framework.py 68.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18
import six
19

Y
Yu Yang 已提交
20
import numpy as np
Q
qiaolongfei 已提交
21

M
minqiyang 已提交
22
from .. import compat as cpt
23
from .proto import framework_pb2
24 25
try:
    from . import core
26
except ImportError as e:
27 28 29 30
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
31
    directory. The original error is: \n""" + cpt.get_exception_message(e))
32
except Exception as e:
33
    raise e
34
from . import unique_name
Y
Yu Yang 已提交
35

36
__all__ = [
37 38
    'Program',
    'Operator',
F
fengjiayi 已提交
39
    'Parameter',
40 41 42
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
43
    'get_var',
44
]
Y
Yu Yang 已提交
45

Q
qiaolongfei 已提交
46 47 48 49 50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
54 55
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
56 57 58
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
59

60
def convert_np_dtype_to_dtype_(np_dtype):
61 62
    """
    Convert the data type in numpy to the data type in Paddle
63

64
    Args:
65
        np_dtype(np.dtype): the data type in numpy.
66

67 68
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
69 70

    """
71 72
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
73
        return core.VarDesc.VarType.FP32
74
    elif dtype == np.float64:
75
        return core.VarDesc.VarType.FP64
76
    elif dtype == np.float16:
77
        return core.VarDesc.VarType.FP16
78
    elif dtype == np.int32:
79
        return core.VarDesc.VarType.INT32
80
    elif dtype == np.int16:
81
        return core.VarDesc.VarType.INT16
82
    elif dtype == np.int64:
83
        return core.VarDesc.VarType.INT64
84
    elif dtype == np.bool:
85
        return core.VarDesc.VarType.BOOL
86 87
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
88 89
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
90
    else:
M
minqiyang 已提交
91
        raise ValueError("Not supported numpy dtype %s" % dtype)
92 93 94


def dtype_is_floating(dtype):
95 96 97
    """
    Check the data type is floating or not.
    Args:
98
        dtype(np.dtype|core.VarDesc.VarType): data type.
99 100 101 102 103
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
104
    if not isinstance(dtype, core.VarDesc.VarType):
105 106
        dtype = convert_np_dtype_to_dtype_(dtype)

107 108 109 110
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
111 112


Y
Yang Yang(Tony) 已提交
113
def _debug_string_(proto, throw_on_error=True):
114 115 116 117 118 119 120 121 122 123 124
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
125
    error_fields = list()
Y
Yang Yang(Tony) 已提交
126
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
127 128
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
129 130 131
    return proto.__str__()


Y
Yu Yang 已提交
132
class Variable(object):
133
    """
134 135 136
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
137
    two variables in different blocks could have the same name.
138

139 140
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
141

142
    Most of a Variable's member variables can be setted to be None. It mean
143
    it is not available or will be specified later.
144 145

    Args:
146
        block(Block): The block that the variable belongs to.
147 148
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
149 150
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
151
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
152
            Some kinds of variable do not contain shape, just set it to None.
153 154 155
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
156
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
157
            series data.
158
            Default: None
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
181 182
    """

Y
Yu Yang 已提交
183 184
    def __init__(self,
                 block,
Y
Yu Yang 已提交
185
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
186 187 188 189
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
190
                 capacity=None,
Q
QI JUN 已提交
191
                 persistable=None,
F
fengjiayi 已提交
192
                 error_clip=None,
Y
Yu Yang 已提交
193
                 stop_gradient=False,
F
fengjiayi 已提交
194
                 is_data=False,
Y
Yu Yang 已提交
195
                 **kwargs):
Y
Yu Yang 已提交
196
        self.block = block
F
fengjiayi 已提交
197
        self.error_clip = error_clip
Y
Yu Yang 已提交
198 199

        if name is None:
Y
Yu Yang 已提交
200
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
201
        is_new_var = False
M
minqiyang 已提交
202
        name = cpt.to_text(name)
M
minqiyang 已提交
203
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
204 205

        if self.desc is None:
M
minqiyang 已提交
206
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
207
            is_new_var = True
Y
Yu Yang 已提交
208

Y
Yu Yang 已提交
209 210 211 212 213 214 215 216
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
217
        if shape is not None:
Y
Yu Yang 已提交
218
            if is_new_var:
219
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
220 221 222 223 224 225 226 227
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
228
        if dtype is not None:
229
            if not isinstance(dtype, core.VarDesc.VarType):
230
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
231
            if is_new_var:
F
fengjiayi 已提交
232
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
233
            else:
F
fengjiayi 已提交
234
                old_dtype = self.dtype
Q
QI JUN 已提交
235
                if dtype != old_dtype:
Y
Yu Yang 已提交
236 237 238 239 240
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
241 242

        if lod_level is not None:
Y
Yu Yang 已提交
243
            if is_new_var:
244
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
245 246 247 248 249 250 251
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
252 253 254 255 256 257 258 259 260 261 262
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

263 264 265 266 267 268 269 270
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
271
        self.block.vars[name] = self
Y
Yu Yang 已提交
272
        self.op = None
Y
Yu Yang 已提交
273
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
274
        self.is_data = is_data
Y
Yu Yang 已提交
275

276
    def __str__(self):
Y
Yang Yang(Tony) 已提交
277 278
        return self.to_string(True)

F
update  
fengjiayi 已提交
279
    def to_string(self, throw_on_error, with_details=False):
280 281 282 283
        """
        Get debug string.

        Args:
284 285
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
286
            with_details(bool): more details about variables and parameters
287 288
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
289

290 291
        Returns:
            str: The debug string.
292
        """
F
update  
fengjiayi 已提交
293 294
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
295
        protostr = self.desc.serialize_to_string()
296
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
297 298 299 300
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
301 302
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
303
        return res_str
304 305 306

    __repr__ = __str__

W
Wu Yi 已提交
307
    def _set_desc(self, input):
308 309 310 311 312 313 314 315 316
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
317 318
        self.desc = input

319 320 321 322
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
323 324 325 326
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
327 328
    @property
    def name(self):
M
minqiyang 已提交
329
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
330

T
typhoonzero 已提交
331 332 333 334
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
335 336 337
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
338
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
339 340

    @property
F
fengjiayi 已提交
341 342
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
343 344 345

    @property
    def lod_level(self):
346
        return self.desc.lod_level()
Y
Yu Yang 已提交
347

Y
Yu Yang 已提交
348 349 350 351
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
352
    def _set_error_clip(self, error_clip):
353 354 355 356 357 358 359 360 361
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
362 363
        self.error_clip = error_clip

Y
Yu Yang 已提交
364

F
fengjiayi 已提交
365 366 367
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
368

369 370
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
371 372 373 374
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
375
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
376 377 378 379 380
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
381 382 383 384
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
385 386 387 388 389 390 391 392 393
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
394
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
395 396 397 398 399 400
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
401 402 403 404 405 406 407 408
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
409 410
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
411 412
        return self.op_proto_map[type]

413 414 415 416 417 418 419
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
420

Y
Yu Yang 已提交
421
class Operator(object):
422
    """
423 424 425 426 427 428 429
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
430
        type(str): The type of operator. Default None.
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
451
        Block.append_op or Block._prepend_op instead.
452 453 454 455 456 457 458 459 460 461

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
462
    """
463 464 465 466 467
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
468
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
469
    }
470

Y
Yu Yang 已提交
471 472
    def __init__(self,
                 block,
Y
Yu Yang 已提交
473
                 desc,
Y
Yu Yang 已提交
474 475 476 477 478
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
479
        self.desc = desc
G
gongweibao 已提交
480 481 482 483 484
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
485 486 487 488
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
489 490
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
491 492 493

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
494 495
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
496

G
gongweibao 已提交
497 498
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
499

F
fengjiayi 已提交
500 501 502 503 504
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
505
        self.desc.set_type(type)
F
fengjiayi 已提交
506
        proto = OpProtoHolder.instance().get_op_proto(type)
507

Y
Yang Yang(Tony) 已提交
508 509
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
510
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
511 512
                    return True
            return False
Q
QI JUN 已提交
513

Y
Yang Yang(Tony) 已提交
514 515 516 517 518 519 520
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
521 522 523 524
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
525 526
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
527 528 529
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
530
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
531
                            in_arg_names.append(arg)
532 533
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
534
                        else:
M
minqiyang 已提交
535
                            in_arg_names.append(cpt.to_text(arg.name))
536
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
537 538
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
539

Y
Yu Yang 已提交
540
        if outputs is not None:
541 542 543 544 545 546 547
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
548 549
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
550 551 552
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
553

F
fengjiayi 已提交
554
            for out_proto in proto.outputs:
555 556 557 558
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
559 560
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
561 562 563
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
564
                    out_arg_names.append(cpt.to_text(arg.name))
565 566
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
567

G
gongweibao 已提交
568 569
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
570
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
571
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
572
                attr_name = attr.name
G
gongweibao 已提交
573
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
574
                    continue
G
gongweibao 已提交
575
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
576 577
                self._update_desc_attr(attr_name, attr_val)

578
        self.desc.check_attrs()
579
        if self.has_kernel(type):
Q
QI JUN 已提交
580
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
581
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
582

583 584 585
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
586
    def to_string(self, throw_on_error):
587
        """
588 589
        Get debug string.

590
        Args:
591 592
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
593

594 595
        Returns:
            str: The debug string.
596 597

        """
598
        protostr = self.desc.serialize_to_string()
599
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
600 601 602 603
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
604 605 606

    __repr__ = __str__

F
fengjiayi 已提交
607 608 609 610 611
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
612
        """
613
        Get the input arguments according to the input parameter name.
614

615 616
        Args:
            name(str): The input parameter name.
617

618 619 620
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
621
        """
F
fengjiayi 已提交
622 623
        return self.desc.input(name)

T
typhoonzero 已提交
624
    def rename_input(self, old_name, new_name):
625 626 627 628 629 630 631 632 633 634
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
635 636 637
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
638 639 640 641 642 643 644 645 646 647
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
648 649
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
650 651 652 653
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
654 655 656 657 658 659 660 661
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
662
    def output(self, name):
663
        """
664
        Get output arguments by the output parameter name.
665

666 667
        Args:
            name(str): The output parameter name.
668

669 670 671
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
672
        """
F
fengjiayi 已提交
673 674 675 676 677 678
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

679 680 681 682 683 684 685 686
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
687
    def has_attr(self, name):
688
        """
689 690
        Whether this Operator has the attribute with name or not.

691
        Args:
692
            name(str): the attribute name.
693

694 695
        Returns:
            bool: True if has this attribute.
696 697

        """
F
fengjiayi 已提交
698 699 700
        return self.desc.has_attr(name)

    def attr_type(self, name):
701
        """
702
        Get the type of attribute by attribute's name.
703

704 705
        Args:
            name(str): the attribute name.
706

707 708
        Returns:
            core.AttrType: the attribute type.
709
        """
F
fengjiayi 已提交
710 711
        return self.desc.attr_type(name)

Y
yuyang18 已提交
712
    def set_attr(self, name, val):
713 714 715 716 717 718 719 720 721 722
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
736 737
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
738 739
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
740
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
741 742 743 744 745
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
746

F
fengjiayi 已提交
747 748 749 750 751
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
752
        """
753 754
        Get the attribute by name.

755
        Args:
756
            name(str): the attribute name.
757

758 759
        Returns:
            bool|int|str|float|list: The attribute value. The return value
760 761
            can be any valid attribute type.
        """
F
fengjiayi 已提交
762
        return self.desc.attr(name)
Y
Yu Yang 已提交
763

G
gongweibao 已提交
764
    def block_attr_id(self, name):
765
        """
G
gongweibao 已提交
766
        Get the block attribute's id by name.
767

768 769
        Args:
            name(str): the attribute name.
770

771 772
        Returns:
            int: the block index.
773
        """
G
gongweibao 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
820

J
JiayiFeng 已提交
821
    def all_attrs(self):
F
fengjiayi 已提交
822
        """
823 824 825
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
826
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
827 828 829 830
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
831 832
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
833
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
834 835 836 837 838 839 840 841
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
842 843
        return attr_map

Y
Yu Yang 已提交
844

Y
Yu Yang 已提交
845
class Block(object):
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
875
    def __init__(self, program, idx):
Y
Yu Yang 已提交
876
        self.desc = program.desc.block(idx)
877
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
878
        self.ops = list()  # operator list
Y
Yu Yang 已提交
879
        self.program = program
880
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
881

882
    def __str__(self):
Y
Yang Yang(Tony) 已提交
883 884
        return self.to_string(True)

F
fengjiayi 已提交
885 886
    def to_string(self, throw_on_error, with_details=False):
        """
887 888
        Get debug string.

F
fengjiayi 已提交
889 890
        Args:
            throw_on_error(bool): raise exception when self is not initialized
891
                when throw_on_error is True.
F
update  
fengjiayi 已提交
892
            with_details(bool): more details about variables and parameters
893 894
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
895

896 897
        Returns:
            str: The debug string.
F
fengjiayi 已提交
898 899 900 901
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
902
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
903 904
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
905
            for var in list(self.vars.values()):
F
fengjiayi 已提交
906
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
907
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
908
            for op in self.ops:
F
fengjiayi 已提交
909 910
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
911 912 913
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
914 915
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
916 917
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
918 919 920

    __repr__ = __str__

Y
Yu Yang 已提交
921 922
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
923
        return self.desc.parent
Y
Yu Yang 已提交
924

Y
Yu Yang 已提交
925 926 927 928
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
929
    def _set_forward_block_idx(self, idx):
930 931 932 933 934 935 936 937 938
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
939
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
940

Y
Yu Yang 已提交
941 942
    @property
    def idx(self):
Y
Yu Yang 已提交
943
        return self.desc.id
Y
Yu Yang 已提交
944

Q
Qiao Longfei 已提交
945
    def var(self, name):
946 947 948 949 950 951 952 953 954 955 956 957 958
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
959
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
960 961 962
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
963 964
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
965
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
966
        return v
Q
Qiao Longfei 已提交
967

W
Wu Yi 已提交
968
    def _var_recursive(self, name):
969 970 971 972 973 974 975 976 977 978 979 980 981
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1008

Q
Qiao Longfei 已提交
1009
    def all_parameters(self):
1010
        return list(self.iter_parameters())
1011

1012
    def iter_parameters(self):
M
minqiyang 已提交
1013
        return (item[1] for item in six.iteritems(self.vars)
1014
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1015

Y
Yu Yang 已提交
1016
    def create_var(self, *args, **kwargs):
1017
        var = Variable(block=self, *args, **kwargs)
1018 1019
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1020
        return var
Y
Yu Yang 已提交
1021

Q
Qiao Longfei 已提交
1022 1023 1024
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1025
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1026 1027
        """
        Rename variable in vars and ops' inputs and outputs
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1040
        """
M
minqiyang 已提交
1041 1042
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1043

T
typhoonzero 已提交
1044
        if not self.has_var(name):
1045
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1046 1047
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1048
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1049 1050 1051 1052 1053 1054 1055
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1056
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1057 1058 1059 1060
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1061
        orig_var_type = v.type
M
minqiyang 已提交
1062
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1063
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1064
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1065
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1066 1067 1068 1069
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1070
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1071 1072 1073 1074 1075 1076 1077
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1078
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1079 1080
            var = Variable(
                self,
T
typhoonzero 已提交
1081
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1082 1083 1084 1085
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1086
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1087 1088 1089
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1090
        self._sync_with_cpp()
1091
        return var
T
typhoonzero 已提交
1092

W
Wu Yi 已提交
1093 1094
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1095
        self.desc._remove_var(cpt.to_bytes(name))
1096 1097
        del self.vars[name]

Y
Yu Yang 已提交
1098 1099
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1100
        param = Parameter(global_block, *args, **kwargs)
1101
        if 'initializer' in kwargs:
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1122
        return param
Y
Yu Yang 已提交
1123

Y
Yu Yang 已提交
1124
    def append_op(self, *args, **kwargs):
1125 1126 1127 1128 1129 1130
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1131
        op_desc = self.desc.append_op()
1132
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1133 1134 1135
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1136
    def _insert_op(self, index, *args, **kwargs):
1137 1138 1139 1140 1141 1142 1143 1144 1145
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1146 1147
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1148 1149 1150 1151
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1152
    def _remove_op(self, index):
1153 1154 1155 1156 1157 1158 1159 1160 1161
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1162 1163
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1164 1165
        del self.ops[index]

W
Wu Yi 已提交
1166
    def _slice_ops(self, start, end):
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1177
        return self.ops[start:end]
Y
Yancey1989 已提交
1178

W
Wu Yi 已提交
1179 1180
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1181
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1182
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1183 1184
        return op

W
Wu Yi 已提交
1185
    def _sync_with_cpp(self):
1186
        """
1187 1188
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1189
        """
Q
Qiao Longfei 已提交
1190 1191 1192 1193 1194
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1195
        # sync variables removed from c++ end
1196
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1197
            if not self.desc.find_var(cpt.to_bytes(var)):
1198 1199
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1200
        # sync operators from cpp
1201 1202 1203 1204
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1221 1222 1223 1224 1225

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1226
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1227 1228 1229 1230 1231 1232 1233

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1247 1248 1249 1250
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1251
    def _copy_param_info_from(self, other):
1252
        """
1253 1254
        Copy the information of parameters from the other block.

1255
        Args:
1256 1257 1258 1259 1260
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1261 1262 1263 1264 1265

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1266 1267
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1268
        for p in other.iter_parameters():
1269 1270 1271
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1272
                raise ValueError("_copy_param_info_from should be invoked with "
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1285
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1286
                error_clip=p.error_clip,
1287 1288 1289
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1290
    def _clone_variable(self, var):
1291 1292
        """
        Clone a variable into current block.
1293

1294 1295 1296 1297
        Args:
            var: the variable to be cloned.

        Returns:
1298
            Variable: the new  variable cloned from 'var' in current block.
1299 1300
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1301 1302 1303 1304 1305
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1306 1307
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1308
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1309 1310 1311 1312 1313 1314
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1315 1316
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1317 1318 1319 1320 1321 1322 1323
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1324 1325
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1326
        return ret_var
1327

Y
Yu Yang 已提交
1328 1329

class Program(object):
D
dzhwinter 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1341
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1342 1343

    Returns:
Y
yuyang18 已提交
1344
        A empty program.
D
dzhwinter 已提交
1345 1346

    Examples:
Y
yuyang18 已提交
1347 1348 1349 1350 1351 1352
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1353 1354 1355

    """

1356 1357
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1358 1359
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1360
        self._seed = 0
Y
yuyang18 已提交
1361
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1362
        self._op_role_var = []
Y
yuyang18 已提交
1363 1364 1365

    @property
    def op_role(self):
Y
yuyang18 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1379 1380 1381 1382 1383 1384 1385 1386
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1387 1388 1389 1390 1391 1392 1393
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1394 1395 1396 1397
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1398
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1399 1400

    @contextlib.contextmanager
1401
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1402 1403 1404 1405 1406 1407 1408
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1409
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1410 1411 1412 1413

        Examples:

            >>> p, g = backward(...)
1414
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1415 1416
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1417 1418
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1419 1420 1421 1422
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1423
        yield
Y
yuyang18 已提交
1424
        self._op_role_var = []
Y
yuyang18 已提交
1425
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1426

1427
    def __str__(self):
Y
yuyang18 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1437 1438
        return self.to_string(True)

F
fengjiayi 已提交
1439 1440 1441
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1442

F
fengjiayi 已提交
1443
        Args:
Y
yuyang18 已提交
1444 1445
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1446

Y
yuyang18 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1467 1468
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1469 1470
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1471

1472
    def get_desc(self):
Y
yuyang18 已提交
1473 1474 1475 1476 1477 1478 1479
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1480 1481
        return self.desc

1482
    def clone(self, for_test=False):
Y
yuyang18 已提交
1483 1484 1485
        """
        Create a new, duplicated program.

1486

Y
yuyang18 已提交
1487 1488 1489 1490
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1491

Y
yuyang18 已提交
1492 1493 1494 1495
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1496 1497 1498 1499 1500
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1501 1502

        Args:
Y
yuyang18 已提交
1503 1504
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1505

D
dzhwinter 已提交
1506
        Returns:
Y
yuyang18 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1560 1561
        """
        if for_test:
1562
            p = self.inference_optimize(export_for_deployment=False)
1563
        else:
1564
            p = Program()
G
gongweibao 已提交
1565 1566
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1567
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1568 1569 1570
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1571 1572 1573 1574

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1575
            p._sync_with_cpp()
1576

W
Wu Yi 已提交
1577
        p._copy_param_info_from(self)
F
fengjiayi 已提交
1578
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1579
        return p
1580

1581
    def prune(self, targets):
Y
yuyang18 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1597 1598 1599 1600 1601 1602
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1603 1604
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1605
                    # and we need to find the current op that generate this
1606 1607 1608 1609 1610 1611 1612 1613
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1614
                    t = t.op
1615 1616 1617 1618
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1619
                else:
1620 1621
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1622 1623 1624 1625

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1626 1627 1628
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1629
        res._sync_with_cpp()
1630 1631
        return res

1632
    def inference_optimize(self, export_for_deployment=True):
Y
yuyang18 已提交
1633
        """
F
fengjiayi 已提交
1634 1635 1636 1637 1638
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1639
        3. change the :code:`is_test`
Y
yuyang18 已提交
1640 1641 1642
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1643 1644 1645 1646
        Args:
            export_for_deployment(bool): remove the read ops that are added by py_reader
                                        for cpp inference library

Y
yuyang18 已提交
1647 1648 1649 1650 1651 1652
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1653 1654
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1655
        res = Program()
1656
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1657 1658 1659 1660

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
        if export_for_deployment:
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
                    root_block._remove_var(var.name())
F
fengjiayi 已提交
1672 1673

        # change all `is_test` attributes to True
M
minqiyang 已提交
1674
        for i in six.moves.range(res.desc.num_blocks()):
1675
            block = res.desc.block(i)
M
minqiyang 已提交
1676
            for j in six.moves.range(block.op_size()):
1677 1678 1679
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1680 1681 1682
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1683
        res._sync_with_cpp()
1684 1685
        return res

1686 1687
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1688 1689 1690 1691 1692 1693 1694
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1695
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1696 1697 1698 1699

        Returns:
            Program: A deserialized program desc.
        """
1700 1701
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1702
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1703
        p._sync_with_cpp()
1704
        return p
Y
Yu Yang 已提交
1705

D
dzhwinter 已提交
1706 1707
    @property
    def random_seed(self):
Y
yuyang18 已提交
1708 1709 1710 1711 1712 1713
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1714 1715
        return self._seed

Q
qiaolongfei 已提交
1716 1717
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1718 1719 1720
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1721 1722
        return self.desc.num_blocks()

D
dzhwinter 已提交
1723 1724 1725 1726 1727 1728
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1729
    def __repr__(self):
1730
        return self.__str__()
1731

Y
Yu Yang 已提交
1732
    def global_block(self):
Y
yuyang18 已提交
1733 1734 1735
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1736 1737
        return self.blocks[0]

Q
Qiao Longfei 已提交
1738
    def block(self, index):
Y
yuyang18 已提交
1739 1740 1741 1742 1743 1744 1745 1746
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1747 1748
        return self.blocks[index]

Y
Yu Yang 已提交
1749
    def current_block(self):
Y
yuyang18 已提交
1750 1751 1752 1753
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1754 1755
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1756
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1767
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1768 1769 1770
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1771 1772 1773 1774 1775
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1776 1777 1778 1779 1780
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1781 1782
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1783
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1794 1795 1796
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1797
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1798

W
Wu Yi 已提交
1799
    def _copy_param_info_from(self, other):
1800
        """
1801
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1802

Y
yuyang18 已提交
1803 1804 1805
        Notes: This is a very low level API. Users should not invoke it
        directly.

1806 1807 1808 1809 1810 1811 1812
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1813
            raise TypeError("_copy_param_info_from should be invoked with "
1814 1815 1816
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1817
            raise ValueError("_copy_param_info_from should be invoked with two "
1818
                             "program, with represent the same topology")
W
Wu Yi 已提交
1819
        self.global_block()._copy_param_info_from(other.global_block())
1820

F
fengjiayi 已提交
1821 1822 1823
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1824

Y
yuyang18 已提交
1825 1826 1827
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1828 1829 1830 1831 1832 1833 1834
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1835
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1836 1837 1838
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1839
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1840
                             "program, with represent the same topology")
1841
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1842 1843 1844
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1845
    def list_vars(self):
Y
yuyang18 已提交
1846 1847 1848 1849 1850 1851
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1852
        for each_block in self.blocks:
1853
            for each_var in list(each_block.vars.values()):
1854 1855
                yield each_var

Y
Yu Yang 已提交
1856

Y
Yu Yang 已提交
1857
class Parameter(Variable):
1858
    """
1859
    Parameter is derived from Variable. A parameter is a persistable
1860
    Variable, and will be updated by optimizers after each iteration.
1861
    The training of a neural network is essentially the updating of
1862 1863
    its parameters.

1864
    Relative to a general Variable, a Parameter has several its own
1865 1866
    member variables:

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1879 1880
    """

Y
Yu Yang 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1891 1892 1893

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1894 1895 1896 1897
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1898 1899
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1900
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1901

W
wanghaoshuang 已提交
1902
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1903

F
fengjiayi 已提交
1904 1905 1906
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1907 1908 1909
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1910

F
update  
fengjiayi 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1925
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1926
            for attr_name in additional_attr:
1927 1928
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
1929 1930
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1931 1932 1933 1934
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1935

Y
Yu Yang 已提交
1936
# program is a global instance.
Y
Yu Yang 已提交
1937 1938
_main_program_ = Program()
_startup_program_ = Program()
1939

1940

1941
def default_startup_program():
Y
Yu Yang 已提交
1942
    """
Y
yuyang18 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1952

Y
Yu Yang 已提交
1953 1954 1955
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1956
    return _startup_program_
1957

1958

1959
def default_main_program():
Y
Yu Yang 已提交
1960
    """
Y
yuyang18 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1970

Y
Yu Yang 已提交
1971 1972 1973
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1974
    return _main_program_
Y
Yu Yang 已提交
1975 1976 1977 1978 1979


def switch_main_program(program):
    """
    Switch the main program to a new program.
1980

Y
Yu Yang 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1995
    Switch the startup program to a new program
Y
Yu Yang 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2011 2012 2013
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2014

Y
Yu Yang 已提交
2015
    Examples:
Y
yuyang18 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2026

Y
Yu Yang 已提交
2027
    Examples:
Y
yuyang18 已提交
2028 2029 2030 2031 2032 2033

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2034

Y
Yu Yang 已提交
2035
    Args:
Y
yuyang18 已提交
2036
        main_program(Program): New main program inside `with` statement.
2037
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2051 2052 2053 2054


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2055
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2056

X
xuwei06 已提交
2057 2058 2059
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2060
        If None, default_global_program() will be used.
X
xuwei06 已提交
2061 2062 2063 2064 2065 2066 2067

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2068
    assert isinstance(program, Program)
X
xuwei06 已提交
2069 2070

    return program.global_block().var(name)