989 2990
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2991 2992 2993
	return ret;
}

2994
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2995
{
2996
	int ret = 0;
2997
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2998

2999 3000
	if (!parent)
		return 0;
3001

3002
	mutex_lock(&memcg_limit_mutex);
3003
	/*
3004 3005
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3006
	 */
3007
	if (memcg_kmem_is_active(parent))
3008 3009
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3010
	return ret;
3011
}
3012 3013
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3014
				   unsigned long limit)
3015 3016 3017
{
	return -EINVAL;
}
3018
#endif /* CONFIG_MEMCG_KMEM */
3019

3020 3021 3022 3023
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3024 3025
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3026
{
3027
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3028
	unsigned long nr_pages;
3029 3030
	int ret;

3031
	buf = strstrip(buf);
3032
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3033 3034
	if (ret)
		return ret;
3035

3036
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3037
	case RES_LIMIT:
3038 3039 3040 3041
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3042 3043 3044
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3045
			break;
3046 3047
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3048
			break;
3049 3050 3051 3052
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3053
		break;
3054 3055 3056
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3057 3058
		break;
	}
3059
	return ret ?: nbytes;
B
Balbir Singh 已提交
3060 3061
}

3062 3063
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3064
{
3065
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3066
	struct page_counter *counter;
3067

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3081

3082
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3083
	case RES_MAX_USAGE:
3084
		page_counter_reset_watermark(counter);
3085 3086
		break;
	case RES_FAILCNT:
3087
		counter->failcnt = 0;
3088
		break;
3089 3090
	default:
		BUG();
3091
	}
3092

3093
	return nbytes;
3094 3095
}

3096
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3097 3098
					struct cftype *cft)
{
3099
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3100 3101
}

3102
#ifdef CONFIG_MMU
3103
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3104 3105
					struct cftype *cft, u64 val)
{
3106
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3107

3108
	if (val & ~MOVE_MASK)
3109
		return -EINVAL;
3110

3111
	/*
3112 3113 3114 3115
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3116
	 */
3117
	memcg->move_charge_at_immigrate = val;
3118 3119
	return 0;
}
3120
#else
3121
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3122 3123 3124 3125 3126
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3127

3128
#ifdef CONFIG_NUMA
3129
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3130
{
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3143
	int nid;
3144
	unsigned long nr;
3145
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3146

3147 3148 3149 3150 3151 3152 3153 3154 3155
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3156 3157
	}

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3173 3174 3175 3176 3177 3178
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3179
static int memcg_stat_show(struct seq_file *m, void *v)
3180
{
3181
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3182
	unsigned long memory, memsw;
3183 3184
	struct mem_cgroup *mi;
	unsigned int i;
3185

3186 3187 3188 3189
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3190 3191
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3192
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3193
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3194
			continue;
3195
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3196
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3197
	}
L
Lee Schermerhorn 已提交
3198

3199 3200 3201 3202 3203 3204 3205 3206
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3207
	/* Hierarchical information */
3208 3209 3210 3211
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3212
	}
3213 3214
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3215
	if (do_memsw_account())
3216 3217
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3218

3219
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3220
		unsigned long long val = 0;
3221

3222
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3223
			continue;
3224 3225
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3226
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3244
	}
K
KAMEZAWA Hiroyuki 已提交
3245

K
KOSAKI Motohiro 已提交
3246 3247 3248 3249
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3250
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3251 3252 3253 3254 3255
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3256
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3257
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3258

3259 3260 3261 3262
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3263
			}
3264 3265 3266 3267
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3268 3269 3270
	}
#endif

3271 3272 3273
	return 0;
}

3274 3275
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3276
{
3277
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3278

3279
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3280 3281
}

3282 3283
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3284
{
3285
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3286

3287
	if (val > 100)
K
KOSAKI Motohiro 已提交
3288 3289
		return -EINVAL;

3290
	if (css->parent)
3291 3292 3293
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3294

K
KOSAKI Motohiro 已提交
3295 3296 3297
	return 0;
}

3298 3299 3300
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3301
	unsigned long usage;
3302 3303 3304 3305
	int i;

	rcu_read_lock();
	if (!swap)
3306
		t = rcu_dereference(memcg->thresholds.primary);
3307
	else
3308
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3309 3310 3311 3312

	if (!t)
		goto unlock;

3313
	usage = mem_cgroup_usage(memcg, swap);
3314 3315

	/*
3316
	 * current_threshold points to threshold just below or equal to usage.
3317 3318 3319
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3320
	i = t->current_threshold;
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3344
	t->current_threshold = i - 1;
3345 3346 3347 3348 3349 3350
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3351 3352
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3353
		if (do_memsw_account())
3354 3355 3356 3357
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3358 3359 3360 3361 3362 3363 3364
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3365 3366 3367 3368 3369 3370 3371
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3372 3373
}

3374
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3375 3376 3377
{
	struct mem_cgroup_eventfd_list *ev;

3378 3379
	spin_lock(&memcg_oom_lock);

3380
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3381
		eventfd_signal(ev->eventfd, 1);
3382 3383

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3384 3385 3386
	return 0;
}

3387
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3388
{
K
KAMEZAWA Hiroyuki 已提交
3389 3390
	struct mem_cgroup *iter;

3391
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3392
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3393 3394
}

3395
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3396
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3397
{
3398 3399
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3400 3401
	unsigned long threshold;
	unsigned long usage;
3402
	int i, size, ret;
3403

3404
	ret = page_counter_memparse(args, "-1", &threshold);
3405 3406 3407 3408
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3409

3410
	if (type == _MEM) {
3411
		thresholds = &memcg->thresholds;
3412
		usage = mem_cgroup_usage(memcg, false);
3413
	} else if (type == _MEMSWAP) {
3414
		thresholds = &memcg->memsw_thresholds;
3415
		usage = mem_cgroup_usage(memcg, true);
3416
	} else
3417 3418 3419
		BUG();

	/* Check if a threshold crossed before adding a new one */
3420
	if (thresholds->primary)
3421 3422
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3423
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3424 3425

	/* Allocate memory for new array of thresholds */
3426
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3427
			GFP_KERNEL);
3428
	if (!new) {
3429 3430 3431
		ret = -ENOMEM;
		goto unlock;
	}
3432
	new->size = size;
3433 3434

	/* Copy thresholds (if any) to new array */
3435 3436
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3437
				sizeof(struct mem_cgroup_threshold));
3438 3439
	}

3440
	/* Add new threshold */
3441 3442
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3443 3444

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3445
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3446 3447 3448
			compare_thresholds, NULL);

	/* Find current threshold */
3449
	new->current_threshold = -1;
3450
	for (i = 0; i < size; i++) {
3451
		if (new->entries[i].threshold <= usage) {
3452
			/*
3453 3454
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3455 3456
			 * it here.
			 */
3457
			++new->current_threshold;
3458 3459
		} else
			break;
3460 3461
	}

3462 3463 3464 3465 3466
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3467

3468
	/* To be sure that nobody uses thresholds */
3469 3470 3471 3472 3473 3474 3475 3476
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3477
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3478 3479
	struct eventfd_ctx *eventfd, const char *args)
{
3480
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3481 3482
}

3483
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3484 3485
	struct eventfd_ctx *eventfd, const char *args)
{
3486
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3487 3488
}

3489
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3490
	struct eventfd_ctx *eventfd, enum res_type type)
3491
{
3492 3493
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3494
	unsigned long usage;
3495
	int i, j, size;
3496 3497

	mutex_lock(&memcg->thresholds_lock);
3498 3499

	if (type == _MEM) {
3500
		thresholds = &memcg->thresholds;
3501
		usage = mem_cgroup_usage(memcg, false);
3502
	} else if (type == _MEMSWAP) {
3503
		thresholds = &memcg->memsw_thresholds;
3504
		usage = mem_cgroup_usage(memcg, true);
3505
	} else
3506 3507
		BUG();

3508 3509 3510
	if (!thresholds->primary)
		goto unlock;

3511 3512 3513 3514
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3515 3516 3517
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3518 3519 3520
			size++;
	}

3521
	new = thresholds->spare;
3522

3523 3524
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3525 3526
		kfree(new);
		new = NULL;
3527
		goto swap_buffers;
3528 3529
	}

3530
	new->size = size;
3531 3532

	/* Copy thresholds and find current threshold */
3533 3534 3535
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3536 3537
			continue;

3538
		new->entries[j] = thresholds->primary->entries[i];
3539
		if (new->entries[j].threshold <= usage) {
3540
			/*
3541
			 * new->current_threshold will not be used
3542 3543 3544
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3545
			++new->current_threshold;
3546 3547 3548 3549
		}
		j++;
	}

3550
swap_buffers:
3551 3552
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3553 3554 3555 3556 3557 3558
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3559
	rcu_assign_pointer(thresholds->primary, new);
3560

3561
	/* To be sure that nobody uses thresholds */
3562
	synchronize_rcu();
3563
unlock:
3564 3565
	mutex_unlock(&memcg->thresholds_lock);
}
3566

3567
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3568 3569
	struct eventfd_ctx *eventfd)
{
3570
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3571 3572
}

3573
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3574 3575
	struct eventfd_ctx *eventfd)
{
3576
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3577 3578
}

3579
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3580
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3581 3582 3583 3584 3585 3586 3587
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3588
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3589 3590 3591 3592 3593

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3594
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3595
		eventfd_signal(eventfd, 1);
3596
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3597 3598 3599 3600

	return 0;
}

3601
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3602
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3603 3604 3605
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3606
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3607

3608
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3609 3610 3611 3612 3613 3614
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3615
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3616 3617
}

3618
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3619
{
3620
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3621

3622
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3623
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3624 3625 3626
	return 0;
}

3627
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3628 3629
	struct cftype *cft, u64 val)
{
3630
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3631 3632

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3633
	if (!css->parent || !((val == 0) || (val == 1)))
3634 3635
		return -EINVAL;

3636
	memcg->oom_kill_disable = val;
3637
	if (!val)
3638
		memcg_oom_recover(memcg);
3639

3640 3641 3642
	return 0;
}

A
Andrew Morton 已提交
3643
#ifdef CONFIG_MEMCG_KMEM
3644
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3645
{
3646 3647 3648 3649 3650
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3651

3652
	return tcp_init_cgroup(memcg, ss);
3653
}
3654

3655 3656
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3657 3658 3659 3660
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3699 3700
}

3701
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3702
{
3703 3704 3705 3706 3707
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3708
	tcp_destroy_cgroup(memcg);
3709
}
3710
#else
3711
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3712 3713 3714
{
	return 0;
}
G
Glauber Costa 已提交
3715

3716 3717 3718 3719
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3720 3721 3722
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3723 3724
#endif

3725 3726 3727 3728 3729 3730 3731
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3742 3743 3744 3745 3746
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3757 3758 3759
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3760 3761
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3762 3763 3764
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3765 3766 3767
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3768
 *
3769 3770 3771 3772 3773
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3774
 */
3775 3776 3777
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3778 3779 3780 3781 3782 3783 3784 3785
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3786 3787 3788
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3789 3790 3791 3792 3793

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3794
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3795 3796 3797 3798
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3810 3811 3812 3813
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3814 3815
#endif	/* CONFIG_CGROUP_WRITEBACK */

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3829 3830 3831 3832 3833
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3834
static void memcg_event_remove(struct work_struct *work)
3835
{
3836 3837
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3838
	struct mem_cgroup *memcg = event->memcg;
3839 3840 3841

	remove_wait_queue(event->wqh, &event->wait);

3842
	event->unregister_event(memcg, event->eventfd);
3843 3844 3845 3846 3847 3848

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3849
	css_put(&memcg->css);
3850 3851 3852 3853 3854 3855 3856
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3857 3858
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3859
{
3860 3861
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3862
	struct mem_cgroup *memcg = event->memcg;
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3875
		spin_lock(&memcg->event_list_lock);
3876 3877 3878 3879 3880 3881 3882 3883
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3884
		spin_unlock(&memcg->event_list_lock);
3885 3886 3887 3888 3889
	}

	return 0;
}

3890
static void memcg_event_ptable_queue_proc(struct file *file,
3891 3892
		wait_queue_head_t *wqh, poll_table *pt)
{
3893 3894
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3895 3896 3897 3898 3899 3900

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3901 3902
 * DO NOT USE IN NEW FILES.
 *
3903 3904 3905 3906 3907
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3908 3909
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3910
{
3911
	struct cgroup_subsys_state *css = of_css(of);
3912
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3913
	struct mem_cgroup_event *event;
3914 3915 3916 3917
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3918
	const char *name;
3919 3920 3921
	char *endp;
	int ret;

3922 3923 3924
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3925 3926
	if (*endp != ' ')
		return -EINVAL;
3927
	buf = endp + 1;
3928

3929
	cfd = simple_strtoul(buf, &endp, 10);
3930 3931
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3932
	buf = endp + 1;
3933 3934 3935 3936 3937

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3938
	event->memcg = memcg;
3939
	INIT_LIST_HEAD(&event->list);
3940 3941 3942
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3968 3969 3970 3971 3972
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3973 3974
	 *
	 * DO NOT ADD NEW FILES.
3975
	 */
A
Al Viro 已提交
3976
	name = cfile.file->f_path.dentry->d_name.name;
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3988 3989
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3990 3991 3992 3993 3994
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3995
	/*
3996 3997 3998
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3999
	 */
A
Al Viro 已提交
4000
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4001
					       &memory_cgrp_subsys);
4002
	ret = -EINVAL;
4003
	if (IS_ERR(cfile_css))
4004
		goto out_put_cfile;
4005 4006
	if (cfile_css != css) {
		css_put(cfile_css);
4007
		goto out_put_cfile;
4008
	}
4009

4010
	ret = event->register_event(memcg, event->eventfd, buf);
4011 4012 4013 4014 4015
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4016 4017 4018
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4019 4020 4021 4022

	fdput(cfile);
	fdput(efile);

4023
	return nbytes;
4024 4025

out_put_css:
4026
	css_put(css);
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4039
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4040
	{
4041
		.name = "usage_in_bytes",
4042
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4043
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4044
	},
4045 4046
	{
		.name = "max_usage_in_bytes",
4047
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4048
		.write = mem_cgroup_reset,
4049
		.read_u64 = mem_cgroup_read_u64,
4050
	},
B
Balbir Singh 已提交
4051
	{
4052
		.name = "limit_in_bytes",
4053
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4054
		.write = mem_cgroup_write,
4055
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4056
	},
4057 4058 4059
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4060
		.write = mem_cgroup_write,
4061
		.read_u64 = mem_cgroup_read_u64,
4062
	},
B
Balbir Singh 已提交
4063 4064
	{
		.name = "failcnt",
4065
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4066
		.write = mem_cgroup_reset,
4067
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4068
	},
4069 4070
	{
		.name = "stat",
4071
		.seq_show = memcg_stat_show,
4072
	},
4073 4074
	{
		.name = "force_empty",
4075
		.write = mem_cgroup_force_empty_write,
4076
	},
4077 4078 4079 4080 4081
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4082
	{
4083
		.name = "cgroup.event_control",		/* XXX: for compat */
4084
		.write = memcg_write_event_control,
4085
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4086
	},
K
KOSAKI Motohiro 已提交
4087 4088 4089 4090 4091
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4092 4093 4094 4095 4096
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4097 4098
	{
		.name = "oom_control",
4099
		.seq_show = mem_cgroup_oom_control_read,
4100
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4101 4102
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4103 4104 4105
	{
		.name = "pressure_level",
	},
4106 4107 4108
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4109
		.seq_show = memcg_numa_stat_show,
4110 4111
	},
#endif
4112 4113 4114 4115
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4116
		.write = mem_cgroup_write,
4117
		.read_u64 = mem_cgroup_read_u64,
4118 4119 4120 4121
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4122
		.read_u64 = mem_cgroup_read_u64,
4123 4124 4125 4126
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4127
		.write = mem_cgroup_reset,
4128
		.read_u64 = mem_cgroup_read_u64,
4129 4130 4131 4132
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4133
		.write = mem_cgroup_reset,
4134
		.read_u64 = mem_cgroup_read_u64,
4135
	},
4136 4137 4138
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4139 4140 4141 4142
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4143 4144
	},
#endif
4145
#endif
4146
	{ },	/* terminate */
4147
};
4148

4149
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4150 4151
{
	struct mem_cgroup_per_node *pn;
4152
	struct mem_cgroup_per_zone *mz;
4153
	int zone, tmp = node;
4154 4155 4156 4157 4158 4159 4160 4161
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4162 4163
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4164
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4165 4166
	if (!pn)
		return 1;
4167 4168 4169

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4170
		lruvec_init(&mz->lruvec);
4171 4172
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4173
		mz->memcg = memcg;
4174
	}
4175
	memcg->nodeinfo[node] = pn;
4176 4177 4178
	return 0;
}

4179
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4180
{
4181
	kfree(memcg->nodeinfo[node]);
4182 4183
}

4184 4185
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4186
	struct mem_cgroup *memcg;
4187
	size_t size;
4188

4189 4190
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4191

4192
	memcg = kzalloc(size, GFP_KERNEL);
4193
	if (!memcg)
4194 4195
		return NULL;

4196 4197
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4198
		goto out_free;
T
Tejun Heo 已提交
4199 4200 4201 4202

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4203
	return memcg;
4204

T
Tejun Heo 已提交
4205 4206
out_free_stat:
	free_percpu(memcg->stat);
4207
out_free:
4208
	kfree(memcg);
4209
	return NULL;
4210 4211
}

4212
/*
4213 4214 4215 4216 4217 4218 4219 4220
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4221
 */
4222 4223

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4224
{
4225
	int node;
4226

4227
	mem_cgroup_remove_from_trees(memcg);
4228 4229 4230 4231 4232

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4233
	memcg_wb_domain_exit(memcg);
4234
	kfree(memcg);
4235
}
4236

4237 4238 4239
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4240
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4241
{
4242
	if (!memcg->memory.parent)
4243
		return NULL;
4244
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4245
}
G
Glauber Costa 已提交
4246
EXPORT_SYMBOL(parent_mem_cgroup);
4247

L
Li Zefan 已提交
4248
static struct cgroup_subsys_state * __ref
4249
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4250
{
4251
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4252
	long error = -ENOMEM;
4253
	int node;
B
Balbir Singh 已提交
4254

4255 4256
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4257
		return ERR_PTR(error);
4258

B
Bob Liu 已提交
4259
	for_each_node(node)
4260
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4261
			goto free_out;
4262

4263
	/* root ? */
4264
	if (parent_css == NULL) {
4265
		root_mem_cgroup = memcg;
4266
		page_counter_init(&memcg->memory, NULL);
4267
		memcg->high = PAGE_COUNTER_MAX;
4268
		memcg->soft_limit = PAGE_COUNTER_MAX;
4269 4270
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4271
	}
4272

4273 4274 4275 4276 4277
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4278
	vmpressure_init(&memcg->vmpressure);
4279 4280
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4281 4282 4283
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4284 4285 4286
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4287 4288 4289 4290 4291 4292 4293 4294
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4295
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4296
{
4297
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4298
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4299
	int ret;
4300

4301
	if (css->id > MEM_CGROUP_ID_MAX)
4302 4303
		return -ENOSPC;

T
Tejun Heo 已提交
4304
	if (!parent)
4305 4306
		return 0;

4307
	mutex_lock(&memcg_create_mutex);
4308 4309 4310 4311 4312 4313

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4314
		page_counter_init(&memcg->memory, &parent->memory);
4315
		memcg->high = PAGE_COUNTER_MAX;
4316
		memcg->soft_limit = PAGE_COUNTER_MAX;
4317 4318
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4319

4320
		/*
4321 4322
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4323
		 */
4324
	} else {
4325
		page_counter_init(&memcg->memory, NULL);
4326
		memcg->high = PAGE_COUNTER_MAX;
4327
		memcg->soft_limit = PAGE_COUNTER_MAX;
4328 4329
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4330 4331 4332 4333 4334
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4335
		if (parent != root_mem_cgroup)
4336
			memory_cgrp_subsys.broken_hierarchy = true;
4337
	}
4338
	mutex_unlock(&memcg_create_mutex);
4339

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4352 4353
}

4354
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4355
{
4356
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4357
	struct mem_cgroup_event *event, *tmp;
4358 4359 4360 4361 4362 4363

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4364 4365
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4366 4367 4368
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4369
	spin_unlock(&memcg->event_list_lock);
4370

4371
	vmpressure_cleanup(&memcg->vmpressure);
4372 4373

	memcg_deactivate_kmem(memcg);
4374 4375

	wb_memcg_offline(memcg);
4376 4377
}

4378 4379 4380 4381 4382 4383 4384
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4385
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4386
{
4387
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4388

4389
	memcg_destroy_kmem(memcg);
4390
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4391 4392
}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4410 4411 4412
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4413 4414
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4415
	memcg->soft_limit = PAGE_COUNTER_MAX;
4416
	memcg_wb_domain_size_changed(memcg);
4417 4418
}

4419
#ifdef CONFIG_MMU
4420
/* Handlers for move charge at task migration. */
4421
static int mem_cgroup_do_precharge(unsigned long count)
4422
{
4423
	int ret;
4424

4425 4426
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4427
	if (!ret) {
4428 4429 4430
		mc.precharge += count;
		return ret;
	}
4431 4432

	/* Try charges one by one with reclaim */
4433
	while (count--) {
4434
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4435 4436
		if (ret)
			return ret;
4437
		mc.precharge++;
4438
		cond_resched();
4439
	}
4440
	return 0;
4441 4442 4443
}

/**
4444
 * get_mctgt_type - get target type of moving charge
4445 4446 4447
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4448
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4449 4450 4451 4452 4453 4454
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4455 4456 4457
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4458 4459 4460 4461 4462
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4463
	swp_entry_t	ent;
4464 4465 4466
};

enum mc_target_type {
4467
	MC_TARGET_NONE = 0,
4468
	MC_TARGET_PAGE,
4469
	MC_TARGET_SWAP,
4470 4471
};

D
Daisuke Nishimura 已提交
4472 4473
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4474
{
D
Daisuke Nishimura 已提交
4475
	struct page *page = vm_normal_page(vma, addr, ptent);
4476

D
Daisuke Nishimura 已提交
4477 4478 4479
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4480
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4481
			return NULL;
4482 4483 4484 4485
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4486 4487 4488 4489 4490 4491
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4492
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4493 4494 4495 4496 4497 4498
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4499
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4500
		return NULL;
4501 4502 4503 4504
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4505
	page = find_get_page(swap_address_space(ent), ent.val);
4506
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4507 4508 4509 4510
		entry->val = ent.val;

	return page;
}
4511 4512 4513 4514 4515 4516 4517
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4518

4519 4520 4521 4522 4523 4524 4525 4526 4527
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4528
	if (!(mc.flags & MOVE_FILE))
4529 4530 4531
		return NULL;

	mapping = vma->vm_file->f_mapping;
4532
	pgoff = linear_page_index(vma, addr);
4533 4534

	/* page is moved even if it's not RSS of this task(page-faulted). */
4535 4536
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4537 4538 4539 4540
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4541
			if (do_memsw_account())
4542 4543 4544 4545 4546 4547 4548
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4549
#endif
4550 4551 4552
	return page;
}

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4574
	bool anon;
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
4589 4590
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4591 4592 4593 4594 4595 4596 4597 4598
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4599 4600
	anon = PageAnon(page);

4601 4602
	spin_lock_irqsave(&from->move_lock, flags);

4603
	if (!anon && page_mapped(page)) {
4604 4605 4606 4607 4608 4609
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4657
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4658 4659 4660
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4661
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4662 4663 4664 4665 4666 4667
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4668
	else if (pte_none(ptent))
4669
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4670 4671

	if (!page && !ent.val)
4672
		return ret;
4673 4674
	if (page) {
		/*
4675
		 * Do only loose check w/o serialization.
4676
		 * mem_cgroup_move_account() checks the page is valid or
4677
		 * not under LRU exclusion.
4678
		 */
4679
		if (page->mem_cgroup == mc.from) {
4680 4681 4682 4683 4684 4685 4686
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4687 4688
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4689
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4690 4691 4692
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4693 4694 4695 4696
	}
	return ret;
}

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4710
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4711
	if (!(mc.flags & MOVE_ANON))
4712
		return ret;
4713
	if (page->mem_cgroup == mc.from) {
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4730 4731 4732 4733
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4734
	struct vm_area_struct *vma = walk->vma;
4735 4736 4737
	pte_t *pte;
	spinlock_t *ptl;

4738
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4739 4740
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4741
		spin_unlock(ptl);
4742
		return 0;
4743
	}
4744

4745 4746
	if (pmd_trans_unstable(pmd))
		return 0;
4747 4748
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4749
		if (get_mctgt_type(vma, addr, *pte, NULL))
4750 4751 4752 4753
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4754 4755 4756
	return 0;
}

4757 4758 4759 4760
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4761 4762 4763 4764
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4765
	down_read(&mm->mmap_sem);
4766
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4767
	up_read(&mm->mmap_sem);
4768 4769 4770 4771 4772 4773 4774 4775 4776

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4777 4778 4779 4780 4781
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4782 4783
}

4784 4785
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4786
{
4787 4788 4789
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4790
	/* we must uncharge all the leftover precharges from mc.to */
4791
	if (mc.precharge) {
4792
		cancel_charge(mc.to, mc.precharge);
4793 4794 4795 4796 4797 4798 4799
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4800
		cancel_charge(mc.from, mc.moved_charge);
4801
		mc.moved_charge = 0;
4802
	}
4803 4804 4805
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4806
		if (!mem_cgroup_is_root(mc.from))
4807
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4808

4809
		/*
4810 4811
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4812
		 */
4813
		if (!mem_cgroup_is_root(mc.to))
4814 4815
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4816
		css_put_many(&mc.from->css, mc.moved_swap);
4817

L
Li Zefan 已提交
4818
		/* we've already done css_get(mc.to) */
4819 4820
		mc.moved_swap = 0;
	}
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4834
	spin_lock(&mc.lock);
4835 4836
	mc.from = NULL;
	mc.to = NULL;
4837
	spin_unlock(&mc.lock);
4838 4839
}

4840
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4841
{
4842
	struct cgroup_subsys_state *css;
4843
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4844
	struct mem_cgroup *from;
4845
	struct task_struct *leader, *p;
4846
	struct mm_struct *mm;
4847
	unsigned long move_flags;
4848
	int ret = 0;
4849

4850 4851
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4852 4853
		return 0;

4854 4855 4856 4857 4858 4859 4860
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4861
	cgroup_taskset_for_each_leader(leader, css, tset) {
4862 4863
		WARN_ON_ONCE(p);
		p = leader;
4864
		memcg = mem_cgroup_from_css(css);
4865 4866 4867 4868
	}
	if (!p)
		return 0;

4869 4870 4871 4872 4873 4874 4875 4876 4877
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4903
	}
4904
	mmput(mm);
4905 4906 4907
	return ret;
}

4908
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4909
{
4910 4911
	if (mc.to)
		mem_cgroup_clear_mc();
4912 4913
}

4914 4915 4916
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4917
{
4918
	int ret = 0;
4919
	struct vm_area_struct *vma = walk->vma;
4920 4921
	pte_t *pte;
	spinlock_t *ptl;
4922 4923 4924
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4925

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4936
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4937
		if (mc.precharge < HPAGE_PMD_NR) {
4938
			spin_unlock(ptl);
4939 4940 4941 4942 4943 4944 4945
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4946
							     mc.from, mc.to)) {
4947 4948 4949 4950 4951 4952 4953
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4954
		spin_unlock(ptl);
4955
		return 0;
4956 4957
	}

4958 4959
	if (pmd_trans_unstable(pmd))
		return 0;
4960 4961 4962 4963
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4964
		swp_entry_t ent;
4965 4966 4967 4968

		if (!mc.precharge)
			break;

4969
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4970 4971 4972 4973
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4974
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4975
				mc.precharge--;
4976 4977
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4978 4979
			}
			putback_lru_page(page);
4980
put:			/* get_mctgt_type() gets the page */
4981 4982
			put_page(page);
			break;
4983 4984
		case MC_TARGET_SWAP:
			ent = target.ent;
4985
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4986
				mc.precharge--;
4987 4988 4989
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4990
			break;
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5005
		ret = mem_cgroup_do_precharge(1);
5006 5007 5008 5009 5010 5011 5012 5013 5014
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5015 5016 5017 5018
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5019 5020

	lru_add_drain_all();
5021 5022 5023 5024 5025 5026 5027
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5041 5042 5043 5044 5045
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5046
	up_read(&mm->mmap_sem);
5047
	atomic_dec(&mc.from->moving_account);
5048 5049
}

5050
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5051
{
5052 5053
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
5054
	struct mm_struct *mm = get_task_mm(p);
5055 5056

	if (mm) {
5057 5058
		if (mc.to)
			mem_cgroup_move_charge(mm);
5059 5060
		mmput(mm);
	}
5061 5062
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5063
}
5064
#else	/* !CONFIG_MMU */
5065
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5066 5067 5068
{
	return 0;
}
5069
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5070 5071
{
}
5072
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5073 5074 5075
{
}
#endif
B
Balbir Singh 已提交
5076

5077 5078
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5079 5080
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5081
 */
5082
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5083 5084
{
	/*
5085
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5086 5087 5088
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5089
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5090 5091 5092
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5093 5094
}

5095 5096 5097
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5098 5099 5100
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5101 5102 5103 5104 5105
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5106
	unsigned long low = READ_ONCE(memcg->low);
5107 5108

	if (low == PAGE_COUNTER_MAX)
5109
		seq_puts(m, "max\n");
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5124
	err = page_counter_memparse(buf, "max", &low);
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5136
	unsigned long high = READ_ONCE(memcg->high);
5137 5138

	if (high == PAGE_COUNTER_MAX)
5139
		seq_puts(m, "max\n");
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5154
	err = page_counter_memparse(buf, "max", &high);
5155 5156 5157 5158 5159
	if (err)
		return err;

	memcg->high = high;

5160
	memcg_wb_domain_size_changed(memcg);
5161 5162 5163 5164 5165 5166
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5167
	unsigned long max = READ_ONCE(memcg->memory.limit);
5168 5169

	if (max == PAGE_COUNTER_MAX)
5170
		seq_puts(m, "max\n");
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5185
	err = page_counter_memparse(buf, "max", &max);
5186 5187 5188 5189 5190 5191 5192
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5193
	memcg_wb_domain_size_changed(memcg);
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
5212
		.flags = CFTYPE_NOT_ON_ROOT,
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5236
		.file_offset = offsetof(struct mem_cgroup, events_file),
5237 5238 5239 5240 5241
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5242
struct cgroup_subsys memory_cgrp_subsys = {
5243
	.css_alloc = mem_cgroup_css_alloc,
5244
	.css_online = mem_cgroup_css_online,
5245
	.css_offline = mem_cgroup_css_offline,
5246
	.css_released = mem_cgroup_css_released,
5247
	.css_free = mem_cgroup_css_free,
5248
	.css_reset = mem_cgroup_css_reset,
5249 5250
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5251
	.attach = mem_cgroup_move_task,
5252
	.bind = mem_cgroup_bind,
5253 5254
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5255
	.early_init = 0,
B
Balbir Singh 已提交
5256
};
5257

5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5280
	if (page_counter_read(&memcg->memory) >= memcg->low)
5281 5282 5283 5284 5285 5286 5287 5288
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5289
		if (page_counter_read(&memcg->memory) >= memcg->low)
5290 5291 5292 5293 5294
			return false;
	}
	return true;
}

5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5330
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5331
		if (page->mem_cgroup)
5332
			goto out;
5333

5334
		if (do_memsw_account()) {
5335 5336 5337 5338 5339 5340 5341 5342 5343
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5396 5397
	commit_charge(page, memcg, lrucare);

5398 5399 5400 5401 5402
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5403 5404 5405 5406
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5407

5408
	if (do_memsw_account() && PageSwapCache(page)) {
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5448 5449 5450 5451
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5452
	unsigned long nr_pages = nr_anon + nr_file;
5453 5454
	unsigned long flags;

5455
	if (!mem_cgroup_is_root(memcg)) {
5456
		page_counter_uncharge(&memcg->memory, nr_pages);
5457
		if (do_memsw_account())
5458
			page_counter_uncharge(&memcg->memsw, nr_pages);
5459 5460
		memcg_oom_recover(memcg);
	}
5461 5462 5463 5464 5465 5466

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5467
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5468 5469
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5470 5471

	if (!mem_cgroup_is_root(memcg))
5472
		css_put_many(&memcg->css, nr_pages);
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5495
		if (!page->mem_cgroup)
5496 5497 5498 5499
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5500
		 * page->mem_cgroup at this point, we have fully
5501
		 * exclusive access to the page.
5502 5503
		 */

5504
		if (memcg != page->mem_cgroup) {
5505
			if (memcg) {
5506 5507 5508
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5509
			}
5510
			memcg = page->mem_cgroup;
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5524
		page->mem_cgroup = NULL;
5525 5526 5527 5528 5529

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5530 5531
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5532 5533
}

5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5546
	/* Don't touch page->lru of any random page, pre-check: */
5547
	if (!page->mem_cgroup)
5548 5549
		return;

5550 5551 5552
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5553

5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5565

5566 5567
	if (!list_empty(page_list))
		uncharge_list(page_list);
5568 5569 5570
}

/**
5571
 * mem_cgroup_replace_page - migrate a charge to another page
5572 5573 5574 5575 5576 5577
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5578
 * Either or both pages might be on the LRU already.
5579
 */
5580
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5581
{
5582
	struct mem_cgroup *memcg;
5583 5584 5585 5586 5587
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5588 5589
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5590 5591 5592 5593 5594

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5595
	if (newpage->mem_cgroup)
5596 5597
		return;

5598
	/* Swapcache readahead pages can get replaced before being charged */
5599
	memcg = oldpage->mem_cgroup;
5600
	if (!memcg)
5601 5602
		return;

5603
	lock_page_lru(oldpage, &isolated);
5604
	oldpage->mem_cgroup = NULL;
5605
	unlock_page_lru(oldpage, isolated);
5606

5607
	commit_charge(newpage, memcg, true);
5608 5609
}

5610
/*
5611 5612 5613 5614 5615 5616
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5617 5618 5619
 */
static int __init mem_cgroup_init(void)
{
5620 5621
	int cpu, node;

5622
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5645 5646 5647
	return 0;
}
subsys_initcall(mem_cgroup_init);
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5665
	if (!do_memsw_account())
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5683 5684 5685 5686 5687 5688 5689
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5705
	if (!do_memsw_account())
5706 5707 5708 5709
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5710
	memcg = mem_cgroup_from_id(id);
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */