i915_gem_gtt.c 105.5 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
			       	int enable_ppgtt)
138
{
139
	bool has_full_ppgtt;
140
	bool has_full_48bit_ppgtt;
141

142 143 144
	if (!dev_priv->info.has_aliasing_ppgtt)
		return 0;

145 146
	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147

148
	if (intel_vgpu_active(dev_priv)) {
149
		/* GVT-g has no support for 32bit ppgtt */
150
		has_full_ppgtt = false;
151
		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152
	}
153

154 155 156 157
	/*
	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
	 * execlists, the sole mechanism available to submit work.
	 */
158
	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 160 161 162 163
		return 0;

	if (enable_ppgtt == 1)
		return 1;

164
	if (enable_ppgtt == 2 && has_full_ppgtt)
165 166
		return 2;

167 168 169
	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
		return 3;

170
	/* Disable ppgtt on SNB if VT-d is on. */
171
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173
		return 0;
174 175
	}

176
	/* Early VLV doesn't have this */
177
	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 179 180 181
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
		return 0;
	}

182
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 184 185 186 187 188 189
		if (has_full_48bit_ppgtt)
			return 3;

		if (has_full_ppgtt)
			return 2;
	}

190
	return 1;
191 192
}

193 194 195
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
196
{
197
	u32 pte_flags;
198 199 200 201 202 203 204 205
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
206 207

	/* Currently applicable only to VLV */
208
	pte_flags = 0;
209 210 211
	if (vma->obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

212
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 214

	return 0;
215 216 217 218
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
219
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220
}
221

222 223 224 225 226 227
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

228 229
	vma->page_sizes = vma->obj->mm.page_sizes;

230 231 232 233 234 235 236 237 238 239 240 241
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
242 243

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 245
}

246
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247
				  enum i915_cache_level level)
B
Ben Widawsky 已提交
248
{
249
	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
250
	pte |= addr;
251 252 253

	switch (level) {
	case I915_CACHE_NONE:
254
		pte |= PPAT_UNCACHED;
255 256
		break;
	case I915_CACHE_WT:
257
		pte |= PPAT_DISPLAY_ELLC;
258 259
		break;
	default:
260
		pte |= PPAT_CACHED;
261 262 263
		break;
	}

B
Ben Widawsky 已提交
264 265 266
	return pte;
}

267 268
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
269
{
270
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
271 272
	pde |= addr;
	if (level != I915_CACHE_NONE)
273
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
274
	else
275
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
276 277 278
	return pde;
}

279 280 281
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

282 283
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
284
				 u32 unused)
285
{
286
	gen6_pte_t pte = GEN6_PTE_VALID;
287
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
288 289

	switch (level) {
290 291 292 293 294 295 296 297
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
298
		MISSING_CASE(level);
299 300 301 302 303
	}

	return pte;
}

304 305
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
306
				 u32 unused)
307
{
308
	gen6_pte_t pte = GEN6_PTE_VALID;
309 310 311 312 313
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
314 315 316 317 318
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
319
		pte |= GEN6_PTE_UNCACHED;
320 321
		break;
	default:
322
		MISSING_CASE(level);
323 324
	}

325 326 327
	return pte;
}

328 329
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
330
				 u32 flags)
331
{
332
	gen6_pte_t pte = GEN6_PTE_VALID;
333 334
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

335 336
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
337 338 339 340 341 342 343

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

344 345
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
346
				 u32 unused)
347
{
348
	gen6_pte_t pte = GEN6_PTE_VALID;
349
	pte |= HSW_PTE_ADDR_ENCODE(addr);
350 351

	if (level != I915_CACHE_NONE)
352
		pte |= HSW_WB_LLC_AGE3;
353 354 355 356

	return pte;
}

357 358
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
				  enum i915_cache_level level,
359
				  u32 unused)
360
{
361
	gen6_pte_t pte = GEN6_PTE_VALID;
362 363
	pte |= HSW_PTE_ADDR_ENCODE(addr);

364 365 366 367
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
368
		pte |= HSW_WT_ELLC_LLC_AGE3;
369 370
		break;
	default:
371
		pte |= HSW_WB_ELLC_LLC_AGE3;
372 373
		break;
	}
374 375 376 377

	return pte;
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

413
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
414
{
415 416
	struct pagevec stack;
	struct page *page;
417

418 419
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
420

421 422 423
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
424 425 426 427 428

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
429 430 431
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
432

433
	/*
434
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
435 436 437 438 439 440
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
441
	pagevec_init(&stack);
442 443
	do {
		struct page *page;
444

445 446 447 448
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

449 450
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
451

452 453
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
454

455 456
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
457

458 459 460
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
461
	}
462

463 464 465 466 467 468 469
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
470 471
}

472 473
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
474
{
475 476
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
477

478
	lockdep_assert_held(&vm->free_pages.lock);
479
	GEM_BUG_ON(!pagevec_count(pvec));
480

481
	if (vm->pt_kmap_wc) {
482 483
		/*
		 * When we use WC, first fill up the global stash and then
484 485
		 * only if full immediately free the overflow.
		 */
486
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
487

488 489 490 491 492 493 494 495
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
496

497 498 499 500 501 502 503 504 505 506
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
507
		set_pages_array_wb(pvec->pages, pvec->nr);
508 509

		spin_lock(&vm->free_pages.lock);
510 511 512
	}

	__pagevec_release(pvec);
513 514 515 516
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
517 518 519 520 521 522 523 524
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
525 526
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
527
		vm_free_pages_release(vm, false);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	spin_unlock(&vm->free_pages.lock);
}

static void i915_address_space_init(struct i915_address_space *vm,
				    struct drm_i915_private *dev_priv)
{
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);

	list_add_tail(&vm->global_link, &dev_priv->vm_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
	list_del(&vm->global_link);
557
}
558

559 560 561 562
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
563
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
564 565
	if (unlikely(!p->page))
		return -ENOMEM;
566

567 568 569 570 571
	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
				PCI_DMA_BIDIRECTIONAL);
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
572
	}
573 574

	return 0;
575 576
}

577
static int setup_page_dma(struct i915_address_space *vm,
578
			  struct i915_page_dma *p)
579
{
580
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
581 582
}

583
static void cleanup_page_dma(struct i915_address_space *vm,
584
			     struct i915_page_dma *p)
585
{
586 587
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
588 589
}

590
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
591

592 593
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
594 595
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
596

597 598 599
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
600
{
601
	u64 * const vaddr = kmap_atomic(p->page);
602

603
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
604

605
	kunmap_atomic(vaddr);
606 607
}

608 609 610
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
611
{
612
	fill_page_dma(vm, p, (u64)v << 32 | v);
613 614
}

615
static int
616
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
617
{
618
	unsigned long size;
619

620 621 622 623 624 625 626 627 628 629 630 631
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert().
	 *
	 * TODO: we should really consider write-protecting the scratch-page and
	 * sharing between ppgtt
	 */
632
	size = I915_GTT_PAGE_SIZE_4K;
633 634
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
635 636
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
637
	}
638 639 640 641 642 643
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
644

645
		page = alloc_pages(gfp, order);
646
		if (unlikely(!page))
647
			goto skip;
648

649
		addr = dma_map_page(vm->dma, page, 0, size,
650
				    PCI_DMA_BIDIRECTIONAL);
651 652
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
653

654 655
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
673 674
}

675
static void cleanup_scratch_page(struct i915_address_space *vm)
676
{
677 678
	struct i915_page_dma *p = &vm->scratch_page;

679 680 681
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
682 683
}

684
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
685
{
686
	struct i915_page_table *pt;
687

688
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
689
	if (unlikely(!pt))
690 691
		return ERR_PTR(-ENOMEM);

692 693 694 695
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
696

697
	pt->used_ptes = 0;
698 699 700
	return pt;
}

701
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
702
{
703
	cleanup_px(vm, pt);
704 705 706 707 708 709
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
710 711
	fill_px(vm, pt,
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
712 713
}

714
static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
715 716
			       struct i915_page_table *pt)
{
717
	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
718 719
}

720
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
721
{
722
	struct i915_page_directory *pd;
723

724
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
725
	if (unlikely(!pd))
726 727
		return ERR_PTR(-ENOMEM);

728 729 730 731
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
732

733
	pd->used_pdes = 0;
734 735 736
	return pd;
}

737
static void free_pd(struct i915_address_space *vm,
738
		    struct i915_page_directory *pd)
739
{
740 741
	cleanup_px(vm, pd);
	kfree(pd);
742 743 744 745 746
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
747 748
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
749
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
750 751
}

752
static int __pdp_init(struct i915_address_space *vm,
753 754
		      struct i915_page_directory_pointer *pdp)
{
755
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
756

757
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
758
					    I915_GFP_ALLOW_FAIL);
759
	if (unlikely(!pdp->page_directory))
760 761
		return -ENOMEM;

762
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
763

764 765 766 767 768 769 770 771 772
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

773 774 775 776 777
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

778 779
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
780 781 782 783
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

784
	GEM_BUG_ON(!use_4lvl(vm));
785 786 787 788 789

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

790
	ret = __pdp_init(vm, pdp);
791 792 793
	if (ret)
		goto fail_bitmap;

794
	ret = setup_px(vm, pdp);
795 796 797 798 799 800 801 802 803 804 805 806 807
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

808
static void free_pdp(struct i915_address_space *vm,
809 810 811
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
812 813 814 815 816 817

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
818 819
}

820 821 822 823 824 825 826
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

827
	fill_px(vm, pdp, scratch_pdpe);
828 829 830 831 832
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
833 834
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
835
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
836 837
}

838 839 840 841 842 843 844
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
845
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
846 847
}

848 849 850 851
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
852
				struct i915_page_table *pt,
853
				u64 start, u64 length)
854
{
855
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
856 857
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
858 859 860
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
	gen8_pte_t *vaddr;
861

862
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
863

864 865 866
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
867

868
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
869
	while (pte < pte_end)
870
		vaddr[pte++] = scratch_pte;
871
	kunmap_atomic(vaddr);
872 873

	return false;
874
}
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

890
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
891
				struct i915_page_directory *pd,
892
				u64 start, u64 length)
893 894
{
	struct i915_page_table *pt;
895
	u32 pde;
896 897

	gen8_for_each_pde(pt, pd, start, length, pde) {
898 899
		GEM_BUG_ON(pt == vm->scratch_pt);

900 901
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
902

903
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
904
		GEM_BUG_ON(!pd->used_pdes);
905
		pd->used_pdes--;
906 907

		free_pt(vm, pt);
908 909
	}

910 911
	return !pd->used_pdes;
}
912

913 914 915 916 917 918 919 920
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
921
	if (!use_4lvl(vm))
922 923 924 925 926
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
927
}
928

929 930 931 932
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
933
				 struct i915_page_directory_pointer *pdp,
934
				 u64 start, u64 length)
935 936
{
	struct i915_page_directory *pd;
937
	unsigned int pdpe;
938

939
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
940 941
		GEM_BUG_ON(pd == vm->scratch_pd);

942 943
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
944

945
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
946
		GEM_BUG_ON(!pdp->used_pdpes);
947
		pdp->used_pdpes--;
948

949 950
		free_pd(vm, pd);
	}
951

952
	return !pdp->used_pdpes;
953
}
954

955 956 957 958 959 960
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

961 962 963 964 965 966 967 968 969 970 971 972 973
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

974 975 976 977
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
978 979
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
980
{
981 982
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
983
	struct i915_page_directory_pointer *pdp;
984
	unsigned int pml4e;
985

986
	GEM_BUG_ON(!use_4lvl(vm));
987

988
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
989 990
		GEM_BUG_ON(pdp == vm->scratch_pdp);

991 992
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
993

994 995 996
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
997 998 999
	}
}

1000
static inline struct sgt_dma {
1001 1002
	struct scatterlist *sg;
	dma_addr_t dma, max;
1003 1004 1005 1006 1007
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

1026 1027
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1028
			      struct i915_page_directory_pointer *pdp,
1029
			      struct sgt_dma *iter,
1030
			      struct gen8_insert_pte *idx,
1031 1032
			      enum i915_cache_level cache_level)
{
1033 1034 1035 1036
	struct i915_page_directory *pd;
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
	gen8_pte_t *vaddr;
	bool ret;
1037

1038
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1039 1040
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1041
	do {
1042 1043
		vaddr[idx->pte] = pte_encode | iter->dma;

1044 1045 1046 1047 1048 1049 1050
		iter->dma += PAGE_SIZE;
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1051

1052 1053
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1054
		}
1055

1056 1057 1058 1059 1060 1061
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1062
				/* Limited by sg length for 3lvl */
1063 1064
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1065
					ret = true;
1066
					break;
1067 1068
				}

1069
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1070
				pd = pdp->page_directory[idx->pdpe];
1071
			}
1072

1073
			kunmap_atomic(vaddr);
1074
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1075
		}
1076
	} while (1);
1077
	kunmap_atomic(vaddr);
1078

1079
	return ret;
1080 1081
}

1082
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1083
				   struct i915_vma *vma,
1084 1085
				   enum i915_cache_level cache_level,
				   u32 unused)
1086
{
1087
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1088
	struct sgt_dma iter = sgt_dma(vma);
1089
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1090

1091 1092
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
				      cache_level);
1093 1094

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1095
}
1096

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
					   enum i915_cache_level cache_level)
{
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1111
		bool maybe_64K = false;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1133 1134 1135 1136 1137 1138 1139
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
			     rem >= (max - index) << PAGE_SHIFT))
				maybe_64K = true;

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1159 1160 1161 1162 1163 1164
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
				       rem >= (max - index) << PAGE_SHIFT)))
					maybe_64K = false;

1165 1166 1167 1168 1169 1170
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1187
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

				encode = pte_encode | vma->vm->scratch_page.daddr;
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1209
		}
1210 1211

		vma->page_sizes.gtt |= page_size;
1212 1213 1214
	} while (iter->sg);
}

1215
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1216
				   struct i915_vma *vma,
1217 1218 1219 1220
				   enum i915_cache_level cache_level,
				   u32 unused)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1221
	struct sgt_dma iter = sgt_dma(vma);
1222
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1223

1224 1225 1226 1227 1228 1229 1230 1231
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
						     &iter, &idx, cache_level))
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1232 1233

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1234
	}
1235 1236
}

1237
static void gen8_free_page_tables(struct i915_address_space *vm,
1238
				  struct i915_page_directory *pd)
1239 1240 1241
{
	int i;

1242
	if (!px_page(pd))
1243 1244
		return;

1245 1246 1247
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1248
	}
B
Ben Widawsky 已提交
1249 1250
}

1251 1252
static int gen8_init_scratch(struct i915_address_space *vm)
{
1253
	int ret;
1254

1255
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1256 1257
	if (ret)
		return ret;
1258

1259
	vm->scratch_pt = alloc_pt(vm);
1260
	if (IS_ERR(vm->scratch_pt)) {
1261 1262
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1263 1264
	}

1265
	vm->scratch_pd = alloc_pd(vm);
1266
	if (IS_ERR(vm->scratch_pd)) {
1267 1268
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1269 1270
	}

1271
	if (use_4lvl(vm)) {
1272
		vm->scratch_pdp = alloc_pdp(vm);
1273
		if (IS_ERR(vm->scratch_pdp)) {
1274 1275
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1276 1277 1278
		}
	}

1279 1280
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1281
	if (use_4lvl(vm))
1282
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1283 1284

	return 0;
1285 1286

free_pd:
1287
	free_pd(vm, vm->scratch_pd);
1288
free_pt:
1289
	free_pt(vm, vm->scratch_pt);
1290
free_scratch_page:
1291
	cleanup_scratch_page(vm);
1292 1293

	return ret;
1294 1295
}

1296 1297
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1298
	struct i915_address_space *vm = &ppgtt->vm;
1299
	struct drm_i915_private *dev_priv = vm->i915;
1300 1301 1302
	enum vgt_g2v_type msg;
	int i;

1303 1304
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1305

1306 1307
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1308 1309 1310 1311

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1312
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1313
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1314

1315 1316
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1328 1329
static void gen8_free_scratch(struct i915_address_space *vm)
{
1330
	if (use_4lvl(vm))
1331 1332 1333 1334
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1335 1336
}

1337
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1338
				    struct i915_page_directory_pointer *pdp)
1339
{
1340
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1341 1342
	int i;

1343
	for (i = 0; i < pdpes; i++) {
1344
		if (pdp->page_directory[i] == vm->scratch_pd)
1345 1346
			continue;

1347 1348
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1349
	}
1350

1351
	free_pdp(vm, pdp);
1352 1353 1354 1355 1356 1357
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1358
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1359
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1360 1361
			continue;

1362
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1363 1364
	}

1365
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1366 1367 1368 1369
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1370
	struct drm_i915_private *dev_priv = vm->i915;
1371
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1372

1373
	if (intel_vgpu_active(dev_priv))
1374 1375
		gen8_ppgtt_notify_vgt(ppgtt, false);

1376
	if (use_4lvl(vm))
1377
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1378
	else
1379
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1380

1381
	gen8_free_scratch(vm);
1382 1383
}

1384 1385 1386
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1387
{
1388
	struct i915_page_table *pt;
1389
	u64 from = start;
1390
	unsigned int pde;
1391

1392
	gen8_for_each_pde(pt, pd, start, length, pde) {
1393 1394
		int count = gen8_pte_count(start, length);

1395
		if (pt == vm->scratch_pt) {
1396 1397
			pd->used_pdes++;

1398
			pt = alloc_pt(vm);
1399 1400
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1401
				goto unwind;
1402
			}
1403

1404
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1405
				gen8_initialize_pt(vm, pt);
1406 1407

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1408
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1409
		}
1410

1411
		pt->used_ptes += count;
1412
	}
1413
	return 0;
1414

1415 1416
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1417
	return -ENOMEM;
1418 1419
}

1420 1421 1422
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1423
{
1424
	struct i915_page_directory *pd;
1425 1426
	u64 from = start;
	unsigned int pdpe;
1427 1428
	int ret;

1429
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1430
		if (pd == vm->scratch_pd) {
1431 1432
			pdp->used_pdpes++;

1433
			pd = alloc_pd(vm);
1434 1435
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1436
				goto unwind;
1437
			}
1438

1439
			gen8_initialize_pd(vm, pd);
1440
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1441
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1442 1443

			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1444 1445 1446
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1447 1448
		if (unlikely(ret))
			goto unwind_pd;
1449
	}
1450

B
Ben Widawsky 已提交
1451
	return 0;
1452

1453 1454 1455 1456 1457 1458 1459
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1460 1461 1462
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1463 1464
}

1465 1466
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1467
{
1468 1469 1470
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1481

1482
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1483 1484 1485 1486
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1487

1488 1489 1490
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1491

1492
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1493 1494
		if (unlikely(ret))
			goto unwind_pdp;
1495 1496 1497 1498
	}

	return 0;

1499 1500 1501 1502 1503
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1504 1505 1506
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1507 1508
}

1509 1510
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1511
			  u64 start, u64 length,
1512 1513 1514
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1515
	struct i915_address_space *vm = &ppgtt->vm;
1516
	struct i915_page_directory *pd;
1517
	u32 pdpe;
1518

1519
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1520
		struct i915_page_table *pt;
1521 1522 1523
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1524

1525
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1526 1527 1528
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1529
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1530
			u32 pte;
1531 1532
			gen8_pte_t *pt_vaddr;

1533
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1534 1535
				continue;

1536
			pt_vaddr = kmap_atomic_px(pt);
1537
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1538 1539 1540
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1566
	struct i915_address_space *vm = &ppgtt->vm;
1567 1568
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1569
	u64 start = 0, length = ppgtt->vm.total;
1570

1571
	if (use_4lvl(vm)) {
1572
		u64 pml4e;
1573 1574 1575
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1576
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1577
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1578 1579 1580
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1581
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1582
		}
1583 1584
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1585 1586 1587
	}
}

1588
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1589
{
1590
	struct i915_address_space *vm = &ppgtt->vm;
1591 1592
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1593
	u64 start = 0, length = ppgtt->vm.total;
1594 1595
	u64 from = start;
	unsigned int pdpe;
1596

1597 1598 1599 1600
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1601

1602 1603 1604 1605
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1606

1607 1608
	pdp->used_pdpes++; /* never remove */
	return 0;
1609

1610 1611 1612 1613 1614 1615 1616 1617
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1618 1619
}

1620
/*
1621 1622 1623 1624
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1625
 *
1626
 */
1627
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1628
{
1629 1630 1631 1632 1633 1634 1635
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1636 1637
	kref_init(&ppgtt->ref);

1638 1639
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1640

1641
	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1642 1643 1644
		1ULL << 48 :
		1ULL << 32;

1645 1646
	i915_address_space_init(&ppgtt->vm, i915);

1647 1648 1649
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1650
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1651
		ppgtt->vm.pt_kmap_wc = true;
1652

1653 1654 1655
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1656

1657 1658 1659 1660
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1661

1662
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1663

1664 1665 1666
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1667
	} else {
1668 1669 1670
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1671

1672 1673 1674
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1675
				__pdp_fini(&ppgtt->pdp);
1676
				goto err_scratch;
1677
			}
1678
		}
1679

1680 1681 1682
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1683
	}
1684

1685
	if (intel_vgpu_active(i915))
1686 1687
		gen8_ppgtt_notify_vgt(ppgtt, true);

1688
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1689 1690
	ppgtt->debug_dump = gen8_dump_ppgtt;

1691
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1692 1693 1694 1695
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1696
	return ppgtt;
1697

1698
err_scratch:
1699
	gen8_free_scratch(&ppgtt->vm);
1700 1701 1702
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1703 1704
}

1705
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1706
{
1707
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1708
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	struct i915_page_table *pt;
	u32 pte, pde;

	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);

			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1736
			int i;
1737

B
Ben Widawsky 已提交
1738
			for (i = 0; i < 4; i++)
1739 1740 1741
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1742 1743
				continue;

1744 1745 1746
			seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
				   pde, pte,
				   (pde * GEN6_PTES + pte) * PAGE_SIZE);
B
Ben Widawsky 已提交
1747
			for (i = 0; i < 4; i++) {
1748 1749
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1750
				else
1751
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1752 1753 1754
			}
			seq_puts(m, "\n");
		}
1755
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1756 1757 1758
	}
}

1759
/* Write pde (index) from the page directory @pd to the page table @pt */
1760
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1761 1762
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1763
{
1764
	/* Caller needs to make sure the write completes if necessary */
1765 1766
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1767
}
B
Ben Widawsky 已提交
1768

1769
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1770
{
1771
	struct intel_engine_cs *engine;
1772
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1773

1774
	for_each_engine(engine, dev_priv, id) {
1775 1776
		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
				 GEN8_GFX_PPGTT_48B : 0;
1777
		I915_WRITE(RING_MODE_GEN7(engine),
1778
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1779 1780
	}
}
B
Ben Widawsky 已提交
1781

1782
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1783
{
1784
	struct intel_engine_cs *engine;
1785
	u32 ecochk, ecobits;
1786
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1787

1788 1789
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1790

1791
	ecochk = I915_READ(GAM_ECOCHK);
1792
	if (IS_HASWELL(dev_priv)) {
1793 1794 1795 1796 1797 1798
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1799

1800
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1801
		/* GFX_MODE is per-ring on gen7+ */
1802
		I915_WRITE(RING_MODE_GEN7(engine),
1803
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1804
	}
1805
}
B
Ben Widawsky 已提交
1806

1807
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1808
{
1809
	u32 ecochk, gab_ctl, ecobits;
1810

1811 1812 1813
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1814

1815 1816 1817 1818 1819 1820 1821
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1822 1823
}

1824
/* PPGTT support for Sandybdrige/Gen6 and later */
1825
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1826
				   u64 start, u64 length)
1827
{
1828
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1829 1830 1831 1832
	unsigned int first_entry = start >> PAGE_SHIFT;
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
	unsigned int num_entries = length >> PAGE_SHIFT;
1833
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1834

1835
	while (num_entries) {
1836 1837 1838
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1839
		gen6_pte_t *vaddr;
1840

1841 1842 1843 1844 1845 1846 1847 1848
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1849

1850 1851
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1852 1853 1854 1855
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1856

1857 1858 1859 1860 1861
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1862

1863
		pte = 0;
1864
	}
1865 1866
}

1867
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1868
				      struct i915_vma *vma,
1869 1870
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1871
{
1872
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1873
	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1874 1875
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1876
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1877
	struct sgt_dma iter = sgt_dma(vma);
1878 1879
	gen6_pte_t *vaddr;

1880 1881
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1882
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1883 1884
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1885

1886 1887 1888 1889 1890
		iter.dma += PAGE_SIZE;
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1891

1892 1893 1894
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1895

1896
		if (++act_pte == GEN6_PTES) {
1897 1898
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1899
			act_pte = 0;
D
Daniel Vetter 已提交
1900
		}
1901
	} while (1);
1902
	kunmap_atomic(vaddr);
1903 1904

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1905 1906
}

1907
static int gen6_alloc_va_range(struct i915_address_space *vm,
1908
			       u64 start, u64 length)
1909
{
1910
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1911
	struct i915_page_table *pt;
1912 1913 1914
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1915

1916
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1917 1918
		const unsigned int count = gen6_pte_count(start, length);

1919 1920 1921 1922
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1923

1924
			gen6_initialize_pt(ppgtt, pt);
1925
			ppgtt->base.pd.page_table[pde] = pt;
1926 1927 1928 1929 1930 1931

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1932 1933

			GEM_BUG_ON(pt->used_ptes);
1934
		}
1935 1936

		pt->used_ptes += count;
1937 1938
	}

1939
	if (flush) {
1940 1941
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1942 1943 1944
	}

	return 0;
1945 1946

unwind_out:
1947
	gen6_ppgtt_clear_range(vm, from, start - from);
1948
	return -ENOMEM;
1949 1950
}

1951
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1952
{
1953 1954 1955
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1956
	int ret;
1957

1958
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1959 1960
	if (ret)
		return ret;
1961

1962 1963 1964 1965
	ppgtt->scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr,
			       I915_CACHE_NONE, PTE_READ_ONLY);

1966
	vm->scratch_pt = alloc_pt(vm);
1967
	if (IS_ERR(vm->scratch_pt)) {
1968
		cleanup_scratch_page(vm);
1969 1970 1971
		return PTR_ERR(vm->scratch_pt);
	}

1972
	gen6_initialize_pt(ppgtt, vm->scratch_pt);
1973 1974
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1975 1976 1977 1978

	return 0;
}

1979
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1980
{
1981 1982
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1983 1984
}

1985
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1986
{
1987
	struct i915_page_table *pt;
1988
	u32 pde;
1989

1990
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1991 1992 1993 1994 1995 1996 1997
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1998

1999
	i915_vma_destroy(ppgtt->vma);
2000 2001 2002

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
2003 2004
}

2005
static int pd_vma_set_pages(struct i915_vma *vma)
2006
{
2007 2008 2009
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
2010

2011 2012 2013
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
	struct i915_page_table *pt;
	unsigned int pde;
2027

2028 2029
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2030

2031 2032
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2033

2034 2035
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2036

2037
	return 0;
2038
}
2039

2040
static void pd_vma_unbind(struct i915_vma *vma)
2041
{
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;
	int i;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
		init_request_active(&vma->last_read[i], NULL);
	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
2101

2102
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2103 2104 2105
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

2106 2107 2108 2109 2110 2111 2112 2113 2114
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2115 2116 2117 2118 2119 2120 2121 2122
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	return i915_vma_pin(ppgtt->vma,
			    0, GEN6_PD_ALIGN,
			    PIN_GLOBAL | PIN_HIGH);
2123 2124
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2136
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2137
{
2138
	struct i915_ggtt * const ggtt = &i915->ggtt;
2139
	struct gen6_hw_ppgtt *ppgtt;
2140 2141 2142 2143 2144 2145
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2146 2147
	kref_init(&ppgtt->base.ref);

2148 2149
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2150

2151
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2152

2153 2154
	i915_address_space_init(&ppgtt->base.vm, i915);

2155
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2156 2157 2158 2159
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2160

2161
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2162 2163 2164
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2165

2166 2167
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2168
	err = gen6_ppgtt_init_scratch(ppgtt);
2169 2170 2171
	if (err)
		goto err_free;

2172 2173 2174
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2175
		goto err_scratch;
2176
	}
2177

2178
	return &ppgtt->base;
2179

2180 2181
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2182 2183 2184
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2185
}
2186

2187
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2188 2189 2190 2191 2192
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2193
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2194
	if (IS_BROADWELL(dev_priv))
2195
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2196
	else if (IS_CHERRYVIEW(dev_priv))
2197
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2198
	else if (IS_GEN9_LP(dev_priv))
2199
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2200 2201
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2219 2220
}

2221
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2222
{
2223
	gtt_write_workarounds(dev_priv);
2224

2225 2226 2227
	/* In the case of execlists, PPGTT is enabled by the context descriptor
	 * and the PDPs are contained within the context itself.  We don't
	 * need to do anything here. */
2228
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2229 2230
		return 0;

2231
	if (!USES_PPGTT(dev_priv))
2232 2233
		return 0;

2234
	if (IS_GEN6(dev_priv))
2235
		gen6_ppgtt_enable(dev_priv);
2236
	else if (IS_GEN7(dev_priv))
2237 2238 2239
		gen7_ppgtt_enable(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 8)
		gen8_ppgtt_enable(dev_priv);
2240
	else
2241
		MISSING_CASE(INTEL_GEN(dev_priv));
2242

2243 2244
	return 0;
}
2245

2246 2247 2248 2249 2250 2251 2252 2253 2254
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2255
struct i915_hw_ppgtt *
2256
i915_ppgtt_create(struct drm_i915_private *i915,
2257
		  struct drm_i915_file_private *fpriv)
2258 2259 2260
{
	struct i915_hw_ppgtt *ppgtt;

2261 2262 2263
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2264

2265
	ppgtt->vm.file = fpriv;
2266

2267
	trace_i915_ppgtt_create(&ppgtt->vm);
2268

2269 2270 2271
	return ppgtt;
}

2272
void i915_ppgtt_close(struct i915_address_space *vm)
2273 2274 2275 2276 2277 2278
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2292
			i915_vma_destroy(vma);
2293 2294 2295
	}
}

2296
void i915_ppgtt_release(struct kref *kref)
2297 2298 2299 2300
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2301
	trace_i915_ppgtt_release(&ppgtt->vm);
2302

2303
	ppgtt_destroy_vma(&ppgtt->vm);
2304

2305 2306 2307
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2308

2309 2310
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2311 2312
	kfree(ppgtt);
}
2313

2314 2315 2316
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2317
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2318 2319 2320 2321
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2322
	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2323 2324
}

2325
static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2326
{
2327
	struct intel_engine_cs *engine;
2328
	enum intel_engine_id id;
2329
	u32 fault;
2330

2331
	for_each_engine(engine, dev_priv, id) {
2332 2333
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2334
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2335
					 "\tAddr: 0x%08lx\n"
2336 2337 2338
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2339 2340 2341 2342
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2343
			I915_WRITE(RING_FAULT_REG(engine),
2344
				   fault & ~RING_FAULT_VALID);
2345 2346
		}
	}
2347

2348 2349 2350 2351 2352 2353 2354 2355
	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}

static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2356 2357 2358 2359 2360 2361 2362 2363
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2364
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2365 2366
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2367 2368 2369
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2370 2371 2372
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
		I915_WRITE(GEN8_RING_FAULT_REG,
			   fault & ~RING_FAULT_VALID);
	}

	POSTING_READ(GEN8_RING_FAULT_REG);
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
		gen8_check_and_clear_faults(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_check_and_clear_faults(dev_priv);
	else
		return;
2392 2393
}

2394
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2395
{
2396
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2397 2398 2399 2400

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2401
	if (INTEL_GEN(dev_priv) < 6)
2402 2403
		return;

2404
	i915_check_and_clear_faults(dev_priv);
2405

2406
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2407

2408
	i915_ggtt_invalidate(dev_priv);
2409 2410
}

2411 2412
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2413
{
2414
	do {
2415 2416 2417 2418
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2429
				 obj->base.size >> PAGE_SHIFT, NULL,
2430 2431 2432
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2433

2434
	return -ENOSPC;
2435 2436
}

2437
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2438 2439 2440 2441
{
	writeq(pte, addr);
}

2442 2443
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2444
				  u64 offset,
2445 2446 2447
				  enum i915_cache_level level,
				  u32 unused)
{
2448
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2449
	gen8_pte_t __iomem *pte =
2450
		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2451

2452
	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2453

2454
	ggtt->invalidate(vm->i915);
2455 2456
}

B
Ben Widawsky 已提交
2457
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2458
				     struct i915_vma *vma,
2459 2460
				     enum i915_cache_level level,
				     u32 unused)
B
Ben Widawsky 已提交
2461
{
2462
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2463 2464
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2465
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2466
	dma_addr_t addr;
2467

2468
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2469 2470
	gtt_entries += vma->node.start >> PAGE_SHIFT;
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2471
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2472

2473 2474 2475
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2476
	 */
2477
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2478 2479
}

2480 2481
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2482
				  u64 offset,
2483 2484 2485
				  enum i915_cache_level level,
				  u32 flags)
{
2486
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2487
	gen6_pte_t __iomem *pte =
2488
		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2489

2490
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2491

2492
	ggtt->invalidate(vm->i915);
2493 2494
}

2495 2496 2497 2498 2499 2500
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2501
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2502
				     struct i915_vma *vma,
2503 2504
				     enum i915_cache_level level,
				     u32 flags)
2505
{
2506
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2507
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2508
	unsigned int i = vma->node.start >> PAGE_SHIFT;
2509
	struct sgt_iter iter;
2510
	dma_addr_t addr;
2511
	for_each_sgt_dma(addr, iter, vma->pages)
2512
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2513

2514 2515 2516
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2517
	 */
2518
	ggtt->invalidate(vm->i915);
2519 2520
}

2521
static void nop_clear_range(struct i915_address_space *vm,
2522
			    u64 start, u64 length)
2523 2524 2525
{
}

B
Ben Widawsky 已提交
2526
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2527
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2528
{
2529
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2530 2531
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2532 2533 2534
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
	gen8_pte_t __iomem *gtt_base =
2535 2536
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2592
	struct i915_vma *vma;
2593 2594 2595 2596 2597 2598 2599
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2600
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2601 2602 2603 2604 2605 2606
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2607
					     struct i915_vma *vma,
2608 2609 2610
					     enum i915_cache_level level,
					     u32 unused)
{
2611
	struct insert_entries arg = { vm, vma, level };
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2641
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2642
				  u64 start, u64 length)
2643
{
2644
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2645 2646
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2647
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2648 2649
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2650 2651 2652 2653 2654 2655 2656
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2657
	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2658
				     I915_CACHE_LLC, 0);
2659

2660 2661 2662 2663
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2664 2665
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2666
				  u64 offset,
2667 2668 2669 2670 2671 2672 2673 2674 2675
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2676
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2677
				     struct i915_vma *vma,
2678 2679
				     enum i915_cache_level cache_level,
				     u32 unused)
2680 2681 2682 2683
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2684 2685
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2686 2687
}

2688
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2689
				  u64 start, u64 length)
2690
{
2691
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2692 2693
}

2694 2695 2696
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2697
{
2698
	struct drm_i915_private *i915 = vma->vm->i915;
2699
	struct drm_i915_gem_object *obj = vma->obj;
2700
	u32 pte_flags;
2701 2702

	/* Currently applicable only to VLV */
2703
	pte_flags = 0;
2704 2705 2706
	if (obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

2707
	intel_runtime_pm_get(i915);
2708
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2709
	intel_runtime_pm_put(i915);
2710

2711 2712
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2713 2714 2715 2716 2717
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2718
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2719 2720 2721 2722

	return 0;
}

2723 2724 2725 2726 2727 2728 2729 2730 2731
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2732 2733 2734
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2735
{
2736
	struct drm_i915_private *i915 = vma->vm->i915;
2737
	u32 pte_flags;
2738
	int ret;
2739

2740
	/* Currently applicable only to VLV */
2741 2742
	pte_flags = 0;
	if (vma->obj->gt_ro)
2743
		pte_flags |= PTE_READ_ONLY;
2744

2745 2746 2747
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2748
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2749 2750 2751
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2752
			if (ret)
2753
				return ret;
2754 2755
		}

2756 2757
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2758 2759
	}

2760
	if (flags & I915_VMA_GLOBAL_BIND) {
2761
		intel_runtime_pm_get(i915);
2762
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2763
		intel_runtime_pm_put(i915);
2764
	}
2765

2766
	return 0;
2767 2768
}

2769
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2770
{
2771
	struct drm_i915_private *i915 = vma->vm->i915;
2772

2773 2774
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2775
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2776 2777
		intel_runtime_pm_put(i915);
	}
2778

2779
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2780
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2781 2782 2783

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2784 2785
}

2786 2787
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2788
{
D
David Weinehall 已提交
2789 2790
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2791
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2792

2793
	if (unlikely(ggtt->do_idle_maps)) {
2794
		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2795 2796 2797 2798 2799
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2800

2801
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2802
}
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2814 2815
	vma->page_sizes = vma->obj->mm.page_sizes;

2816 2817 2818
	return 0;
}

C
Chris Wilson 已提交
2819
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2820
				  unsigned long color,
2821 2822
				  u64 *start,
				  u64 *end)
2823
{
2824
	if (node->allocated && node->color != color)
2825
		*start += I915_GTT_PAGE_SIZE;
2826

2827 2828 2829 2830 2831
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2832
	node = list_next_entry(node, node_list);
2833
	if (node->color != color)
2834
		*end -= I915_GTT_PAGE_SIZE;
2835
}
B
Ben Widawsky 已提交
2836

2837 2838 2839 2840 2841 2842
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2843
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2844 2845
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2846

2847
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2848 2849 2850 2851
		err = -ENODEV;
		goto err_ppgtt;
	}

2852 2853 2854 2855 2856 2857 2858 2859 2860
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2861 2862

	i915->mm.aliasing_ppgtt = ppgtt;
2863

2864 2865
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2866

2867 2868
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2869

2870 2871 2872
	return 0;

err_ppgtt:
2873
	i915_ppgtt_put(ppgtt);
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2886
	i915_ppgtt_put(ppgtt);
2887

2888 2889
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2890 2891
}

2892
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2893
{
2894 2895 2896 2897 2898 2899 2900 2901 2902
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2903
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2904
	unsigned long hole_start, hole_end;
2905
	struct drm_mm_node *entry;
2906
	int ret;
2907

2908 2909 2910
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2911

2912
	/* Reserve a mappable slot for our lockless error capture */
2913
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2914 2915 2916
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2917 2918 2919
	if (ret)
		return ret;

2920
	/* Clear any non-preallocated blocks */
2921
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2922 2923
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2924 2925
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2926 2927 2928
	}

	/* And finally clear the reserved guard page */
2929
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2930

2931
	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2932
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2933
		if (ret)
2934
			goto err;
2935 2936
	}

2937
	return 0;
2938 2939 2940 2941

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2942 2943
}

2944 2945
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2946
 * @dev_priv: i915 device
2947
 */
2948
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2949
{
2950
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2951
	struct i915_vma *vma, *vn;
2952
	struct pagevec *pvec;
2953

2954
	ggtt->vm.closed = true;
2955 2956

	mutex_lock(&dev_priv->drm.struct_mutex);
2957 2958
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2959 2960
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2961
		WARN_ON(i915_vma_unbind(vma));
2962

2963 2964 2965
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2966
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2967
		intel_vgt_deballoon(dev_priv);
2968
		i915_address_space_fini(&ggtt->vm);
2969 2970
	}

2971
	ggtt->vm.cleanup(&ggtt->vm);
2972

2973
	pvec = &dev_priv->mm.wc_stash.pvec;
2974 2975 2976 2977 2978
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2979
	mutex_unlock(&dev_priv->drm.struct_mutex);
2980 2981

	arch_phys_wc_del(ggtt->mtrr);
2982
	io_mapping_fini(&ggtt->iomap);
2983 2984

	i915_gem_cleanup_stolen(&dev_priv->drm);
2985
}
2986

2987
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2988 2989 2990 2991 2992 2993
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2994
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2995 2996 2997 2998 2999
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3000 3001 3002 3003 3004 3005 3006

#ifdef CONFIG_X86_32
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

3007 3008 3009
	return bdw_gmch_ctl << 20;
}

3010
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

3021
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
3022
{
3023
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3024
	struct pci_dev *pdev = dev_priv->drm.pdev;
3025
	phys_addr_t phys_addr;
3026
	int ret;
B
Ben Widawsky 已提交
3027 3028

	/* For Modern GENs the PTEs and register space are split in the BAR */
3029
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
3030

I
Imre Deak 已提交
3031
	/*
3032 3033 3034
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
3035 3036 3037
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
3038
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3039
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
3040
	else
3041
		ggtt->gsm = ioremap_wc(phys_addr, size);
3042
	if (!ggtt->gsm) {
3043
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
3044 3045 3046
		return -ENOMEM;
	}

3047
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3048
	if (ret) {
B
Ben Widawsky 已提交
3049 3050
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3051
		iounmap(ggtt->gsm);
3052
		return ret;
B
Ben Widawsky 已提交
3053 3054
	}

3055
	return 0;
B
Ben Widawsky 已提交
3056 3057
}

3058 3059
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3060
{
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3104
	struct intel_ppat_entry *entry = NULL;
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3127
		if (!entry)
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3204
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3242 3243
}

B
Ben Widawsky 已提交
3244 3245 3246
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3247
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3248
{
3249 3250 3251 3252
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3253

3254
	if (!USES_PPGTT(ppat->i915)) {
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3268 3269 3270
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3271

3272 3273 3274 3275 3276 3277 3278 3279
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3280 3281
}

3282
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3283
{
3284 3285 3286 3287
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3288 3289 3290 3291 3292 3293 3294

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3306 3307
	 */

3308 3309 3310 3311 3312 3313 3314 3315
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3316 3317
}

3318 3319 3320 3321 3322
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3323
	cleanup_scratch_page(vm);
3324 3325
}

3326 3327
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3328 3329 3330 3331 3332
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3333
	if (INTEL_GEN(dev_priv) >= 10)
3334
		cnl_setup_private_ppat(ppat);
3335
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3336
		chv_setup_private_ppat(ppat);
3337
	else
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3349 3350
}

3351
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3352
{
3353
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3354
	struct pci_dev *pdev = dev_priv->drm.pdev;
3355
	unsigned int size;
B
Ben Widawsky 已提交
3356
	u16 snb_gmch_ctl;
3357
	int err;
B
Ben Widawsky 已提交
3358 3359

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3360 3361 3362 3363
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3364

3365 3366 3367 3368 3369
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3370

3371
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3372
	if (IS_CHERRYVIEW(dev_priv))
3373
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3374
	else
3375
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3376

3377 3378 3379 3380
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3381
	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3382
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3383

3384
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3385

3386 3387
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3388 3389 3390 3391
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3392 3393
	}

3394 3395
	ggtt->invalidate = gen6_ggtt_invalidate;

3396 3397 3398 3399 3400
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3401 3402
	setup_private_pat(dev_priv);

3403
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3404 3405
}

3406
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3407
{
3408
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3409
	struct pci_dev *pdev = dev_priv->drm.pdev;
3410
	unsigned int size;
3411
	u16 snb_gmch_ctl;
3412
	int err;
3413

3414 3415 3416 3417
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3418

3419 3420
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3421
	 */
3422
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3423
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3424
		return -ENXIO;
3425 3426
	}

3427 3428 3429 3430 3431
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3432
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3433

3434
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3435
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3436

3437 3438 3439 3440
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3441

3442 3443
	ggtt->invalidate = gen6_ggtt_invalidate;

3444
	if (HAS_EDRAM(dev_priv))
3445
		ggtt->vm.pte_encode = iris_pte_encode;
3446
	else if (IS_HASWELL(dev_priv))
3447
		ggtt->vm.pte_encode = hsw_pte_encode;
3448
	else if (IS_VALLEYVIEW(dev_priv))
3449
		ggtt->vm.pte_encode = byt_pte_encode;
3450
	else if (INTEL_GEN(dev_priv) >= 7)
3451
		ggtt->vm.pte_encode = ivb_pte_encode;
3452
	else
3453
		ggtt->vm.pte_encode = snb_pte_encode;
3454

3455 3456 3457 3458 3459
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3460
	return ggtt_probe_common(ggtt, size);
3461 3462
}

3463
static void i915_gmch_remove(struct i915_address_space *vm)
3464
{
3465
	intel_gmch_remove();
3466
}
3467

3468
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3469
{
3470
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3471
	phys_addr_t gmadr_base;
3472 3473
	int ret;

3474
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3475 3476 3477 3478 3479
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3480
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3481

3482 3483 3484 3485
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3486
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3487 3488 3489 3490
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3491

3492 3493
	ggtt->invalidate = gmch_ggtt_invalidate;

3494 3495 3496 3497 3498
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3499
	if (unlikely(ggtt->do_idle_maps))
3500 3501
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3502 3503 3504
	return 0;
}

3505
/**
3506
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3507
 * @dev_priv: i915 device
3508
 */
3509
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3510
{
3511
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3512 3513
	int ret;

3514 3515
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3516

3517 3518 3519 3520 3521 3522
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3523
	if (ret)
3524 3525
		return ret;

3526 3527 3528 3529 3530
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3531
	if (USES_GUC(dev_priv)) {
3532 3533 3534
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3535 3536
	}

3537
	if ((ggtt->vm.total - 1) >> 32) {
3538
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3539
			  " of address space! Found %lldM!\n",
3540 3541 3542 3543
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3544 3545
	}

3546
	if (ggtt->mappable_end > ggtt->vm.total) {
3547
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3548
			  " aperture=%pa, total=%llx\n",
3549 3550
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3551 3552
	}

3553
	/* GMADR is the PCI mmio aperture into the global GTT. */
3554
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3555
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3556
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3557
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3558
	if (intel_vtd_active())
3559
		DRM_INFO("VT-d active for gfx access\n");
3560 3561

	return 0;
3562 3563 3564 3565
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3566
 * @dev_priv: i915 device
3567
 */
3568
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3569 3570 3571 3572
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3573 3574
	stash_init(&dev_priv->mm.wc_stash);

3575 3576
	INIT_LIST_HEAD(&dev_priv->vm_list);

3577 3578 3579 3580
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3581
	 */
C
Chris Wilson 已提交
3582
	mutex_lock(&dev_priv->drm.struct_mutex);
3583
	i915_address_space_init(&ggtt->vm, dev_priv);
3584
	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3585
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3586
	mutex_unlock(&dev_priv->drm.struct_mutex);
3587

3588 3589
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3590
				dev_priv->ggtt.mappable_end)) {
3591 3592 3593 3594
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3595
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3596

3597 3598 3599 3600
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3601
	ret = i915_gem_init_stolen(dev_priv);
3602 3603 3604 3605
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3606 3607

out_gtt_cleanup:
3608
	ggtt->vm.cleanup(&ggtt->vm);
3609
	return ret;
3610
}
3611

3612
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3613
{
3614
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3615 3616 3617 3618 3619
		return -EIO;

	return 0;
}

3620 3621
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3622 3623
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3624
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3625 3626

	i915_ggtt_invalidate(i915);
3627 3628 3629 3630
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3631 3632 3633 3634
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3635 3636

	i915_ggtt_invalidate(i915);
3637 3638
}

3639
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3640
{
3641
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3642
	struct i915_vma *vma, *vn;
3643

3644
	i915_check_and_clear_faults(dev_priv);
3645 3646

	/* First fill our portion of the GTT with scratch pages */
3647
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3648

3649
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3650 3651

	/* clflush objects bound into the GGTT and rebind them. */
3652 3653
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3654
		struct drm_i915_gem_object *obj = vma->obj;
3655

3656 3657
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3658

3659 3660
		if (!i915_vma_unbind(vma))
			continue;
3661

3662 3663 3664 3665 3666
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3667
	}
3668

3669
	ggtt->vm.closed = false;
3670
	i915_ggtt_invalidate(dev_priv);
3671

3672
	if (INTEL_GEN(dev_priv) >= 8) {
3673
		struct intel_ppat *ppat = &dev_priv->ppat;
3674

3675 3676
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3677 3678 3679 3680
		return;
	}
}

3681
static struct scatterlist *
3682
rotate_pages(const dma_addr_t *in, unsigned int offset,
3683
	     unsigned int width, unsigned int height,
3684
	     unsigned int stride,
3685
	     struct sg_table *st, struct scatterlist *sg)
3686 3687 3688 3689 3690
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3691
		src_idx = stride * (height - 1) + column;
3692 3693 3694 3695 3696 3697 3698
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3699
			sg_dma_address(sg) = in[offset + src_idx];
3700 3701
			sg_dma_len(sg) = PAGE_SIZE;
			sg = sg_next(sg);
3702
			src_idx -= stride;
3703 3704
		}
	}
3705 3706

	return sg;
3707 3708
}

3709 3710 3711
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3712
{
3713
	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3714
	unsigned int size = intel_rotation_info_size(rot_info);
3715 3716
	struct sgt_iter sgt_iter;
	dma_addr_t dma_addr;
3717 3718 3719
	unsigned long i;
	dma_addr_t *page_addr_list;
	struct sg_table *st;
3720
	struct scatterlist *sg;
3721
	int ret = -ENOMEM;
3722 3723

	/* Allocate a temporary list of source pages for random access. */
M
Michal Hocko 已提交
3724
	page_addr_list = kvmalloc_array(n_pages,
3725
					sizeof(dma_addr_t),
3726
					GFP_KERNEL);
3727 3728 3729 3730 3731 3732 3733 3734
	if (!page_addr_list)
		return ERR_PTR(ret);

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3735
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3736 3737 3738 3739 3740
	if (ret)
		goto err_sg_alloc;

	/* Populate source page list from the object. */
	i = 0;
C
Chris Wilson 已提交
3741
	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3742
		page_addr_list[i++] = dma_addr;
3743

3744
	GEM_BUG_ON(i != n_pages);
3745 3746 3747
	st->nents = 0;
	sg = st->sgl;

3748 3749 3750 3751
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3752 3753
	}

M
Michal Hocko 已提交
3754
	kvfree(page_addr_list);
3755 3756 3757 3758 3759 3760

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:
M
Michal Hocko 已提交
3761
	kvfree(page_addr_list);
3762

3763 3764
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3765

3766 3767
	return ERR_PTR(ret);
}
3768

3769
static noinline struct sg_table *
3770 3771 3772 3773
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3774
	struct scatterlist *sg, *iter;
3775
	unsigned int count = view->partial.size;
3776
	unsigned int offset;
3777 3778 3779 3780 3781 3782
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3783
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3784 3785 3786
	if (ret)
		goto err_sg_alloc;

3787
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3788 3789
	GEM_BUG_ON(!iter);

3790 3791
	sg = st->sgl;
	st->nents = 0;
3792 3793
	do {
		unsigned int len;
3794

3795 3796 3797 3798 3799 3800
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3801 3802

		st->nents++;
3803 3804 3805 3806 3807
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
			return st;
		}
3808

3809 3810 3811 3812
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3813 3814 3815 3816 3817 3818 3819

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3820
static int
3821
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3822
{
3823
	int ret;
3824

3825 3826 3827 3828 3829 3830 3831
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3832
	switch (vma->ggtt_view.type) {
3833 3834 3835
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3836 3837
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3838 3839
		return 0;

3840
	case I915_GGTT_VIEW_ROTATED:
3841
		vma->pages =
3842 3843 3844 3845
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3846
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3847 3848
		break;
	}
3849

3850 3851
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3852 3853
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3854 3855
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3856
	}
3857
	return ret;
3858 3859
}

3860 3861
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3896
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3897
	GEM_BUG_ON(drm_mm_node_allocated(node));
3898 3899 3900 3901 3902 3903 3904 3905 3906

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3907 3908 3909
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3910 3911 3912 3913 3914 3915 3916
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3942 3943
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3944 3945 3946 3947 3948 3949 3950 3951 3952
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3953
 *         must be #I915_GTT_PAGE_SIZE aligned
3954 3955 3956
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3957 3958 3959 3960 3961 3962
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3963 3964
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3981
	enum drm_mm_insert_mode mode;
3982
	u64 offset;
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3993
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3994
	GEM_BUG_ON(drm_mm_node_allocated(node));
3995 3996 3997 3998 3999 4000 4001

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4002 4003 4004 4005 4006
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
		mode = DRM_MM_INSERT_HIGH;
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4018 4019 4020
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4021 4022 4023
	if (err != -ENOSPC)
		return err;

4024 4025 4026
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4056 4057 4058 4059 4060
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4061 4062 4063
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4064
}
4065 4066 4067

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4068
#include "selftests/i915_gem_gtt.c"
4069
#endif