memcontrol.c 171.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

251 252 253 254 255 256
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

257 258 259 260 261 262 263 264 265 266 267 268 269
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

270
#ifdef CONFIG_MEMCG_KMEM
271
/*
272
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
273 274 275 276 277
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
278
 *
279 280
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
281
 */
282 283
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
284

285 286 287 288 289 290 291 292 293 294 295 296 297
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

298 299 300 301 302 303
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
304
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305 306
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
307
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
308 309 310
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
311
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312

313 314 315 316 317 318
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
319
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320
EXPORT_SYMBOL(memcg_kmem_enabled_key);
321

322 323
struct workqueue_struct *memcg_kmem_cache_wq;

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
431 432 433 434 435 436 437 438

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
439 440
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
441 442 443 444 445
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

446 447 448 449 450 451
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
452
#endif /* CONFIG_MEMCG_KMEM */
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

471
	if (!memcg)
472 473 474 475 476
		memcg = root_mem_cgroup;

	return &memcg->css;
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

505 506
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
507
{
508
	int nid = page_to_nid(page);
509

510
	return memcg->nodeinfo[nid];
511 512
}

513 514
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
515
{
516
	return soft_limit_tree.rb_tree_per_node[nid];
517 518
}

519
static struct mem_cgroup_tree_per_node *
520 521 522 523
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

524
	return soft_limit_tree.rb_tree_per_node[nid];
525 526
}

527 528
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
529
					 unsigned long new_usage_in_excess)
530 531 532
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
533
	struct mem_cgroup_per_node *mz_node;
534
	bool rightmost = true;
535 536 537 538 539 540 541 542 543

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
544
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
545
					tree_node);
546
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
547
			p = &(*p)->rb_left;
548 549 550
			rightmost = false;
		}

551 552 553 554 555 556 557
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
558 559 560 561

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

562 563 564 565 566
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

567 568
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
569 570 571
{
	if (!mz->on_tree)
		return;
572 573 574 575

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

576 577 578 579
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

580 581
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
582
{
583 584 585
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
586
	__mem_cgroup_remove_exceeded(mz, mctz);
587
	spin_unlock_irqrestore(&mctz->lock, flags);
588 589
}

590 591 592
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
593
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
594 595 596 597 598 599 600
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
601 602 603

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
604
	unsigned long excess;
605 606
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
607

608
	mctz = soft_limit_tree_from_page(page);
609 610
	if (!mctz)
		return;
611 612 613 614 615
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
616
		mz = mem_cgroup_page_nodeinfo(memcg, page);
617
		excess = soft_limit_excess(memcg);
618 619 620 621 622
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
623 624 625
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
626 627
			/* if on-tree, remove it */
			if (mz->on_tree)
628
				__mem_cgroup_remove_exceeded(mz, mctz);
629 630 631 632
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
633
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
634
			spin_unlock_irqrestore(&mctz->lock, flags);
635 636 637 638 639 640
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
641 642 643
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
644

645
	for_each_node(nid) {
646 647
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
648 649
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
650 651 652
	}
}

653 654
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
655
{
656
	struct mem_cgroup_per_node *mz;
657 658 659

retry:
	mz = NULL;
660
	if (!mctz->rb_rightmost)
661 662
		goto done;		/* Nothing to reclaim from */

663 664
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
665 666 667 668 669
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
670
	__mem_cgroup_remove_exceeded(mz, mctz);
671
	if (!soft_limit_excess(mz->memcg) ||
672
	    !css_tryget_online(&mz->memcg->css))
673 674 675 676 677
		goto retry;
done:
	return mz;
}

678 679
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
680
{
681
	struct mem_cgroup_per_node *mz;
682

683
	spin_lock_irq(&mctz->lock);
684
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
685
	spin_unlock_irq(&mctz->lock);
686 687 688
	return mz;
}

689
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
690
				      int event)
691
{
692
	return atomic_long_read(&memcg->events[event]);
693 694
}

695
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
696
					 struct page *page,
697
					 bool compound, int nr_pages)
698
{
699 700 701 702
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
703
	if (PageAnon(page))
704
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
705
	else {
706
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
707
		if (PageSwapBacked(page))
708
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
709
	}
710

711 712
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
713
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
714
	}
715

716 717
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
718
		__count_memcg_events(memcg, PGPGIN, 1);
719
	else {
720
		__count_memcg_events(memcg, PGPGOUT, 1);
721 722
		nr_pages = -nr_pages; /* for event */
	}
723

724
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
725 726
}

727 728
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
729
{
730
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
731
	unsigned long nr = 0;
732
	enum lru_list lru;
733

734
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
735

736 737 738
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
739
		nr += mem_cgroup_get_lru_size(lruvec, lru);
740 741
	}
	return nr;
742
}
743

744
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
745
			unsigned int lru_mask)
746
{
747
	unsigned long nr = 0;
748
	int nid;
749

750
	for_each_node_state(nid, N_MEMORY)
751 752
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
753 754
}

755 756
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
757 758 759
{
	unsigned long val, next;

760 761
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
762
	/* from time_after() in jiffies.h */
763
	if ((long)(next - val) < 0) {
764 765 766 767
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
768 769 770
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
771 772 773 774 775 776
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
777
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
778
		return true;
779
	}
780
	return false;
781 782 783 784 785 786
}

/*
 * Check events in order.
 *
 */
787
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
788 789
{
	/* threshold event is triggered in finer grain than soft limit */
790 791
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
792
		bool do_softlimit;
793
		bool do_numainfo __maybe_unused;
794

795 796
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
797 798 799 800
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
801
		mem_cgroup_threshold(memcg);
802 803
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
804
#if MAX_NUMNODES > 1
805
		if (unlikely(do_numainfo))
806
			atomic_inc(&memcg->numainfo_events);
807
#endif
808
	}
809 810
}

811
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
812
{
813 814 815 816 817 818 819 820
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

821
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
822
}
M
Michal Hocko 已提交
823
EXPORT_SYMBOL(mem_cgroup_from_task);
824

825 826 827 828 829 830 831 832 833
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
834
{
835 836 837 838
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
839

840 841
	rcu_read_lock();
	do {
842 843 844 845 846 847
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
848
			memcg = root_mem_cgroup;
849 850 851 852 853
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
854
	} while (!css_tryget_online(&memcg->css));
855
	rcu_read_unlock();
856
	return memcg;
857
}
858 859
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
898

899 900 901 902 903 904 905 906 907 908 909 910 911
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
912
 * Reclaimers can specify a node and a priority level in @reclaim to
913
 * divide up the memcgs in the hierarchy among all concurrent
914
 * reclaimers operating on the same node and priority.
915
 */
916
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
917
				   struct mem_cgroup *prev,
918
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
919
{
M
Michal Hocko 已提交
920
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
921
	struct cgroup_subsys_state *css = NULL;
922
	struct mem_cgroup *memcg = NULL;
923
	struct mem_cgroup *pos = NULL;
924

925 926
	if (mem_cgroup_disabled())
		return NULL;
927

928 929
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
930

931
	if (prev && !reclaim)
932
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
933

934 935
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
936
			goto out;
937
		return root;
938
	}
K
KAMEZAWA Hiroyuki 已提交
939

940
	rcu_read_lock();
M
Michal Hocko 已提交
941

942
	if (reclaim) {
943
		struct mem_cgroup_per_node *mz;
944

945
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
946 947 948 949 950
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

951
		while (1) {
952
			pos = READ_ONCE(iter->position);
953 954
			if (!pos || css_tryget(&pos->css))
				break;
955
			/*
956 957 958 959 960 961
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
962
			 */
963 964
			(void)cmpxchg(&iter->position, pos, NULL);
		}
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
982
		}
K
KAMEZAWA Hiroyuki 已提交
983

984 985 986 987 988 989
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
990

991 992
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
993

994 995
		if (css_tryget(css))
			break;
996

997
		memcg = NULL;
998
	}
999 1000 1001

	if (reclaim) {
		/*
1002 1003 1004
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1005
		 */
1006 1007
		(void)cmpxchg(&iter->position, pos, memcg);

1008 1009 1010 1011 1012 1013 1014
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1015
	}
1016

1017 1018
out_unlock:
	rcu_read_unlock();
1019
out:
1020 1021 1022
	if (prev && prev != root)
		css_put(&prev->css);

1023
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1024
}
K
KAMEZAWA Hiroyuki 已提交
1025

1026 1027 1028 1029 1030 1031 1032
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1033 1034 1035 1036 1037 1038
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1039

1040 1041 1042 1043
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
1044 1045
	struct mem_cgroup_per_node *mz;
	int nid;
1046 1047
	int i;

1048
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1049
		for_each_node(nid) {
1050 1051 1052 1053 1054
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
1055 1056 1057 1058 1059
			}
		}
	}
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1085
		css_task_iter_start(&iter->css, 0, &it);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1097
/**
1098
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1099
 * @page: the page
1100
 * @pgdat: pgdat of the page
1101 1102 1103 1104
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1105
 */
M
Mel Gorman 已提交
1106
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1107
{
1108
	struct mem_cgroup_per_node *mz;
1109
	struct mem_cgroup *memcg;
1110
	struct lruvec *lruvec;
1111

1112
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1113
		lruvec = &pgdat->lruvec;
1114 1115
		goto out;
	}
1116

1117
	memcg = page->mem_cgroup;
1118
	/*
1119
	 * Swapcache readahead pages are added to the LRU - and
1120
	 * possibly migrated - before they are charged.
1121
	 */
1122 1123
	if (!memcg)
		memcg = root_mem_cgroup;
1124

1125
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1126 1127 1128 1129 1130 1131 1132
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1133 1134
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1135
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1136
}
1137

1138
/**
1139 1140 1141
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1142
 * @zid: zone id of the accounted pages
1143
 * @nr_pages: positive when adding or negative when removing
1144
 *
1145 1146 1147
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1148
 */
1149
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1150
				int zid, int nr_pages)
1151
{
1152
	struct mem_cgroup_per_node *mz;
1153
	unsigned long *lru_size;
1154
	long size;
1155 1156 1157 1158

	if (mem_cgroup_disabled())
		return;

1159
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1160
	lru_size = &mz->lru_zone_size[zid][lru];
1161 1162 1163 1164 1165

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1166 1167 1168
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1169 1170 1171 1172 1173 1174
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1175
}
1176

1177
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1178
{
1179
	struct mem_cgroup *task_memcg;
1180
	struct task_struct *p;
1181
	bool ret;
1182

1183
	p = find_lock_task_mm(task);
1184
	if (p) {
1185
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1186 1187 1188 1189 1190 1191 1192
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1193
		rcu_read_lock();
1194 1195
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1196
		rcu_read_unlock();
1197
	}
1198 1199
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1200 1201 1202
	return ret;
}

1203
/**
1204
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1205
 * @memcg: the memory cgroup
1206
 *
1207
 * Returns the maximum amount of memory @mem can be charged with, in
1208
 * pages.
1209
 */
1210
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1211
{
1212 1213 1214
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1215

1216
	count = page_counter_read(&memcg->memory);
1217
	limit = READ_ONCE(memcg->memory.max);
1218 1219 1220
	if (count < limit)
		margin = limit - count;

1221
	if (do_memsw_account()) {
1222
		count = page_counter_read(&memcg->memsw);
1223
		limit = READ_ONCE(memcg->memsw.max);
1224 1225
		if (count <= limit)
			margin = min(margin, limit - count);
1226 1227
		else
			margin = 0;
1228 1229 1230
	}

	return margin;
1231 1232
}

1233
/*
Q
Qiang Huang 已提交
1234
 * A routine for checking "mem" is under move_account() or not.
1235
 *
Q
Qiang Huang 已提交
1236 1237 1238
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1239
 */
1240
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1241
{
1242 1243
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1244
	bool ret = false;
1245 1246 1247 1248 1249 1250 1251 1252 1253
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1254

1255 1256
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1257 1258
unlock:
	spin_unlock(&mc.lock);
1259 1260 1261
	return ret;
}

1262
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1263 1264
{
	if (mc.moving_task && current != mc.moving_task) {
1265
		if (mem_cgroup_under_move(memcg)) {
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1278
static const unsigned int memcg1_stats[] = {
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1300
#define K(x) ((x) << (PAGE_SHIFT-10))
1301
/**
1302
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1303 1304 1305 1306 1307 1308 1309 1310
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1311 1312
	struct mem_cgroup *iter;
	unsigned int i;
1313 1314 1315

	rcu_read_lock();

1316 1317 1318 1319 1320 1321 1322 1323
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1324
	pr_cont_cgroup_path(memcg->css.cgroup);
1325
	pr_cont("\n");
1326 1327 1328

	rcu_read_unlock();

1329 1330
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1331
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1332 1333
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1334
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1335 1336
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1337
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1338 1339

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1340 1341
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1342 1343
		pr_cont(":");

1344 1345
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1346
				continue;
1347
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1348
				K(memcg_page_state(iter, memcg1_stats[i])));
1349 1350 1351 1352 1353 1354 1355 1356
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1357 1358
}

D
David Rientjes 已提交
1359 1360 1361
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1362
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1363
{
1364
	unsigned long max;
1365

1366
	max = memcg->memory.max;
1367
	if (mem_cgroup_swappiness(memcg)) {
1368 1369
		unsigned long memsw_max;
		unsigned long swap_max;
1370

1371 1372 1373 1374
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1375
	}
1376
	return max;
D
David Rientjes 已提交
1377 1378
}

1379
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1380
				     int order)
1381
{
1382 1383 1384
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1385
		.memcg = memcg,
1386 1387 1388
		.gfp_mask = gfp_mask,
		.order = order,
	};
1389
	bool ret;
1390

1391 1392 1393 1394 1395 1396 1397
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1398
	mutex_unlock(&oom_lock);
1399
	return ret;
1400 1401
}

1402 1403
#if MAX_NUMNODES > 1

1404 1405
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1406
 * @memcg: the target memcg
1407 1408 1409 1410 1411 1412 1413
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1414
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1415 1416
		int nid, bool noswap)
{
1417
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1418 1419 1420
		return true;
	if (noswap || !total_swap_pages)
		return false;
1421
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1422 1423 1424 1425
		return true;
	return false;

}
1426 1427 1428 1429 1430 1431 1432

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1433
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1434 1435
{
	int nid;
1436 1437 1438 1439
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1440
	if (!atomic_read(&memcg->numainfo_events))
1441
		return;
1442
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1443 1444 1445
		return;

	/* make a nodemask where this memcg uses memory from */
1446
	memcg->scan_nodes = node_states[N_MEMORY];
1447

1448
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1449

1450 1451
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1452
	}
1453

1454 1455
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1470
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1471 1472 1473
{
	int node;

1474 1475
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1476

1477
	node = next_node_in(node, memcg->scan_nodes);
1478
	/*
1479 1480 1481
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1482 1483 1484 1485
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1486
	memcg->last_scanned_node = node;
1487 1488 1489
	return node;
}
#else
1490
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1491 1492 1493 1494 1495
{
	return 0;
}
#endif

1496
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1497
				   pg_data_t *pgdat,
1498 1499 1500 1501 1502 1503 1504 1505 1506
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1507
		.pgdat = pgdat,
1508 1509 1510
		.priority = 0,
	};

1511
	excess = soft_limit_excess(root_memcg);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1537
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1538
					pgdat, &nr_scanned);
1539
		*total_scanned += nr_scanned;
1540
		if (!soft_limit_excess(root_memcg))
1541
			break;
1542
	}
1543 1544
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1545 1546
}

1547 1548 1549 1550 1551 1552
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1553 1554
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1555 1556 1557 1558
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1559
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1560
{
1561
	struct mem_cgroup *iter, *failed = NULL;
1562

1563 1564
	spin_lock(&memcg_oom_lock);

1565
	for_each_mem_cgroup_tree(iter, memcg) {
1566
		if (iter->oom_lock) {
1567 1568 1569 1570 1571
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1572 1573
			mem_cgroup_iter_break(memcg, iter);
			break;
1574 1575
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1576
	}
K
KAMEZAWA Hiroyuki 已提交
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1589
		}
1590 1591
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1592 1593 1594 1595

	spin_unlock(&memcg_oom_lock);

	return !failed;
1596
}
1597

1598
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1599
{
K
KAMEZAWA Hiroyuki 已提交
1600 1601
	struct mem_cgroup *iter;

1602
	spin_lock(&memcg_oom_lock);
1603
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1604
	for_each_mem_cgroup_tree(iter, memcg)
1605
		iter->oom_lock = false;
1606
	spin_unlock(&memcg_oom_lock);
1607 1608
}

1609
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1610 1611 1612
{
	struct mem_cgroup *iter;

1613
	spin_lock(&memcg_oom_lock);
1614
	for_each_mem_cgroup_tree(iter, memcg)
1615 1616
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1617 1618
}

1619
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1620 1621 1622
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1623 1624
	/*
	 * When a new child is created while the hierarchy is under oom,
1625
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1626
	 */
1627
	spin_lock(&memcg_oom_lock);
1628
	for_each_mem_cgroup_tree(iter, memcg)
1629 1630 1631
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1632 1633
}

K
KAMEZAWA Hiroyuki 已提交
1634 1635
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1636
struct oom_wait_info {
1637
	struct mem_cgroup *memcg;
1638
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1639 1640
};

1641
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1642 1643
	unsigned mode, int sync, void *arg)
{
1644 1645
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1646 1647 1648
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1649
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1650

1651 1652
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1653 1654 1655 1656
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1657
static void memcg_oom_recover(struct mem_cgroup *memcg)
1658
{
1659 1660 1661 1662 1663 1664 1665 1666 1667
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1668
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1669 1670
}

1671 1672 1673 1674 1675 1676 1677 1678
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1679
{
1680 1681 1682
	enum oom_status ret;
	bool locked;

1683 1684 1685
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

K
KAMEZAWA Hiroyuki 已提交
1686
	/*
1687 1688 1689 1690
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1691 1692 1693 1694
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1695
	 *
1696 1697 1698 1699 1700 1701 1702
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1703
	 */
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1715 1716 1717 1718 1719 1720 1721 1722
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1723
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1724 1725 1726 1727 1728 1729
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1730

1731
	return ret;
1732 1733 1734 1735
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1736
 * @handle: actually kill/wait or just clean up the OOM state
1737
 *
1738 1739
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1740
 *
1741
 * Memcg supports userspace OOM handling where failed allocations must
1742 1743 1744 1745
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1746
 * the end of the page fault to complete the OOM handling.
1747 1748
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1749
 * completed, %false otherwise.
1750
 */
1751
bool mem_cgroup_oom_synchronize(bool handle)
1752
{
T
Tejun Heo 已提交
1753
	struct mem_cgroup *memcg = current->memcg_in_oom;
1754
	struct oom_wait_info owait;
1755
	bool locked;
1756 1757 1758

	/* OOM is global, do not handle */
	if (!memcg)
1759
		return false;
1760

1761
	if (!handle)
1762
		goto cleanup;
1763 1764 1765 1766 1767

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1768
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1769

1770
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1781 1782
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1783
	} else {
1784
		schedule();
1785 1786 1787 1788 1789
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1790 1791 1792 1793 1794 1795 1796 1797
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1798
cleanup:
T
Tejun Heo 已提交
1799
	current->memcg_in_oom = NULL;
1800
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1801
	return true;
1802 1803
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1860
/**
1861 1862
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1863
 *
1864
 * This function protects unlocked LRU pages from being moved to
1865 1866 1867 1868 1869
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1870
 */
1871
struct mem_cgroup *lock_page_memcg(struct page *page)
1872 1873
{
	struct mem_cgroup *memcg;
1874
	unsigned long flags;
1875

1876 1877 1878 1879
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1880 1881 1882 1883 1884 1885 1886
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1887 1888 1889
	rcu_read_lock();

	if (mem_cgroup_disabled())
1890
		return NULL;
1891
again:
1892
	memcg = page->mem_cgroup;
1893
	if (unlikely(!memcg))
1894
		return NULL;
1895

Q
Qiang Huang 已提交
1896
	if (atomic_read(&memcg->moving_account) <= 0)
1897
		return memcg;
1898

1899
	spin_lock_irqsave(&memcg->move_lock, flags);
1900
	if (memcg != page->mem_cgroup) {
1901
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1902 1903
		goto again;
	}
1904 1905 1906 1907

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1908
	 * the task who has the lock for unlock_page_memcg().
1909 1910 1911
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1912

1913
	return memcg;
1914
}
1915
EXPORT_SYMBOL(lock_page_memcg);
1916

1917
/**
1918 1919 1920 1921
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1922
 */
1923
void __unlock_page_memcg(struct mem_cgroup *memcg)
1924
{
1925 1926 1927 1928 1929 1930 1931 1932
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1933

1934
	rcu_read_unlock();
1935
}
1936 1937 1938 1939 1940 1941 1942 1943 1944

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1945
EXPORT_SYMBOL(unlock_page_memcg);
1946

1947 1948
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1949
	unsigned int nr_pages;
1950
	struct work_struct work;
1951
	unsigned long flags;
1952
#define FLUSHING_CACHED_CHARGE	0
1953 1954
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1955
static DEFINE_MUTEX(percpu_charge_mutex);
1956

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1967
 */
1968
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1969 1970
{
	struct memcg_stock_pcp *stock;
1971
	unsigned long flags;
1972
	bool ret = false;
1973

1974
	if (nr_pages > MEMCG_CHARGE_BATCH)
1975
		return ret;
1976

1977 1978 1979
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1980
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1981
		stock->nr_pages -= nr_pages;
1982 1983
		ret = true;
	}
1984 1985 1986

	local_irq_restore(flags);

1987 1988 1989 1990
	return ret;
}

/*
1991
 * Returns stocks cached in percpu and reset cached information.
1992 1993 1994 1995 1996
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1997
	if (stock->nr_pages) {
1998
		page_counter_uncharge(&old->memory, stock->nr_pages);
1999
		if (do_memsw_account())
2000
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2001
		css_put_many(&old->css, stock->nr_pages);
2002
		stock->nr_pages = 0;
2003 2004 2005 2006 2007 2008
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2009 2010 2011
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2012 2013 2014 2015
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2016 2017 2018
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2019
	drain_stock(stock);
2020
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2021 2022

	local_irq_restore(flags);
2023 2024 2025
}

/*
2026
 * Cache charges(val) to local per_cpu area.
2027
 * This will be consumed by consume_stock() function, later.
2028
 */
2029
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2030
{
2031 2032 2033 2034
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2035

2036
	stock = this_cpu_ptr(&memcg_stock);
2037
	if (stock->cached != memcg) { /* reset if necessary */
2038
		drain_stock(stock);
2039
		stock->cached = memcg;
2040
	}
2041
	stock->nr_pages += nr_pages;
2042

2043
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2044 2045
		drain_stock(stock);

2046
	local_irq_restore(flags);
2047 2048 2049
}

/*
2050
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2051
 * of the hierarchy under it.
2052
 */
2053
static void drain_all_stock(struct mem_cgroup *root_memcg)
2054
{
2055
	int cpu, curcpu;
2056

2057 2058 2059
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2060 2061 2062 2063 2064 2065
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2066
	curcpu = get_cpu();
2067 2068
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2069
		struct mem_cgroup *memcg;
2070

2071
		memcg = stock->cached;
2072
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2073
			continue;
2074 2075
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2076
			continue;
2077
		}
2078 2079 2080 2081 2082 2083
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2084
		css_put(&memcg->css);
2085
	}
2086
	put_cpu();
2087
	mutex_unlock(&percpu_charge_mutex);
2088 2089
}

2090
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2091 2092
{
	struct memcg_stock_pcp *stock;
2093
	struct mem_cgroup *memcg;
2094 2095 2096

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

2122
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2123 2124 2125 2126 2127 2128 2129 2130
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

2131
	return 0;
2132 2133
}

2134 2135 2136 2137 2138 2139 2140
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2141
		memcg_memory_event(memcg, MEMCG_HIGH);
2142 2143 2144 2145 2146 2147 2148 2149 2150
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2151
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2152 2153
}

2154 2155 2156 2157 2158 2159 2160
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2161
	struct mem_cgroup *memcg;
2162 2163 2164 2165

	if (likely(!nr_pages))
		return;

2166 2167
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2168 2169 2170 2171
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2172 2173
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2174
{
2175
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2176
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2177
	struct mem_cgroup *mem_over_limit;
2178
	struct page_counter *counter;
2179
	unsigned long nr_reclaimed;
2180 2181
	bool may_swap = true;
	bool drained = false;
2182 2183
	bool oomed = false;
	enum oom_status oom_status;
2184

2185
	if (mem_cgroup_is_root(memcg))
2186
		return 0;
2187
retry:
2188
	if (consume_stock(memcg, nr_pages))
2189
		return 0;
2190

2191
	if (!do_memsw_account() ||
2192 2193
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2194
			goto done_restock;
2195
		if (do_memsw_account())
2196 2197
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2198
	} else {
2199
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2200
		may_swap = false;
2201
	}
2202

2203 2204 2205 2206
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2207

2208 2209 2210 2211 2212 2213
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2214
	if (unlikely(should_force_charge()))
2215
		goto force;
2216

2217 2218 2219 2220 2221 2222 2223 2224 2225
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2226 2227 2228
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2229
	if (!gfpflags_allow_blocking(gfp_mask))
2230
		goto nomem;
2231

2232
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2233

2234 2235
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2236

2237
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2238
		goto retry;
2239

2240
	if (!drained) {
2241
		drain_all_stock(mem_over_limit);
2242 2243 2244 2245
		drained = true;
		goto retry;
	}

2246 2247
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2248 2249 2250 2251 2252 2253 2254 2255 2256
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2257
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2258 2259 2260 2261 2262 2263 2264 2265
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2266 2267 2268
	if (nr_retries--)
		goto retry;

2269 2270 2271
	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
		goto nomem;

2272
	if (gfp_mask & __GFP_NOFAIL)
2273
		goto force;
2274

2275
	if (fatal_signal_pending(current))
2276
		goto force;
2277

2278
	memcg_memory_event(mem_over_limit, MEMCG_OOM);
2279

2280 2281 2282 2283 2284 2285
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2286
		       get_order(nr_pages * PAGE_SIZE));
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		oomed = true;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2297
nomem:
2298
	if (!(gfp_mask & __GFP_NOFAIL))
2299
		return -ENOMEM;
2300 2301 2302 2303 2304 2305 2306
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2307
	if (do_memsw_account())
2308 2309 2310 2311
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2312 2313

done_restock:
2314
	css_get_many(&memcg->css, batch);
2315 2316
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2317

2318
	/*
2319 2320
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2321
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2322 2323 2324 2325
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2326 2327
	 */
	do {
2328
		if (page_counter_read(&memcg->memory) > memcg->high) {
2329 2330 2331 2332 2333
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2334
			current->memcg_nr_pages_over_high += batch;
2335 2336 2337
			set_notify_resume(current);
			break;
		}
2338
	} while ((memcg = parent_mem_cgroup(memcg)));
2339 2340

	return 0;
2341
}
2342

2343
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2344
{
2345 2346 2347
	if (mem_cgroup_is_root(memcg))
		return;

2348
	page_counter_uncharge(&memcg->memory, nr_pages);
2349
	if (do_memsw_account())
2350
		page_counter_uncharge(&memcg->memsw, nr_pages);
2351

2352
	css_put_many(&memcg->css, nr_pages);
2353 2354
}

2355 2356 2357 2358
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2359
	spin_lock_irq(zone_lru_lock(zone));
2360 2361 2362
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2363
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2378
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2379 2380 2381 2382
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2383
	spin_unlock_irq(zone_lru_lock(zone));
2384 2385
}

2386
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2387
			  bool lrucare)
2388
{
2389
	int isolated;
2390

2391
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2392 2393 2394 2395 2396

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2397 2398
	if (lrucare)
		lock_page_lru(page, &isolated);
2399

2400 2401
	/*
	 * Nobody should be changing or seriously looking at
2402
	 * page->mem_cgroup at this point:
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2414
	page->mem_cgroup = memcg;
2415

2416 2417
	if (lrucare)
		unlock_page_lru(page, isolated);
2418
}
2419

2420
#ifdef CONFIG_MEMCG_KMEM
2421
static int memcg_alloc_cache_id(void)
2422
{
2423 2424 2425
	int id, size;
	int err;

2426
	id = ida_simple_get(&memcg_cache_ida,
2427 2428 2429
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2430

2431
	if (id < memcg_nr_cache_ids)
2432 2433 2434 2435 2436 2437
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2438
	down_write(&memcg_cache_ids_sem);
2439 2440

	size = 2 * (id + 1);
2441 2442 2443 2444 2445
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2446
	err = memcg_update_all_caches(size);
2447 2448
	if (!err)
		err = memcg_update_all_list_lrus(size);
2449 2450 2451 2452 2453
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2454
	if (err) {
2455
		ida_simple_remove(&memcg_cache_ida, id);
2456 2457 2458 2459 2460 2461 2462
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2463
	ida_simple_remove(&memcg_cache_ida, id);
2464 2465
}

2466
struct memcg_kmem_cache_create_work {
2467 2468 2469 2470 2471
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2472
static void memcg_kmem_cache_create_func(struct work_struct *w)
2473
{
2474 2475
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2476 2477
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2478

2479
	memcg_create_kmem_cache(memcg, cachep);
2480

2481
	css_put(&memcg->css);
2482 2483 2484 2485 2486 2487
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2488 2489
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2490
{
2491
	struct memcg_kmem_cache_create_work *cw;
2492

2493
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2494
	if (!cw)
2495
		return;
2496 2497

	css_get(&memcg->css);
2498 2499 2500

	cw->memcg = memcg;
	cw->cachep = cachep;
2501
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2502

2503
	queue_work(memcg_kmem_cache_wq, &cw->work);
2504 2505
}

2506 2507
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2508 2509 2510 2511
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2512
	 * in __memcg_schedule_kmem_cache_create will recurse.
2513 2514 2515 2516 2517 2518 2519
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2520
	current->memcg_kmem_skip_account = 1;
2521
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2522
	current->memcg_kmem_skip_account = 0;
2523
}
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2536 2537 2538
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2539 2540 2541
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2542
 *
2543 2544 2545 2546
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2547
 */
2548
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2549 2550
{
	struct mem_cgroup *memcg;
2551
	struct kmem_cache *memcg_cachep;
2552
	int kmemcg_id;
2553

2554
	VM_BUG_ON(!is_root_cache(cachep));
2555

2556
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2557 2558
		return cachep;

2559
	if (current->memcg_kmem_skip_account)
2560 2561
		return cachep;

2562
	memcg = get_mem_cgroup_from_current();
2563
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2564
	if (kmemcg_id < 0)
2565
		goto out;
2566

2567
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2568 2569
	if (likely(memcg_cachep))
		return memcg_cachep;
2570 2571 2572 2573 2574 2575 2576 2577 2578

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2579 2580 2581
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2582
	 */
2583
	memcg_schedule_kmem_cache_create(memcg, cachep);
2584
out:
2585
	css_put(&memcg->css);
2586
	return cachep;
2587 2588
}

2589 2590 2591 2592 2593
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2594 2595
{
	if (!is_root_cache(cachep))
2596
		css_put(&cachep->memcg_params.memcg->css);
2597 2598
}

2599
/**
2600
 * memcg_kmem_charge_memcg: charge a kmem page
2601 2602 2603 2604 2605 2606 2607 2608 2609
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2610
{
2611 2612
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2613 2614
	int ret;

2615
	ret = try_charge(memcg, gfp, nr_pages);
2616
	if (ret)
2617
		return ret;
2618 2619 2620 2621 2622

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2623 2624
	}

2625
	page->mem_cgroup = memcg;
2626

2627
	return 0;
2628 2629
}

2630 2631 2632 2633 2634 2635 2636 2637 2638
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2639
{
2640
	struct mem_cgroup *memcg;
2641
	int ret = 0;
2642

2643 2644 2645
	if (memcg_kmem_bypass())
		return 0;

2646
	memcg = get_mem_cgroup_from_current();
2647
	if (!mem_cgroup_is_root(memcg)) {
2648
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2649 2650 2651
		if (!ret)
			__SetPageKmemcg(page);
	}
2652
	css_put(&memcg->css);
2653
	return ret;
2654
}
2655 2656 2657 2658 2659 2660
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2661
{
2662
	struct mem_cgroup *memcg = page->mem_cgroup;
2663
	unsigned int nr_pages = 1 << order;
2664 2665 2666 2667

	if (!memcg)
		return;

2668
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2669

2670 2671 2672
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2673
	page_counter_uncharge(&memcg->memory, nr_pages);
2674
	if (do_memsw_account())
2675
		page_counter_uncharge(&memcg->memsw, nr_pages);
2676

2677
	page->mem_cgroup = NULL;
2678 2679 2680 2681 2682

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2683
	css_put_many(&memcg->css, nr_pages);
2684
}
2685
#endif /* CONFIG_MEMCG_KMEM */
2686

2687 2688 2689 2690
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2691
 * zone_lru_lock and migration entries setup in all page mappings.
2692
 */
2693
void mem_cgroup_split_huge_fixup(struct page *head)
2694
{
2695
	int i;
2696

2697 2698
	if (mem_cgroup_disabled())
		return;
2699

2700
	for (i = 1; i < HPAGE_PMD_NR; i++)
2701
		head[i].mem_cgroup = head->mem_cgroup;
2702

2703
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2704
}
2705
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2706

A
Andrew Morton 已提交
2707
#ifdef CONFIG_MEMCG_SWAP
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2719
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2720 2721 2722
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2723
				struct mem_cgroup *from, struct mem_cgroup *to)
2724 2725 2726
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2727 2728
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2729 2730

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2731 2732
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2733 2734 2735 2736 2737 2738
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2739
				struct mem_cgroup *from, struct mem_cgroup *to)
2740 2741 2742
{
	return -EINVAL;
}
2743
#endif
K
KAMEZAWA Hiroyuki 已提交
2744

2745
static DEFINE_MUTEX(memcg_max_mutex);
2746

2747 2748
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2749
{
2750
	bool enlarge = false;
2751
	bool drained = false;
2752
	int ret;
2753 2754
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2755

2756
	do {
2757 2758 2759 2760
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2761

2762
		mutex_lock(&memcg_max_mutex);
2763 2764
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2765
		 * break our basic invariant rule memory.max <= memsw.max.
2766
		 */
2767 2768
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2769
		if (!limits_invariant) {
2770
			mutex_unlock(&memcg_max_mutex);
2771 2772 2773
			ret = -EINVAL;
			break;
		}
2774
		if (max > counter->max)
2775
			enlarge = true;
2776 2777
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2778 2779 2780 2781

		if (!ret)
			break;

2782 2783 2784 2785 2786 2787
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2788 2789 2790 2791 2792 2793
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2794

2795 2796
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2797

2798 2799 2800
	return ret;
}

2801
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2802 2803 2804 2805
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2806
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2807 2808
	unsigned long reclaimed;
	int loop = 0;
2809
	struct mem_cgroup_tree_per_node *mctz;
2810
	unsigned long excess;
2811 2812 2813 2814 2815
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2816
	mctz = soft_limit_tree_node(pgdat->node_id);
2817 2818 2819 2820 2821 2822

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2823
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2824 2825
		return 0;

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2840
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2841 2842 2843
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2844
		spin_lock_irq(&mctz->lock);
2845
		__mem_cgroup_remove_exceeded(mz, mctz);
2846 2847 2848 2849 2850 2851

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2852 2853 2854
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2855
		excess = soft_limit_excess(mz->memcg);
2856 2857 2858 2859 2860 2861 2862 2863 2864
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2865
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2866
		spin_unlock_irq(&mctz->lock);
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2884 2885 2886 2887 2888 2889
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2890 2891
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2892 2893 2894 2895 2896 2897
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2898 2899
}

2900
/*
2901
 * Reclaims as many pages from the given memcg as possible.
2902 2903 2904 2905 2906 2907 2908
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2909 2910
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2911 2912 2913

	drain_all_stock(memcg);

2914
	/* try to free all pages in this cgroup */
2915
	while (nr_retries && page_counter_read(&memcg->memory)) {
2916
		int progress;
2917

2918 2919 2920
		if (signal_pending(current))
			return -EINTR;

2921 2922
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2923
		if (!progress) {
2924
			nr_retries--;
2925
			/* maybe some writeback is necessary */
2926
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2927
		}
2928 2929

	}
2930 2931

	return 0;
2932 2933
}

2934 2935 2936
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2937
{
2938
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2939

2940 2941
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2942
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2943 2944
}

2945 2946
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2947
{
2948
	return mem_cgroup_from_css(css)->use_hierarchy;
2949 2950
}

2951 2952
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2953 2954
{
	int retval = 0;
2955
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2956
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2957

2958
	if (memcg->use_hierarchy == val)
2959
		return 0;
2960

2961
	/*
2962
	 * If parent's use_hierarchy is set, we can't make any modifications
2963 2964 2965 2966 2967 2968
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2969
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2970
				(val == 1 || val == 0)) {
2971
		if (!memcg_has_children(memcg))
2972
			memcg->use_hierarchy = val;
2973 2974 2975 2976
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2977

2978 2979 2980
	return retval;
}

2981 2982 2983 2984 2985 2986 2987 2988 2989
struct accumulated_stats {
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[NR_VM_EVENT_ITEMS];
	unsigned long lru_pages[NR_LRU_LISTS];
	const unsigned int *stats_array;
	const unsigned int *events_array;
	int stats_size;
	int events_size;
};
2990

2991 2992
static void accumulate_memcg_tree(struct mem_cgroup *memcg,
				  struct accumulated_stats *acc)
2993
{
2994
	struct mem_cgroup *mi;
2995
	int i;
2996

2997 2998 2999 3000
	for_each_mem_cgroup_tree(mi, memcg) {
		for (i = 0; i < acc->stats_size; i++)
			acc->stat[i] += memcg_page_state(mi,
				acc->stats_array ? acc->stats_array[i] : i);
3001

3002 3003 3004 3005 3006 3007 3008
		for (i = 0; i < acc->events_size; i++)
			acc->events[i] += memcg_sum_events(mi,
				acc->events_array ? acc->events_array[i] : i);

		for (i = 0; i < NR_LRU_LISTS; i++)
			acc->lru_pages[i] +=
				mem_cgroup_nr_lru_pages(mi, BIT(i));
3009
	}
3010 3011
}

3012
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3013
{
3014
	unsigned long val = 0;
3015

3016
	if (mem_cgroup_is_root(memcg)) {
3017 3018 3019
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
3020 3021
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
3022
			if (swap)
3023
				val += memcg_page_state(iter, MEMCG_SWAP);
3024
		}
3025
	} else {
3026
		if (!swap)
3027
			val = page_counter_read(&memcg->memory);
3028
		else
3029
			val = page_counter_read(&memcg->memsw);
3030
	}
3031
	return val;
3032 3033
}

3034 3035 3036 3037 3038 3039 3040
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3041

3042
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3043
			       struct cftype *cft)
B
Balbir Singh 已提交
3044
{
3045
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3046
	struct page_counter *counter;
3047

3048
	switch (MEMFILE_TYPE(cft->private)) {
3049
	case _MEM:
3050 3051
		counter = &memcg->memory;
		break;
3052
	case _MEMSWAP:
3053 3054
		counter = &memcg->memsw;
		break;
3055
	case _KMEM:
3056
		counter = &memcg->kmem;
3057
		break;
V
Vladimir Davydov 已提交
3058
	case _TCP:
3059
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3060
		break;
3061 3062 3063
	default:
		BUG();
	}
3064 3065 3066 3067

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3068
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3069
		if (counter == &memcg->memsw)
3070
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3071 3072
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3073
		return (u64)counter->max * PAGE_SIZE;
3074 3075 3076 3077 3078 3079 3080 3081 3082
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3083
}
3084

3085
#ifdef CONFIG_MEMCG_KMEM
3086
static int memcg_online_kmem(struct mem_cgroup *memcg)
3087 3088 3089
{
	int memcg_id;

3090 3091 3092
	if (cgroup_memory_nokmem)
		return 0;

3093
	BUG_ON(memcg->kmemcg_id >= 0);
3094
	BUG_ON(memcg->kmem_state);
3095

3096
	memcg_id = memcg_alloc_cache_id();
3097 3098
	if (memcg_id < 0)
		return memcg_id;
3099

3100
	static_branch_inc(&memcg_kmem_enabled_key);
3101
	/*
3102
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3103
	 * kmemcg_id. Setting the id after enabling static branching will
3104 3105 3106
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3107
	memcg->kmemcg_id = memcg_id;
3108
	memcg->kmem_state = KMEM_ONLINE;
3109
	INIT_LIST_HEAD(&memcg->kmem_caches);
3110 3111

	return 0;
3112 3113
}

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3147
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3148 3149 3150 3151 3152 3153 3154
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3155 3156
	rcu_read_unlock();

3157
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3158 3159 3160 3161 3162 3163

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3164 3165 3166 3167
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3168 3169 3170 3171 3172 3173
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
3174
#else
3175
static int memcg_online_kmem(struct mem_cgroup *memcg)
3176 3177 3178 3179 3180 3181 3182 3183 3184
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3185
#endif /* CONFIG_MEMCG_KMEM */
3186

3187 3188
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3189
{
3190
	int ret;
3191

3192 3193 3194
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3195
	return ret;
3196
}
3197

3198
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3199 3200 3201
{
	int ret;

3202
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3203

3204
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3205 3206 3207
	if (ret)
		goto out;

3208
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3209 3210 3211
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3212 3213 3214
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3215 3216 3217 3218 3219 3220
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3221
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3222 3223 3224 3225
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3226
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3227 3228
	}
out:
3229
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3230 3231 3232
	return ret;
}

3233 3234 3235 3236
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3237 3238
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3239
{
3240
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3241
	unsigned long nr_pages;
3242 3243
	int ret;

3244
	buf = strstrip(buf);
3245
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3246 3247
	if (ret)
		return ret;
3248

3249
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3250
	case RES_LIMIT:
3251 3252 3253 3254
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3255 3256
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3257
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3258
			break;
3259
		case _MEMSWAP:
3260
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3261
			break;
3262
		case _KMEM:
3263
			ret = memcg_update_kmem_max(memcg, nr_pages);
3264
			break;
V
Vladimir Davydov 已提交
3265
		case _TCP:
3266
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3267
			break;
3268
		}
3269
		break;
3270 3271 3272
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3273 3274
		break;
	}
3275
	return ret ?: nbytes;
B
Balbir Singh 已提交
3276 3277
}

3278 3279
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3280
{
3281
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3282
	struct page_counter *counter;
3283

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3294
	case _TCP:
3295
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3296
		break;
3297 3298 3299
	default:
		BUG();
	}
3300

3301
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3302
	case RES_MAX_USAGE:
3303
		page_counter_reset_watermark(counter);
3304 3305
		break;
	case RES_FAILCNT:
3306
		counter->failcnt = 0;
3307
		break;
3308 3309
	default:
		BUG();
3310
	}
3311

3312
	return nbytes;
3313 3314
}

3315
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3316 3317
					struct cftype *cft)
{
3318
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3319 3320
}

3321
#ifdef CONFIG_MMU
3322
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3323 3324
					struct cftype *cft, u64 val)
{
3325
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3326

3327
	if (val & ~MOVE_MASK)
3328
		return -EINVAL;
3329

3330
	/*
3331 3332 3333 3334
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3335
	 */
3336
	memcg->move_charge_at_immigrate = val;
3337 3338
	return 0;
}
3339
#else
3340
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3341 3342 3343 3344 3345
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3346

3347
#ifdef CONFIG_NUMA
3348
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3349
{
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3362
	int nid;
3363
	unsigned long nr;
3364
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3365

3366 3367 3368 3369 3370 3371 3372 3373 3374
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3375 3376
	}

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3392 3393 3394 3395 3396 3397
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3398
/* Universal VM events cgroup1 shows, original sort order */
3399
static const unsigned int memcg1_events[] = {
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3413
static int memcg_stat_show(struct seq_file *m, void *v)
3414
{
3415
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3416
	unsigned long memory, memsw;
3417 3418
	struct mem_cgroup *mi;
	unsigned int i;
3419
	struct accumulated_stats acc;
3420

3421
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3422 3423
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3424 3425
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3426
			continue;
3427
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3428
			   memcg_page_state(memcg, memcg1_stats[i]) *
3429
			   PAGE_SIZE);
3430
	}
L
Lee Schermerhorn 已提交
3431

3432 3433
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3434
			   memcg_sum_events(memcg, memcg1_events[i]));
3435 3436 3437 3438 3439

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3440
	/* Hierarchical information */
3441 3442
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3443 3444
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3445
	}
3446 3447
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3448
	if (do_memsw_account())
3449 3450
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3451

3452 3453 3454 3455 3456 3457
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = ARRAY_SIZE(memcg1_stats);
	acc.stats_array = memcg1_stats;
	acc.events_size = ARRAY_SIZE(memcg1_events);
	acc.events_array = memcg1_events;
	accumulate_memcg_tree(memcg, &acc);
3458

3459
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3460
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3461
			continue;
3462 3463
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
			   (u64)acc.stat[i] * PAGE_SIZE);
3464 3465
	}

3466 3467 3468
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
			   (u64)acc.events[i]);
3469

3470 3471 3472
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3473

K
KOSAKI Motohiro 已提交
3474 3475
#ifdef CONFIG_DEBUG_VM
	{
3476 3477
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3478
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3479 3480 3481
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3482 3483 3484
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3485

3486 3487 3488 3489 3490
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3491 3492 3493 3494
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3495 3496 3497
	}
#endif

3498 3499 3500
	return 0;
}

3501 3502
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3503
{
3504
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3505

3506
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3507 3508
}

3509 3510
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3511
{
3512
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3513

3514
	if (val > 100)
K
KOSAKI Motohiro 已提交
3515 3516
		return -EINVAL;

3517
	if (css->parent)
3518 3519 3520
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3521

K
KOSAKI Motohiro 已提交
3522 3523 3524
	return 0;
}

3525 3526 3527
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3528
	unsigned long usage;
3529 3530 3531 3532
	int i;

	rcu_read_lock();
	if (!swap)
3533
		t = rcu_dereference(memcg->thresholds.primary);
3534
	else
3535
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3536 3537 3538 3539

	if (!t)
		goto unlock;

3540
	usage = mem_cgroup_usage(memcg, swap);
3541 3542

	/*
3543
	 * current_threshold points to threshold just below or equal to usage.
3544 3545 3546
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3547
	i = t->current_threshold;
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3571
	t->current_threshold = i - 1;
3572 3573 3574 3575 3576 3577
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3578 3579
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3580
		if (do_memsw_account())
3581 3582 3583 3584
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3585 3586 3587 3588 3589 3590 3591
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3592 3593 3594 3595 3596 3597 3598
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3599 3600
}

3601
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3602 3603 3604
{
	struct mem_cgroup_eventfd_list *ev;

3605 3606
	spin_lock(&memcg_oom_lock);

3607
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3608
		eventfd_signal(ev->eventfd, 1);
3609 3610

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3611 3612 3613
	return 0;
}

3614
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3615
{
K
KAMEZAWA Hiroyuki 已提交
3616 3617
	struct mem_cgroup *iter;

3618
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3619
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3620 3621
}

3622
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3623
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3624
{
3625 3626
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3627 3628
	unsigned long threshold;
	unsigned long usage;
3629
	int i, size, ret;
3630

3631
	ret = page_counter_memparse(args, "-1", &threshold);
3632 3633 3634 3635
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3636

3637
	if (type == _MEM) {
3638
		thresholds = &memcg->thresholds;
3639
		usage = mem_cgroup_usage(memcg, false);
3640
	} else if (type == _MEMSWAP) {
3641
		thresholds = &memcg->memsw_thresholds;
3642
		usage = mem_cgroup_usage(memcg, true);
3643
	} else
3644 3645 3646
		BUG();

	/* Check if a threshold crossed before adding a new one */
3647
	if (thresholds->primary)
3648 3649
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3650
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3651 3652

	/* Allocate memory for new array of thresholds */
3653
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3654
			GFP_KERNEL);
3655
	if (!new) {
3656 3657 3658
		ret = -ENOMEM;
		goto unlock;
	}
3659
	new->size = size;
3660 3661

	/* Copy thresholds (if any) to new array */
3662 3663
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3664
				sizeof(struct mem_cgroup_threshold));
3665 3666
	}

3667
	/* Add new threshold */
3668 3669
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3670 3671

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3672
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3673 3674 3675
			compare_thresholds, NULL);

	/* Find current threshold */
3676
	new->current_threshold = -1;
3677
	for (i = 0; i < size; i++) {
3678
		if (new->entries[i].threshold <= usage) {
3679
			/*
3680 3681
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3682 3683
			 * it here.
			 */
3684
			++new->current_threshold;
3685 3686
		} else
			break;
3687 3688
	}

3689 3690 3691 3692 3693
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3694

3695
	/* To be sure that nobody uses thresholds */
3696 3697 3698 3699 3700 3701 3702 3703
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3704
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3705 3706
	struct eventfd_ctx *eventfd, const char *args)
{
3707
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3708 3709
}

3710
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3711 3712
	struct eventfd_ctx *eventfd, const char *args)
{
3713
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3714 3715
}

3716
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3717
	struct eventfd_ctx *eventfd, enum res_type type)
3718
{
3719 3720
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3721
	unsigned long usage;
3722
	int i, j, size;
3723 3724

	mutex_lock(&memcg->thresholds_lock);
3725 3726

	if (type == _MEM) {
3727
		thresholds = &memcg->thresholds;
3728
		usage = mem_cgroup_usage(memcg, false);
3729
	} else if (type == _MEMSWAP) {
3730
		thresholds = &memcg->memsw_thresholds;
3731
		usage = mem_cgroup_usage(memcg, true);
3732
	} else
3733 3734
		BUG();

3735 3736 3737
	if (!thresholds->primary)
		goto unlock;

3738 3739 3740 3741
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3742 3743 3744
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3745 3746 3747
			size++;
	}

3748
	new = thresholds->spare;
3749

3750 3751
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3752 3753
		kfree(new);
		new = NULL;
3754
		goto swap_buffers;
3755 3756
	}

3757
	new->size = size;
3758 3759

	/* Copy thresholds and find current threshold */
3760 3761 3762
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3763 3764
			continue;

3765
		new->entries[j] = thresholds->primary->entries[i];
3766
		if (new->entries[j].threshold <= usage) {
3767
			/*
3768
			 * new->current_threshold will not be used
3769 3770 3771
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3772
			++new->current_threshold;
3773 3774 3775 3776
		}
		j++;
	}

3777
swap_buffers:
3778 3779
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3780

3781
	rcu_assign_pointer(thresholds->primary, new);
3782

3783
	/* To be sure that nobody uses thresholds */
3784
	synchronize_rcu();
3785 3786 3787 3788 3789 3790

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3791
unlock:
3792 3793
	mutex_unlock(&memcg->thresholds_lock);
}
3794

3795
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3796 3797
	struct eventfd_ctx *eventfd)
{
3798
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3799 3800
}

3801
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3802 3803
	struct eventfd_ctx *eventfd)
{
3804
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3805 3806
}

3807
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3808
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3809 3810 3811 3812 3813 3814 3815
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3816
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3817 3818 3819 3820 3821

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3822
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3823
		eventfd_signal(eventfd, 1);
3824
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3825 3826 3827 3828

	return 0;
}

3829
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3830
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3831 3832 3833
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3834
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3835

3836
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3837 3838 3839 3840 3841 3842
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3843
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3844 3845
}

3846
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3847
{
3848
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3849

3850
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3851
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3852 3853
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3854 3855 3856
	return 0;
}

3857
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3858 3859
	struct cftype *cft, u64 val)
{
3860
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3861 3862

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3863
	if (!css->parent || !((val == 0) || (val == 1)))
3864 3865
		return -EINVAL;

3866
	memcg->oom_kill_disable = val;
3867
	if (!val)
3868
		memcg_oom_recover(memcg);
3869

3870 3871 3872
	return 0;
}

3873 3874
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3885 3886 3887 3888 3889
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
	long x = atomic_long_read(&memcg->stat[idx]);
	int cpu;

	for_each_online_cpu(cpu)
		x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx];
	if (x < 0)
		x = 0;
	return x;
}

3916 3917 3918
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3919 3920
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3921 3922 3923
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3924 3925 3926
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3927
 *
3928 3929 3930 3931 3932
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3933
 */
3934 3935 3936
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3937 3938 3939 3940
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3941
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
3942 3943

	/* this should eventually include NR_UNSTABLE_NFS */
3944
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
3945 3946 3947
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3948 3949

	while ((parent = parent_mem_cgroup(memcg))) {
3950
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3951 3952
		unsigned long used = page_counter_read(&memcg->memory);

3953
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3954 3955 3956 3957
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3969 3970 3971 3972
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3973 3974
#endif	/* CONFIG_CGROUP_WRITEBACK */

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3988 3989 3990 3991 3992
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3993
static void memcg_event_remove(struct work_struct *work)
3994
{
3995 3996
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3997
	struct mem_cgroup *memcg = event->memcg;
3998 3999 4000

	remove_wait_queue(event->wqh, &event->wait);

4001
	event->unregister_event(memcg, event->eventfd);
4002 4003 4004 4005 4006 4007

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4008
	css_put(&memcg->css);
4009 4010 4011
}

/*
4012
 * Gets called on EPOLLHUP on eventfd when user closes it.
4013 4014 4015
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4016
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4017
			    int sync, void *key)
4018
{
4019 4020
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4021
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4022
	__poll_t flags = key_to_poll(key);
4023

4024
	if (flags & EPOLLHUP) {
4025 4026 4027 4028 4029 4030 4031 4032 4033
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4034
		spin_lock(&memcg->event_list_lock);
4035 4036 4037 4038 4039 4040 4041 4042
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4043
		spin_unlock(&memcg->event_list_lock);
4044 4045 4046 4047 4048
	}

	return 0;
}

4049
static void memcg_event_ptable_queue_proc(struct file *file,
4050 4051
		wait_queue_head_t *wqh, poll_table *pt)
{
4052 4053
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4054 4055 4056 4057 4058 4059

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4060 4061
 * DO NOT USE IN NEW FILES.
 *
4062 4063 4064 4065 4066
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4067 4068
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4069
{
4070
	struct cgroup_subsys_state *css = of_css(of);
4071
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4072
	struct mem_cgroup_event *event;
4073 4074 4075 4076
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4077
	const char *name;
4078 4079 4080
	char *endp;
	int ret;

4081 4082 4083
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4084 4085
	if (*endp != ' ')
		return -EINVAL;
4086
	buf = endp + 1;
4087

4088
	cfd = simple_strtoul(buf, &endp, 10);
4089 4090
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4091
	buf = endp + 1;
4092 4093 4094 4095 4096

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4097
	event->memcg = memcg;
4098
	INIT_LIST_HEAD(&event->list);
4099 4100 4101
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4127 4128 4129 4130 4131
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4132 4133
	 *
	 * DO NOT ADD NEW FILES.
4134
	 */
A
Al Viro 已提交
4135
	name = cfile.file->f_path.dentry->d_name.name;
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4147 4148
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4149 4150 4151 4152 4153
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4154
	/*
4155 4156 4157
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4158
	 */
A
Al Viro 已提交
4159
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4160
					       &memory_cgrp_subsys);
4161
	ret = -EINVAL;
4162
	if (IS_ERR(cfile_css))
4163
		goto out_put_cfile;
4164 4165
	if (cfile_css != css) {
		css_put(cfile_css);
4166
		goto out_put_cfile;
4167
	}
4168

4169
	ret = event->register_event(memcg, event->eventfd, buf);
4170 4171 4172
	if (ret)
		goto out_put_css;

4173
	vfs_poll(efile.file, &event->pt);
4174

4175 4176 4177
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4178 4179 4180 4181

	fdput(cfile);
	fdput(efile);

4182
	return nbytes;
4183 4184

out_put_css:
4185
	css_put(css);
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4198
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4199
	{
4200
		.name = "usage_in_bytes",
4201
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4202
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4203
	},
4204 4205
	{
		.name = "max_usage_in_bytes",
4206
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4207
		.write = mem_cgroup_reset,
4208
		.read_u64 = mem_cgroup_read_u64,
4209
	},
B
Balbir Singh 已提交
4210
	{
4211
		.name = "limit_in_bytes",
4212
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4213
		.write = mem_cgroup_write,
4214
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4215
	},
4216 4217 4218
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4219
		.write = mem_cgroup_write,
4220
		.read_u64 = mem_cgroup_read_u64,
4221
	},
B
Balbir Singh 已提交
4222 4223
	{
		.name = "failcnt",
4224
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4225
		.write = mem_cgroup_reset,
4226
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4227
	},
4228 4229
	{
		.name = "stat",
4230
		.seq_show = memcg_stat_show,
4231
	},
4232 4233
	{
		.name = "force_empty",
4234
		.write = mem_cgroup_force_empty_write,
4235
	},
4236 4237 4238 4239 4240
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4241
	{
4242
		.name = "cgroup.event_control",		/* XXX: for compat */
4243
		.write = memcg_write_event_control,
4244
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4245
	},
K
KOSAKI Motohiro 已提交
4246 4247 4248 4249 4250
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4251 4252 4253 4254 4255
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4256 4257
	{
		.name = "oom_control",
4258
		.seq_show = mem_cgroup_oom_control_read,
4259
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4260 4261
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4262 4263 4264
	{
		.name = "pressure_level",
	},
4265 4266 4267
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4268
		.seq_show = memcg_numa_stat_show,
4269 4270
	},
#endif
4271 4272 4273
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4274
		.write = mem_cgroup_write,
4275
		.read_u64 = mem_cgroup_read_u64,
4276 4277 4278 4279
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4280
		.read_u64 = mem_cgroup_read_u64,
4281 4282 4283 4284
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4285
		.write = mem_cgroup_reset,
4286
		.read_u64 = mem_cgroup_read_u64,
4287 4288 4289 4290
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4291
		.write = mem_cgroup_reset,
4292
		.read_u64 = mem_cgroup_read_u64,
4293
	},
Y
Yang Shi 已提交
4294
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4295 4296
	{
		.name = "kmem.slabinfo",
4297 4298 4299
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4300
		.seq_show = memcg_slab_show,
4301 4302
	},
#endif
V
Vladimir Davydov 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4326
	{ },	/* terminate */
4327
};
4328

4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4355 4356 4357 4358 4359 4360 4361 4362
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4363
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4364
{
4365
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4366
	atomic_add(n, &memcg->id.ref);
4367 4368
}

4369
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4370
{
4371
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4372
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4373
		mem_cgroup_id_remove(memcg);
4374 4375 4376 4377 4378 4379

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4402
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4403 4404
{
	struct mem_cgroup_per_node *pn;
4405
	int tmp = node;
4406 4407 4408 4409 4410 4411 4412 4413
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4414 4415
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4416
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4417 4418
	if (!pn)
		return 1;
4419

4420 4421
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4422 4423 4424 4425
		kfree(pn);
		return 1;
	}

4426 4427 4428 4429 4430
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4431
	memcg->nodeinfo[node] = pn;
4432 4433 4434
	return 0;
}

4435
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4436
{
4437 4438
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4439 4440 4441
	if (!pn)
		return;

4442
	free_percpu(pn->lruvec_stat_cpu);
4443
	kfree(pn);
4444 4445
}

4446
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4447
{
4448
	int node;
4449

4450
	for_each_node(node)
4451
		free_mem_cgroup_per_node_info(memcg, node);
4452
	free_percpu(memcg->stat_cpu);
4453
	kfree(memcg);
4454
}
4455

4456 4457 4458 4459 4460 4461
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4462
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4463
{
4464
	struct mem_cgroup *memcg;
4465
	size_t size;
4466
	int node;
B
Balbir Singh 已提交
4467

4468 4469 4470 4471
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4472
	if (!memcg)
4473 4474
		return NULL;

4475 4476 4477 4478 4479 4480
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4481 4482
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4483
		goto fail;
4484

B
Bob Liu 已提交
4485
	for_each_node(node)
4486
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4487
			goto fail;
4488

4489 4490
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4491

4492
	INIT_WORK(&memcg->high_work, high_work_func);
4493 4494 4495 4496
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4497
	vmpressure_init(&memcg->vmpressure);
4498 4499
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4500
	memcg->socket_pressure = jiffies;
4501
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4502 4503
	memcg->kmemcg_id = -1;
#endif
4504 4505 4506
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4507
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4508 4509
	return memcg;
fail:
4510
	mem_cgroup_id_remove(memcg);
4511
	__mem_cgroup_free(memcg);
4512
	return NULL;
4513 4514
}

4515 4516
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4517
{
4518 4519 4520
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4521

4522 4523 4524
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4525

4526 4527 4528 4529 4530 4531 4532 4533
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4534
		page_counter_init(&memcg->memory, &parent->memory);
4535
		page_counter_init(&memcg->swap, &parent->swap);
4536 4537
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4538
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4539
	} else {
4540
		page_counter_init(&memcg->memory, NULL);
4541
		page_counter_init(&memcg->swap, NULL);
4542 4543
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4544
		page_counter_init(&memcg->tcpmem, NULL);
4545 4546 4547 4548 4549
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4550
		if (parent != root_mem_cgroup)
4551
			memory_cgrp_subsys.broken_hierarchy = true;
4552
	}
4553

4554 4555 4556 4557 4558 4559
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4560
	error = memcg_online_kmem(memcg);
4561 4562
	if (error)
		goto fail;
4563

4564
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4565
		static_branch_inc(&memcg_sockets_enabled_key);
4566

4567 4568
	return &memcg->css;
fail:
4569
	mem_cgroup_id_remove(memcg);
4570
	mem_cgroup_free(memcg);
4571
	return ERR_PTR(-ENOMEM);
4572 4573
}

4574
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4575
{
4576 4577
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4588
	/* Online state pins memcg ID, memcg ID pins CSS */
4589
	atomic_set(&memcg->id.ref, 1);
4590
	css_get(css);
4591
	return 0;
B
Balbir Singh 已提交
4592 4593
}

4594
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4595
{
4596
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4597
	struct mem_cgroup_event *event, *tmp;
4598 4599 4600 4601 4602 4603

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4604 4605
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4606 4607 4608
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4609
	spin_unlock(&memcg->event_list_lock);
4610

R
Roman Gushchin 已提交
4611
	page_counter_set_min(&memcg->memory, 0);
4612
	page_counter_set_low(&memcg->memory, 0);
4613

4614
	memcg_offline_kmem(memcg);
4615
	wb_memcg_offline(memcg);
4616 4617

	mem_cgroup_id_put(memcg);
4618 4619
}

4620 4621 4622 4623 4624 4625 4626
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4627
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4628
{
4629
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4630

4631
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4632
		static_branch_dec(&memcg_sockets_enabled_key);
4633

4634
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4635
		static_branch_dec(&memcg_sockets_enabled_key);
4636

4637 4638 4639
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4640
	memcg_free_shrinker_maps(memcg);
4641
	memcg_free_kmem(memcg);
4642
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4643 4644
}

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4662 4663 4664 4665 4666
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4667
	page_counter_set_min(&memcg->memory, 0);
4668
	page_counter_set_low(&memcg->memory, 0);
4669
	memcg->high = PAGE_COUNTER_MAX;
4670
	memcg->soft_limit = PAGE_COUNTER_MAX;
4671
	memcg_wb_domain_size_changed(memcg);
4672 4673
}

4674
#ifdef CONFIG_MMU
4675
/* Handlers for move charge at task migration. */
4676
static int mem_cgroup_do_precharge(unsigned long count)
4677
{
4678
	int ret;
4679

4680 4681
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4682
	if (!ret) {
4683 4684 4685
		mc.precharge += count;
		return ret;
	}
4686

4687
	/* Try charges one by one with reclaim, but do not retry */
4688
	while (count--) {
4689
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4690 4691
		if (ret)
			return ret;
4692
		mc.precharge++;
4693
		cond_resched();
4694
	}
4695
	return 0;
4696 4697 4698 4699
}

union mc_target {
	struct page	*page;
4700
	swp_entry_t	ent;
4701 4702 4703
};

enum mc_target_type {
4704
	MC_TARGET_NONE = 0,
4705
	MC_TARGET_PAGE,
4706
	MC_TARGET_SWAP,
4707
	MC_TARGET_DEVICE,
4708 4709
};

D
Daisuke Nishimura 已提交
4710 4711
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4712
{
4713
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4714

D
Daisuke Nishimura 已提交
4715 4716 4717
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4718
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4719
			return NULL;
4720 4721 4722 4723
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4724 4725 4726 4727 4728 4729
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4730
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4731
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4732
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4733 4734 4735 4736
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4737
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4738
		return NULL;
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4756 4757 4758 4759
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4760
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4761
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4762 4763 4764 4765
		entry->val = ent.val;

	return page;
}
4766 4767
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4768
			pte_t ptent, swp_entry_t *entry)
4769 4770 4771 4772
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4773

4774 4775 4776 4777 4778 4779 4780 4781 4782
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4783
	if (!(mc.flags & MOVE_FILE))
4784 4785 4786
		return NULL;

	mapping = vma->vm_file->f_mapping;
4787
	pgoff = linear_page_index(vma, addr);
4788 4789

	/* page is moved even if it's not RSS of this task(page-faulted). */
4790 4791
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4792 4793 4794 4795
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4796
			if (do_memsw_account())
4797
				*entry = swp;
4798 4799
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4800 4801 4802 4803 4804
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4805
#endif
4806 4807 4808
	return page;
}

4809 4810 4811
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4812
 * @compound: charge the page as compound or small page
4813 4814 4815
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4816
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4817 4818 4819 4820 4821
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4822
				   bool compound,
4823 4824 4825 4826
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4827
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4828
	int ret;
4829
	bool anon;
4830 4831 4832

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4833
	VM_BUG_ON(compound && !PageTransHuge(page));
4834 4835

	/*
4836
	 * Prevent mem_cgroup_migrate() from looking at
4837
	 * page->mem_cgroup of its source page while we change it.
4838
	 */
4839
	ret = -EBUSY;
4840 4841 4842 4843 4844 4845 4846
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4847 4848
	anon = PageAnon(page);

4849 4850
	spin_lock_irqsave(&from->move_lock, flags);

4851
	if (!anon && page_mapped(page)) {
4852 4853
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4854 4855
	}

4856 4857
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4858
	 * mod_memcg_page_state will serialize updates to PageDirty.
4859 4860 4861 4862 4863 4864
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4865 4866
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4867 4868 4869
		}
	}

4870
	if (PageWriteback(page)) {
4871 4872
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4888
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4889
	memcg_check_events(to, page);
4890
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4891 4892 4893 4894 4895 4896 4897 4898
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4914 4915 4916 4917 4918
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4919 4920
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4921 4922 4923 4924
 *
 * Called with pte lock held.
 */

4925
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4926 4927 4928
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4929
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4930 4931 4932 4933 4934
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4935
		page = mc_handle_swap_pte(vma, ptent, &ent);
4936
	else if (pte_none(ptent))
4937
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4938 4939

	if (!page && !ent.val)
4940
		return ret;
4941 4942
	if (page) {
		/*
4943
		 * Do only loose check w/o serialization.
4944
		 * mem_cgroup_move_account() checks the page is valid or
4945
		 * not under LRU exclusion.
4946
		 */
4947
		if (page->mem_cgroup == mc.from) {
4948
			ret = MC_TARGET_PAGE;
4949 4950
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4951
				ret = MC_TARGET_DEVICE;
4952 4953 4954 4955 4956 4957
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4958 4959 4960 4961 4962
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4963
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4964 4965 4966
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4967 4968 4969 4970
	}
	return ret;
}

4971 4972
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4973 4974
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4975 4976 4977 4978 4979 4980 4981 4982
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4983 4984 4985 4986 4987
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4988
	page = pmd_page(pmd);
4989
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4990
	if (!(mc.flags & MOVE_ANON))
4991
		return ret;
4992
	if (page->mem_cgroup == mc.from) {
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5009 5010 5011 5012
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5013
	struct vm_area_struct *vma = walk->vma;
5014 5015 5016
	pte_t *pte;
	spinlock_t *ptl;

5017 5018
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5019 5020 5021 5022 5023
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
5024 5025
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5026
		spin_unlock(ptl);
5027
		return 0;
5028
	}
5029

5030 5031
	if (pmd_trans_unstable(pmd))
		return 0;
5032 5033
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5034
		if (get_mctgt_type(vma, addr, *pte, NULL))
5035 5036 5037 5038
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5039 5040 5041
	return 0;
}

5042 5043 5044 5045
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5046 5047 5048 5049
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5050
	down_read(&mm->mmap_sem);
5051 5052
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5053
	up_read(&mm->mmap_sem);
5054 5055 5056 5057 5058 5059 5060 5061 5062

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5063 5064 5065 5066 5067
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5068 5069
}

5070 5071
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5072
{
5073 5074 5075
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5076
	/* we must uncharge all the leftover precharges from mc.to */
5077
	if (mc.precharge) {
5078
		cancel_charge(mc.to, mc.precharge);
5079 5080 5081 5082 5083 5084 5085
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5086
		cancel_charge(mc.from, mc.moved_charge);
5087
		mc.moved_charge = 0;
5088
	}
5089 5090 5091
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5092
		if (!mem_cgroup_is_root(mc.from))
5093
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5094

5095 5096
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5097
		/*
5098 5099
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5100
		 */
5101
		if (!mem_cgroup_is_root(mc.to))
5102 5103
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5104 5105
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5106

5107 5108
		mc.moved_swap = 0;
	}
5109 5110 5111 5112 5113 5114 5115
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5116 5117
	struct mm_struct *mm = mc.mm;

5118 5119 5120 5121 5122 5123
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5124
	spin_lock(&mc.lock);
5125 5126
	mc.from = NULL;
	mc.to = NULL;
5127
	mc.mm = NULL;
5128
	spin_unlock(&mc.lock);
5129 5130

	mmput(mm);
5131 5132
}

5133
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5134
{
5135
	struct cgroup_subsys_state *css;
5136
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5137
	struct mem_cgroup *from;
5138
	struct task_struct *leader, *p;
5139
	struct mm_struct *mm;
5140
	unsigned long move_flags;
5141
	int ret = 0;
5142

5143 5144
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5145 5146
		return 0;

5147 5148 5149 5150 5151 5152 5153
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5154
	cgroup_taskset_for_each_leader(leader, css, tset) {
5155 5156
		WARN_ON_ONCE(p);
		p = leader;
5157
		memcg = mem_cgroup_from_css(css);
5158 5159 5160 5161
	}
	if (!p)
		return 0;

5162 5163 5164 5165 5166 5167 5168 5169 5170
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5187
		mc.mm = mm;
5188 5189 5190 5191 5192 5193 5194 5195 5196
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5197 5198
	} else {
		mmput(mm);
5199 5200 5201 5202
	}
	return ret;
}

5203
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5204
{
5205 5206
	if (mc.to)
		mem_cgroup_clear_mc();
5207 5208
}

5209 5210 5211
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5212
{
5213
	int ret = 0;
5214
	struct vm_area_struct *vma = walk->vma;
5215 5216
	pte_t *pte;
	spinlock_t *ptl;
5217 5218 5219
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5220

5221 5222
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5223
		if (mc.precharge < HPAGE_PMD_NR) {
5224
			spin_unlock(ptl);
5225 5226 5227 5228 5229 5230
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5231
				if (!mem_cgroup_move_account(page, true,
5232
							     mc.from, mc.to)) {
5233 5234 5235 5236 5237 5238
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5239 5240 5241 5242 5243 5244 5245 5246
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5247
		}
5248
		spin_unlock(ptl);
5249
		return 0;
5250 5251
	}

5252 5253
	if (pmd_trans_unstable(pmd))
		return 0;
5254 5255 5256 5257
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5258
		bool device = false;
5259
		swp_entry_t ent;
5260 5261 5262 5263

		if (!mc.precharge)
			break;

5264
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5265 5266 5267
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5268 5269
		case MC_TARGET_PAGE:
			page = target.page;
5270 5271 5272 5273 5274 5275 5276 5277
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5278
			if (!device && isolate_lru_page(page))
5279
				goto put;
5280 5281
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5282
				mc.precharge--;
5283 5284
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5285
			}
5286 5287
			if (!device)
				putback_lru_page(page);
5288
put:			/* get_mctgt_type() gets the page */
5289 5290
			put_page(page);
			break;
5291 5292
		case MC_TARGET_SWAP:
			ent = target.ent;
5293
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5294
				mc.precharge--;
5295 5296 5297
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5298
			break;
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5313
		ret = mem_cgroup_do_precharge(1);
5314 5315 5316 5317 5318 5319 5320
		if (!ret)
			goto retry;
	}

	return ret;
}

5321
static void mem_cgroup_move_charge(void)
5322
{
5323 5324
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5325
		.mm = mc.mm,
5326
	};
5327 5328

	lru_add_drain_all();
5329
	/*
5330 5331 5332
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5333 5334 5335
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5336
retry:
5337
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5349 5350 5351 5352
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5353 5354
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5355
	up_read(&mc.mm->mmap_sem);
5356
	atomic_dec(&mc.from->moving_account);
5357 5358
}

5359
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5360
{
5361 5362
	if (mc.to) {
		mem_cgroup_move_charge();
5363
		mem_cgroup_clear_mc();
5364
	}
B
Balbir Singh 已提交
5365
}
5366
#else	/* !CONFIG_MMU */
5367
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5368 5369 5370
{
	return 0;
}
5371
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5372 5373
{
}
5374
static void mem_cgroup_move_task(void)
5375 5376 5377
{
}
#endif
B
Balbir Singh 已提交
5378

5379 5380
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5381 5382
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5383
 */
5384
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5385 5386
{
	/*
5387
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5388 5389 5390
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5391
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5392 5393 5394
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5395 5396
}

5397 5398 5399
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5400 5401 5402
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5403 5404
}

R
Roman Gushchin 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
static int memory_min_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long min = READ_ONCE(memcg->memory.min);

	if (min == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);

	return 0;
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5435 5436 5437
static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5438
	unsigned long low = READ_ONCE(memcg->memory.low);
5439 5440

	if (low == PAGE_COUNTER_MAX)
5441
		seq_puts(m, "max\n");
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5456
	err = page_counter_memparse(buf, "max", &low);
5457 5458 5459
	if (err)
		return err;

5460
	page_counter_set_low(&memcg->memory, low);
5461 5462 5463 5464 5465 5466 5467

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5468
	unsigned long high = READ_ONCE(memcg->high);
5469 5470

	if (high == PAGE_COUNTER_MAX)
5471
		seq_puts(m, "max\n");
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5482
	unsigned long nr_pages;
5483 5484 5485 5486
	unsigned long high;
	int err;

	buf = strstrip(buf);
5487
	err = page_counter_memparse(buf, "max", &high);
5488 5489 5490 5491 5492
	if (err)
		return err;

	memcg->high = high;

5493 5494 5495 5496 5497
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5498
	memcg_wb_domain_size_changed(memcg);
5499 5500 5501 5502 5503 5504
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5505
	unsigned long max = READ_ONCE(memcg->memory.max);
5506 5507

	if (max == PAGE_COUNTER_MAX)
5508
		seq_puts(m, "max\n");
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5519 5520
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5521 5522 5523 5524
	unsigned long max;
	int err;

	buf = strstrip(buf);
5525
	err = page_counter_memparse(buf, "max", &max);
5526 5527 5528
	if (err)
		return err;

5529
	xchg(&memcg->memory.max, max);
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5555
		memcg_memory_event(memcg, MEMCG_OOM);
5556 5557 5558
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5559

5560
	memcg_wb_domain_size_changed(memcg);
5561 5562 5563 5564 5565 5566 5567
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5568 5569 5570 5571 5572 5573 5574 5575
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5576 5577
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5578 5579 5580 5581

	return 0;
}

5582 5583 5584
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5585
	struct accumulated_stats acc;
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5599 5600 5601 5602
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = MEMCG_NR_STAT;
	acc.events_size = NR_VM_EVENT_ITEMS;
	accumulate_memcg_tree(memcg, &acc);
5603

5604
	seq_printf(m, "anon %llu\n",
5605
		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5606
	seq_printf(m, "file %llu\n",
5607
		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5608
	seq_printf(m, "kernel_stack %llu\n",
5609
		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5610
	seq_printf(m, "slab %llu\n",
5611 5612
		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5613
	seq_printf(m, "sock %llu\n",
5614
		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5615

5616
	seq_printf(m, "shmem %llu\n",
5617
		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5618
	seq_printf(m, "file_mapped %llu\n",
5619
		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5620
	seq_printf(m, "file_dirty %llu\n",
5621
		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5622
	seq_printf(m, "file_writeback %llu\n",
5623
		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5624

5625 5626 5627
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5628

5629
	seq_printf(m, "slab_reclaimable %llu\n",
5630
		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5631
	seq_printf(m, "slab_unreclaimable %llu\n",
5632
		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5633

5634 5635
	/* Accumulated memory events */

5636 5637
	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5638

5639 5640 5641 5642 5643 5644 5645 5646 5647
	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
		   acc.events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
		   acc.events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5648

5649
	seq_printf(m, "workingset_refault %lu\n",
5650
		   acc.stat[WORKINGSET_REFAULT]);
5651
	seq_printf(m, "workingset_activate %lu\n",
5652
		   acc.stat[WORKINGSET_ACTIVATE]);
5653
	seq_printf(m, "workingset_nodereclaim %lu\n",
5654
		   acc.stat[WORKINGSET_NODERECLAIM]);
5655

5656 5657 5658
	return 0;
}

5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
static int memory_oom_group_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5690 5691 5692
static struct cftype memory_files[] = {
	{
		.name = "current",
5693
		.flags = CFTYPE_NOT_ON_ROOT,
5694 5695
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5696 5697 5698 5699 5700 5701
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5723
		.file_offset = offsetof(struct mem_cgroup, events_file),
5724 5725
		.seq_show = memory_events_show,
	},
5726 5727 5728 5729 5730
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5731 5732 5733 5734 5735 5736
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5737 5738 5739
	{ }	/* terminate */
};

5740
struct cgroup_subsys memory_cgrp_subsys = {
5741
	.css_alloc = mem_cgroup_css_alloc,
5742
	.css_online = mem_cgroup_css_online,
5743
	.css_offline = mem_cgroup_css_offline,
5744
	.css_released = mem_cgroup_css_released,
5745
	.css_free = mem_cgroup_css_free,
5746
	.css_reset = mem_cgroup_css_reset,
5747 5748
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5749
	.post_attach = mem_cgroup_move_task,
5750
	.bind = mem_cgroup_bind,
5751 5752
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5753
	.early_init = 0,
B
Balbir Singh 已提交
5754
};
5755

5756
/**
R
Roman Gushchin 已提交
5757
 * mem_cgroup_protected - check if memory consumption is in the normal range
5758
 * @root: the top ancestor of the sub-tree being checked
5759 5760
 * @memcg: the memory cgroup to check
 *
5761 5762
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5763
 *
R
Roman Gushchin 已提交
5764 5765 5766 5767 5768
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5769
 *
R
Roman Gushchin 已提交
5770
 * @root is exclusive; it is never protected when looked at directly
5771
 *
R
Roman Gushchin 已提交
5772 5773 5774
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5775
 *
5776 5777 5778 5779 5780 5781 5782
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5783
 *
5784 5785 5786
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5787
 *
5788 5789 5790
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
	       | 0, otherwise.
5791
 *
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5819 5820
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5821 5822 5823 5824
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5825
 */
R
Roman Gushchin 已提交
5826 5827
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5828
{
5829
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5830 5831 5832
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5833

5834
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5835
		return MEMCG_PROT_NONE;
5836

5837 5838 5839
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5840
		return MEMCG_PROT_NONE;
5841

5842
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5843 5844 5845 5846 5847
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5848

R
Roman Gushchin 已提交
5849
	parent = parent_mem_cgroup(memcg);
5850 5851 5852 5853
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5854 5855 5856
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5871 5872
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5873 5874
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5875

R
Roman Gushchin 已提交
5876 5877 5878
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5879

R
Roman Gushchin 已提交
5880 5881 5882 5883
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5884 5885

exit:
R
Roman Gushchin 已提交
5886
	memcg->memory.emin = emin;
5887
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5888 5889 5890 5891 5892 5893 5894

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5895 5896
}

5897 5898 5899 5900 5901 5902
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5903
 * @compound: charge the page as compound or small page
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5916 5917
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5918 5919
{
	struct mem_cgroup *memcg = NULL;
5920
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5934
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5935
		if (compound_head(page)->mem_cgroup)
5936
			goto out;
5937

5938
		if (do_swap_account) {
5939 5940 5941 5942 5943 5944 5945 5946 5947
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

5974 5975 5976 5977 5978
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5979
 * @compound: charge the page as compound or small page
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5992
			      bool lrucare, bool compound)
5993
{
5994
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6009 6010 6011
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6012
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6013 6014
	memcg_check_events(memcg, page);
	local_irq_enable();
6015

6016
	if (do_memsw_account() && PageSwapCache(page)) {
6017 6018 6019 6020 6021 6022
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6023
		mem_cgroup_uncharge_swap(entry, nr_pages);
6024 6025 6026 6027 6028 6029 6030
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6031
 * @compound: charge the page as compound or small page
6032 6033 6034
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6035 6036
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6037
{
6038
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6065
{
6066 6067 6068 6069 6070 6071
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6072 6073
	unsigned long flags;

6074 6075
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6076
		if (do_memsw_account())
6077 6078 6079 6080
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6081
	}
6082 6083

	local_irq_save(flags);
6084 6085 6086 6087 6088
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6089
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6090
	memcg_check_events(ug->memcg, ug->dummy_page);
6091
	local_irq_restore(flags);
6092

6093 6094 6095 6096 6097 6098 6099
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6100 6101
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6142 6143 6144 6145
}

static void uncharge_list(struct list_head *page_list)
{
6146
	struct uncharge_gather ug;
6147
	struct list_head *next;
6148 6149

	uncharge_gather_clear(&ug);
6150

6151 6152 6153 6154
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6155 6156
	next = page_list->next;
	do {
6157 6158
		struct page *page;

6159 6160 6161
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6162
		uncharge_page(page, &ug);
6163 6164
	} while (next != page_list);

6165 6166
	if (ug.memcg)
		uncharge_batch(&ug);
6167 6168
}

6169 6170 6171 6172 6173 6174 6175 6176 6177
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6178 6179
	struct uncharge_gather ug;

6180 6181 6182
	if (mem_cgroup_disabled())
		return;

6183
	/* Don't touch page->lru of any random page, pre-check: */
6184
	if (!page->mem_cgroup)
6185 6186
		return;

6187 6188 6189
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6190
}
6191

6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6203

6204 6205
	if (!list_empty(page_list))
		uncharge_list(page_list);
6206 6207 6208
}

/**
6209 6210 6211
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6212
 *
6213 6214
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6215 6216 6217
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6218
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6219
{
6220
	struct mem_cgroup *memcg;
6221 6222
	unsigned int nr_pages;
	bool compound;
6223
	unsigned long flags;
6224 6225 6226 6227

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6228 6229
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6230 6231 6232 6233 6234

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6235
	if (newpage->mem_cgroup)
6236 6237
		return;

6238
	/* Swapcache readahead pages can get replaced before being charged */
6239
	memcg = oldpage->mem_cgroup;
6240
	if (!memcg)
6241 6242
		return;

6243 6244 6245 6246 6247 6248 6249 6250
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6251

6252
	commit_charge(newpage, memcg, false);
6253

6254
	local_irq_save(flags);
6255 6256
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6257
	local_irq_restore(flags);
6258 6259
}

6260
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6261 6262
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6263
void mem_cgroup_sk_alloc(struct sock *sk)
6264 6265 6266
{
	struct mem_cgroup *memcg;

6267 6268 6269
	if (!mem_cgroup_sockets_enabled)
		return;

6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6284 6285
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6286 6287
	if (memcg == root_mem_cgroup)
		goto out;
6288
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6289 6290
		goto out;
	if (css_tryget_online(&memcg->css))
6291
		sk->sk_memcg = memcg;
6292
out:
6293 6294 6295
	rcu_read_unlock();
}

6296
void mem_cgroup_sk_free(struct sock *sk)
6297
{
6298 6299
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6312
	gfp_t gfp_mask = GFP_KERNEL;
6313

6314
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6315
		struct page_counter *fail;
6316

6317 6318
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6319 6320
			return true;
		}
6321 6322
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6323
		return false;
6324
	}
6325

6326 6327 6328 6329
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6330
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6331

6332 6333 6334 6335
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6336 6337 6338 6339 6340
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6341 6342
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6343 6344 6345
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6346
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6347
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6348 6349
		return;
	}
6350

6351
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6352

6353
	refill_stock(memcg, nr_pages);
6354 6355
}

6356 6357 6358 6359 6360 6361 6362 6363 6364
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6365 6366
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6367 6368 6369 6370
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6371

6372
/*
6373 6374
 * subsys_initcall() for memory controller.
 *
6375 6376 6377 6378
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6379 6380 6381
 */
static int __init mem_cgroup_init(void)
{
6382 6383
	int cpu, node;

6384
#ifdef CONFIG_MEMCG_KMEM
6385 6386
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6387 6388 6389
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6390
	 */
6391 6392
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6393 6394
#endif

6395 6396
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6408
		rtpn->rb_root = RB_ROOT;
6409
		rtpn->rb_rightmost = NULL;
6410
		spin_lock_init(&rtpn->lock);
6411 6412 6413
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6414 6415 6416
	return 0;
}
subsys_initcall(mem_cgroup_init);
6417 6418

#ifdef CONFIG_MEMCG_SWAP
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6437 6438 6439 6440 6441 6442 6443 6444 6445
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6446
	struct mem_cgroup *memcg, *swap_memcg;
6447
	unsigned int nr_entries;
6448 6449 6450 6451 6452
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6453
	if (!do_memsw_account())
6454 6455 6456 6457 6458 6459 6460 6461
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6462 6463 6464 6465 6466 6467
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6468 6469 6470 6471 6472 6473
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6474
	VM_BUG_ON_PAGE(oldid, page);
6475
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6476 6477 6478 6479

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6480
		page_counter_uncharge(&memcg->memory, nr_entries);
6481

6482 6483
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6484 6485
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6486 6487
	}

6488 6489
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6490
	 * i_pages lock which is taken with interrupts-off. It is
6491
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6492
	 * only synchronisation we have for updating the per-CPU variables.
6493 6494
	 */
	VM_BUG_ON(!irqs_disabled());
6495 6496
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6497
	memcg_check_events(memcg, page);
6498 6499

	if (!mem_cgroup_is_root(memcg))
6500
		css_put_many(&memcg->css, nr_entries);
6501 6502
}

6503 6504
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6505 6506 6507
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6508
 * Try to charge @page's memcg for the swap space at @entry.
6509 6510 6511 6512 6513
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6514
	unsigned int nr_pages = hpage_nr_pages(page);
6515
	struct page_counter *counter;
6516
	struct mem_cgroup *memcg;
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6528 6529
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6530
		return 0;
6531
	}
6532

6533 6534
	memcg = mem_cgroup_id_get_online(memcg);

6535
	if (!mem_cgroup_is_root(memcg) &&
6536
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6537 6538
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6539
		mem_cgroup_id_put(memcg);
6540
		return -ENOMEM;
6541
	}
6542

6543 6544 6545 6546
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6547
	VM_BUG_ON_PAGE(oldid, page);
6548
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6549 6550 6551 6552

	return 0;
}

6553
/**
6554
 * mem_cgroup_uncharge_swap - uncharge swap space
6555
 * @entry: swap entry to uncharge
6556
 * @nr_pages: the amount of swap space to uncharge
6557
 */
6558
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6559 6560 6561 6562
{
	struct mem_cgroup *memcg;
	unsigned short id;

6563
	if (!do_swap_account)
6564 6565
		return;

6566
	id = swap_cgroup_record(entry, 0, nr_pages);
6567
	rcu_read_lock();
6568
	memcg = mem_cgroup_from_id(id);
6569
	if (memcg) {
6570 6571
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6572
				page_counter_uncharge(&memcg->swap, nr_pages);
6573
			else
6574
				page_counter_uncharge(&memcg->memsw, nr_pages);
6575
		}
6576
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6577
		mem_cgroup_id_put_many(memcg, nr_pages);
6578 6579 6580 6581
	}
	rcu_read_unlock();
}

6582 6583 6584 6585 6586 6587 6588 6589
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6590
				      READ_ONCE(memcg->swap.max) -
6591 6592 6593 6594
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6611
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6612 6613 6614 6615 6616
			return true;

	return false;
}

6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6645
	unsigned long max = READ_ONCE(memcg->swap.max);
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6667
	xchg(&memcg->swap.max, max);
6668 6669 6670 6671

	return nbytes;
}

6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
static int swap_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6696 6697 6698 6699 6700 6701
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6702 6703 6704
	{ }	/* terminate */
};

6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6736 6737
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6738 6739 6740 6741 6742 6743 6744 6745
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */