framework.py 258.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
J
jianghaicheng 已提交
48
    'ipu_shard_guard',
49
    'set_ipu_shard',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
53
    'mlu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'is_compiled_with_npu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
75
_dygraph_tracer_ = None
76
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode', '1') == '1')
77
_global_expected_place_ = None
78
_current_device = None
79
global_prog_seed = 0
80
_current_pipeline_stage = None
81
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
82
_already_patch_varbase = False
83
_current_cuda_graph_mode = None
84
_global_flags_ = core.globals()
L
Leo Chen 已提交
85 86
_enable_standalone_executor_ = (os.environ.get('FLAGS_USE_STANDALONE_EXECUTOR',
                                               None))
87
_dy2st_enable_standalone_executor_ = (os.environ.get(
88
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1))
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
118
    from paddle import _C_ops, _legacy_C_ops
119 120 121
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127
    if is_eager:
128
        _legacy_C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135
    else:
136
        _legacy_C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148 149 150 151 152 153
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
154 155


J
Jiabin Yang 已提交
156 157 158
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
159
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
160 161 162 163 164


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
165
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
166 167 168 169 170 171 172


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


173 174 175 176 177 178 179 180 181
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
182 183 184
    # Only enable eager on CPU/GPU/XPU
    is_not_support = core.is_compiled_with_npu() or core.is_compiled_with_ipu(
    ) or core.is_compiled_with_mlu()
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
242 243 244


@signature_safe_contextmanager
J
Jiabin Yang 已提交
245
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
246 247
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
248 249 250
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
251
    try:
J
Jiabin Yang 已提交
252
        yield
253
    finally:
254 255
        if not already_fallback:
            _enable_legacy_dygraph()
256 257


258 259
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
260 261 262 263
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
264 265 266 267 268 269 270 271 272 273 274
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
275
@signature_safe_contextmanager
276
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
277 278 279 280
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
281
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
282
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
283
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
284
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
285
            which means no pipelining computation order and run Ops in terms of graph.
286

J
jianghaicheng 已提交
287
    **Note**:
288 289 290
    Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
    to :code:`paddle.static.IpuStrategy` .
    Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
J
jianghaicheng 已提交
291
    to :code:`paddle.static.IpuStrategy` .
292
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
J
jianghaicheng 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


328 329 330 331 332 333 334 335 336
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
337
            The sharded model will be computed from small to large. The default value is -1,
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.


    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):

        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
                "Unsupported type. Only accept paddle.nn.Layer or function.")

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):

        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
470 471
    min_version_to_check = min_version_split + zero_version[
        len(min_version_split):]
472 473 474

    if max_version is not None:
        max_version_split = max_version.split('.')
475 476
        max_version_to_check = max_version_split + zero_version[
            len(max_version_split):]
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


492
def _dygraph_not_support_(func):
493

494
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
495 496
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
497 498 499 500 501 502
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
503

504
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
505
        assert _non_static_mode(
506 507 508 509 510 511 512
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
513

514
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
515
        assert not _non_static_mode(
516
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
517 518 519 520 521
        return func(*args, **kwargs)

    return __impl__


522 523 524 525 526
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


527 528 529 530 531 532
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
533
# same base class.
534
def _fake_interface_only_(func):
535

536 537
    def __impl__(*args, **kwargs):
        raise AssertionError(
538 539 540 541 542
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
543 544 545 546

    return __impl__


T
tangwei12 已提交
547 548
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
549 550 551 552
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
553

554 555 556 557 558 559 560 561 562 563 564 565 566
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


567 568
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
569
static_only = wrap_decorator(_static_only_)
570
fake_interface_only = wrap_decorator(_fake_interface_only_)
571 572


L
lujun 已提交
573 574
def _dygraph_tracer():
    return _dygraph_tracer_
575

W
Wu Yi 已提交
576

577 578 579 580
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
581
def _current_expected_place():
582 583 584
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
585 586 587 588 589
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
590
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
591 592 593 594 595
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
596 597 598 599 600 601
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
602
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
603 604 605 606 607
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
608 609 610 611 612 613
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
614
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
615 616 617 618 619
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
635
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
636 637


L
Leo Chen 已提交
638 639
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
640 641
    """
    convert VarBase tp numpy
T
tangwei12 已提交
642

643 644 645
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
646 647 648 649 650 651 652 653 654
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
655
def _cpu_num():
656
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
657 658 659 660 661 662 663 664
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
665
        os.environ['CPU_NUM'] = str(1)
666
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
667 668 669 670 671 672 673 674 675 676
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
677 678


679 680 681 682 683 684 685 686 687
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


688 689 690 691 692 693 694 695 696
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


697 698 699 700 701 702 703 704 705
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


736 737 738 739 740 741 742
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
743

744 745 746 747 748 749
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

750
    Returns: None
751 752 753 754 755 756 757 758 759 760

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
776 777 778 779
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

780
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
781 782 783 784

    Examples:
        .. code-block:: python

785
            import paddle
786
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
787 788 789 790
    """
    return core.is_compiled_with_cuda()


791 792 793 794 795 796 797 798 799 800
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
801
            support_gpu = paddle.device.is_compiled_with_rocm()
802 803 804 805
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
806
def cuda_places(device_ids=None):
L
lujun 已提交
807
    """
808
    Note:
809 810 811
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
812
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
813 814

    If :code:`device_ids` is None, environment variable of
815
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
816
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
817
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
818
    If :code:`FLAGS_selected_gpus` is not set, all visible
819
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
820 821

    If :code:`device_ids` is not None, it should be the device
822
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
823
    the returned list would be
C
Chen Weihang 已提交
824
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
825

826
    Parameters:
827
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
828 829

    Returns:
C
Chen Weihang 已提交
830
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
831 832

    Examples:
833

L
lujun 已提交
834 835
        .. code-block:: python

C
Chen Weihang 已提交
836 837
            import paddle
            import paddle.static as static
T
tangwei12 已提交
838

839
            # required: gpu
840

C
Chen Weihang 已提交
841 842 843
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
844 845

    """
S
sneaxiy 已提交
846 847 848
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
849
        device_ids = _cuda_ids()
S
sneaxiy 已提交
850 851 852 853 854
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


855 856 857 858
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
859 860 861 862 863 864 865 866 867
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
868
        the returned list would be
S
sunzhongkai588 已提交
869
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
870

871 872 873 874 875 876
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
877

878 879
            # required: xpu

880 881
            import paddle
            import paddle.static as static
882

883 884 885 886 887 888 889 890 891 892 893 894
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


895 896 897 898
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
899

900 901 902 903 904 905 906 907 908
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
909
    the returned list would be
910
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
911

912 913 914 915 916 917 918 919 920 921 922
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
923

924 925 926 927 928 929 930 931 932 933 934 935
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
936
def cpu_places(device_count=None):
L
lujun 已提交
937
    """
C
Chen Weihang 已提交
938
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
939

S
add doc  
sneaxiy 已提交
940
    If :code:`device_count` is None, the device count would
941
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
942 943
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
944 945
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
946

947 948
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
949 950

    Returns:
C
Chen Weihang 已提交
951
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
952 953

    Examples:
954

L
lujun 已提交
955 956
        .. code-block:: python

C
Chen Weihang 已提交
957 958
            import paddle
            import paddle.static as static
T
tangwei12 已提交
959

C
Chen Weihang 已提交
960 961 962
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
963 964
    """

S
sneaxiy 已提交
965 966 967 968 969 970
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
971
    """
972
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
973 974

    If :code:`device_count` is None, the device count would
975
    be determined by environment variable :code:`CPU_NUM`.
976 977 978 979
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
980

981 982
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
983 984

    Returns:
985
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
986 987 988 989

    Examples:
        .. code-block:: python

990
            import paddle.fluid as fluid
L
lujun 已提交
991 992 993 994 995
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
996 997 998
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
999 1000
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1001 1002


1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1045
class NameScope(object):
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1072
@signature_safe_contextmanager
1073 1074
def name_scope(prefix=None):
    """
1075

1076
    Generate hierarchical name prefix for the operators in Static Graph.
1077

1078
    Note:
T
Tao Luo 已提交
1079 1080
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1081
        Don't use it in dygraph, since it will cause memory leak.
1082 1083

    Args:
T
Tao Luo 已提交
1084
        prefix(str, optional): prefix. Default is none.
1085 1086

    Examples:
1087

1088
        .. code-block:: python
T
Tink_Y 已提交
1089

1090 1091 1092
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1093
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1094
             b = a + 1
1095
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1096
                c = b * 1
1097
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1098
                d = c / 1
1099 1100 1101
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1102 1103
                g = f - 1

1104
          # Op are created in the default main program.
1105
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1121 1122
    """
    # TODO(panyx0718): Only [0-9a-z].
1123
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1124
    if _non_static_mode():
L
Leo Chen 已提交
1125 1126
        yield
    else:
T
tianshuo78520a 已提交
1127
        assert prefix, "namescope prefix can not be empty."
1128 1129
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1130 1131 1132 1133
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1146 1147 1148
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1149 1150 1151 1152


def grad_var_name(var_name):
    """
1153 1154
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1155 1156 1157
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1158

1159
def convert_np_dtype_to_dtype_(np_dtype):
1160
    """
1161
    Convert the data type in numpy to the data type in Paddle.
1162

1163
    Args:
1164 1165
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1166

1167
    Returns:
1168
        core.VarDesc.VarType: The data type in Paddle.
1169 1170

    """
1171 1172
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1173 1174 1175
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1176

1177
    if dtype == np.float32:
1178
        return core.VarDesc.VarType.FP32
1179
    elif dtype == np.float64:
1180
        return core.VarDesc.VarType.FP64
1181
    elif dtype == np.float16:
1182
        return core.VarDesc.VarType.FP16
1183
    elif dtype == np.int32:
1184
        return core.VarDesc.VarType.INT32
1185
    elif dtype == np.int16:
1186
        return core.VarDesc.VarType.INT16
1187
    elif dtype == np.int64:
1188
        return core.VarDesc.VarType.INT64
1189
    elif dtype == np.bool_:
1190
        return core.VarDesc.VarType.BOOL
1191
    elif dtype == np.uint16:
1192 1193 1194
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1195 1196
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1197 1198
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1199 1200 1201 1202
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1203
    else:
M
minqiyang 已提交
1204
        raise ValueError("Not supported numpy dtype %s" % dtype)
1205 1206 1207


def dtype_is_floating(dtype):
1208 1209 1210
    """
    Check the data type is floating or not.
    Args:
1211
        dtype(np.dtype|core.VarDesc.VarType): data type.
1212 1213 1214 1215 1216
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1217
    if not isinstance(dtype, core.VarDesc.VarType):
1218 1219
        dtype = convert_np_dtype_to_dtype_(dtype)

1220 1221 1222 1223
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1224 1225


Y
Yang Yang(Tony) 已提交
1226
def _debug_string_(proto, throw_on_error=True):
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1238
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1239
    if not proto.IsInitialized(error_fields) and throw_on_error:
1240 1241 1242
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
                error_fields, proto))
Y
Yu Yang 已提交
1243 1244 1245
    return proto.__str__()


1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1256
    if _in_eager_mode_:
1257
        eager_tensor = core.eager.Tensor(
1258
            dtype if dtype else core.VarDesc.VarType.FP32,
1259 1260 1261
            list(shape) if shape else [], name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False)
1262 1263
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1264 1265
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
1266 1267 1268
                            list(shape) if shape else [], name,
                            type if type else core.VarDesc.VarType.LOD_TENSOR,
                            True if persistable else False)
1269 1270


1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
    if not vals: return False
    return all(isinstance(v, expected_type) for v in vals)


1282
class VariableMetaClass(type):
1283

1284 1285 1286 1287
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1288
            return issubclass(t, core.eager.Tensor)
1289
        else:
J
Jiabin Yang 已提交
1290 1291
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1292 1293 1294 1295
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
1296

1297 1298 1299 1300
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1301
            return issubclass(t, EagerParamBase)
1302
        else:
J
Jiabin Yang 已提交
1303 1304
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1305 1306 1307 1308
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1309
class Variable(object):
1310
    """
J
Jiabin Yang 已提交
1311
    **Notes**:
1312
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1313

1314 1315
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1316 1317 1318
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1319
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1320 1321
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1322

1323
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1324
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1325

T
tianshuo78520a 已提交
1326
    Most of a Variable's member variables can be set to be None. It mean
1327
    it is not available or will be specified later.
1328

1329
    Examples:
1330 1331
        In Static Graph Mode:

1332 1333
        .. code-block:: python

1334
            import paddle.fluid as fluid
1335
            cur_program = fluid.Program()
1336 1337 1338 1339
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1340

J
Jiabin Yang 已提交
1341
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1342 1343 1344 1345 1346 1347 1348 1349 1350

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1351 1352
    """

Y
Yu Yang 已提交
1353 1354
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1355
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1356 1357 1358 1359
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1360
                 capacity=None,
Q
QI JUN 已提交
1361
                 persistable=None,
F
fengjiayi 已提交
1362
                 error_clip=None,
Y
Yu Yang 已提交
1363
                 stop_gradient=False,
F
fengjiayi 已提交
1364
                 is_data=False,
H
Huihuang Zheng 已提交
1365
                 need_check_feed=False,
H
hong 已提交
1366
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1367
                 **kwargs):
Y
Yu Yang 已提交
1368 1369
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1370
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1371

Y
Yu Yang 已提交
1372
        if dtype is not None:
1373
            if not isinstance(dtype, core.VarDesc.VarType):
1374
                dtype = convert_np_dtype_to_dtype_(dtype)
1375

S
Steffy-zxf 已提交
1376 1377 1378 1379
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1380 1381
        self.belong_to_optimizer = belong_to_optimizer

1382 1383 1384 1385 1386
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1387

1388 1389 1390
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1391

1392 1393 1394
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1395 1396
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1397 1398
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1399

1400
        if shape is not None:
1401
            if is_new_var:
1402 1403 1404 1405 1406 1407
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1408 1409
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1410 1411 1412 1413 1414 1415 1416
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1417 1418
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1419 1420 1421 1422 1423 1424 1425 1426 1427
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1428 1429
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1430 1431 1432 1433 1434 1435 1436 1437 1438
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1439 1440
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1441 1442
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1443

1444 1445
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1446

1447 1448 1449 1450 1451 1452 1453
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1454

1455 1456
        self.block.vars[name] = self
        self.op = None
1457
        self.stop_gradient = stop_gradient
1458
        self.is_data = is_data
Y
Yu Yang 已提交
1459

1460 1461 1462
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1463 1464
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1465

1466
        Returns:
J
Jiabin Yang 已提交
1467
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1468 1469 1470 1471

        Examples:
            .. code-block:: python

1472
                import paddle
1473

1474 1475 1476 1477
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1478

1479 1480
                # create a detached Variable
                y = x.detach()
1481
        """
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

1494 1495 1496
        self.block.append_op(type='share_data',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
1497
        return output
1498

1499
    @fake_interface_only
1500
    def numpy(self):
1501
        """
J
Jiabin Yang 已提交
1502
        **Notes**:
T
tianshuo78520a 已提交
1503
            **This API is ONLY available in Dygraph mode**
1504

J
Jiabin Yang 已提交
1505
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1506 1507 1508 1509 1510

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1511
            ndarray: dtype is same as current Variable
1512 1513 1514 1515 1516 1517

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1518
                from paddle.fluid.dygraph import Linear
1519 1520 1521 1522
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1523
                    linear = Linear(32, 64)
1524
                    data = to_variable(data)
1525
                    x = linear(data)
1526 1527 1528
                    print(x.numpy())

        """
1529
        pass
1530

1531
    @fake_interface_only
1532
    def backward(self, retain_graph=False):
1533
        """
J
Jiabin Yang 已提交
1534
        **Notes**:
T
tianshuo78520a 已提交
1535
            **This API is ONLY available in Dygraph mode**
1536

1537
        Run backward of current Graph which starts from current Tensor.
1538

J
Jiabin Yang 已提交
1539
        Args:
1540 1541 1542 1543
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1544

J
Jiabin Yang 已提交
1545 1546
        Returns:
            NoneType: None
1547 1548 1549 1550 1551

        Examples:
            .. code-block:: python

                import numpy as np
1552 1553
                import paddle
                paddle.disable_static()
1554 1555

                x = np.ones([2, 2], np.float32)
1556 1557 1558 1559 1560 1561 1562
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1563 1564
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1565
                loss.backward()
1566 1567

        """
1568
        pass
1569

1570
    @fake_interface_only
1571
    def gradient(self):
1572
        """
J
Jiabin Yang 已提交
1573
        **Notes**:
T
tianshuo78520a 已提交
1574
            **This API is ONLY available in Dygraph mode**
1575 1576 1577

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1578
        Returns:
1579
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1580 1581 1582 1583 1584 1585 1586

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1587
                # example1: return ndarray
1588 1589 1590 1591 1592 1593 1594 1595 1596
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1597
                    loss2.backward()
1598 1599
                    print(loss2.gradient())

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1613
        """
1614
        pass
1615

1616
    @fake_interface_only
1617
    def clear_gradient(self):
1618
        """
J
Jiabin Yang 已提交
1619
        **Notes**:
T
tianshuo78520a 已提交
1620
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1621 1622

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1623

J
Jiabin Yang 已提交
1624
        Clear  (set to ``0`` ) the Gradient of Current Variable
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1643
                    loss2.backward()
1644 1645 1646 1647 1648
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1649
        pass
X
Xin Pan 已提交
1650

1651 1652 1653 1654
    @fake_interface_only
    def register_hook(self, hook):
        pass

1655
    def __str__(self):
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1672 1673
                import paddle
                import paddle.static as static
1674

1675 1676 1677
                paddle.enable_static()

                cur_program = static.Program()
1678 1679 1680 1681 1682 1683
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1684 1685
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1686
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1687 1688
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1689 1690
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1691
        else:
1692 1693
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1694

1695
        if self.is_parameter:
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1706
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1707
        dist_context = get_default_distributed_context()
1708 1709
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1710 1711
            var_str += ", {name} = {value}".format(name="dist_attr",
                                                   value=dist_tensor)
1712

1713
        return var_str
Y
Yang Yang(Tony) 已提交
1714

F
update  
fengjiayi 已提交
1715
    def to_string(self, throw_on_error, with_details=False):
1716 1717 1718
        """
        Get debug string.

J
Jiabin Yang 已提交
1719 1720 1721 1722 1723
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1724

1725 1726
        Returns:
            str: The debug string.
1727 1728 1729 1730 1731

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1732
                import paddle
1733

1734
                paddle.enable_static()
1735 1736 1737 1738 1739
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1740
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1741
                print("=============with detail===============")
1742
                print(new_variable.to_string(True, True))
1743
        """
1744 1745
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
1746
        protostr = self.desc.serialize_to_string()
1747
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1748 1749
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1750
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1751
            for attr_name in additional_attr:
1752 1753 1754
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1755
        return res_str
1756 1757 1758

    __repr__ = __str__

1759 1760 1761
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1762

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1786
    @property
1787
    def stop_gradient(self):
J
Jiabin Yang 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1803 1804
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1805 1806 1807
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1808 1809
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1810 1811 1812 1813
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1814
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1815 1816
                assert (out1.gradient() == 0).all()
        """
1817
        return self.desc.stop_gradient()
1818

1819 1820
    @stop_gradient.setter
    def stop_gradient(self, s):
1821
        self.desc.set_stop_gradient(s)
1822

1823 1824
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1846
        return self.desc.persistable()
1847

Y
Yu Yang 已提交
1848 1849
    @persistable.setter
    def persistable(self, p):
1850
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1877 1878
    @property
    def name(self):
J
Jiabin Yang 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1895
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1896

1897 1898 1899 1900 1901 1902
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1903 1904
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1917 1918
    @name.setter
    def name(self, new_name):
1919
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1920

Y
Yu Yang 已提交
1921 1922
    @property
    def shape(self):
J
Jiabin Yang 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1940
        # convert to tuple, make it as same as numpy API.
1941
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1942 1943

    @property
F
fengjiayi 已提交
1944
    def dtype(self):
J
Jiabin Yang 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1961
        return self.desc.dtype()
Y
Yu Yang 已提交
1962 1963 1964

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1978
            import paddle
J
Jiabin Yang 已提交
1979
            import paddle.fluid as fluid
1980 1981

            paddle.enable_static()
J
Jiabin Yang 已提交
1982 1983 1984 1985 1986 1987 1988
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1989 1990
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1991 1992
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1993
        return self.desc.lod_level()
Y
Yu Yang 已提交
1994

Y
Yu Yang 已提交
1995 1996
    @property
    def type(self):
J
Jiabin Yang 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2013
        return self.desc.type()
Y
Yu Yang 已提交
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

2056 2057 2058 2059 2060 2061 2062
        self.block.append_op(type='transpose2',
                             inputs={'X': [self]},
                             outputs={
                                 'Out': [out],
                                 'XShape': [input_shape]
                             },
                             attrs={'axis': perm})
2063 2064
        return out

2065 2066 2067
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2068
        Variable. It remains in the current graph, that is, the cloned Variable
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

2095 2096 2097
        self.block.append_op(type='assign',
                             inputs={'X': [self]},
                             outputs={'Out': [output]})
2098 2099
        return output

W
Wu Yi 已提交
2100
    def _set_error_clip(self, error_clip):
2101 2102 2103 2104 2105 2106 2107 2108 2109
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
2110 2111
        self.error_clip = error_clip

2112 2113 2114 2115 2116 2117 2118 2119
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2120
        Returns:
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2134
        Returns:
2135 2136 2137 2138 2139 2140
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2152
            raise ValueError("slice step can not be zero")
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2163 2164
            start = max(start +
                        length, lower) if start < 0 else min(start, upper)
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2228
    def _cloneVar(self, copy=False):
2229 2230
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2231 2232
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2233 2234 2235 2236
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2237
        new_var = self._cloneVar()
2238 2239 2240 2241 2242 2243 2244 2245
        self.block.append_op(type="slice",
                             inputs={'Input': [self]},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axes': axes,
                                 'starts': starts,
                                 'ends': ends
                             })
2246 2247 2248
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2249
        new_var = self._cloneVar()
2250 2251 2252 2253 2254 2255
        self.block.append_op(type="concat",
                             inputs={'X': inputs},
                             outputs={'Out': [new_var]},
                             attrs={
                                 'axis': axis,
                             })
2256 2257 2258 2259 2260
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2261
                return self._cloneVar(True)
2262 2263 2264 2265 2266 2267 2268
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2269 2270
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2271 2272 2273
                        start += step
                else:
                    while start > stop:
2274 2275
                        vars.append(self._sliceVar([axis], [start],
                                                   [start + 1]))
2276 2277 2278 2279
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2280
                return self._cloneVar(True)
2281
            index = int(item)
2282
            if (index > 0 and index >= self.shape[axis]) \
2283 2284 2285 2286 2287 2288 2289
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2290
        return _getitem_impl_(self, item)
2291

2292
    def __setitem__(self, item, value):
2293
        return _setitem_impl_(self, item, value)
2294

2295 2296
    def get_value(self, scope=None):
        """
2297
        Get the value of variable in given scope.
2298 2299

        Args:
2300
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
2311
                import paddle.static as static
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2336 2337
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2338 2339 2340 2341
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2342 2343
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
2356
        Set the value to the tensor in given scope.
2357 2358 2359

        Args:
            value(Tensor/ndarray) : The value to be set.
2360
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2361 2362 2363 2364 2365
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2366

2367 2368 2369 2370
        Examples:
            .. code-block:: python

                import paddle
2371
                import paddle.static as static
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
2398
        # can not be imported at the begainning of this file.
2399 2400 2401 2402 2403
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2404 2405
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}."
                .format(type(value)))
2406 2407 2408

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2409 2410
                "`scope` should be None or `paddle.static.Scope` type, but received {}."
                .format(type(scope)))
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2441 2442 2443 2444
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2445 2446 2447 2448
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2449 2450 2451 2452 2453 2454 2455
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

2481 2482 2483
        self.block.append_op(type='size',
                             inputs={'Input': [self]},
                             outputs={'Out': [output]})
2484 2485
        return output

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2540
    def dist_attr(self):
2541
        """
2542
        Get distributed attribute of this Variable.
2543
        """
2544
        return self.desc.dist_attr
2545

2546 2547
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2548
        """
2549
        Set distributed attribute of this Variable.
2550
        """
2551
        self.desc.dist_attr = dist_attr
2552

Y
Yu Yang 已提交
2553

F
fengjiayi 已提交
2554 2555 2556
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2557

2558 2559
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2560 2561 2562 2563
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2564
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2565 2566 2567 2568 2569
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2570 2571 2572 2573
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2583
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2584 2585 2586 2587 2588 2589
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2590 2591 2592 2593 2594 2595 2596 2597
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2598 2599
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2600 2601
        return self.op_proto_map[type]

2602 2603
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2604
        custom_op_names = []
2605 2606 2607
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2608 2609 2610
                custom_op_names.append(proto.type)

        return custom_op_names
2611

2612 2613 2614 2615
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2616
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2617
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2618 2619
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2620 2621
        }

F
fengjiayi 已提交
2622

X
Xin Pan 已提交
2623
class Operator(object):
2624
    """
2625 2626 2627 2628 2629 2630 2631
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2632
        type(str): The type of operator. Default None.
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2653
        Block.append_op or Block._prepend_op instead.
2654 2655 2656 2657

    Examples:
        .. code-block:: python

2658
            import paddle.fluid as fluid
2659
            cur_program = fluid.Program()
2660 2661 2662 2663 2664
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2665
    """
2666
    OP_WITHOUT_KERNEL_SET = {
2667 2668
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2669
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2670 2671
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2672
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2673
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2674
        'copy_cross_scope', 'c_gen_cncl_id'
2675
    }
2676

Y
Yu Yang 已提交
2677 2678
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2679
                 desc,
Y
Yu Yang 已提交
2680 2681 2682
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2683
                 attrs=None):
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2694
        if _non_static_mode():
2695 2696
            if type is None:
                raise ValueError(
2697
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2698
            self._type = type
M
minqiyang 已提交
2699
            self.attrs = attrs if attrs else {}
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2710 2711 2712
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2713 2714 2715
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2716 2717
                op_attrs[
                    op_maker.kOpRoleAttrName()] = self.block.program._op_role
2718 2719

            role_var_name = op_maker.kOpRoleVarAttrName()
2720 2721
            if len(self.block.program._op_role_var
                   ) != 0 and role_var_name not in op_attrs:
2722
                op_attrs[role_var_name] = self.block.program._op_role_var
2723 2724 2725 2726 2727

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2728 2729 2730 2731 2732
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2733 2734 2735
                return
            if type is None:
                raise ValueError(
2736
                    "`type` to initialized an Operator can not be None.")
2737 2738
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2739 2740 2741
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2742 2743 2744 2745
                        '  File "{}", line {}, in {}'.format(
                            frame[0], frame[1], frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(
                        frame[3]))
2746 2747 2748 2749 2750 2751 2752

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2764
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2765 2766 2767 2768 2769
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2770 2771 2772 2773 2774
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2775

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2789
                        if not isinstance(in_args, (list, tuple)):
2790 2791 2792 2793 2794 2795
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2796
                        for index, arg in enumerate(in_args):
2797 2798 2799 2800
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2801
                            elif isinstance(arg, (Variable, core.VarBase)):
2802
                                in_arg_names.append(cpt.to_text(arg.name))
2803
                            else:
2804 2805 2806 2807
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2808 2809
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2810 2811 2812 2813 2814 2815 2816 2817 2818
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2819 2820 2821 2822
                        raise ValueError(
                            ("Incorrect setting for output(s) of "
                             "operator \"%s\", should set: [%s].") %
                            (type, m.name))
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2835 2836 2837 2838
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2839
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2840
                        if not _non_static_mode():
2841 2842 2843 2844
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2845 2846
                    self.desc.set_output(out_proto.name, out_arg_names)

2847
            extra_attrs_map = core.get_op_extra_attrs(type)
2848 2849 2850 2851 2852
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2853 2854
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
2855 2856 2857
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2858 2859 2860 2861 2862 2863 2864
                for attr_name in extra_attrs_map.keys():
                    if (attr_name
                            not in op_attrs) or (op_attrs[attr_name] is None):
                        self._update_desc_attr(attr_name,
                                               extra_attrs_map[attr_name])
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2865

J
jianghaicheng 已提交
2866 2867
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2868
                if global_ipu_index >= 0:
J
jianghaicheng 已提交
2869 2870
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
2871
                if global_ipu_stage >= 0:
J
jianghaicheng 已提交
2872 2873 2874
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2875 2876 2877 2878 2879
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2880
    def _has_kernel(self, op_type):
2881 2882
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2883
    def to_string(self, throw_on_error):
2884
        """
2885 2886
        Get debug string.

2887
        Args:
2888 2889
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2890

2891 2892
        Returns:
            str: The debug string.
2893 2894

        """
2895
        protostr = self.desc.serialize_to_string()
2896
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2897 2898
        return _debug_string_(proto, throw_on_error)

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2931
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
                a = "{name} = Var['{value}']".format(name=name,
                                                     type=attr_type,
                                                     value=attr_var_name)
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
                    name=name, type=attr_type, value=','.join(attr_var_names))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

2999
            # it is bytes of serialized protobuf
3000 3001 3002 3003
            if is_compiled_with_cinn(
            ) and self.type == 'cinn_launch' and name == 'compilation_key':
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3004 3005 3006 3007 3008 3009 3010 3011 3012
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3013 3014 3015
            a = "{name} = {value}".format(name=name,
                                          type=attr_type,
                                          value=value)
3016

3017 3018 3019 3020
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3021
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
3022
        dist_context = get_default_distributed_context()
3023 3024
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3025 3026
            attrs_str += ", {name} = {value}".format(name="dist_attr",
                                                     value=dist_op)
3027

3028 3029
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
3030 3031
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
3032 3033 3034 3035 3036
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
3037
    def __str__(self):
3038
        return self._to_readable_code()
3039 3040 3041

    __repr__ = __str__

F
fengjiayi 已提交
3042 3043
    @property
    def type(self):
3044
        return self.desc.type()
F
fengjiayi 已提交
3045 3046

    def input(self, name):
3047
        r"""
3048
        Get the input arguments according to the input parameter name.
3049

3050 3051
        Args:
            name(str): The input parameter name.
3052

3053 3054 3055
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
3056
        """
F
fengjiayi 已提交
3057 3058
        return self.desc.input(name)

W
Wu Yi 已提交
3059
    def _rename_input(self, old_name, new_name):
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3070
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3071

W
Wu Yi 已提交
3072
    def _rename_output(self, old_name, new_name):
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3083
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3084

F
fengjiayi 已提交
3085 3086 3087 3088
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3089 3090 3091 3092 3093 3094 3095 3096
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3097
    def output(self, name):
3098
        r"""
3099
        Get output arguments by the output parameter name.
3100

3101 3102
        Args:
            name(str): The output parameter name.
3103

3104 3105 3106
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3107
        """
F
fengjiayi 已提交
3108 3109 3110 3111 3112 3113
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3114 3115 3116 3117 3118 3119 3120 3121
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
3122
    def has_attr(self, name):
3123
        """
3124 3125
        Whether this Operator has the attribute with name or not.

3126
        Args:
3127
            name(str): the attribute name.
3128

3129 3130
        Returns:
            bool: True if has this attribute.
3131 3132

        """
F
fengjiayi 已提交
3133 3134 3135
        return self.desc.has_attr(name)

    def attr_type(self, name):
3136
        """
3137
        Get the type of attribute by attribute's name.
3138

3139 3140
        Args:
            name(str): the attribute name.
3141

3142 3143
        Returns:
            core.AttrType: the attribute type.
3144
        """
3145
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3146

W
Wu Yi 已提交
3147
    def _set_attr(self, name, val):
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3158 3159
        self._update_desc_attr(name, val)

3160 3161 3162
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3174 3175 3176 3177 3178
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3179
            self.desc.set_block_attr(name, val.desc)
3180
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3181
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
3182 3183 3184 3185
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3222

F
fengjiayi 已提交
3223 3224
    @property
    def attr_names(self):
3225
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3226 3227

    def attr(self, name):
3228
        """
3229 3230
        Get the attribute by name.

3231
        Args:
3232
            name(str): the attribute name.
3233

3234 3235
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3236 3237
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3238
        return self.desc.attr(name)
Y
Yu Yang 已提交
3239

W
Wu Yi 已提交
3240
    def _block_attr_id(self, name):
3241
        """
G
gongweibao 已提交
3242
        Get the block attribute's id by name.
3243

3244 3245
        Args:
            name(str): the attribute name.
3246

3247 3248
        Returns:
            int: the block index.
3249
        """
W
Wu Yi 已提交
3250
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3251

W
Wu Yi 已提交
3252
    def _block_attr(self, name):
G
gongweibao 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3263
        id = self._block_attr_id(name)
G
gongweibao 已提交
3264 3265 3266
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3267
    def _blocks_attr(self, name):
G
gongweibao 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3278
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3279 3280 3281 3282 3283
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3284
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3295
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3296

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VAR, "Required type attr({}) is Variable, but received {}".format(
            name, attr_type)
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
        assert attr_type == core.AttrType.VARS, "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type)
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3332
    def all_attrs(self):
F
fengjiayi 已提交
3333
        """
3334 3335 3336
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3337
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3338 3339 3340 3341
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3342
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3343
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3344
                attr_map[n] = self._block_attr(n)
3345
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3346
                attr_map[n] = self._blocks_attr(n)
3347 3348 3349 3350 3351 3352
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3353

F
fengjiayi 已提交
3354 3355
        return attr_map

3356 3357 3358
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3359 3360 3361 3362

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3363 3364 3365
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3366 3367 3368 3369 3370 3371 3372 3373

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3374 3375
            return False

3376 3377 3378 3379 3380 3381
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3382
    @property
3383
    def dist_attr(self):
3384
        """
3385
        Get distributed attribute of this Variable.
3386
        """
3387
        return self.desc.dist_attr
3388

3389 3390
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3391
        """
3392
        Set distributed attribute of this Variable.
3393
        """
3394
        self.desc.dist_attr = dist_attr
3395

Y
Yu Yang 已提交
3396

Y
Yu Yang 已提交
3397
class Block(object):
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3412
        use `Program._create_block()` to create a block.
3413 3414 3415 3416

    Examples:
        .. code-block:: python

3417 3418 3419
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3420 3421 3422 3423 3424 3425 3426 3427 3428
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3429
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3430
        self.desc = program.desc.block(idx)
3431
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3432
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3433
        self.program = program
3434
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3435

3436
    def __str__(self):
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3471
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3483

F
fengjiayi 已提交
3484 3485
    def to_string(self, throw_on_error, with_details=False):
        """
3486 3487
        Get debug string.

F
fengjiayi 已提交
3488 3489
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3490
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3491
            with_details(bool): more details about variables and parameters
3492 3493
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3494

3495 3496
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3497
        """
3498 3499
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
fengjiayi 已提交
3500
        if with_details:
F
fengjiayi 已提交
3501
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3502 3503
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3504
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3505
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3506
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3507
            for op in self.ops:
F
fengjiayi 已提交
3508 3509
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3510 3511 3512
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3513 3514
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3515 3516
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3517 3518 3519

    __repr__ = __str__

Y
Yu Yang 已提交
3520 3521
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3522
        return self.desc.parent
Y
Yu Yang 已提交
3523

Y
Yu Yang 已提交
3524 3525 3526 3527
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3528
    def _set_forward_block_idx(self, idx):
3529 3530 3531 3532 3533 3534 3535 3536 3537
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3538
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3539

3540 3541 3542 3543 3544 3545 3546 3547
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3548 3549
    @property
    def idx(self):
Y
Yu Yang 已提交
3550
        return self.desc.id
Y
Yu Yang 已提交
3551

Q
Qiao Longfei 已提交
3552
    def var(self, name):
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3566
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3567 3568 3569
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3570 3571
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3572
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3573
        return v
Q
Qiao Longfei 已提交
3574

X
Xin Pan 已提交
3575
    def _find_var_recursive(self, name):
3576 3577 3578 3579 3580 3581 3582
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3583
            Variable: the Variable with the giving name. Or None if not found.
3584
        """
Y
Yu Yang 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3609
        return None
Y
Yu Yang 已提交
3610

X
Xin Pan 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3630

Q
Qiao Longfei 已提交
3631
    def all_parameters(self):
3632
        return list(self.iter_parameters())
3633

3634
    def iter_parameters(self):
M
minqiyang 已提交
3635
        return (item[1] for item in six.iteritems(self.vars)
3636
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3637

Y
Yu Yang 已提交
3638
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3639
        if _non_static_mode():
L
Leo Chen 已提交
3640 3641
            var = _varbase_creator(*args, **kwargs)
        else:
3642 3643 3644
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3645
        return var
Y
Yu Yang 已提交
3646

Q
Qiao Longfei 已提交
3647 3648 3649
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3650
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3651 3652
        """
        Rename variable in vars and ops' inputs and outputs
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3665
        """
M
minqiyang 已提交
3666 3667
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3668

T
typhoonzero 已提交
3669
        if not self.has_var(name):
3670
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3671 3672
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3673
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3674 3675 3676 3677 3678 3679
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3680
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3681 3682 3683 3684
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3685
        orig_var_type = v.type
M
minqiyang 已提交
3686
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3687
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3688
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3689
        if var_type == "Parameter":
L
Leo Chen 已提交
3690
            if in_dygraph_mode():
3691 3692 3693 3694 3695 3696 3697 3698 3699
                var = EagerParamBase(d.shape(),
                                     d.dtype(),
                                     type=orig_var_type,
                                     name=new_name,
                                     stop_gradient=stop_gradient,
                                     trainable=trainable,
                                     optimize_attr=optimize_attr,
                                     regularizer=regularizer,
                                     error_clip=error_clip)
3700
            else:
J
Jiabin Yang 已提交
3701
                if _in_legacy_dygraph():
3702 3703 3704 3705 3706 3707 3708 3709 3710
                    var = ParamBase(d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
J
Jiabin Yang 已提交
3711
                else:
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
                    var = Parameter(self,
                                    d.shape(),
                                    d.dtype(),
                                    type=orig_var_type,
                                    name=new_name,
                                    stop_gradient=stop_gradient,
                                    trainable=trainable,
                                    optimize_attr=optimize_attr,
                                    regularizer=regularizer,
                                    error_clip=error_clip)
T
typhoonzero 已提交
3722
        elif var_type == "Variable":
3723 3724 3725 3726 3727
            var = Variable(self,
                           type=orig_var_type,
                           name=new_name,
                           error_clip=error_clip,
                           stop_gradient=stop_gradient)
T
wip  
typhoonzero 已提交
3728

W
Wu Yi 已提交
3729
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3730 3731 3732
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3733
        self._sync_with_cpp()
3734
        return var
T
typhoonzero 已提交
3735

3736 3737 3738
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3739
        self.desc._remove_var(cpt.to_bytes(name))
3740 3741
        del self.vars[name]

Y
Yu Yang 已提交
3742 3743
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3744
        param = None
L
Leo Chen 已提交
3745
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3746
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3747
        else:
J
Jiabin Yang 已提交
3748 3749 3750 3751
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3752

3753
        if 'initializer' in kwargs:
3754 3755 3756 3757 3758

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3759
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3760
                        # are treated as initialization ops that cause error.
3761
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3762 3763 3764 3765 3766
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3767
                            continue
3768 3769 3770 3771 3772 3773 3774 3775
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
3776 3777
                                   " is inited by multiple init ops " +
                                   str(init_ops))
3778
            elif init_ops_len == 1:
3779
                # TODO already inited, do nothing, should log a warning
3780 3781 3782
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3783
        return param
Y
Yu Yang 已提交
3784

Y
Yu Yang 已提交
3785
    def append_op(self, *args, **kwargs):
3786 3787 3788 3789 3790 3791
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3792
        if _non_static_mode():
3793
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3794
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3795
            type = kwargs.get("type", None)
3796 3797 3798 3799
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
                "using `_C_ops` method." % type, DeprecationWarning)
3800 3801 3802 3803 3804 3805
            op = Operator(block=self,
                          desc=None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)
3806

M
minqiyang 已提交
3807 3808 3809
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3810
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3811

3812 3813 3814
            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs",
                                                  {}), attrs if attrs else {},
Z
zyfncg 已提交
3815 3816
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3817
        else:
3818 3819
            from paddle.fluid.dygraph.base import param_guard

3820
            op_desc = self.desc.append_op()
3821 3822 3823 3824 3825 3826
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
3827 3828 3829 3830 3831 3832
                op = Operator(block=self,
                              desc=op_desc,
                              type=kwargs.get("type", None),
                              inputs=inputs,
                              outputs=outputs,
                              attrs=kwargs.get("attrs", None))
3833

M
minqiyang 已提交
3834
            self.ops.append(op)
M
minqiyang 已提交
3835

3836 3837
        return op

W
Wu Yi 已提交
3838
    def _insert_op(self, index, *args, **kwargs):
3839 3840 3841 3842 3843 3844 3845 3846 3847
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3848
        self._sync_with_cpp()
F
fangshuixun007 已提交
3849
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3850

3851 3852
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
3853
        Insert an Operator according to the giving arguments,
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3868 3869 3870 3871 3872 3873 3874 3875 3876
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3877 3878
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3879
        self.desc._remove_op(index, index + 1)
3880 3881
        del self.ops[index]

W
Wu Yi 已提交
3882
    def _slice_ops(self, start, end):
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3893
        return self.ops[start:end]
Y
Yancey1989 已提交
3894

W
Wu Yi 已提交
3895
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3896
        if _non_static_mode():
J
Jiabin Yang 已提交
3897 3898
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
            op = Operator(self,
                          None,
                          type=type,
                          inputs=None,
                          outputs=None,
                          attrs=attrs)

            _dygraph_tracer().trace_op(type, kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       attrs if attrs else {},
M
minqiyang 已提交
3909
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3910
        else:
3911
            op_desc = self.desc._prepend_op()
3912 3913 3914 3915 3916 3917
            op = Operator(self,
                          op_desc,
                          type=kwargs.get("type", None),
                          inputs=kwargs.get("inputs", None),
                          outputs=kwargs.get("outputs", None),
                          attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3918
            self.ops.insert(0, op)
3919

Y
Yu Yang 已提交
3920 3921
        return op

W
Wu Yi 已提交
3922
    def _sync_with_cpp(self):
3923
        """
3924 3925
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3926
        """
Q
Qiao Longfei 已提交
3927 3928 3929
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3930 3931 3932 3933
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
3934 3935 3936 3937 3938 3939
                    self.create_parameter(name=var.name(),
                                          desc=var,
                                          type=var.type(),
                                          shape=var.shape(),
                                          dtype=var.dtype(),
                                          stop_gradient=is_stop_gradient)
3940
                else:
3941 3942 3943 3944
                    self.create_var(name=var.name(),
                                    desc=var,
                                    type=var.type(),
                                    stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3945

3946
        # sync variables removed from c++ end
3947
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3948
            if not self.desc.find_var(cpt.to_bytes(var)):
3949 3950
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3951
        # sync operators from cpp
3952 3953 3954 3955
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3972 3973 3974 3975 3976

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3977
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3978 3979 3980 3981 3982 3983 3984

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3998 3999 4000 4001
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4002
    def _copy_param_info_from(self, other):
4003
        """
4004 4005
        Copy the information of parameters from the other block.

4006
        Args:
4007 4008 4009 4010 4011
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4012 4013 4014 4015 4016

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4017 4018
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
4019
        for p in other.iter_parameters():
4020 4021 4022
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4023 4024
                # if the Parameter is pruned, v may be None
                continue
4025
            assert isinstance(v, Variable)
4026
            new_p = None
L
Leo Chen 已提交
4027
            if in_dygraph_mode():
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
                new_p = EagerParamBase(shape=v.shape,
                                       dtype=v.dtype,
                                       type=v.type,
                                       lod_level=v.lod_level,
                                       stop_gradient=p.stop_gradient,
                                       trainable=p.trainable,
                                       optimize_attr=p.optimize_attr,
                                       regularizer=p.regularizer,
                                       error_clip=p.error_clip,
                                       name=v.name)
4038
            else:
J
Jiabin Yang 已提交
4039
                if _in_legacy_dygraph():
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
                    new_p = ParamBase(shape=v.shape,
                                      dtype=v.dtype,
                                      type=v.type,
                                      lod_level=v.lod_level,
                                      stop_gradient=p.stop_gradient,
                                      trainable=p.trainable,
                                      optimize_attr=p.optimize_attr,
                                      regularizer=p.regularizer,
                                      error_clip=p.error_clip,
                                      name=v.name)
J
Jiabin Yang 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
4064 4065
            self.vars[new_p.name] = new_p

4066
    def _clone_variable(self, var, force_persistable=True):
4067 4068
        """
        Clone a variable into current block.
4069

4070 4071
        Args:
            var: the variable to be cloned.
4072 4073 4074
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4075 4076

        Returns:
4077
            Variable: the new  variable cloned from 'var' in current block.
4078 4079
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4080 4081 4082
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4083 4084 4085
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
tangwei12 已提交
4086
        elif var.type == core.VarDesc.VarType.RAW:
4087 4088 4089
            ret_var = self.create_var(name=var.name,
                                      persistable=var.persistable,
                                      type=var.type)
T
typhoonzero 已提交
4090 4091 4092 4093 4094 4095
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4096
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4097 4098
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4099 4100 4101 4102 4103 4104 4105
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4106
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4107 4108
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
4109
        return ret_var
4110

Y
Yu Yang 已提交
4111

4112 4113 4114 4115
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4116
# of some old Python Variables(all old Python Operators) may have
4117
# been destructed.
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4229
    def remove_input_by_id(self, node_id):
4230 4231 4232 4233 4234 4235
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4236
        self.node.remove_input(node_id)
4237

4238
    def remove_input(self, node):
4239 4240 4241 4242
        """
        Remove a node from inputs.

        Args:
4243
            node(IrNode): the node being removed.
4244
        """
4245
        self.node.remove_input(node.node)
4246

4247
    def append_input(self, node):
4248 4249 4250 4251
        """
        Append a node in inputs.

        Args:
4252
            node(IrNode): the node being appended.
4253
        """
4254
        self.node.append_input(node.node)
4255 4256 4257 4258 4259 4260 4261 4262

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4263
    def remove_output_by_id(self, node_id):
4264 4265 4266 4267 4268 4269
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4270
        self.node.remove_output(node_id)
4271

4272
    def remove_output(self, node):
4273 4274 4275 4276
        """
        Remove a node from outputs.

        Args:
4277
            node(IrNode): the node being removed.
4278
        """
4279
        self.node.remove_output(node.node)
4280

4281
    def append_output(self, node):
4282 4283 4284 4285
        """
        Append a node in outputs.

        Args:
4286
            node(IrNode): the node being appended.
4287
        """
4288
        self.node.append_output(node.node)
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4336
            "The node variable description can not be None."
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4347
            "The node variable description can not be None."
4348 4349
        return self.node.var().persistable()

4350 4351 4352 4353 4354 4355 4356 4357
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4358
            "The node variable description can not be None."
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4369
            "The node variable description can not be None."
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4380
            "The node variable description can not be None."
4381 4382
        return self.node.var().shape()

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4430
            "The node operator description can not be None."
4431 4432
        self.node.op()._rename_input(old_input_name, new_input_name)

4433 4434 4435 4436 4437 4438 4439 4440 4441
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4442
            "The node operator description can not be None."
4443 4444
        self.node.op()._rename_output(old_output_name, new_output_name)

4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4456
            "The node operator description can not be None."
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4470
            "The node operator description can not be None."
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4481
            "The node operator description can not be None."
4482 4483
        return self.node.op().set_type(new_type)

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4499
            "The node operator description can not be None."
4500
        desc = self.node.op()
4501 4502 4503 4504 4505
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4506
            desc.set_block_attr(name, val.desc)
4507
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4508 4509
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4510
                isinstance(val, core.ProgramDesc):
4511 4512 4513 4514
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4515 4516 4517 4518 4519 4520 4521 4522
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4523
            "The node operator description can not be None."
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4534
            "The node operator description can not be None."
4535 4536
        return self.node.op().output_arg_names()

4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4558 4559
class IrGraph(object):
    """
4560
    Python IrGraph. Beneath it is a core.Graph, which is used for
4561
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4562 4563
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4564 4565 4566 4567
    """

    def __init__(self, graph, for_test=False):
        """
4568 4569
        Construct an IrGraph using core.Graph.

4570 4571 4572 4573 4574 4575 4576 4577 4578
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4579 4580 4581 4582
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4583 4584 4585
        Warns:
            The method only clones the graph structure, not its attributes.

4586 4587 4588
        Returns:
            IrGraph: A new and duplicated graph.
        """
4589
        g = self.graph.clone()
4590 4591
        return IrGraph(g, self._for_test)

4592
    def is_test(self):
4593 4594 4595
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4596 4597
        return self._for_test

W
WangZhen 已提交
4598
    def all_nodes(self):
4599 4600 4601
        """
        Return all nodes included in the graph as a set.
        """
4602
        return {IrNode(node) for node in self.graph.nodes()}
4603

4604
    def all_var_nodes(self):
4605 4606 4607
        """
        Return all variable nodes included in the graph as a set.
        """
4608
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4609

4610
    def all_persistable_nodes(self):
4611 4612 4613
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4614 4615 4616 4617 4618
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4619
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4620

4621
    def all_op_nodes(self):
4622 4623 4624
        """
        Return all operator nodes included in the graph as a set.
        """
4625
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4626

4627 4628 4629 4630 4631 4632
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4633
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4634 4635 4636 4637 4638 4639 4640 4641 4642
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4643
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4655
            IrVarNode: the created persistable variable node.
4656
        """
4657 4658 4659 4660 4661
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4662
        return IrVarNode(self.graph.create_var_node(var_desc))
4663 4664

    def create_var_node(self, name, var_type, shape, var_dtype):
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4676
            IrVarNode: the created variable node.
4677 4678
        """

4679 4680 4681 4682
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4683
        return IrVarNode(self.graph.create_var_node(var_desc))
4684

4685 4686 4687 4688 4689 4690
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4691
    def create_var_node_from_desc(self, var_desc):
4692 4693 4694 4695 4696 4697 4698 4699
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4700
            IrVarNode: the created variable node.
4701
        """
4702
        return IrVarNode(self.graph.create_var_node(var_desc))
4703 4704

    def create_op_node(self, op_type, attrs, inputs, outputs):
4705 4706 4707 4708 4709 4710 4711
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4712
            outputs(dict): the outputs of the operator node.
4713 4714

        Returns:
4715
            IrOpNode: the created operator node.
4716
        """
4717 4718
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4719
        for attr, value in six.iteritems(attrs):
4720
            self._update_desc_attr(op_desc, attr, value)
4721
        for input_name, var_nodes in six.iteritems(inputs):
4722 4723 4724 4725
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4726
        for output_name, var_nodes in six.iteritems(outputs):
4727 4728 4729 4730
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4731
        return IrOpNode(self.graph.create_op_node(op_desc))
4732 4733

    def create_op_node_from_desc(self, op_desc):
4734 4735 4736 4737 4738 4739 4740
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4741
            IrOpNode: the created operator node.
4742
        """
4743
        return IrOpNode(self.graph.create_op_node(op_desc))
4744 4745

    def update_input_link(self, old_input_node, new_input_node, op_node):
4746 4747 4748 4749
        """
        Update the input's link of a operator node.

        Args:
4750 4751 4752
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4753
        """
4754
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4755
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4756
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4757 4758 4759 4760
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4761
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4762

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4773
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4774
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4775 4776 4777 4778 4779 4780
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4781
    def link_to(self, node_in, node_out):
4782 4783 4784 4785
        """
        Connect two nodes.

        Args:
4786 4787
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4788
        """
4789 4790 4791 4792
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4793 4794
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4795 4796

    def safe_remove_nodes(self, remove_nodes):
4797 4798 4799 4800 4801 4802 4803
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4804
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4805 4806 4807 4808
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4809 4810
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4811

Z
Zhen Wang 已提交
4812 4813 4814 4815 4816 4817 4818 4819
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4820
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4821 4822 4823 4824
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4825
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4826 4827 4828
                        ]
                    else:
                        var_nodes[each_var_name].append(
4829 4830
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4831 4832
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4833
    def has_circle(self):
4834 4835 4836 4837 4838 4839
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4840 4841 4842
        return core.has_circle(self.graph)

    def graph_num(self):
4843 4844 4845 4846 4847 4848
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4849 4850 4851
        return core.graph_num(self.graph)

    def topology_sort(self):
4852 4853 4854
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4855
        Notes: the `graph` can not contain a circle.
4856 4857

        Returns:
Z
Zhen Wang 已提交
4858
            list(IrNode): nodes in topology order.
4859
        """
4860
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4861
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4862 4863

    def build_adjacency_list(self):
4864 4865 4866 4867
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4868
            dict{IrNode: set(IrNode)}: the adjacency list.
4869
        """
4870 4871 4872 4873 4874
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4875

4876 4877 4878 4879 4880 4881 4882 4883
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4884
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4885 4886 4887 4888 4889
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4890 4891
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
4892 4893 4894
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path +
                                          ' -o ' + pdf_save_path,
                                          shell=True)
4895 4896 4897 4898 4899
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4900
        remove_ctr_vars = set()
4901
        if remove_ctr_var:
4902
            for node in self.all_var_nodes():
4903 4904 4905
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4906 4907
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4908 4909
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4910 4911 4912 4913 4914 4915
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4916 4917 4918 4919
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4920 4921
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4922 4923 4924 4925 4926 4927 4928
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4929 4930 4931
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4932
        WARN: When the graph includes backward operator nodes, the
4933 4934 4935 4936 4937 4938
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4939
        convert_pass = core.get_pass('graph_to_program_pass')
4940 4941
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4942 4943 4944 4945
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4946 4947 4948 4949 4950 4951 4952 4953
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4954 4955
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4956 4957
        return target_node

4958 4959 4960 4961
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
4962 4963 4964 4965 4966
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4967
            desc.set_block_attr(name, val.desc)
4968
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4969 4970 4971 4972 4973 4974 4975 4976
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4977
class Program(object):
D
dzhwinter 已提交
4978
    """
4979
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4980
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4981
    it will contain nested block.
4982

J
Jiabin Yang 已提交
4983 4984 4985
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4986

J
Jiabin Yang 已提交
4987
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4988
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4989 4990 4991 4992 4993 4994 4995
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4996
    **Notes**:
4997 4998 4999
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5000 5001

    Returns:
J
Jiabin Yang 已提交
5002
        Program: An empty Program.
D
dzhwinter 已提交
5003 5004

    Examples:
5005 5006
        .. code-block:: python

5007 5008 5009 5010
            import paddle
            import paddle.static as static

            paddle.enable_static()
5011

5012 5013 5014 5015 5016
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5017
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5018 5019 5020

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5021 5022 5023

    """

5024 5025
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5026 5027
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5028 5029
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5030
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5031
        self.__op_role_var = []
T
tangwei12 已提交
5032

5033 5034
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5035
        self._is_distributed = False
5036
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5037
        self._is_chief = False
5038 5039 5040
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5041
        self._endpoints = []
5042 5043 5044
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5045
        self._trainers_endpoints = []
5046
        # the distributed lookup table names
T
tangwei12 已提交
5047
        self._distributed_lookup_table = None
5048 5049 5050

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5051 5052
        self._use_lamb = False

5053 5054 5055
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5056

5057 5058 5059
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5060
        self._program_config = None
5061

H
hutuxian 已提交
5062 5063 5064
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5065 5066 5067
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5068 5069 5070
        # appending gradients times
        self._appending_grad_times = 0

5071 5072 5073 5074
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

5075 5076
        # compiled program, i.e. Graph
        self._graph = None
5077 5078
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5079

5080
    def _find_var_class_kwargs(self, new_desc):
5081 5082 5083 5084 5085 5086 5087 5088
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5089 5090 5091 5092
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5093 5094
            if (idx > (len(self.blocks) - 1)):
                self._create_block()
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5105 5106 5107 5108 5109 5110
                    'type':
                    new_var_desc.type(),
                    'name':
                    new_var_desc.name(),
                    'shape':
                    get_var_desc_attr_or_none(new_var_desc, "shape", [
5111 5112 5113 5114
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5115 5116
                    'dtype':
                    get_var_desc_attr_or_none(new_var_desc, "dtype", [
5117 5118 5119 5120 5121 5122 5123 5124 5125
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
                    'error_clip':
                    old_var.error_clip if old_var is not None else None,
                    'stop_gradient':
                    old_var.stop_gradient if old_var is not None else False,
                    'is_data':
                    old_var.is_data if old_var is not None else False,
                    'need_check_feed':
                    new_var_desc.need_check_feed(),
                    'belong_to_optimizer':
                    old_var.belong_to_optimizer
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5166
        assert block_num == self.desc.num_blocks()
5167 5168

        # clear old blocks and desc
5169 5170 5171 5172 5173 5174 5175 5176 5177
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5178

5179
        del desc
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5209 5210
                import paddle
                import paddle.static as static
5211

5212 5213 5214
                paddle.enable_static()

                prog = static.default_main_program()
5215 5216 5217 5218 5219
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5220
                prog1 = static.default_main_program()
5221 5222 5223 5224 5225 5226 5227 5228
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5229
    @property
5230
    def _op_role(self):
Y
yuyang18 已提交
5231 5232 5233 5234 5235 5236 5237 5238
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5239
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5240 5241 5242 5243
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5244 5245
        return self._current_role

5246 5247
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5248 5249 5250
        self._current_role = role

    @property
5251
    def _op_role_var(self):
Y
yuyang18 已提交
5252
        """
5253
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5254

5255
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5256 5257 5258

        Notes: This is a very low-level API. Users should not use it directly.
        """
5259
        return self.__op_role_var
Y
yuyang18 已提交
5260

5261
    @signature_safe_contextmanager
5262 5263 5264 5265 5266
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5267 5268 5269 5270
        try:
            yield
        finally:
            self._current_role = tmp_role
5271

S
rename  
sneaxiy 已提交
5272
    @signature_safe_contextmanager
W
Wu Yi 已提交
5273
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5274 5275 5276 5277 5278 5279 5280
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5281
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5282 5283 5284

        Examples:

5285
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5286
            >>> p, g = backward(...)
W
Wu Yi 已提交
5287
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5288 5289
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5290
        tmp_role = self._current_role
5291
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5292

Y
yuyang18 已提交
5293 5294
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5295
        self.__op_role_var = [
5296 5297 5298
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5299 5300 5301 5302 5303
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5304

S
rename  
sneaxiy 已提交
5305
    @signature_safe_contextmanager
X
Xin Pan 已提交
5306
    def _lr_schedule_guard(self, is_with_opt=False):
5307 5308 5309 5310 5311 5312 5313
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5314 5315 5316 5317
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5318 5319 5320

        Examples:

5321
            >>> import paddle.fluid as fluid
5322 5323 5324 5325
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5326 5327

        tmp_role = self._current_role
5328
        tmp_var = self.__op_role_var
5329

5330 5331
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5332 5333
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5334
        # TODO(typhoonzero): how to set target learning rate var
5335
        self.__op_role_var = []
5336 5337 5338 5339 5340
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5341

5342
    def __str__(self):
Y
yuyang18 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5372 5373
            import paddle
            import paddle.static as static
5374

5375 5376 5377
            paddle.enable_static()

            cur_program = static.Program()
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5389
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5390 5391 5392 5393
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5394
            program_str += '\n'
5395
        return program_str
Y
Yang Yang(Tony) 已提交
5396

F
fengjiayi 已提交
5397 5398 5399
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5400

J
Jiabin Yang 已提交
5401 5402 5403
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5404

J
Jiabin Yang 已提交
5405
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5406

H
haowang101779990 已提交
5407
        Returns:
J
Jiabin Yang 已提交
5408
            str: The debug string describe current Program.
Y
yuyang18 已提交
5409 5410

        Raises:
J
Jiabin Yang 已提交
5411
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5412

5413 5414 5415
        Examples:
            .. code-block:: python

5416 5417 5418 5419
                import paddle
                import paddle.static as static

                paddle.enable_static()
5420

5421 5422 5423
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5424
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5425
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5426
                print("program string without detail: {}".format(prog_string))
5427
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5428
        """
5429 5430 5431 5432 5433 5434 5435 5436 5437
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5438 5439 5440 5441 5442 5443
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5444 5445
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5446 5447
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5448

W
Wu Yi 已提交
5449
    def _get_desc(self):
Y
yuyang18 已提交
5450 5451 5452 5453 5454 5455 5456
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5457 5458
        return self.desc

X
version  
Xin Pan 已提交
5459 5460 5461
    def _version(self):
        return self.desc._version()

5462
    def clone(self, for_test=False):
Y
yuyang18 已提交
5463
        """
5464
        .. note:::
5465 5466
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5467
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5468

5469
        Create a new Program with forward content of original one when ``for_test=True``.
5470
        Create a new Program as same as the original one when ``for_test=False``.
5471

5472
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5473 5474 5475
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5476

5477 5478
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5479 5480
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5481
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5482

J
Jiabin Yang 已提交
5483
        For Example:
5484
          ::
L
Luo Tao 已提交
5485

5486 5487 5488 5489 5490 5491
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5492
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5493
            loss = paddle.mean(pred)
5494
            # Here we use clone before Momentum
5495 5496
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5497
            optimizer.minimize(loss)
5498

J
Jiabin Yang 已提交
5499
        Args:
5500

5501 5502
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5503

J
Jiabin Yang 已提交
5504
        Returns:
5505
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5506

Y
yuyang18 已提交
5507 5508 5509

        Examples:

5510 5511 5512 5513 5514 5515 5516
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5533
            1. To clone a test program, the sample code is:
5534 5535 5536
                .. code-block:: python

                    import six
5537 5538 5539 5540 5541 5542
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5555 5556
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5557 5558 5559

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5560 5561 5562
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5563
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5564 5565
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5566
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5567 5568
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5569
                            test_program = train_program.clone(for_test=True)
5570
                    print_prog(test_program)
J
Jiabin Yang 已提交
5571 5572 5573 5574

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5575
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5576 5577 5578 5579
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5580 5581 5582
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5583 5584 5585
                            sgd.minimize(avg_loss)


5586
            2. The clone method can be avoid if you create program for training and program for testing individually.
5587 5588 5589
                .. code-block:: python

                    import six
5590 5591 5592 5593 5594 5595
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5607

5608
                    def network():
5609
                        img = static.data(name='image', shape=[None, 784])
5610
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5611 5612
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5613
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5614 5615
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5616 5617
                        return avg_loss

5618 5619 5620 5621 5622
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5623
                            avg_loss = network()
5624
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5625
                            sgd.minimize(avg_loss)
5626
                    # the test startup program is not used.
5627 5628
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5629 5630
                            avg_loss = network()
                    print_prog(test_program_2)
5631

5632
            The two code snippets above will generate and print same programs.
5633
        """
5634

T
tangwei12 已提交
5635
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5636 5637 5638
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5639
        pruned_origin_block_id_map = None
5640
        if for_test:
5641 5642 5643 5644 5645 5646 5647 5648 5649
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5650
        else:
5651
            p = Program()
G
gongweibao 已提交
5652 5653
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5654
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5655 5656 5657
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5658 5659

            p._current_role = self._current_role
5660
            p.__op_role_var = self.__op_role_var
5661
            p._appending_grad_times = self._appending_grad_times
5662 5663
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5664

T
tangwei12 已提交
5665
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5666
            # its desc.
W
Wu Yi 已提交
5667
            p._sync_with_cpp()
5668

W
Wu Yi 已提交
5669
        p._copy_param_info_from(self)
5670
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5671
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5672
        return p
5673

5674
    def _prune(self, targets):
Y
yuyang18 已提交
5675 5676 5677 5678 5679 5680 5681 5682
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5683
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5684 5685 5686 5687
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5688
        """
5689
        return self._prune_with_input([], targets)
5690 5691

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5692
        """
5693
        Prune operators and variables which are not needed to generate
5694 5695
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5696 5697 5698 5699 5700 5701 5702

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5703
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5704 5705 5706 5707 5708 5709
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5710
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5711 5712 5713
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5714 5715
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5716 5717
        if not isinstance(targets, list):
            targets = [targets]
5718 5719 5720

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5721 5722 5723
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5724

5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5741 5742 5743 5744
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5745 5746 5747
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5748
                else:
5749 5750 5751
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5752 5753 5754 5755 5756 5757

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5758 5759 5760
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5761

5762 5763 5764 5765 5766 5767 5768 5769 5770
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5771
                        # Skip optimize op except for optimize op in targets,
5772 5773 5774 5775 5776
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5777

5778
                if target_op is not None:
5779 5780 5781
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5782

5783
        res = Program()
5784 5785
        res.desc, pruned_origin_block_id_map = core.prune(
            self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
5786 5787 5788
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5789
        res._sync_with_cpp()
5790 5791 5792 5793 5794

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5795 5796
        return res

X
Xin Pan 已提交
5797
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5798
        """
F
fengjiayi 已提交
5799 5800 5801 5802 5803
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5804
        3. change the :code:`is_test`
Y
yuyang18 已提交
5805 5806 5807
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5808
        Args:
X
Xin Pan 已提交
5809 5810
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5811

Y
yuyang18 已提交
5812 5813 5814 5815 5816 5817
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5818
        res = Program()
5819
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5820 5821 5822 5823

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5824
        if prune_read_op:
5825 5826 5827 5828 5829 5830 5831 5832 5833
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5834
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5835 5836

        # change all `is_test` attributes to True
M
minqiyang 已提交
5837
        for i in six.moves.range(res.desc.num_blocks()):
5838
            block = res.desc.block(i)
M
minqiyang 已提交
5839
            for j in six.moves.range(block.op_size()):
5840 5841
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5842
                    op._set_attr('is_test', True)
5843 5844 5845
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5846 5847 5848
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5849
        res._sync_with_cpp()
5850 5851
        return res

5852
    def _remove_training_info(self, clip_extra=True):
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

5872 5873
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
5874
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
5875

5876 5877 5878 5879 5880
        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5881 5882
            if not clip_extra:
                continue
5883 5884 5885 5886
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
5887 5888 5889

                extra_attrs_map = core.get_op_extra_attrs(op.type())

5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
5903 5904 5905
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
5919 5920 5921
                # The extra output of op will be removed in the future
                # for name in remove_output_list:
                #     op.remove_output(name)
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931

                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
5932
                remove_attr_list = []
5933 5934 5935 5936 5937 5938
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
5939 5940 5941
                    if len(extra_attrs_map) > 0:
                        if name in extra_attrs_map or name in common_clipped_attrs_list:
                            op.remove_attr(name)
5942
                        continue
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5953 5954
        return res

5955 5956
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5957
        """
5958
        .. note::
5959
            1. All information about parameters will be lost after serialization;
5960
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5961

5962 5963
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5964

J
Jiabin Yang 已提交
5965
        Args:
Y
yuyang18 已提交
5966

J
Jiabin Yang 已提交
5967
            binary_str_type (str): the binary prootbuf string.
5968

J
Jiabin Yang 已提交
5969 5970
        Returns:
            Program: A deserialized Program.
5971 5972 5973 5974

        Examples:
            .. code-block:: python

5975 5976 5977 5978
                import paddle
                import paddle.static as static

                paddle.enable_static()
5979

5980 5981 5982 5983
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5984

5985
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5986

5987
                    z = paddle.matmul(x=x, y=y)
5988

5989 5990
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5991

5992
                    print(static.default_main_program())
5993
                    print(prog_restored)
Y
yuyang18 已提交
5994
        """
5995 5996
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5997
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5998
        p._sync_with_cpp()
5999
        return p
Y
Yu Yang 已提交
6000

6001
    @staticmethod
6002
    def _construct_from_desc(desc):
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6018 6019
    @property
    def random_seed(self):
Y
yuyang18 已提交
6020
        """
J
Jiabin Yang 已提交
6021
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6022 6023
        the random seed from random device.

6024
        .. note::
6025
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6026 6027 6028

        Returns:
            int64: Random seed in current Program
6029

6030 6031 6032 6033

        Examples:
            .. code-block:: python

6034 6035 6036
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6037

6038 6039 6040
                paddle.enable_static()

                prog = static.default_main_program()
6041
                random_seed = prog.random_seed
6042
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6043 6044 6045
                print(random_seed)
                ## 0
                ## the default random seed is 0
6046

6047
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6048
                prog.random_seed = 1
6049
                z_var = F.dropout(x_var, 0.7)
6050

6051
                print(prog.random_seed)
6052 6053
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6054
        """
D
dzhwinter 已提交
6055 6056
        return self._seed

Q
qiaolongfei 已提交
6057 6058
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6059
        """
6060 6061
        The number of :ref:`api_guide_Block_en`  in this Program.

6062
        .. note::
6063
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6064 6065 6066

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6067

6068 6069 6070 6071

        Examples:
            .. code-block:: python

6072 6073 6074 6075
                import paddle
                import paddle.static as static

                paddle.enable_static()
6076

6077
                prog = static.default_main_program()
6078 6079
                num_blocks = prog.num_blocks
                print(num_blocks)
6080

6081 6082
                # print result:
                # 1
Y
yuyang18 已提交
6083
        """
Q
qiaolongfei 已提交
6084 6085
        return self.desc.num_blocks()

D
dzhwinter 已提交
6086 6087 6088
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6089 6090 6091
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
6092 6093
        self._seed = seed

Y
Yu Yang 已提交
6094
    def __repr__(self):
6095
        return self.__str__()
6096

Y
Yu Yang 已提交
6097
    def global_block(self):
Y
yuyang18 已提交
6098
        """
6099 6100
        .. note::
            This API has no effect in Dygraph mode.
6101 6102 6103

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6104 6105
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6106

6107 6108 6109 6110

        Examples:
            .. code-block:: python

6111 6112 6113 6114
                import paddle
                import paddle.static as static

                paddle.enable_static()
6115

6116
                prog = static.default_main_program()
6117 6118
                gb_block = prog.global_block()
                print(gb_block)
6119

Y
yuyang18 已提交
6120
        """
Y
Yu Yang 已提交
6121 6122
        return self.blocks[0]

Q
Qiao Longfei 已提交
6123
    def block(self, index):
Y
yuyang18 已提交
6124
        """
6125 6126
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6127

6128 6129
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6130 6131
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6132

J
Jiabin Yang 已提交
6133 6134
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6135 6136 6137 6138

        Examples:
            .. code-block:: python

6139 6140 6141 6142
                import paddle
                import paddle.static as static

                paddle.enable_static()
6143

6144
                prog = static.default_main_program()
6145 6146
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6147
        """
Q
Qiao Longfei 已提交
6148 6149
        return self.blocks[index]

Y
Yu Yang 已提交
6150
    def current_block(self):
Y
yuyang18 已提交
6151
        """
6152 6153
        .. note::
            This API has no effect in Dygraph mode.
6154

J
Jiabin Yang 已提交
6155 6156
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6157

J
Jiabin Yang 已提交
6158 6159
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6160

6161 6162 6163
        Examples:
            .. code-block:: python

6164 6165 6166 6167
                import paddle
                import paddle.static as static

                paddle.enable_static()
6168

6169
                prog = static.default_main_program()
6170 6171
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6172
        """
Y
Yu Yang 已提交
6173 6174
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6175
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6176 6177 6178 6179 6180
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6181

Y
yuyang18 已提交
6182 6183 6184 6185 6186
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6187
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
6188 6189 6190
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6191 6192 6193 6194
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6195
    def _rollback(self):
Y
yuyang18 已提交
6196 6197 6198 6199 6200
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6201 6202
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6203
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6214 6215 6216
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6217
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6218

W
Wu Yi 已提交
6219
    def _copy_param_info_from(self, other):
6220
        """
6221
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6222

Y
yuyang18 已提交
6223 6224 6225
        Notes: This is a very low level API. Users should not invoke it
        directly.

6226 6227 6228 6229 6230 6231 6232
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6233 6234 6235
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6236

W
Wu Yi 已提交
6237
        self.global_block()._copy_param_info_from(other.global_block())
6238

6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6250 6251 6252
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
6253 6254
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6255
        self._parameters_on_pservers = other._parameters_on_pservers
6256
        self._endpoints = other._endpoints
6257
        self._ps_endpoint = other._ps_endpoint
6258 6259
        self._distributed_lookup_table = other._distributed_lookup_table

6260
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6261 6262
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6263

Y
yuyang18 已提交
6264 6265 6266
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6267 6268
        Args:
            other(Program): Other program
6269
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6270 6271
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6272
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6273 6274 6275 6276 6277

        Returns:
            None
        """
        if not isinstance(other, Program):
6278 6279 6280
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6281

6282 6283 6284 6285 6286
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6287 6288 6289

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6290 6291
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6292
            for var in list(block.vars.values()):
6293 6294 6295 6296 6297 6298 6299
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6300

6301
    def list_vars(self):
Y
yuyang18 已提交
6302
        """
6303
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6304

J
Jiabin Yang 已提交
6305
        Returns:
6306
            iterable Tensors: The Generator will yield every Tensor in this program.
6307 6308 6309 6310

        Examples:
            .. code-block:: python

6311 6312
                import paddle
                import paddle.static as static
6313

6314 6315 6316 6317 6318
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6319 6320
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6321

6322 6323
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6324
        """
6325
        for each_block in self.blocks:
6326
            for each_var in list(each_block.vars.values()):
6327 6328
                yield each_var

6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6339 6340 6341 6342
                import paddle
                import paddle.static as static

                paddle.enable_static()
6343

6344 6345
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6346
                hidden = static.nn.fc(x=data, size=10)
6347 6348
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6349 6350 6351 6352 6353 6354 6355

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6356 6357
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6368 6369 6370 6371 6372 6373 6374 6375 6376
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6377 6378 6379
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6380 6381
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6382
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6410
        # can not be imported at the begainning of this file.
6411 6412 6413 6414
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6415 6416
                "`scope` should be None or `paddle.static.Scope'` type, but received {}."
                .format(type(scope)))
6417 6418 6419 6420 6421

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6422 6423 6424
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
                    type(mode)))
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6451 6452
                    "`mode` string should be 'param', 'opt' or 'all', but received {}."
                    .format(mode))
6453 6454 6455 6456 6457 6458 6459 6460

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6461 6462
                    "Can not find Variable '{}' in the scope. Make sure it is initialized"
                    .format(var.name))
6463 6464 6465 6466 6467 6468
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6469
        Set parameters and persistable buffers in state_dict to program.
6470
        An exception will throw if shape or dtype of the parameters is not match.
6471

6472 6473 6474 6475
        .. note::
            This function MUST called after run start_up_program

        Args:
6476
            state_dict(dict): the dict store parameters and persistable buffers.
6477 6478
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6479
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6480 6481
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6482

6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
6532 6533 6534
                warnings.warn(
                    ("Skip loading for '{0}'. Because '{0}' not in the program."
                     .format(name)))
6535

Y
Yu Yang 已提交
6536

6537
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6538
class Parameter(Variable):
6539
    """
6540
    Parameter is derived from Variable. A parameter is a persistable
6541
    Variable, and will be updated by optimizers after each iteration.
6542
    The training of a neural network is essentially the updating of
6543 6544
    its parameters.

6545
    Relative to a general Variable, a Parameter has several its own
6546 6547
    member variables:

6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6558
        need_clip (bool): Whether the parameter gradient need to be cliped
6559
            in optimizer. Default is True.
6560 6561
    """

6562 6563 6564 6565 6566 6567
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6568 6569 6570 6571 6572
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6573
        if len(shape) == 0:
6574 6575
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6576 6577 6578

        for each in shape:
            if each < 0:
6579 6580 6581
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6582

6583 6584 6585 6586 6587 6588 6589
        Variable.__init__(self,
                          block,
                          persistable=True,
                          shape=shape,
                          dtype=dtype,
                          type=type,
                          **kwargs)
Y
Yu Yang 已提交
6590 6591 6592 6593
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6594 6595
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6596
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6597

6598 6599
        self.need_clip = kwargs.get('need_clip', True)

6600 6601
        self.is_distributed = False

6602 6603
        self.is_parameter = True

F
fengjiayi 已提交
6604
    def __str__(self):
6605
        return self._to_readable_code()
F
fengjiayi 已提交
6606

F
update  
fengjiayi 已提交
6607 6608 6609
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6610

F
update  
fengjiayi 已提交
6611 6612 6613 6614 6615 6616 6617 6618
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6619 6620 6621 6622 6623 6624 6625 6626 6627
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6628
        """
6629 6630
        assert isinstance(throw_on_error, bool) and isinstance(
            with_details, bool)
F
update  
fengjiayi 已提交
6631 6632 6633
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6634
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6635
            for attr_name in additional_attr:
6636 6637
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6638 6639
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6640 6641 6642 6643
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6644

6645 6646
class ParamBase(core.VarBase):
    """
6647 6648
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6649
    after each iteration.
6650 6651 6652
    The training of a neural network is essentially the updating of
    its ParamBase.

6653
    Relative to a general Tensor, a ParamBase has several its own
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6666
        need_clip (bool): Whether the parameter gradient need to be cliped
6667
            in optimizer. Default is True.
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6693 6694 6695 6696
        super(ParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6697

6698 6699
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6700 6701 6702 6703 6704 6705 6706

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6707 6708
        self.need_clip = kwargs.get('need_clip', True)

6709
        self.is_distributed = kwargs.get('is_distributed', False)
6710
        # self.block = default_main_program().global_block()
6711

6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6725
    def __str__(self):
6726
        """
6727
        Convert a ParamBase object to a readable string.
6728

6729
        Returns(str): A readable string.
6730 6731 6732 6733

        Examples:
            .. code-block:: python

6734
                import paddle
6735 6736 6737 6738 6739 6740 6741
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6742
        """
6743 6744
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6745

6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6757

6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6776 6777 6778 6779
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6780 6781 6782 6783 6784 6785
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6786
    _core_eager_eagertensor = core.eager.Tensor
6787 6788 6789 6790 6791 6792
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
6793 6794
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6812
        need_clip (bool): Whether the parameter gradient need to be cliped
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6839 6840 6841
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6842 6843 6844 6845
        super(EagerParamBase,
              self).__init__(dtype if dtype else core.VarDesc.VarType.FP32,
                             list(shape) if shape else [], name,
                             core.VarDesc.VarType.LOD_TENSOR, True)
6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
6860 6861 6862
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
6863 6864

    def set_init_func(self, obj):
6865
        self._init_func = obj
6866 6867 6868

    @dygraph_only
    def initialize(self):
6869 6870
        assert self._init_func is not None, "Required self._init_func is not None, but received None."
        self._init_func()
6871
        # clear function handle to release resource
6872
        self._init_func = None
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6887 6888 6889 6890 6891 6892 6893
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
        assert self._init_op_creator is not None, "Required self._init_op_creator is not None, but received None."
        self._init_op_creator(block)

6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6949 6950
        return new_param

6951 6952 6953
    __repr__ = __str__


Y
Yu Yang 已提交
6954
# program is a global instance.
Y
Yu Yang 已提交
6955 6956
_main_program_ = Program()
_startup_program_ = Program()
6957
_startup_program_._is_start_up_program_ = True
6958

6959

6960
def default_startup_program():
Y
Yu Yang 已提交
6961
    """
Y
yuyang18 已提交
6962 6963
    Get default/global startup program.

6964
    The :code:`paddle.nn` function will append the initialization operators into startup program.
6965
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
6966

6967 6968
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6969

6970 6971
    Returns:
        Program: current default startup program.
6972

6973
    Returns type:
6974 6975 6976 6977

    Examples:
        .. code-block:: python

6978
            import paddle
6979

6980
            paddle.enable_static()
6981 6982 6983 6984
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6985
    """
Y
Yu Yang 已提交
6986
    return _startup_program_
6987

6988

6989
def default_main_program():
Y
Yu Yang 已提交
6990
    """
6991
    This API can be used to get ``default main program`` which store the
6992
    descriptions of Ops and tensors.
T
tangwei12 已提交
6993

6994 6995
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
6996

6997
    The ``default main program`` is the default value for ``Program`` parameter in
6998
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6999
    :code:`default_main_program` when the program is not specified.
7000

7001
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7002

Y
Yu Yang 已提交
7003
    Returns:
7004
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7005 7006 7007 7008

    Examples:
        ..  code-block:: python

7009
            import paddle
7010

7011
            paddle.enable_static()
7012
            # Sample Network:
7013 7014 7015
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7016

7017 7018 7019
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7020
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7021
    """
Y
Yu Yang 已提交
7022
    return _main_program_
Y
Yu Yang 已提交
7023 7024 7025 7026 7027


def switch_main_program(program):
    """
    Switch the main program to a new program.
7028

Y
Yu Yang 已提交
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7043
    Switch the startup program to a new program
Y
Yu Yang 已提交
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7056
@signature_safe_contextmanager
Y
Yu Yang 已提交
7057 7058
def program_guard(main_program, startup_program=None):
    """
7059 7060
    :api_attr: Static Graph

7061 7062 7063
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7064

G
guofei 已提交
7065
    Args:
7066
        main_program(Program): New main program inside ``with`` statement.
7067 7068
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7069 7070 7071
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7072
    Examples:
7073
       .. code-block:: python
T
tangwei12 已提交
7074

7075
          import paddle
Y
yuyang18 已提交
7076

7077 7078 7079 7080 7081
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7082
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7083 7084 7085

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7086

Y
Yu Yang 已提交
7087
    Examples:
7088
       .. code-block:: python
Y
yuyang18 已提交
7089

7090
          import paddle
7091

7092 7093 7094 7095 7096
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7097

Y
Yu Yang 已提交
7098
    """
7099
    from .data_feeder import check_type
7100 7101
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
7102 7103
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7104
        check_type(startup_program, 'startup_program', Program,
7105
                   'paddle.static.program_guard')
7106 7107
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7108
        startup_program = switch_startup_program(startup_program)
7109 7110 7111 7112 7113 7114
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7115 7116


W
Wu Yi 已提交
7117
def _get_var(name, program=None):
X
xuwei06 已提交
7118
    """
Y
yuyang18 已提交
7119
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7120

X
xuwei06 已提交
7121 7122 7123
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7124
        If None, default_global_program() will be used.
X
xuwei06 已提交
7125 7126 7127 7128 7129 7130 7131

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7132
    assert isinstance(program, Program)
X
xuwei06 已提交
7133 7134

    return program.global_block().var(name)
7135 7136


S
rename  
sneaxiy 已提交
7137
@signature_safe_contextmanager
L
lujun 已提交
7138 7139
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7140
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7141
    _dygraph_tracer_ = tracer
7142
    core._switch_tracer(tracer)
M
minqiyang 已提交
7143

7144 7145 7146
    try:
        yield
    finally:
7147 7148
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7149 7150


S
rename  
sneaxiy 已提交
7151
@signature_safe_contextmanager
L
lujun 已提交
7152
def _dygraph_place_guard(place):
7153 7154 7155
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7156 7157
    _set_dygraph_tracer_expected_place(place)

7158 7159 7160
    try:
        yield
    finally:
7161
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7162
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7163 7164


7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7175

7176 7177
    Note:
        The API only supports static mode.
7178 7179 7180 7181

    A context manager that specifies the device on which the OP will be placed.

    Args:
7182
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7183
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7184 7185 7186 7187 7188 7189 7190
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7191

7192
        .. code-block:: python
7193

7194
            # required: gpu
Z
Zhang Ting 已提交
7195
            import paddle
7196

Z
Zhang Ting 已提交
7197 7198 7199
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7200
            if support_gpu:
Z
Zhang Ting 已提交
7201
                place = paddle.CUDAPlace(0)
7202 7203

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7204 7205 7206
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7207

Z
Zhang Ting 已提交
7208
            with paddle.static.device_guard("cpu"):
7209
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7210 7211
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7212
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7213
                out = paddle.reshape(data1, shape=shape)
7214

Z
Zhang Ting 已提交
7215 7216
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7217 7218 7219
            result = exe.run(fetch_list=[out])
    """

7220 7221 7222 7223 7224
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7225
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7226
        raise ValueError(
7227
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7228
            "when there is no need to specify device. But received %s" % device)
7229 7230
    if index:
        device = ":".join([device, index])
7231
    pre_device = switch_device(device)
7232 7233 7234 7235
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7236 7237


7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
    assert not _non_static_mode(
    ), "cuda_graph_guard only works under static mode"
    assert core.is_compiled_with_cuda(
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7269 7270 7271
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7272
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7273 7274 7275 7276 7277 7278 7279

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7280 7281
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7282 7283 7284 7285
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7286 7287
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7288 7289 7290 7291 7292 7293 7294 7295
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7296
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7297 7298 7299 7300 7301 7302 7303 7304 7305 7306

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7307
            import paddle
G
guofei 已提交
7308 7309

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7310
            res = paddle.get_flags(flags)
G
guofei 已提交
7311 7312 7313 7314 7315 7316
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7317 7318
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
7319 7320 7321 7322 7323 7324 7325
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
7326 7327
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7328 7329 7330 7331 7332 7333 7334 7335
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7336 7337 7338 7339 7340 7341 7342


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7343
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7344
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7345 7346 7347 7348 7349 7350 7351 7352 7353
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7354

7355 7356 7357
    if (place == "device"):
        return core.Place()

7358
    # GPU
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7374 7375

    # XPU
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7423
    raise ValueError(
7424 7425
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}."
        .format(place))
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret