timekeeping.c 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
/**
122
 * tk_setup_internals - Set up internals to use clocksource clock.
123
 *
124
 * @tk:		The target timekeeper to setup.
125 126 127 128 129 130 131
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
132
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 134
{
	cycle_t interval;
135
	u64 tmp, ntpinterval;
136
	struct clocksource *old_clock;
137

138 139 140 141 142
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
143 144 145 146

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
147
	ntpinterval = tmp;
148 149
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
150 151 152 153
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
154
	tk->cycle_interval = interval;
155 156

	/* Go back from cycles -> shifted ns */
157 158 159
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
160
		((u64) interval * clock->mult) >> clock->shift;
161

162 163 164 165
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
166
			tk->tkr.xtime_nsec >>= -shift_change;
167
		else
168
			tk->tkr.xtime_nsec <<= shift_change;
169
	}
170
	tk->tkr.shift = clock->shift;
171

172 173
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175 176 177 178 179 180

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
181
	tk->tkr.mult = clock->mult;
182
	tk->ntp_err_mult = 0;
183
}
184

185
/* Timekeeper helper functions. */
186 187

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 189
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190
#else
191
static inline u32 arch_gettimeoffset(void) { return 0; }
192 193
#endif

194
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195
{
196
	cycle_t cycle_now, delta;
197
	s64 nsec;
198 199

	/* read clocksource: */
200
	cycle_now = tkr->read(tkr->clock);
201 202

	/* calculate the delta since the last update_wall_time: */
203
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204

205 206
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
207

208
	/* If arch requires, add in get_arch_timeoffset() */
209
	return nsec + arch_gettimeoffset();
210 211
}

212
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213
{
214
	struct clocksource *clock = tk->tkr.clock;
215
	cycle_t cycle_now, delta;
216
	s64 nsec;
217 218

	/* read clocksource: */
219
	cycle_now = tk->tkr.read(clock);
220 221

	/* calculate the delta since the last update_wall_time: */
222
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223

224
	/* convert delta to nanoseconds. */
225
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226

227
	/* If arch requires, add in get_arch_timeoffset() */
228
	return nsec + arch_gettimeoffset();
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 * @tk:		The timekeeper from which we take the update
 * @tkf:	The fast timekeeper to update
 * @tbase:	The time base for the fast timekeeper (mono/raw)
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[0], tk);
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
 * update(tkf->base[1], tk);
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
static void update_fast_timekeeper(struct timekeeper *tk)
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
	memcpy(base, &tk->tkr, sizeof(*base));

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

337 338 339 340
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
341
	struct timespec xt, wm;
342

343
	xt = timespec64_to_timespec(tk_xtime(tk));
344 345
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
346
			    tk->tkr.cycle_last);
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
363 364 365
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
366
	tk->ntp_error += remainder << tk->ntp_error_shift;
367
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
368 369 370 371 372
}
#else
#define old_vsyscall_fixup(tk)
#endif

373 374
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

375
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
376
{
377
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
378 379 380 381 382 383 384
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
385
	struct timekeeper *tk = &tk_core.timekeeper;
386 387 388
	unsigned long flags;
	int ret;

389
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
390
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
391
	update_pvclock_gtod(tk, true);
392
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
393 394 395 396 397 398 399 400 401 402 403 404 405 406

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

407
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
408
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
409
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
410 411 412 413 414

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
	s64 nsec;

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec *= NSEC_PER_SEC;
	nsec += tk->wall_to_monotonic.tv_nsec;
432
	tk->tkr.base_mono = ns_to_ktime(nsec);
433 434 435

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
436 437
}

438
/* must hold timekeeper_lock */
439
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
440
{
441
	if (action & TK_CLEAR_NTP) {
442
		tk->ntp_error = 0;
443 444
		ntp_clear();
	}
445

446 447
	tk_update_ktime_data(tk);

448 449 450
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

451
	if (action & TK_MIRROR)
452 453
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
454 455

	update_fast_timekeeper(tk);
456 457
}

458
/**
459
 * timekeeping_forward_now - update clock to the current time
460
 *
461 462 463
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
464
 */
465
static void timekeeping_forward_now(struct timekeeper *tk)
466
{
467
	struct clocksource *clock = tk->tkr.clock;
468
	cycle_t cycle_now, delta;
469
	s64 nsec;
470

471 472 473
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
474

475
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
476

477
	/* If arch requires, add in get_arch_timeoffset() */
478
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
479

480
	tk_normalize_xtime(tk);
481

482
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
483
	timespec64_add_ns(&tk->raw_time, nsec);
484 485 486
}

/**
487
 * __getnstimeofday64 - Returns the time of day in a timespec64.
488 489
 * @ts:		pointer to the timespec to be set
 *
490 491
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
492
 */
493
int __getnstimeofday64(struct timespec64 *ts)
494
{
495
	struct timekeeper *tk = &tk_core.timekeeper;
496
	unsigned long seq;
497
	s64 nsecs = 0;
498 499

	do {
500
		seq = read_seqcount_begin(&tk_core.seq);
501

502
		ts->tv_sec = tk->xtime_sec;
503
		nsecs = timekeeping_get_ns(&tk->tkr);
504

505
	} while (read_seqcount_retry(&tk_core.seq, seq));
506

507
	ts->tv_nsec = 0;
508
	timespec64_add_ns(ts, nsecs);
509 510 511 512 513 514 515 516 517

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
518
EXPORT_SYMBOL(__getnstimeofday64);
519 520

/**
521
 * getnstimeofday64 - Returns the time of day in a timespec64.
522 523 524 525
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
526
void getnstimeofday64(struct timespec64 *ts)
527
{
528
	WARN_ON(__getnstimeofday64(ts));
529
}
530
EXPORT_SYMBOL(getnstimeofday64);
531

532 533
ktime_t ktime_get(void)
{
534
	struct timekeeper *tk = &tk_core.timekeeper;
535
	unsigned int seq;
536 537
	ktime_t base;
	s64 nsecs;
538 539 540 541

	WARN_ON(timekeeping_suspended);

	do {
542
		seq = read_seqcount_begin(&tk_core.seq);
543
		base = tk->tkr.base_mono;
544
		nsecs = timekeeping_get_ns(&tk->tkr);
545

546
	} while (read_seqcount_retry(&tk_core.seq, seq));
547

548
	return ktime_add_ns(base, nsecs);
549 550 551
}
EXPORT_SYMBOL_GPL(ktime_get);

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
569
		base = ktime_add(tk->tkr.base_mono, *offset);
570
		nsecs = timekeeping_get_ns(&tk->tkr);
571 572 573 574 575 576 577 578

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

620
/**
621
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
622 623 624 625 626 627
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
628
void ktime_get_ts64(struct timespec64 *ts)
629
{
630
	struct timekeeper *tk = &tk_core.timekeeper;
631
	struct timespec64 tomono;
632
	s64 nsec;
633 634 635 636 637
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
638
		seq = read_seqcount_begin(&tk_core.seq);
639
		ts->tv_sec = tk->xtime_sec;
640
		nsec = timekeeping_get_ns(&tk->tkr);
641
		tomono = tk->wall_to_monotonic;
642

643
	} while (read_seqcount_retry(&tk_core.seq, seq));
644

645 646 647
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
648
}
649
EXPORT_SYMBOL_GPL(ktime_get_ts64);
650

651 652 653 654 655 656 657 658 659 660 661 662 663
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
664
	struct timekeeper *tk = &tk_core.timekeeper;
665 666 667 668 669 670
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
671
		seq = read_seqcount_begin(&tk_core.seq);
672

673
		*ts_raw = timespec64_to_timespec(tk->raw_time);
674
		ts_real->tv_sec = tk->xtime_sec;
675
		ts_real->tv_nsec = 0;
676

677
		nsecs_raw = timekeeping_get_ns_raw(tk);
678
		nsecs_real = timekeeping_get_ns(&tk->tkr);
679

680
	} while (read_seqcount_retry(&tk_core.seq, seq));
681 682 683 684 685 686 687 688

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

689 690 691 692
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
693
 * NOTE: Users should be converted to using getnstimeofday()
694 695 696
 */
void do_gettimeofday(struct timeval *tv)
{
697
	struct timespec64 now;
698

699
	getnstimeofday64(&now);
700 701 702 703
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
704

705 706 707 708 709 710
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
711
int do_settimeofday(const struct timespec *tv)
712
{
713
	struct timekeeper *tk = &tk_core.timekeeper;
714
	struct timespec64 ts_delta, xt, tmp;
715
	unsigned long flags;
716

717
	if (!timespec_valid_strict(tv))
718 719
		return -EINVAL;

720
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
721
	write_seqcount_begin(&tk_core.seq);
722

723
	timekeeping_forward_now(tk);
724

725
	xt = tk_xtime(tk);
726 727 728
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

729
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
730

731 732
	tmp = timespec_to_timespec64(*tv);
	tk_set_xtime(tk, &tmp);
733

734
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
735

736
	write_seqcount_end(&tk_core.seq);
737
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
738 739 740 741 742 743 744 745

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

746 747 748 749 750 751 752 753
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
754
	struct timekeeper *tk = &tk_core.timekeeper;
755
	unsigned long flags;
756
	struct timespec64 ts64, tmp;
757
	int ret = 0;
758 759 760 761

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

762 763
	ts64 = timespec_to_timespec64(*ts);

764
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
765
	write_seqcount_begin(&tk_core.seq);
766

767
	timekeeping_forward_now(tk);
768

769
	/* Make sure the proposed value is valid */
770 771
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
772 773 774
		ret = -EINVAL;
		goto error;
	}
775

776 777
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
778

779
error: /* even if we error out, we forwarded the time, so call update */
780
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
781

782
	write_seqcount_end(&tk_core.seq);
783
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
784 785 786 787

	/* signal hrtimers about time change */
	clock_was_set();

788
	return ret;
789 790 791
}
EXPORT_SYMBOL(timekeeping_inject_offset);

792 793 794 795 796 797 798

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
799
	struct timekeeper *tk = &tk_core.timekeeper;
800 801 802 803
	unsigned int seq;
	s32 ret;

	do {
804
		seq = read_seqcount_begin(&tk_core.seq);
805
		ret = tk->tai_offset;
806
	} while (read_seqcount_retry(&tk_core.seq, seq));
807 808 809 810 811 812 813 814

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
815
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
816 817
{
	tk->tai_offset = tai_offset;
818
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
819 820 821 822 823 824 825 826
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
827
	struct timekeeper *tk = &tk_core.timekeeper;
828 829
	unsigned long flags;

830
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
831
	write_seqcount_begin(&tk_core.seq);
832
	__timekeeping_set_tai_offset(tk, tai_offset);
833
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
834
	write_seqcount_end(&tk_core.seq);
835
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
836
	clock_was_set();
837 838
}

839 840 841 842 843
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
844
static int change_clocksource(void *data)
845
{
846
	struct timekeeper *tk = &tk_core.timekeeper;
847
	struct clocksource *new, *old;
848
	unsigned long flags;
849

850
	new = (struct clocksource *) data;
851

852
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
853
	write_seqcount_begin(&tk_core.seq);
854

855
	timekeeping_forward_now(tk);
856 857 858 859 860 861
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
862
			old = tk->tkr.clock;
863 864 865 866 867 868 869
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
870
	}
871
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
872

873
	write_seqcount_end(&tk_core.seq);
874
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
875

876 877
	return 0;
}
878

879 880 881 882 883 884 885
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
886
int timekeeping_notify(struct clocksource *clock)
887
{
888
	struct timekeeper *tk = &tk_core.timekeeper;
889

890
	if (tk->tkr.clock == clock)
891
		return 0;
892
	stop_machine(change_clocksource, clock, NULL);
893
	tick_clock_notify();
894
	return tk->tkr.clock == clock ? 0 : -1;
895
}
896

897 898 899 900 901 902 903 904
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
905
	struct timekeeper *tk = &tk_core.timekeeper;
906
	struct timespec64 ts64;
907 908 909 910
	unsigned long seq;
	s64 nsecs;

	do {
911
		seq = read_seqcount_begin(&tk_core.seq);
912
		nsecs = timekeeping_get_ns_raw(tk);
913
		ts64 = tk->raw_time;
914

915
	} while (read_seqcount_retry(&tk_core.seq, seq));
916

917 918
	timespec64_add_ns(&ts64, nsecs);
	*ts = timespec64_to_timespec(ts64);
919 920 921
}
EXPORT_SYMBOL(getrawmonotonic);

922
/**
923
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
924
 */
925
int timekeeping_valid_for_hres(void)
926
{
927
	struct timekeeper *tk = &tk_core.timekeeper;
928 929 930 931
	unsigned long seq;
	int ret;

	do {
932
		seq = read_seqcount_begin(&tk_core.seq);
933

934
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
935

936
	} while (read_seqcount_retry(&tk_core.seq, seq));
937 938 939 940

	return ret;
}

941 942 943 944 945
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
946
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
947 948
	unsigned long seq;
	u64 ret;
949

J
John Stultz 已提交
950
	do {
951
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
952

953
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
954

955
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
956 957

	return ret;
958 959
}

960
/**
961
 * read_persistent_clock -  Return time from the persistent clock.
962 963
 *
 * Weak dummy function for arches that do not yet support it.
964 965
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
966 967 968
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
969
void __weak read_persistent_clock(struct timespec *ts)
970
{
971 972
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
973 974
}

975 976 977 978 979 980 981 982 983
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
984
void __weak read_boot_clock(struct timespec *ts)
985 986 987 988 989
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

990 991 992 993 994
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
995
	struct timekeeper *tk = &tk_core.timekeeper;
996
	struct clocksource *clock;
997
	unsigned long flags;
998 999
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1000

1001 1002 1003
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1004 1005 1006 1007
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1008 1009
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1010

1011 1012 1013
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1014 1015 1016 1017 1018
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1019

1020
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1021
	write_seqcount_begin(&tk_core.seq);
1022 1023
	ntp_init();

1024
	clock = clocksource_default_clock();
1025 1026
	if (clock->enable)
		clock->enable(clock);
1027
	tk_setup_internals(tk, clock);
1028

1029 1030 1031
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1032
	tk->base_raw.tv64 = 0;
1033
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1034
		boot = tk_xtime(tk);
1035

1036
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1037
	tk_set_wall_to_mono(tk, tmp);
1038

1039
	timekeeping_update(tk, TK_MIRROR);
1040

1041
	write_seqcount_end(&tk_core.seq);
1042
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1043 1044 1045
}

/* time in seconds when suspend began */
1046
static struct timespec64 timekeeping_suspend_time;
1047

1048 1049 1050 1051 1052 1053 1054
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1055
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1056
					   struct timespec64 *delta)
1057
{
1058
	if (!timespec64_valid_strict(delta)) {
1059 1060 1061
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1062 1063
		return;
	}
1064
	tk_xtime_add(tk, delta);
1065
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1066
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1067
	tk_debug_account_sleep_time(delta);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
1082
	struct timekeeper *tk = &tk_core.timekeeper;
1083
	struct timespec64 tmp;
1084
	unsigned long flags;
1085

1086 1087 1088 1089 1090
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1091 1092
		return;

1093
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1094
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1095

1096
	timekeeping_forward_now(tk);
1097

1098 1099
	tmp = timespec_to_timespec64(*delta);
	__timekeeping_inject_sleeptime(tk, &tmp);
1100

1101
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1102

1103
	write_seqcount_end(&tk_core.seq);
1104
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1105 1106 1107 1108 1109

	/* signal hrtimers about time change */
	clock_was_set();
}

1110 1111 1112 1113 1114 1115 1116
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1117
static void timekeeping_resume(void)
1118
{
1119
	struct timekeeper *tk = &tk_core.timekeeper;
1120
	struct clocksource *clock = tk->tkr.clock;
1121
	unsigned long flags;
1122 1123
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1124 1125
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1126

1127 1128
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1129

1130
	clockevents_resume();
1131 1132
	clocksource_resume();

1133
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1134
	write_seqcount_begin(&tk_core.seq);
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1148
	cycle_now = tk->tkr.read(clock);
1149
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1150
		cycle_now > tk->tkr.cycle_last) {
1151 1152 1153 1154 1155
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1156 1157
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1172
		ts_delta = ns_to_timespec64(nsec);
1173
		suspendtime_found = true;
1174 1175
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1176
		suspendtime_found = true;
1177
	}
1178 1179 1180 1181 1182

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1183
	tk->tkr.cycle_last = cycle_now;
1184
	tk->ntp_error = 0;
1185
	timekeeping_suspended = 0;
1186
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1187
	write_seqcount_end(&tk_core.seq);
1188
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1189 1190 1191 1192 1193 1194

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1195
	hrtimers_resume();
1196 1197
}

1198
static int timekeeping_suspend(void)
1199
{
1200
	struct timekeeper *tk = &tk_core.timekeeper;
1201
	unsigned long flags;
1202 1203 1204
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1205

1206 1207
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1208

1209 1210 1211 1212 1213 1214 1215 1216
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1217
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1218
	write_seqcount_begin(&tk_core.seq);
1219
	timekeeping_forward_now(tk);
1220
	timekeeping_suspended = 1;
1221 1222 1223 1224 1225 1226 1227

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1228 1229
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1230 1231 1232 1233 1234 1235 1236 1237 1238
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1239
			timespec64_add(timekeeping_suspend_time, delta_delta);
1240
	}
1241 1242

	timekeeping_update(tk, TK_MIRROR);
1243
	write_seqcount_end(&tk_core.seq);
1244
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1245 1246

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1247
	clocksource_suspend();
1248
	clockevents_suspend();
1249 1250 1251 1252 1253

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1254
static struct syscore_ops timekeeping_syscore_ops = {
1255 1256 1257 1258
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1259
static int __init timekeeping_init_ops(void)
1260
{
1261 1262
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1263
}
1264
device_initcall(timekeeping_init_ops);
1265 1266

/*
1267
 * Apply a multiplier adjustment to the timekeeper
1268
 */
1269 1270 1271 1272
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1273
{
1274 1275
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1276

1277 1278 1279 1280
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1281
	}
1282 1283 1284
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1285

1286 1287 1288
	/*
	 * So the following can be confusing.
	 *
1289
	 * To keep things simple, lets assume mult_adj == 1 for now.
1290
	 *
1291
	 * When mult_adj != 1, remember that the interval and offset values
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1335 1336 1337 1338 1339 1340
	if (tk->tkr.mult + mult_adj < mult_adj) {
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1341
	tk->tkr.mult += mult_adj;
1342
	tk->xtime_interval += interval;
1343
	tk->tkr.xtime_nsec -= offset;
1344
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1364 1365
	tk->ntp_tick = ntp_tick_length();

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
		(tk->tkr.mult > tk->tkr.clock->mult + tk->tkr.clock->maxadj))) {
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1427 1428 1429
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1430
		tk->ntp_error += neg << tk->ntp_error_shift;
1431
	}
1432 1433
}

1434 1435 1436 1437 1438 1439 1440 1441
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1442
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1443
{
1444
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1445
	unsigned int clock_set = 0;
1446

1447
	while (tk->tkr.xtime_nsec >= nsecps) {
1448 1449
		int leap;

1450
		tk->tkr.xtime_nsec -= nsecps;
1451 1452 1453 1454
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1455
		if (unlikely(leap)) {
1456
			struct timespec64 ts;
1457 1458

			tk->xtime_sec += leap;
1459

1460 1461 1462
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1463
				timespec64_sub(tk->wall_to_monotonic, ts));
1464

1465 1466
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1467
			clock_set = TK_CLOCK_WAS_SET;
1468
		}
1469
	}
1470
	return clock_set;
1471 1472
}

1473 1474 1475 1476 1477 1478 1479 1480 1481
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1482
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1483 1484
						u32 shift,
						unsigned int *clock_set)
1485
{
T
Thomas Gleixner 已提交
1486
	cycle_t interval = tk->cycle_interval << shift;
1487
	u64 raw_nsecs;
1488

1489
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1490
	if (offset < interval)
1491 1492 1493
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1494
	offset -= interval;
1495
	tk->tkr.cycle_last += interval;
1496

1497
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1498
	*clock_set |= accumulate_nsecs_to_secs(tk);
1499

1500
	/* Accumulate raw time */
1501
	raw_nsecs = (u64)tk->raw_interval << shift;
1502
	raw_nsecs += tk->raw_time.tv_nsec;
1503 1504 1505
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1506
		tk->raw_time.tv_sec += raw_secs;
1507
	}
1508
	tk->raw_time.tv_nsec = raw_nsecs;
1509 1510

	/* Accumulate error between NTP and clock interval */
1511
	tk->ntp_error += tk->ntp_tick << shift;
1512 1513
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1514 1515 1516 1517

	return offset;
}

1518 1519 1520 1521
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1522
void update_wall_time(void)
1523
{
1524
	struct timekeeper *real_tk = &tk_core.timekeeper;
1525
	struct timekeeper *tk = &shadow_timekeeper;
1526
	cycle_t offset;
1527
	int shift = 0, maxshift;
1528
	unsigned int clock_set = 0;
J
John Stultz 已提交
1529 1530
	unsigned long flags;

1531
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1532 1533 1534

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1535
		goto out;
1536

J
John Stultz 已提交
1537
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1538
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1539
#else
1540 1541
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1542 1543
#endif

1544
	/* Check if there's really nothing to do */
1545
	if (offset < real_tk->cycle_interval)
1546 1547
		goto out;

1548 1549 1550 1551
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1552
	 * that is smaller than the offset.  We then accumulate that
1553 1554
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1555
	 */
1556
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1557
	shift = max(0, shift);
1558
	/* Bound shift to one less than what overflows tick_length */
1559
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1560
	shift = min(shift, maxshift);
1561
	while (offset >= tk->cycle_interval) {
1562 1563
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1564
		if (offset < tk->cycle_interval<<shift)
1565
			shift--;
1566 1567 1568
	}

	/* correct the clock when NTP error is too big */
1569
	timekeeping_adjust(tk, offset);
1570

J
John Stultz 已提交
1571
	/*
1572 1573 1574 1575
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1576

J
John Stultz 已提交
1577 1578
	/*
	 * Finally, make sure that after the rounding
1579
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1580
	 */
1581
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1582

1583
	write_seqcount_begin(&tk_core.seq);
1584 1585 1586 1587 1588 1589 1590
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1591
	 * memcpy under the tk_core.seq against one before we start
1592 1593 1594
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1595
	timekeeping_update(real_tk, clock_set);
1596
	write_seqcount_end(&tk_core.seq);
1597
out:
1598
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1599
	if (clock_set)
1600 1601
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1602
}
T
Tomas Janousek 已提交
1603 1604 1605 1606 1607

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1608
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1609 1610 1611 1612 1613 1614 1615 1616
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1617
	struct timekeeper *tk = &tk_core.timekeeper;
1618 1619 1620
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

	*ts = ktime_to_timespec(t);
T
Tomas Janousek 已提交
1621
}
1622
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1623

1624 1625
unsigned long get_seconds(void)
{
1626
	struct timekeeper *tk = &tk_core.timekeeper;
1627 1628

	return tk->xtime_sec;
1629 1630 1631
}
EXPORT_SYMBOL(get_seconds);

1632 1633
struct timespec __current_kernel_time(void)
{
1634
	struct timekeeper *tk = &tk_core.timekeeper;
1635

1636
	return timespec64_to_timespec(tk_xtime(tk));
1637
}
1638

1639 1640
struct timespec current_kernel_time(void)
{
1641
	struct timekeeper *tk = &tk_core.timekeeper;
1642
	struct timespec64 now;
1643 1644 1645
	unsigned long seq;

	do {
1646
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1647

1648
		now = tk_xtime(tk);
1649
	} while (read_seqcount_retry(&tk_core.seq, seq));
1650

1651
	return timespec64_to_timespec(now);
1652 1653
}
EXPORT_SYMBOL(current_kernel_time);
1654 1655 1656

struct timespec get_monotonic_coarse(void)
{
1657
	struct timekeeper *tk = &tk_core.timekeeper;
1658
	struct timespec64 now, mono;
1659 1660 1661
	unsigned long seq;

	do {
1662
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1663

1664 1665
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1666
	} while (read_seqcount_retry(&tk_core.seq, seq));
1667

1668
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1669
				now.tv_nsec + mono.tv_nsec);
1670 1671

	return timespec64_to_timespec(now);
1672
}
1673 1674

/*
1675
 * Must hold jiffies_lock
1676 1677 1678 1679 1680 1681
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1682 1683

/**
1684 1685 1686 1687 1688 1689
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1690
 */
1691 1692
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1693
{
1694
	struct timekeeper *tk = &tk_core.timekeeper;
1695
	unsigned int seq;
1696 1697
	ktime_t base;
	u64 nsecs;
1698 1699

	do {
1700
		seq = read_seqcount_begin(&tk_core.seq);
1701

1702 1703
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1704

1705 1706 1707
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1708
	} while (read_seqcount_retry(&tk_core.seq, seq));
1709

1710
	return ktime_add_ns(base, nsecs);
1711
}
T
Torben Hohn 已提交
1712

1713 1714
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1715
 * ktime_get_update_offsets_now - hrtimer helper
1716 1717
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1718
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1719 1720
 *
 * Returns current monotonic time and updates the offsets
1721
 * Called from hrtimer_interrupt() or retrigger_next_event()
1722
 */
1723
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1724
							ktime_t *offs_tai)
1725
{
1726
	struct timekeeper *tk = &tk_core.timekeeper;
1727
	unsigned int seq;
1728 1729
	ktime_t base;
	u64 nsecs;
1730 1731

	do {
1732
		seq = read_seqcount_begin(&tk_core.seq);
1733

1734
		base = tk->tkr.base_mono;
1735
		nsecs = timekeeping_get_ns(&tk->tkr);
1736

1737 1738
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1739
		*offs_tai = tk->offs_tai;
1740
	} while (read_seqcount_retry(&tk_core.seq, seq));
1741

1742
	return ktime_add_ns(base, nsecs);
1743 1744 1745
}
#endif

1746 1747 1748 1749 1750
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1751
	struct timekeeper *tk = &tk_core.timekeeper;
1752
	unsigned long flags;
1753
	struct timespec64 ts;
1754
	s32 orig_tai, tai;
1755 1756 1757 1758 1759 1760 1761
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1773
	getnstimeofday64(&ts);
1774

1775
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1776
	write_seqcount_begin(&tk_core.seq);
1777

1778
	orig_tai = tai = tk->tai_offset;
1779
	ret = __do_adjtimex(txc, &ts, &tai);
1780

1781 1782
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1783
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1784
	}
1785
	write_seqcount_end(&tk_core.seq);
1786 1787
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1788 1789 1790
	if (tai != orig_tai)
		clock_was_set();

1791 1792
	ntp_notify_cmos_timer();

1793 1794
	return ret;
}
1795 1796 1797 1798 1799 1800 1801

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1802 1803 1804
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1805
	write_seqcount_begin(&tk_core.seq);
1806

1807
	__hardpps(phase_ts, raw_ts);
1808

1809
	write_seqcount_end(&tk_core.seq);
1810
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1811 1812 1813 1814
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
1815 1816 1817 1818 1819 1820 1821 1822
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1823
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1824
	do_timer(ticks);
1825
	write_sequnlock(&jiffies_lock);
1826
	update_wall_time();
T
Torben Hohn 已提交
1827
}