memcontrol.c 184.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
77

78 79 80
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

81 82 83
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

84
/* Whether the swap controller is active */
A
Andrew Morton 已提交
85
#ifdef CONFIG_MEMCG_SWAP
86 87
int do_swap_account __read_mostly;
#else
88
#define do_swap_account		0
89 90
#endif

91 92 93 94
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
103

104 105 106 107 108
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

109
struct mem_cgroup_tree_per_node {
110
	struct rb_root rb_root;
111
	struct rb_node *rb_rightmost;
112 113 114 115 116 117 118 119 120
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
121 122 123 124 125
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
126

127 128 129
/*
 * cgroup_event represents events which userspace want to receive.
 */
130
struct mem_cgroup_event {
131
	/*
132
	 * memcg which the event belongs to.
133
	 */
134
	struct mem_cgroup *memcg;
135 136 137 138 139 140 141 142
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
143 144 145 146 147
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
148
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
149
			      struct eventfd_ctx *eventfd, const char *args);
150 151 152 153 154
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
155
	void (*unregister_event)(struct mem_cgroup *memcg,
156
				 struct eventfd_ctx *eventfd);
157 158 159 160 161 162
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
163
	wait_queue_entry_t wait;
164 165 166
	struct work_struct remove;
};

167 168
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169

170 171
/* Stuffs for move charges at task migration. */
/*
172
 * Types of charges to be moved.
173
 */
174 175 176
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177

178 179
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
180
	spinlock_t	  lock; /* for from, to */
181
	struct mm_struct  *mm;
182 183
	struct mem_cgroup *from;
	struct mem_cgroup *to;
184
	unsigned long flags;
185
	unsigned long precharge;
186
	unsigned long moved_charge;
187
	unsigned long moved_swap;
188 189 190
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
191
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 193
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
194

195 196 197 198
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
199
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201

202 203
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
205
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
206
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 208 209
	NR_CHARGE_TYPE,
};

210
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
211 212 213 214
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
215
	_KMEM,
V
Vladimir Davydov 已提交
216
	_TCP,
G
Glauber Costa 已提交
217 218
};

219 220
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
222 223
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

240 241 242 243 244 245
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

246 247 248 249 250 251 252 253 254 255 256 257 258
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

259
#ifdef CONFIG_MEMCG_KMEM
260
/*
261
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
262 263 264 265 266
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
267
 *
268 269
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
270
 */
271 272
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
273

274 275 276 277 278 279 280 281 282 283 284 285 286
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

287 288 289 290 291 292
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
293
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 295
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
296
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 298 299
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
300
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301

302 303 304 305 306 307
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
308
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309
EXPORT_SYMBOL(memcg_kmem_enabled_key);
310

311
struct workqueue_struct *memcg_kmem_cache_wq;
312
#endif
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 413
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
414
			goto unlock;
415
		}
416 417 418 419 420 421 422
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
423 424 425 426 427 428 429 430

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 432
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
433 434 435 436 437
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

455
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 457 458 459 460
		memcg = root_mem_cgroup;

	return &memcg->css;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
480
	if (PageSlab(page) && !PageTail(page))
481 482 483
		memcg = memcg_from_slab_page(page);
	else
		memcg = READ_ONCE(page->mem_cgroup);
484 485 486 487 488 489 490 491
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

492 493
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494
{
495
	int nid = page_to_nid(page);
496

497
	return memcg->nodeinfo[nid];
498 499
}

500 501
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
502
{
503
	return soft_limit_tree.rb_tree_per_node[nid];
504 505
}

506
static struct mem_cgroup_tree_per_node *
507 508 509 510
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

511
	return soft_limit_tree.rb_tree_per_node[nid];
512 513
}

514 515
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
516
					 unsigned long new_usage_in_excess)
517 518 519
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
520
	struct mem_cgroup_per_node *mz_node;
521
	bool rightmost = true;
522 523 524 525 526 527 528 529 530

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
531
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532
					tree_node);
533
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534
			p = &(*p)->rb_left;
535 536 537
			rightmost = false;
		}

538 539 540 541 542 543 544
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
545 546 547 548

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

549 550 551 552 553
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

554 555
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
556 557 558
{
	if (!mz->on_tree)
		return;
559 560 561 562

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

563 564 565 566
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

567 568
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
569
{
570 571 572
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
573
	__mem_cgroup_remove_exceeded(mz, mctz);
574
	spin_unlock_irqrestore(&mctz->lock, flags);
575 576
}

577 578 579
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
580
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 582 583 584 585 586 587
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
588 589 590

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
591
	unsigned long excess;
592 593
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
594

595
	mctz = soft_limit_tree_from_page(page);
596 597
	if (!mctz)
		return;
598 599 600 601 602
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603
		mz = mem_cgroup_page_nodeinfo(memcg, page);
604
		excess = soft_limit_excess(memcg);
605 606 607 608 609
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
610 611 612
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
613 614
			/* if on-tree, remove it */
			if (mz->on_tree)
615
				__mem_cgroup_remove_exceeded(mz, mctz);
616 617 618 619
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
620
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621
			spin_unlock_irqrestore(&mctz->lock, flags);
622 623 624 625 626 627
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
628 629 630
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
631

632
	for_each_node(nid) {
633 634
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
635 636
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
637 638 639
	}
}

640 641
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642
{
643
	struct mem_cgroup_per_node *mz;
644 645 646

retry:
	mz = NULL;
647
	if (!mctz->rb_rightmost)
648 649
		goto done;		/* Nothing to reclaim from */

650 651
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
652 653 654 655 656
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
657
	__mem_cgroup_remove_exceeded(mz, mctz);
658
	if (!soft_limit_excess(mz->memcg) ||
659
	    !css_tryget_online(&mz->memcg->css))
660 661 662 663 664
		goto retry;
done:
	return mz;
}

665 666
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667
{
668
	struct mem_cgroup_per_node *mz;
669

670
	spin_lock_irq(&mctz->lock);
671
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672
	spin_unlock_irq(&mctz->lock);
673 674 675
	return mz;
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 692
		struct mem_cgroup *mi;

693 694 695 696 697
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 699
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
700 701 702 703 704
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

705 706 707 708 709 710 711 712 713 714 715
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
729
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730
	struct mem_cgroup_per_node *pn;
731
	struct mem_cgroup *memcg;
732 733 734
	long x;

	/* Update node */
735
	__mod_node_page_state(pgdat, idx, val);
736 737 738 739 740

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741
	memcg = pn->memcg;
742 743

	/* Update memcg */
744
	__mod_memcg_state(memcg, idx, val);
745

746 747 748
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

749 750
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 752 753 754
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 756 757 758 759
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
	struct page *page = virt_to_head_page(p);
	pg_data_t *pgdat = page_pgdat(page);
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = memcg_from_slab_page(page);

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
774
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
775 776 777 778 779
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
796 797
		struct mem_cgroup *mi;

798 799 800 801 802
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
803 804
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
805 806 807 808 809
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

810
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
811
{
812
	return atomic_long_read(&memcg->vmevents[event]);
813 814
}

815 816
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
817 818 819 820 821 822
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
823 824
}

825
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
826
					 struct page *page,
827
					 bool compound, int nr_pages)
828
{
829 830 831 832
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
833
	if (PageAnon(page))
834
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
835
	else {
836
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
837
		if (PageSwapBacked(page))
838
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
839
	}
840

841 842
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
843
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
844
	}
845

846 847
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
848
		__count_memcg_events(memcg, PGPGIN, 1);
849
	else {
850
		__count_memcg_events(memcg, PGPGOUT, 1);
851 852
		nr_pages = -nr_pages; /* for event */
	}
853

854
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
855 856
}

857 858
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
859 860 861
{
	unsigned long val, next;

862 863
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
864
	/* from time_after() in jiffies.h */
865
	if ((long)(next - val) < 0) {
866 867 868 869
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
870 871 872
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
873 874 875
		default:
			break;
		}
876
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
877
		return true;
878
	}
879
	return false;
880 881 882 883 884 885
}

/*
 * Check events in order.
 *
 */
886
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
887 888
{
	/* threshold event is triggered in finer grain than soft limit */
889 890
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
891
		bool do_softlimit;
892

893 894
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
895
		mem_cgroup_threshold(memcg);
896 897
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
898
	}
899 900
}

901
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
902
{
903 904 905 906 907 908 909 910
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

911
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
912
}
M
Michal Hocko 已提交
913
EXPORT_SYMBOL(mem_cgroup_from_task);
914

915 916 917 918 919 920 921 922 923
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
924
{
925 926 927 928
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
929

930 931
	rcu_read_lock();
	do {
932 933 934 935 936 937
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
938
			memcg = root_mem_cgroup;
939 940 941 942 943
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
944
	} while (!css_tryget(&memcg->css));
945
	rcu_read_unlock();
946
	return memcg;
947
}
948 949
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
988

989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1002
 * Reclaimers can specify a node and a priority level in @reclaim to
1003
 * divide up the memcgs in the hierarchy among all concurrent
1004
 * reclaimers operating on the same node and priority.
1005
 */
1006
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007
				   struct mem_cgroup *prev,
1008
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1009
{
M
Michal Hocko 已提交
1010
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1011
	struct cgroup_subsys_state *css = NULL;
1012
	struct mem_cgroup *memcg = NULL;
1013
	struct mem_cgroup *pos = NULL;
1014

1015 1016
	if (mem_cgroup_disabled())
		return NULL;
1017

1018 1019
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1020

1021
	if (prev && !reclaim)
1022
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1023

1024 1025
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1026
			goto out;
1027
		return root;
1028
	}
K
KAMEZAWA Hiroyuki 已提交
1029

1030
	rcu_read_lock();
M
Michal Hocko 已提交
1031

1032
	if (reclaim) {
1033
		struct mem_cgroup_per_node *mz;
1034

1035
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1036
		iter = &mz->iter;
1037 1038 1039 1040

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1041
		while (1) {
1042
			pos = READ_ONCE(iter->position);
1043 1044
			if (!pos || css_tryget(&pos->css))
				break;
1045
			/*
1046 1047 1048 1049 1050 1051
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1052
			 */
1053 1054
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1072
		}
K
KAMEZAWA Hiroyuki 已提交
1073

1074 1075 1076 1077 1078 1079
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1080

1081 1082
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1083

1084 1085
		if (css_tryget(css))
			break;
1086

1087
		memcg = NULL;
1088
	}
1089 1090 1091

	if (reclaim) {
		/*
1092 1093 1094
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1095
		 */
1096 1097
		(void)cmpxchg(&iter->position, pos, memcg);

1098 1099 1100 1101 1102 1103 1104
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1105
	}
1106

1107 1108
out_unlock:
	rcu_read_unlock();
1109
out:
1110 1111 1112
	if (prev && prev != root)
		css_put(&prev->css);

1113
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1114
}
K
KAMEZAWA Hiroyuki 已提交
1115

1116 1117 1118 1119 1120 1121 1122
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1123 1124 1125 1126 1127 1128
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1132 1133
{
	struct mem_cgroup_reclaim_iter *iter;
1134 1135
	struct mem_cgroup_per_node *mz;
	int nid;
1136

1137 1138
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1139 1140
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1141 1142 1143
	}
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1190
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1202
/**
1203
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1204
 * @page: the page
1205
 * @pgdat: pgdat of the page
1206 1207 1208 1209
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1210
 */
M
Mel Gorman 已提交
1211
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1212
{
1213
	struct mem_cgroup_per_node *mz;
1214
	struct mem_cgroup *memcg;
1215
	struct lruvec *lruvec;
1216

1217
	if (mem_cgroup_disabled()) {
1218
		lruvec = &pgdat->__lruvec;
1219 1220
		goto out;
	}
1221

1222
	memcg = page->mem_cgroup;
1223
	/*
1224
	 * Swapcache readahead pages are added to the LRU - and
1225
	 * possibly migrated - before they are charged.
1226
	 */
1227 1228
	if (!memcg)
		memcg = root_mem_cgroup;
1229

1230
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1231 1232 1233 1234 1235 1236 1237
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1238 1239
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1240
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1241
}
1242

1243
/**
1244 1245 1246
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1247
 * @zid: zone id of the accounted pages
1248
 * @nr_pages: positive when adding or negative when removing
1249
 *
1250 1251 1252
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1253
 */
1254
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1255
				int zid, int nr_pages)
1256
{
1257
	struct mem_cgroup_per_node *mz;
1258
	unsigned long *lru_size;
1259
	long size;
1260 1261 1262 1263

	if (mem_cgroup_disabled())
		return;

1264
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1265
	lru_size = &mz->lru_zone_size[zid][lru];
1266 1267 1268 1269 1270

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1271 1272 1273
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1274 1275 1276 1277 1278 1279
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1280
}
1281

1282
/**
1283
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1284
 * @memcg: the memory cgroup
1285
 *
1286
 * Returns the maximum amount of memory @mem can be charged with, in
1287
 * pages.
1288
 */
1289
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1290
{
1291 1292 1293
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1294

1295
	count = page_counter_read(&memcg->memory);
1296
	limit = READ_ONCE(memcg->memory.max);
1297 1298 1299
	if (count < limit)
		margin = limit - count;

1300
	if (do_memsw_account()) {
1301
		count = page_counter_read(&memcg->memsw);
1302
		limit = READ_ONCE(memcg->memsw.max);
1303 1304
		if (count <= limit)
			margin = min(margin, limit - count);
1305 1306
		else
			margin = 0;
1307 1308 1309
	}

	return margin;
1310 1311
}

1312
/*
Q
Qiang Huang 已提交
1313
 * A routine for checking "mem" is under move_account() or not.
1314
 *
Q
Qiang Huang 已提交
1315 1316 1317
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1318
 */
1319
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1320
{
1321 1322
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1323
	bool ret = false;
1324 1325 1326 1327 1328 1329 1330 1331 1332
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1333

1334 1335
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1336 1337
unlock:
	spin_unlock(&mc.lock);
1338 1339 1340
	return ret;
}

1341
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1342 1343
{
	if (mc.moving_task && current != mc.moving_task) {
1344
		if (mem_cgroup_under_move(memcg)) {
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1357 1358 1359 1360
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_buf_printf(&s, "anon_thp %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
		       PAGE_SIZE);

	for (i = 0; i < NR_LRU_LISTS; i++)
1418
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		       PAGE_SIZE);

	/* Accumulated memory events */

1431 1432 1433 1434
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1435 1436 1437 1438 1439 1440 1441 1442

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1443 1444
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1445 1446 1447 1448 1449 1450
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1451 1452 1453 1454 1455 1456 1457 1458
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1459 1460

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1462
		       memcg_events(memcg, THP_FAULT_ALLOC));
1463
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1464 1465 1466 1467 1468 1469 1470 1471
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1472

1473
#define K(x) ((x) << (PAGE_SHIFT-10))
1474
/**
1475 1476
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1477 1478 1479 1480 1481 1482
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1483
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1484 1485 1486
{
	rcu_read_lock();

1487 1488 1489 1490 1491
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1492
	if (p) {
1493
		pr_cont(",task_memcg=");
1494 1495
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1496
	rcu_read_unlock();
1497 1498 1499 1500 1501 1502 1503 1504 1505
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1506
	char *buf;
1507

1508 1509
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1510
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
			K((u64)memcg->swap.max), memcg->swap.failcnt);
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1522
	}
1523 1524 1525 1526 1527 1528 1529 1530 1531

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1532 1533
}

D
David Rientjes 已提交
1534 1535 1536
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1537
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1538
{
1539
	unsigned long max;
1540

1541
	max = memcg->memory.max;
1542
	if (mem_cgroup_swappiness(memcg)) {
1543 1544
		unsigned long memsw_max;
		unsigned long swap_max;
1545

1546 1547 1548 1549
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1550
	}
1551
	return max;
D
David Rientjes 已提交
1552 1553
}

1554 1555 1556 1557 1558
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1559
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1560
				     int order)
1561
{
1562 1563 1564
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1565
		.memcg = memcg,
1566 1567 1568
		.gfp_mask = gfp_mask,
		.order = order,
	};
1569
	bool ret;
1570

1571 1572 1573 1574 1575 1576 1577
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1578
	mutex_unlock(&oom_lock);
1579
	return ret;
1580 1581
}

1582
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1583
				   pg_data_t *pgdat,
1584 1585 1586 1587 1588 1589 1590 1591 1592
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1593
		.pgdat = pgdat,
1594 1595
	};

1596
	excess = soft_limit_excess(root_memcg);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1622
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1623
					pgdat, &nr_scanned);
1624
		*total_scanned += nr_scanned;
1625
		if (!soft_limit_excess(root_memcg))
1626
			break;
1627
	}
1628 1629
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1630 1631
}

1632 1633 1634 1635 1636 1637
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1638 1639
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1640 1641 1642 1643
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1644
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1645
{
1646
	struct mem_cgroup *iter, *failed = NULL;
1647

1648 1649
	spin_lock(&memcg_oom_lock);

1650
	for_each_mem_cgroup_tree(iter, memcg) {
1651
		if (iter->oom_lock) {
1652 1653 1654 1655 1656
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1657 1658
			mem_cgroup_iter_break(memcg, iter);
			break;
1659 1660
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1661
	}
K
KAMEZAWA Hiroyuki 已提交
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1674
		}
1675 1676
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1677 1678 1679 1680

	spin_unlock(&memcg_oom_lock);

	return !failed;
1681
}
1682

1683
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1684
{
K
KAMEZAWA Hiroyuki 已提交
1685 1686
	struct mem_cgroup *iter;

1687
	spin_lock(&memcg_oom_lock);
1688
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1689
	for_each_mem_cgroup_tree(iter, memcg)
1690
		iter->oom_lock = false;
1691
	spin_unlock(&memcg_oom_lock);
1692 1693
}

1694
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1695 1696 1697
{
	struct mem_cgroup *iter;

1698
	spin_lock(&memcg_oom_lock);
1699
	for_each_mem_cgroup_tree(iter, memcg)
1700 1701
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1702 1703
}

1704
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1705 1706 1707
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1708 1709
	/*
	 * When a new child is created while the hierarchy is under oom,
1710
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1711
	 */
1712
	spin_lock(&memcg_oom_lock);
1713
	for_each_mem_cgroup_tree(iter, memcg)
1714 1715 1716
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1717 1718
}

K
KAMEZAWA Hiroyuki 已提交
1719 1720
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1721
struct oom_wait_info {
1722
	struct mem_cgroup *memcg;
1723
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1724 1725
};

1726
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1727 1728
	unsigned mode, int sync, void *arg)
{
1729 1730
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1731 1732 1733
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1734
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1735

1736 1737
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1738 1739 1740 1741
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1742
static void memcg_oom_recover(struct mem_cgroup *memcg)
1743
{
1744 1745 1746 1747 1748 1749 1750 1751 1752
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1753
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1754 1755
}

1756 1757 1758 1759 1760 1761 1762 1763
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1764
{
1765 1766 1767
	enum oom_status ret;
	bool locked;

1768 1769 1770
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1771 1772
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1773
	/*
1774 1775 1776 1777
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1778 1779 1780 1781
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1782
	 *
1783 1784 1785 1786 1787 1788 1789
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1790
	 */
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1802 1803 1804 1805 1806 1807 1808 1809
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1810
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1811 1812 1813 1814 1815 1816
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1817

1818
	return ret;
1819 1820 1821 1822
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1823
 * @handle: actually kill/wait or just clean up the OOM state
1824
 *
1825 1826
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1827
 *
1828
 * Memcg supports userspace OOM handling where failed allocations must
1829 1830 1831 1832
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1833
 * the end of the page fault to complete the OOM handling.
1834 1835
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1836
 * completed, %false otherwise.
1837
 */
1838
bool mem_cgroup_oom_synchronize(bool handle)
1839
{
T
Tejun Heo 已提交
1840
	struct mem_cgroup *memcg = current->memcg_in_oom;
1841
	struct oom_wait_info owait;
1842
	bool locked;
1843 1844 1845

	/* OOM is global, do not handle */
	if (!memcg)
1846
		return false;
1847

1848
	if (!handle)
1849
		goto cleanup;
1850 1851 1852 1853 1854

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1855
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1856

1857
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1868 1869
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1870
	} else {
1871
		schedule();
1872 1873 1874 1875 1876
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1877 1878 1879 1880 1881 1882 1883 1884
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1885
cleanup:
T
Tejun Heo 已提交
1886
	current->memcg_in_oom = NULL;
1887
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1888
	return true;
1889 1890
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1947
/**
1948 1949
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1950
 *
1951
 * This function protects unlocked LRU pages from being moved to
1952 1953 1954 1955 1956
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1957
 */
1958
struct mem_cgroup *lock_page_memcg(struct page *page)
1959 1960
{
	struct mem_cgroup *memcg;
1961
	unsigned long flags;
1962

1963 1964 1965 1966
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1967 1968 1969 1970 1971 1972 1973
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1974 1975 1976
	rcu_read_lock();

	if (mem_cgroup_disabled())
1977
		return NULL;
1978
again:
1979
	memcg = page->mem_cgroup;
1980
	if (unlikely(!memcg))
1981
		return NULL;
1982

Q
Qiang Huang 已提交
1983
	if (atomic_read(&memcg->moving_account) <= 0)
1984
		return memcg;
1985

1986
	spin_lock_irqsave(&memcg->move_lock, flags);
1987
	if (memcg != page->mem_cgroup) {
1988
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1989 1990
		goto again;
	}
1991 1992 1993 1994

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1995
	 * the task who has the lock for unlock_page_memcg().
1996 1997 1998
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1999

2000
	return memcg;
2001
}
2002
EXPORT_SYMBOL(lock_page_memcg);
2003

2004
/**
2005 2006 2007 2008
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2009
 */
2010
void __unlock_page_memcg(struct mem_cgroup *memcg)
2011
{
2012 2013 2014 2015 2016 2017 2018 2019
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2020

2021
	rcu_read_unlock();
2022
}
2023 2024 2025 2026 2027 2028 2029 2030 2031

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
2032
EXPORT_SYMBOL(unlock_page_memcg);
2033

2034 2035
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2036
	unsigned int nr_pages;
2037
	struct work_struct work;
2038
	unsigned long flags;
2039
#define FLUSHING_CACHED_CHARGE	0
2040 2041
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2042
static DEFINE_MUTEX(percpu_charge_mutex);
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2054
 */
2055
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2056 2057
{
	struct memcg_stock_pcp *stock;
2058
	unsigned long flags;
2059
	bool ret = false;
2060

2061
	if (nr_pages > MEMCG_CHARGE_BATCH)
2062
		return ret;
2063

2064 2065 2066
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2067
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2068
		stock->nr_pages -= nr_pages;
2069 2070
		ret = true;
	}
2071 2072 2073

	local_irq_restore(flags);

2074 2075 2076 2077
	return ret;
}

/*
2078
 * Returns stocks cached in percpu and reset cached information.
2079 2080 2081 2082 2083
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2084
	if (stock->nr_pages) {
2085
		page_counter_uncharge(&old->memory, stock->nr_pages);
2086
		if (do_memsw_account())
2087
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2088
		css_put_many(&old->css, stock->nr_pages);
2089
		stock->nr_pages = 0;
2090 2091 2092 2093 2094 2095
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2096 2097 2098
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2099 2100 2101 2102
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2103 2104 2105
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2106
	drain_stock(stock);
2107
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2108 2109

	local_irq_restore(flags);
2110 2111 2112
}

/*
2113
 * Cache charges(val) to local per_cpu area.
2114
 * This will be consumed by consume_stock() function, later.
2115
 */
2116
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2117
{
2118 2119 2120 2121
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2122

2123
	stock = this_cpu_ptr(&memcg_stock);
2124
	if (stock->cached != memcg) { /* reset if necessary */
2125
		drain_stock(stock);
2126
		stock->cached = memcg;
2127
	}
2128
	stock->nr_pages += nr_pages;
2129

2130
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2131 2132
		drain_stock(stock);

2133
	local_irq_restore(flags);
2134 2135 2136
}

/*
2137
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138
 * of the hierarchy under it.
2139
 */
2140
static void drain_all_stock(struct mem_cgroup *root_memcg)
2141
{
2142
	int cpu, curcpu;
2143

2144 2145 2146
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2147 2148 2149 2150 2151 2152
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2153
	curcpu = get_cpu();
2154 2155
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2156
		struct mem_cgroup *memcg;
2157
		bool flush = false;
2158

2159
		rcu_read_lock();
2160
		memcg = stock->cached;
2161 2162 2163 2164 2165 2166 2167
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2168 2169 2170 2171 2172
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2173
	}
2174
	put_cpu();
2175
	mutex_unlock(&percpu_charge_mutex);
2176 2177
}

2178
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2179 2180
{
	struct memcg_stock_pcp *stock;
2181
	struct mem_cgroup *memcg, *mi;
2182 2183 2184

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2185 2186 2187 2188 2189 2190 2191 2192

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2193
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2194
			if (x)
2195 2196
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2197 2198 2199 2200 2201 2202 2203 2204 2205

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2206
				if (x)
2207 2208 2209
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2210 2211 2212
			}
		}

2213
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2214 2215
			long x;

2216
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2217
			if (x)
2218 2219
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2220 2221 2222
		}
	}

2223
	return 0;
2224 2225
}

2226 2227 2228 2229 2230 2231 2232
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2233
		memcg_memory_event(memcg, MEMCG_HIGH);
2234 2235 2236 2237 2238 2239 2240 2241 2242
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2243
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2244 2245
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2299
/*
2300 2301
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
2302
 */
2303 2304
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages)
2305
{
2306 2307
	unsigned long penalty_jiffies;
	u64 max_overage = 0;
2308

2309 2310 2311
	do {
		unsigned long usage, high;
		u64 overage;
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
		usage = page_counter_read(&memcg->memory);
		high = READ_ONCE(memcg->high);

		/*
		 * Prevent division by 0 in overage calculation by acting as if
		 * it was a threshold of 1 page
		 */
		high = max(high, 1UL);

		overage = usage - high;
		overage <<= MEMCG_DELAY_PRECISION_SHIFT;
		overage = div64_u64(overage, high);

		if (overage > max_overage)
			max_overage = overage;
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	if (!max_overage)
		return 0;
2333 2334 2335 2336 2337 2338 2339 2340 2341

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2342 2343 2344
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;

	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg;

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
	current->memcg_nr_pages_over_high = 0;

	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
	penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2408 2409
}

2410 2411
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2412
{
2413
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2414
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2415
	struct mem_cgroup *mem_over_limit;
2416
	struct page_counter *counter;
2417
	unsigned long nr_reclaimed;
2418 2419
	bool may_swap = true;
	bool drained = false;
2420
	enum oom_status oom_status;
2421

2422
	if (mem_cgroup_is_root(memcg))
2423
		return 0;
2424
retry:
2425
	if (consume_stock(memcg, nr_pages))
2426
		return 0;
2427

2428
	if (!do_memsw_account() ||
2429 2430
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2431
			goto done_restock;
2432
		if (do_memsw_account())
2433 2434
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2435
	} else {
2436
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2437
		may_swap = false;
2438
	}
2439

2440 2441 2442 2443
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2444

2445 2446 2447 2448 2449 2450 2451 2452 2453
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2454 2455 2456 2457 2458 2459
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2460
	if (unlikely(should_force_charge()))
2461
		goto force;
2462

2463 2464 2465 2466 2467 2468 2469 2470 2471
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2472 2473 2474
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2475
	if (!gfpflags_allow_blocking(gfp_mask))
2476
		goto nomem;
2477

2478
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2479

2480 2481
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2482

2483
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2484
		goto retry;
2485

2486
	if (!drained) {
2487
		drain_all_stock(mem_over_limit);
2488 2489 2490 2491
		drained = true;
		goto retry;
	}

2492 2493
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2494 2495 2496 2497 2498 2499 2500 2501 2502
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2503
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2504 2505 2506 2507 2508 2509 2510 2511
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2512 2513 2514
	if (nr_retries--)
		goto retry;

2515
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2516 2517
		goto nomem;

2518
	if (gfp_mask & __GFP_NOFAIL)
2519
		goto force;
2520

2521
	if (fatal_signal_pending(current))
2522
		goto force;
2523

2524 2525 2526 2527 2528 2529
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2530
		       get_order(nr_pages * PAGE_SIZE));
2531 2532 2533 2534 2535 2536 2537 2538 2539
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2540
nomem:
2541
	if (!(gfp_mask & __GFP_NOFAIL))
2542
		return -ENOMEM;
2543 2544 2545 2546 2547 2548 2549
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2550
	if (do_memsw_account())
2551 2552 2553 2554
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2555 2556

done_restock:
2557
	css_get_many(&memcg->css, batch);
2558 2559
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2560

2561
	/*
2562 2563
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2564
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2565 2566 2567 2568
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2569 2570
	 */
	do {
2571
		if (page_counter_read(&memcg->memory) > memcg->high) {
2572 2573 2574 2575 2576
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2577
			current->memcg_nr_pages_over_high += batch;
2578 2579 2580
			set_notify_resume(current);
			break;
		}
2581
	} while ((memcg = parent_mem_cgroup(memcg)));
2582 2583

	return 0;
2584
}
2585

2586
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2587
{
2588 2589 2590
	if (mem_cgroup_is_root(memcg))
		return;

2591
	page_counter_uncharge(&memcg->memory, nr_pages);
2592
	if (do_memsw_account())
2593
		page_counter_uncharge(&memcg->memsw, nr_pages);
2594

2595
	css_put_many(&memcg->css, nr_pages);
2596 2597
}

2598 2599
static void lock_page_lru(struct page *page, int *isolated)
{
2600
	pg_data_t *pgdat = page_pgdat(page);
2601

2602
	spin_lock_irq(&pgdat->lru_lock);
2603 2604 2605
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2606
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2607 2608 2609 2610 2611 2612 2613 2614 2615
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2616
	pg_data_t *pgdat = page_pgdat(page);
2617 2618 2619 2620

	if (isolated) {
		struct lruvec *lruvec;

2621
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2622 2623 2624 2625
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2626
	spin_unlock_irq(&pgdat->lru_lock);
2627 2628
}

2629
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2630
			  bool lrucare)
2631
{
2632
	int isolated;
2633

2634
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2635 2636 2637 2638 2639

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2640 2641
	if (lrucare)
		lock_page_lru(page, &isolated);
2642

2643 2644
	/*
	 * Nobody should be changing or seriously looking at
2645
	 * page->mem_cgroup at this point:
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2657
	page->mem_cgroup = memcg;
2658

2659 2660
	if (lrucare)
		unlock_page_lru(page, isolated);
2661
}
2662

2663
#ifdef CONFIG_MEMCG_KMEM
2664
static int memcg_alloc_cache_id(void)
2665
{
2666 2667 2668
	int id, size;
	int err;

2669
	id = ida_simple_get(&memcg_cache_ida,
2670 2671 2672
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2673

2674
	if (id < memcg_nr_cache_ids)
2675 2676 2677 2678 2679 2680
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2681
	down_write(&memcg_cache_ids_sem);
2682 2683

	size = 2 * (id + 1);
2684 2685 2686 2687 2688
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2689
	err = memcg_update_all_caches(size);
2690 2691
	if (!err)
		err = memcg_update_all_list_lrus(size);
2692 2693 2694 2695 2696
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2697
	if (err) {
2698
		ida_simple_remove(&memcg_cache_ida, id);
2699 2700 2701 2702 2703 2704 2705
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2706
	ida_simple_remove(&memcg_cache_ida, id);
2707 2708
}

2709
struct memcg_kmem_cache_create_work {
2710 2711 2712 2713 2714
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2715
static void memcg_kmem_cache_create_func(struct work_struct *w)
2716
{
2717 2718
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2719 2720
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2721

2722
	memcg_create_kmem_cache(memcg, cachep);
2723

2724
	css_put(&memcg->css);
2725 2726 2727 2728 2729 2730
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2731
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2732
					       struct kmem_cache *cachep)
2733
{
2734
	struct memcg_kmem_cache_create_work *cw;
2735

2736 2737 2738
	if (!css_tryget_online(&memcg->css))
		return;

2739
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2740
	if (!cw)
2741
		return;
2742

2743 2744
	cw->memcg = memcg;
	cw->cachep = cachep;
2745
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2746

2747
	queue_work(memcg_kmem_cache_wq, &cw->work);
2748 2749
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2761 2762 2763
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2764 2765 2766
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2767
 *
2768 2769 2770 2771
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2772
 */
2773
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2774 2775
{
	struct mem_cgroup *memcg;
2776
	struct kmem_cache *memcg_cachep;
2777
	struct memcg_cache_array *arr;
2778
	int kmemcg_id;
2779

2780
	VM_BUG_ON(!is_root_cache(cachep));
2781

2782
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2783 2784
		return cachep;

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2795
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2796
	if (kmemcg_id < 0)
2797
		goto out_unlock;
2798

2799 2800 2801 2802 2803 2804 2805 2806
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2807 2808 2809 2810 2811 2812 2813 2814 2815

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2816 2817 2818
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2819 2820 2821 2822 2823 2824 2825
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
2826
	 */
2827 2828 2829 2830 2831 2832
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
		cachep = memcg_cachep;
out_unlock:
	rcu_read_unlock();
2833
	return cachep;
2834 2835
}

2836 2837 2838 2839 2840
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2841 2842
{
	if (!is_root_cache(cachep))
2843
		percpu_ref_put(&cachep->memcg_params.refcnt);
2844 2845
}

2846
/**
2847
 * __memcg_kmem_charge_memcg: charge a kmem page
2848 2849 2850 2851 2852 2853 2854
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
2855
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2856
			    struct mem_cgroup *memcg)
2857
{
2858 2859
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2860 2861
	int ret;

2862
	ret = try_charge(memcg, gfp, nr_pages);
2863
	if (ret)
2864
		return ret;
2865 2866 2867

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
2878 2879
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2880
	}
2881
	return 0;
2882 2883
}

2884
/**
2885
 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2886 2887 2888 2889 2890 2891
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2892
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2893
{
2894
	struct mem_cgroup *memcg;
2895
	int ret = 0;
2896

2897
	if (memcg_kmem_bypass())
2898 2899
		return 0;

2900
	memcg = get_mem_cgroup_from_current();
2901
	if (!mem_cgroup_is_root(memcg)) {
2902
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2903 2904
		if (!ret) {
			page->mem_cgroup = memcg;
2905
			__SetPageKmemcg(page);
2906
		}
2907
	}
2908
	css_put(&memcg->css);
2909
	return ret;
2910
}
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

/**
 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
				 unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}
2927
/**
2928
 * __memcg_kmem_uncharge: uncharge a kmem page
2929 2930 2931
 * @page: page to uncharge
 * @order: allocation order
 */
2932
void __memcg_kmem_uncharge(struct page *page, int order)
2933
{
2934
	struct mem_cgroup *memcg = page->mem_cgroup;
2935
	unsigned int nr_pages = 1 << order;
2936 2937 2938 2939

	if (!memcg)
		return;

2940
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2941
	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2942
	page->mem_cgroup = NULL;
2943 2944 2945 2946 2947

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2948
	css_put_many(&memcg->css, nr_pages);
2949
}
2950
#endif /* CONFIG_MEMCG_KMEM */
2951

2952 2953 2954 2955
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2956
 * pgdat->lru_lock and migration entries setup in all page mappings.
2957
 */
2958
void mem_cgroup_split_huge_fixup(struct page *head)
2959
{
2960
	int i;
2961

2962 2963
	if (mem_cgroup_disabled())
		return;
2964

2965
	for (i = 1; i < HPAGE_PMD_NR; i++)
2966
		head[i].mem_cgroup = head->mem_cgroup;
2967

2968
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2969
}
2970
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2971

A
Andrew Morton 已提交
2972
#ifdef CONFIG_MEMCG_SWAP
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2984
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2985 2986 2987
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2988
				struct mem_cgroup *from, struct mem_cgroup *to)
2989 2990 2991
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2992 2993
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2994 2995

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2996 2997
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2998 2999 3000 3001 3002 3003
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3004
				struct mem_cgroup *from, struct mem_cgroup *to)
3005 3006 3007
{
	return -EINVAL;
}
3008
#endif
K
KAMEZAWA Hiroyuki 已提交
3009

3010
static DEFINE_MUTEX(memcg_max_mutex);
3011

3012 3013
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3014
{
3015
	bool enlarge = false;
3016
	bool drained = false;
3017
	int ret;
3018 3019
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3020

3021
	do {
3022 3023 3024 3025
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3026

3027
		mutex_lock(&memcg_max_mutex);
3028 3029
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3030
		 * break our basic invariant rule memory.max <= memsw.max.
3031
		 */
3032 3033
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
3034
		if (!limits_invariant) {
3035
			mutex_unlock(&memcg_max_mutex);
3036 3037 3038
			ret = -EINVAL;
			break;
		}
3039
		if (max > counter->max)
3040
			enlarge = true;
3041 3042
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3043 3044 3045 3046

		if (!ret)
			break;

3047 3048 3049 3050 3051 3052
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3053 3054 3055 3056 3057 3058
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3059

3060 3061
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3062

3063 3064 3065
	return ret;
}

3066
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3067 3068 3069 3070
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3071
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3072 3073
	unsigned long reclaimed;
	int loop = 0;
3074
	struct mem_cgroup_tree_per_node *mctz;
3075
	unsigned long excess;
3076 3077 3078 3079 3080
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3081
	mctz = soft_limit_tree_node(pgdat->node_id);
3082 3083 3084 3085 3086 3087

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3088
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3089 3090
		return 0;

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3105
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3106 3107 3108
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3109
		spin_lock_irq(&mctz->lock);
3110
		__mem_cgroup_remove_exceeded(mz, mctz);
3111 3112 3113 3114 3115 3116

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3117 3118 3119
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3120
		excess = soft_limit_excess(mz->memcg);
3121 3122 3123 3124 3125 3126 3127 3128 3129
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3130
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3131
		spin_unlock_irq(&mctz->lock);
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3149 3150 3151 3152 3153 3154
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3155 3156
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3157 3158 3159 3160 3161 3162
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3163 3164
}

3165
/*
3166
 * Reclaims as many pages from the given memcg as possible.
3167 3168 3169 3170 3171 3172 3173
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3174 3175
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3176 3177 3178

	drain_all_stock(memcg);

3179
	/* try to free all pages in this cgroup */
3180
	while (nr_retries && page_counter_read(&memcg->memory)) {
3181
		int progress;
3182

3183 3184 3185
		if (signal_pending(current))
			return -EINTR;

3186 3187
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3188
		if (!progress) {
3189
			nr_retries--;
3190
			/* maybe some writeback is necessary */
3191
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3192
		}
3193 3194

	}
3195 3196

	return 0;
3197 3198
}

3199 3200 3201
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3202
{
3203
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3204

3205 3206
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3207
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3208 3209
}

3210 3211
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3212
{
3213
	return mem_cgroup_from_css(css)->use_hierarchy;
3214 3215
}

3216 3217
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3218 3219
{
	int retval = 0;
3220
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3221
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3222

3223
	if (memcg->use_hierarchy == val)
3224
		return 0;
3225

3226
	/*
3227
	 * If parent's use_hierarchy is set, we can't make any modifications
3228 3229 3230 3231 3232 3233
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3234
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3235
				(val == 1 || val == 0)) {
3236
		if (!memcg_has_children(memcg))
3237
			memcg->use_hierarchy = val;
3238 3239 3240 3241
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3242

3243 3244 3245
	return retval;
}

3246
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3247
{
3248
	unsigned long val;
3249

3250
	if (mem_cgroup_is_root(memcg)) {
3251 3252 3253 3254
		val = memcg_page_state(memcg, MEMCG_CACHE) +
			memcg_page_state(memcg, MEMCG_RSS);
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3255
	} else {
3256
		if (!swap)
3257
			val = page_counter_read(&memcg->memory);
3258
		else
3259
			val = page_counter_read(&memcg->memsw);
3260
	}
3261
	return val;
3262 3263
}

3264 3265 3266 3267 3268 3269 3270
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3271

3272
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3273
			       struct cftype *cft)
B
Balbir Singh 已提交
3274
{
3275
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3276
	struct page_counter *counter;
3277

3278
	switch (MEMFILE_TYPE(cft->private)) {
3279
	case _MEM:
3280 3281
		counter = &memcg->memory;
		break;
3282
	case _MEMSWAP:
3283 3284
		counter = &memcg->memsw;
		break;
3285
	case _KMEM:
3286
		counter = &memcg->kmem;
3287
		break;
V
Vladimir Davydov 已提交
3288
	case _TCP:
3289
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3290
		break;
3291 3292 3293
	default:
		BUG();
	}
3294 3295 3296 3297

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3298
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3299
		if (counter == &memcg->memsw)
3300
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3301 3302
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3303
		return (u64)counter->max * PAGE_SIZE;
3304 3305 3306 3307 3308 3309 3310 3311 3312
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3313
}
3314

3315
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3316
{
3317
	unsigned long stat[MEMCG_NR_STAT] = {0};
3318 3319 3320 3321
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3322
		for (i = 0; i < MEMCG_NR_STAT; i++)
3323
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3324 3325

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3326
		for (i = 0; i < MEMCG_NR_STAT; i++)
3327 3328 3329 3330 3331 3332
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3333
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3334 3335 3336
			stat[i] = 0;

		for_each_online_cpu(cpu)
3337
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3338 3339
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3340 3341

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3342
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3343 3344 3345 3346
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3358 3359
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3360 3361 3362 3363 3364 3365

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3366
#ifdef CONFIG_MEMCG_KMEM
3367
static int memcg_online_kmem(struct mem_cgroup *memcg)
3368 3369 3370
{
	int memcg_id;

3371 3372 3373
	if (cgroup_memory_nokmem)
		return 0;

3374
	BUG_ON(memcg->kmemcg_id >= 0);
3375
	BUG_ON(memcg->kmem_state);
3376

3377
	memcg_id = memcg_alloc_cache_id();
3378 3379
	if (memcg_id < 0)
		return memcg_id;
3380

3381
	static_branch_inc(&memcg_kmem_enabled_key);
3382
	/*
3383
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3384
	 * kmemcg_id. Setting the id after enabling static branching will
3385 3386 3387
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3388
	memcg->kmemcg_id = memcg_id;
3389
	memcg->kmem_state = KMEM_ONLINE;
3390
	INIT_LIST_HEAD(&memcg->kmem_caches);
3391 3392

	return 0;
3393 3394
}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3415
	/*
3416
	 * Deactivate and reparent kmem_caches.
3417
	 */
3418 3419 3420 3421 3422
	memcg_deactivate_kmem_caches(memcg, parent);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3423 3424 3425 3426 3427 3428 3429 3430
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3431
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3432 3433 3434 3435 3436 3437 3438
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3439 3440
	rcu_read_unlock();

3441
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3442 3443 3444 3445 3446 3447

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3448 3449 3450 3451
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3452
	if (memcg->kmem_state == KMEM_ALLOCATED) {
3453
		WARN_ON(!list_empty(&memcg->kmem_caches));
3454 3455 3456
		static_branch_dec(&memcg_kmem_enabled_key);
	}
}
3457
#else
3458
static int memcg_online_kmem(struct mem_cgroup *memcg)
3459 3460 3461 3462 3463 3464 3465 3466 3467
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3468
#endif /* CONFIG_MEMCG_KMEM */
3469

3470 3471
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3472
{
3473
	int ret;
3474

3475 3476 3477
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3478
	return ret;
3479
}
3480

3481
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3482 3483 3484
{
	int ret;

3485
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3486

3487
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3488 3489 3490
	if (ret)
		goto out;

3491
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3492 3493 3494
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3495 3496 3497
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3498 3499 3500 3501 3502 3503
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3504
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3505 3506 3507 3508
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3509
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3510 3511
	}
out:
3512
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3513 3514 3515
	return ret;
}

3516 3517 3518 3519
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3520 3521
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3522
{
3523
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3524
	unsigned long nr_pages;
3525 3526
	int ret;

3527
	buf = strstrip(buf);
3528
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3529 3530
	if (ret)
		return ret;
3531

3532
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3533
	case RES_LIMIT:
3534 3535 3536 3537
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3538 3539
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3540
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3541
			break;
3542
		case _MEMSWAP:
3543
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3544
			break;
3545
		case _KMEM:
3546 3547 3548
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3549
			ret = memcg_update_kmem_max(memcg, nr_pages);
3550
			break;
V
Vladimir Davydov 已提交
3551
		case _TCP:
3552
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3553
			break;
3554
		}
3555
		break;
3556 3557 3558
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3559 3560
		break;
	}
3561
	return ret ?: nbytes;
B
Balbir Singh 已提交
3562 3563
}

3564 3565
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3566
{
3567
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3568
	struct page_counter *counter;
3569

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3580
	case _TCP:
3581
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3582
		break;
3583 3584 3585
	default:
		BUG();
	}
3586

3587
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3588
	case RES_MAX_USAGE:
3589
		page_counter_reset_watermark(counter);
3590 3591
		break;
	case RES_FAILCNT:
3592
		counter->failcnt = 0;
3593
		break;
3594 3595
	default:
		BUG();
3596
	}
3597

3598
	return nbytes;
3599 3600
}

3601
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3602 3603
					struct cftype *cft)
{
3604
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3605 3606
}

3607
#ifdef CONFIG_MMU
3608
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3609 3610
					struct cftype *cft, u64 val)
{
3611
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3612

3613
	if (val & ~MOVE_MASK)
3614
		return -EINVAL;
3615

3616
	/*
3617 3618 3619 3620
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3621
	 */
3622
	memcg->move_charge_at_immigrate = val;
3623 3624
	return 0;
}
3625
#else
3626
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3627 3628 3629 3630 3631
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3632

3633
#ifdef CONFIG_NUMA
3634 3635 3636 3637 3638 3639 3640 3641

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
{
3642
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3643 3644 3645 3646 3647 3648 3649 3650
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3651
		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
					     unsigned int lru_mask)
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3665
		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3666 3667 3668 3669
	}
	return nr;
}

3670
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3671
{
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3684
	int nid;
3685
	unsigned long nr;
3686
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3687

3688 3689 3690 3691 3692 3693 3694 3695 3696
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3697 3698
	}

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3714 3715 3716 3717 3718 3719
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
static const unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3742
/* Universal VM events cgroup1 shows, original sort order */
3743
static const unsigned int memcg1_events[] = {
3744 3745 3746 3747 3748 3749
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3750
static int memcg_stat_show(struct seq_file *m, void *v)
3751
{
3752
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3753
	unsigned long memory, memsw;
3754 3755
	struct mem_cgroup *mi;
	unsigned int i;
3756

3757
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3758

3759 3760
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3761
			continue;
3762
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3763
			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3764
			   PAGE_SIZE);
3765
	}
L
Lee Schermerhorn 已提交
3766

3767
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3768
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3769
			   memcg_events_local(memcg, memcg1_events[i]));
3770 3771

	for (i = 0; i < NR_LRU_LISTS; i++)
3772
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3773
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3774
			   PAGE_SIZE);
3775

K
KAMEZAWA Hiroyuki 已提交
3776
	/* Hierarchical information */
3777 3778
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3779 3780
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3781
	}
3782 3783
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3784
	if (do_memsw_account())
3785 3786
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3787

3788
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3789
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3790
			continue;
3791
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3792 3793
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3794 3795
	}

3796
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3797 3798
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
3799
			   (u64)memcg_events(memcg, memcg1_events[i]));
3800

3801
	for (i = 0; i < NR_LRU_LISTS; i++)
3802
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3803 3804
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3805

K
KOSAKI Motohiro 已提交
3806 3807
#ifdef CONFIG_DEBUG_VM
	{
3808 3809
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3810
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3811 3812 3813
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3814 3815 3816
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3817

3818 3819 3820 3821 3822
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3823 3824 3825 3826
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3827 3828 3829
	}
#endif

3830 3831 3832
	return 0;
}

3833 3834
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3835
{
3836
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3837

3838
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3839 3840
}

3841 3842
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3843
{
3844
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3845

3846
	if (val > 100)
K
KOSAKI Motohiro 已提交
3847 3848
		return -EINVAL;

3849
	if (css->parent)
3850 3851 3852
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3853

K
KOSAKI Motohiro 已提交
3854 3855 3856
	return 0;
}

3857 3858 3859
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3860
	unsigned long usage;
3861 3862 3863 3864
	int i;

	rcu_read_lock();
	if (!swap)
3865
		t = rcu_dereference(memcg->thresholds.primary);
3866
	else
3867
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3868 3869 3870 3871

	if (!t)
		goto unlock;

3872
	usage = mem_cgroup_usage(memcg, swap);
3873 3874

	/*
3875
	 * current_threshold points to threshold just below or equal to usage.
3876 3877 3878
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3879
	i = t->current_threshold;
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3903
	t->current_threshold = i - 1;
3904 3905 3906 3907 3908 3909
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3910 3911
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3912
		if (do_memsw_account())
3913 3914 3915 3916
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3917 3918 3919 3920 3921 3922 3923
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3924 3925 3926 3927 3928 3929 3930
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3931 3932
}

3933
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3934 3935 3936
{
	struct mem_cgroup_eventfd_list *ev;

3937 3938
	spin_lock(&memcg_oom_lock);

3939
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3940
		eventfd_signal(ev->eventfd, 1);
3941 3942

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3943 3944 3945
	return 0;
}

3946
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3947
{
K
KAMEZAWA Hiroyuki 已提交
3948 3949
	struct mem_cgroup *iter;

3950
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3951
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3952 3953
}

3954
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3955
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3956
{
3957 3958
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3959 3960
	unsigned long threshold;
	unsigned long usage;
3961
	int i, size, ret;
3962

3963
	ret = page_counter_memparse(args, "-1", &threshold);
3964 3965 3966 3967
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3968

3969
	if (type == _MEM) {
3970
		thresholds = &memcg->thresholds;
3971
		usage = mem_cgroup_usage(memcg, false);
3972
	} else if (type == _MEMSWAP) {
3973
		thresholds = &memcg->memsw_thresholds;
3974
		usage = mem_cgroup_usage(memcg, true);
3975
	} else
3976 3977 3978
		BUG();

	/* Check if a threshold crossed before adding a new one */
3979
	if (thresholds->primary)
3980 3981
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3982
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3983 3984

	/* Allocate memory for new array of thresholds */
3985
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3986
	if (!new) {
3987 3988 3989
		ret = -ENOMEM;
		goto unlock;
	}
3990
	new->size = size;
3991 3992

	/* Copy thresholds (if any) to new array */
3993 3994
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3995
				sizeof(struct mem_cgroup_threshold));
3996 3997
	}

3998
	/* Add new threshold */
3999 4000
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4001 4002

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4003
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4004 4005 4006
			compare_thresholds, NULL);

	/* Find current threshold */
4007
	new->current_threshold = -1;
4008
	for (i = 0; i < size; i++) {
4009
		if (new->entries[i].threshold <= usage) {
4010
			/*
4011 4012
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4013 4014
			 * it here.
			 */
4015
			++new->current_threshold;
4016 4017
		} else
			break;
4018 4019
	}

4020 4021 4022 4023 4024
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4025

4026
	/* To be sure that nobody uses thresholds */
4027 4028 4029 4030 4031 4032 4033 4034
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4035
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4036 4037
	struct eventfd_ctx *eventfd, const char *args)
{
4038
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4039 4040
}

4041
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4042 4043
	struct eventfd_ctx *eventfd, const char *args)
{
4044
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4045 4046
}

4047
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4048
	struct eventfd_ctx *eventfd, enum res_type type)
4049
{
4050 4051
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4052
	unsigned long usage;
4053
	int i, j, size, entries;
4054 4055

	mutex_lock(&memcg->thresholds_lock);
4056 4057

	if (type == _MEM) {
4058
		thresholds = &memcg->thresholds;
4059
		usage = mem_cgroup_usage(memcg, false);
4060
	} else if (type == _MEMSWAP) {
4061
		thresholds = &memcg->memsw_thresholds;
4062
		usage = mem_cgroup_usage(memcg, true);
4063
	} else
4064 4065
		BUG();

4066 4067 4068
	if (!thresholds->primary)
		goto unlock;

4069 4070 4071 4072
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4073
	size = entries = 0;
4074 4075
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4076
			size++;
4077 4078
		else
			entries++;
4079 4080
	}

4081
	new = thresholds->spare;
4082

4083 4084 4085 4086
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4087 4088
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4089 4090
		kfree(new);
		new = NULL;
4091
		goto swap_buffers;
4092 4093
	}

4094
	new->size = size;
4095 4096

	/* Copy thresholds and find current threshold */
4097 4098 4099
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4100 4101
			continue;

4102
		new->entries[j] = thresholds->primary->entries[i];
4103
		if (new->entries[j].threshold <= usage) {
4104
			/*
4105
			 * new->current_threshold will not be used
4106 4107 4108
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4109
			++new->current_threshold;
4110 4111 4112 4113
		}
		j++;
	}

4114
swap_buffers:
4115 4116
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4117

4118
	rcu_assign_pointer(thresholds->primary, new);
4119

4120
	/* To be sure that nobody uses thresholds */
4121
	synchronize_rcu();
4122 4123 4124 4125 4126 4127

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4128
unlock:
4129 4130
	mutex_unlock(&memcg->thresholds_lock);
}
4131

4132
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4133 4134
	struct eventfd_ctx *eventfd)
{
4135
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4136 4137
}

4138
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4139 4140
	struct eventfd_ctx *eventfd)
{
4141
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4142 4143
}

4144
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4145
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4146 4147 4148 4149 4150 4151 4152
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4153
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4154 4155 4156 4157 4158

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4159
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4160
		eventfd_signal(eventfd, 1);
4161
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4162 4163 4164 4165

	return 0;
}

4166
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4167
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4168 4169 4170
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4171
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4172

4173
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4174 4175 4176 4177 4178 4179
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4180
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4181 4182
}

4183
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4184
{
4185
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4186

4187
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4188
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4189 4190
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4191 4192 4193
	return 0;
}

4194
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4195 4196
	struct cftype *cft, u64 val)
{
4197
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4198 4199

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4200
	if (!css->parent || !((val == 0) || (val == 1)))
4201 4202
		return -EINVAL;

4203
	memcg->oom_kill_disable = val;
4204
	if (!val)
4205
		memcg_oom_recover(memcg);
4206

4207 4208 4209
	return 0;
}

4210 4211
#ifdef CONFIG_CGROUP_WRITEBACK

4212 4213
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4224 4225 4226 4227 4228
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4239 4240 4241 4242 4243 4244
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4245
	long x = atomic_long_read(&memcg->vmstats[idx]);
4246 4247 4248
	int cpu;

	for_each_online_cpu(cpu)
4249
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4250 4251 4252 4253 4254
	if (x < 0)
		x = 0;
	return x;
}

4255 4256 4257
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4258 4259
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4260 4261 4262
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4263 4264 4265
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4266
 *
4267 4268 4269 4270 4271
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4272
 */
4273 4274 4275
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4276 4277 4278 4279
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4280
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4281 4282

	/* this should eventually include NR_UNSTABLE_NFS */
4283
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4284 4285
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4286
	*pheadroom = PAGE_COUNTER_MAX;
4287 4288

	while ((parent = parent_mem_cgroup(memcg))) {
4289
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4290 4291
		unsigned long used = page_counter_read(&memcg->memory);

4292
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4293 4294 4295 4296
		memcg = parent;
	}
}

4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4351 4352
	trace_track_foreign_dirty(page, wb);

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4413
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4414 4415 4416 4417 4418 4419 4420
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4432 4433 4434 4435
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4436 4437
#endif	/* CONFIG_CGROUP_WRITEBACK */

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4451 4452 4453 4454 4455
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4456
static void memcg_event_remove(struct work_struct *work)
4457
{
4458 4459
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4460
	struct mem_cgroup *memcg = event->memcg;
4461 4462 4463

	remove_wait_queue(event->wqh, &event->wait);

4464
	event->unregister_event(memcg, event->eventfd);
4465 4466 4467 4468 4469 4470

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4471
	css_put(&memcg->css);
4472 4473 4474
}

/*
4475
 * Gets called on EPOLLHUP on eventfd when user closes it.
4476 4477 4478
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4479
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4480
			    int sync, void *key)
4481
{
4482 4483
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4484
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4485
	__poll_t flags = key_to_poll(key);
4486

4487
	if (flags & EPOLLHUP) {
4488 4489 4490 4491 4492 4493 4494 4495 4496
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4497
		spin_lock(&memcg->event_list_lock);
4498 4499 4500 4501 4502 4503 4504 4505
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4506
		spin_unlock(&memcg->event_list_lock);
4507 4508 4509 4510 4511
	}

	return 0;
}

4512
static void memcg_event_ptable_queue_proc(struct file *file,
4513 4514
		wait_queue_head_t *wqh, poll_table *pt)
{
4515 4516
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4517 4518 4519 4520 4521 4522

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4523 4524
 * DO NOT USE IN NEW FILES.
 *
4525 4526 4527 4528 4529
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4530 4531
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4532
{
4533
	struct cgroup_subsys_state *css = of_css(of);
4534
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4535
	struct mem_cgroup_event *event;
4536 4537 4538 4539
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4540
	const char *name;
4541 4542 4543
	char *endp;
	int ret;

4544 4545 4546
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4547 4548
	if (*endp != ' ')
		return -EINVAL;
4549
	buf = endp + 1;
4550

4551
	cfd = simple_strtoul(buf, &endp, 10);
4552 4553
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4554
	buf = endp + 1;
4555 4556 4557 4558 4559

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4560
	event->memcg = memcg;
4561
	INIT_LIST_HEAD(&event->list);
4562 4563 4564
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4590 4591 4592 4593 4594
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4595 4596
	 *
	 * DO NOT ADD NEW FILES.
4597
	 */
A
Al Viro 已提交
4598
	name = cfile.file->f_path.dentry->d_name.name;
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4610 4611
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4612 4613 4614 4615 4616
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4617
	/*
4618 4619 4620
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4621
	 */
A
Al Viro 已提交
4622
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4623
					       &memory_cgrp_subsys);
4624
	ret = -EINVAL;
4625
	if (IS_ERR(cfile_css))
4626
		goto out_put_cfile;
4627 4628
	if (cfile_css != css) {
		css_put(cfile_css);
4629
		goto out_put_cfile;
4630
	}
4631

4632
	ret = event->register_event(memcg, event->eventfd, buf);
4633 4634 4635
	if (ret)
		goto out_put_css;

4636
	vfs_poll(efile.file, &event->pt);
4637

4638 4639 4640
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4641 4642 4643 4644

	fdput(cfile);
	fdput(efile);

4645
	return nbytes;
4646 4647

out_put_css:
4648
	css_put(css);
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4661
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4662
	{
4663
		.name = "usage_in_bytes",
4664
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4665
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4666
	},
4667 4668
	{
		.name = "max_usage_in_bytes",
4669
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4670
		.write = mem_cgroup_reset,
4671
		.read_u64 = mem_cgroup_read_u64,
4672
	},
B
Balbir Singh 已提交
4673
	{
4674
		.name = "limit_in_bytes",
4675
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4676
		.write = mem_cgroup_write,
4677
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4678
	},
4679 4680 4681
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4682
		.write = mem_cgroup_write,
4683
		.read_u64 = mem_cgroup_read_u64,
4684
	},
B
Balbir Singh 已提交
4685 4686
	{
		.name = "failcnt",
4687
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4688
		.write = mem_cgroup_reset,
4689
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4690
	},
4691 4692
	{
		.name = "stat",
4693
		.seq_show = memcg_stat_show,
4694
	},
4695 4696
	{
		.name = "force_empty",
4697
		.write = mem_cgroup_force_empty_write,
4698
	},
4699 4700 4701 4702 4703
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4704
	{
4705
		.name = "cgroup.event_control",		/* XXX: for compat */
4706
		.write = memcg_write_event_control,
4707
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4708
	},
K
KOSAKI Motohiro 已提交
4709 4710 4711 4712 4713
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4714 4715 4716 4717 4718
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4719 4720
	{
		.name = "oom_control",
4721
		.seq_show = mem_cgroup_oom_control_read,
4722
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4723 4724
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4725 4726 4727
	{
		.name = "pressure_level",
	},
4728 4729 4730
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4731
		.seq_show = memcg_numa_stat_show,
4732 4733
	},
#endif
4734 4735 4736
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4737
		.write = mem_cgroup_write,
4738
		.read_u64 = mem_cgroup_read_u64,
4739 4740 4741 4742
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4743
		.read_u64 = mem_cgroup_read_u64,
4744 4745 4746 4747
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4748
		.write = mem_cgroup_reset,
4749
		.read_u64 = mem_cgroup_read_u64,
4750 4751 4752 4753
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4754
		.write = mem_cgroup_reset,
4755
		.read_u64 = mem_cgroup_read_u64,
4756
	},
Y
Yang Shi 已提交
4757
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4758 4759
	{
		.name = "kmem.slabinfo",
4760 4761 4762
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4763
		.seq_show = memcg_slab_show,
4764 4765
	},
#endif
V
Vladimir Davydov 已提交
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4789
	{ },	/* terminate */
4790
};
4791

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4818 4819 4820 4821 4822 4823 4824 4825
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4826
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4827
{
4828
	refcount_add(n, &memcg->id.ref);
4829 4830
}

4831
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4832
{
4833
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4834
		mem_cgroup_id_remove(memcg);
4835 4836 4837 4838 4839 4840

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4841 4842 4843 4844 4845
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4858
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4859 4860
{
	struct mem_cgroup_per_node *pn;
4861
	int tmp = node;
4862 4863 4864 4865 4866 4867 4868 4869
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4870 4871
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4872
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4873 4874
	if (!pn)
		return 1;
4875

4876 4877 4878 4879 4880 4881
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4882 4883
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4884
		free_percpu(pn->lruvec_stat_local);
4885 4886 4887 4888
		kfree(pn);
		return 1;
	}

4889 4890 4891 4892 4893
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4894
	memcg->nodeinfo[node] = pn;
4895 4896 4897
	return 0;
}

4898
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4899
{
4900 4901
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4902 4903 4904
	if (!pn)
		return;

4905
	free_percpu(pn->lruvec_stat_cpu);
4906
	free_percpu(pn->lruvec_stat_local);
4907
	kfree(pn);
4908 4909
}

4910
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4911
{
4912
	int node;
4913

4914
	for_each_node(node)
4915
		free_mem_cgroup_per_node_info(memcg, node);
4916
	free_percpu(memcg->vmstats_percpu);
4917
	free_percpu(memcg->vmstats_local);
4918
	kfree(memcg);
4919
}
4920

4921 4922 4923
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
4924 4925 4926 4927
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
4928
	memcg_flush_percpu_vmstats(memcg);
4929
	memcg_flush_percpu_vmevents(memcg);
4930 4931 4932
	__mem_cgroup_free(memcg);
}

4933
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4934
{
4935
	struct mem_cgroup *memcg;
4936
	unsigned int size;
4937
	int node;
4938
	int __maybe_unused i;
B
Balbir Singh 已提交
4939

4940 4941 4942 4943
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4944
	if (!memcg)
4945 4946
		return NULL;

4947 4948 4949 4950 4951 4952
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4953 4954 4955 4956
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

4957 4958
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
4959
		goto fail;
4960

B
Bob Liu 已提交
4961
	for_each_node(node)
4962
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4963
			goto fail;
4964

4965 4966
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4967

4968
	INIT_WORK(&memcg->high_work, high_work_func);
4969 4970 4971
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4972
	vmpressure_init(&memcg->vmpressure);
4973 4974
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4975
	memcg->socket_pressure = jiffies;
4976
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4977 4978
	memcg->kmemcg_id = -1;
#endif
4979 4980
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
4981 4982 4983
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4984 4985 4986 4987 4988
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
4989
#endif
4990
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4991 4992
	return memcg;
fail:
4993
	mem_cgroup_id_remove(memcg);
4994
	__mem_cgroup_free(memcg);
4995
	return NULL;
4996 4997
}

4998 4999
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5000
{
5001 5002 5003
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5004

5005 5006 5007
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
5008

5009 5010 5011 5012 5013 5014 5015 5016
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5017
		page_counter_init(&memcg->memory, &parent->memory);
5018
		page_counter_init(&memcg->swap, &parent->swap);
5019 5020
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5021
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5022
	} else {
5023
		page_counter_init(&memcg->memory, NULL);
5024
		page_counter_init(&memcg->swap, NULL);
5025 5026
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5027
		page_counter_init(&memcg->tcpmem, NULL);
5028 5029 5030 5031 5032
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5033
		if (parent != root_mem_cgroup)
5034
			memory_cgrp_subsys.broken_hierarchy = true;
5035
	}
5036

5037 5038
	/* The following stuff does not apply to the root */
	if (!parent) {
5039 5040 5041
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
5042 5043 5044 5045
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5046
	error = memcg_online_kmem(memcg);
5047 5048
	if (error)
		goto fail;
5049

5050
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5051
		static_branch_inc(&memcg_sockets_enabled_key);
5052

5053 5054
	return &memcg->css;
fail:
5055
	mem_cgroup_id_remove(memcg);
5056
	mem_cgroup_free(memcg);
5057
	return ERR_PTR(-ENOMEM);
5058 5059
}

5060
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5061
{
5062 5063
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5074
	/* Online state pins memcg ID, memcg ID pins CSS */
5075
	refcount_set(&memcg->id.ref, 1);
5076
	css_get(css);
5077
	return 0;
B
Balbir Singh 已提交
5078 5079
}

5080
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5081
{
5082
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5083
	struct mem_cgroup_event *event, *tmp;
5084 5085 5086 5087 5088 5089

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5090 5091
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5092 5093 5094
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5095
	spin_unlock(&memcg->event_list_lock);
5096

R
Roman Gushchin 已提交
5097
	page_counter_set_min(&memcg->memory, 0);
5098
	page_counter_set_low(&memcg->memory, 0);
5099

5100
	memcg_offline_kmem(memcg);
5101
	wb_memcg_offline(memcg);
5102

5103 5104
	drain_all_stock(memcg);

5105
	mem_cgroup_id_put(memcg);
5106 5107
}

5108 5109 5110 5111 5112 5113 5114
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5115
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5116
{
5117
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5118
	int __maybe_unused i;
5119

5120 5121 5122 5123
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5124
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5125
		static_branch_dec(&memcg_sockets_enabled_key);
5126

5127
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5128
		static_branch_dec(&memcg_sockets_enabled_key);
5129

5130 5131 5132
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5133
	memcg_free_shrinker_maps(memcg);
5134
	memcg_free_kmem(memcg);
5135
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5136 5137
}

5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5155 5156 5157 5158 5159
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5160
	page_counter_set_min(&memcg->memory, 0);
5161
	page_counter_set_low(&memcg->memory, 0);
5162
	memcg->high = PAGE_COUNTER_MAX;
5163
	memcg->soft_limit = PAGE_COUNTER_MAX;
5164
	memcg_wb_domain_size_changed(memcg);
5165 5166
}

5167
#ifdef CONFIG_MMU
5168
/* Handlers for move charge at task migration. */
5169
static int mem_cgroup_do_precharge(unsigned long count)
5170
{
5171
	int ret;
5172

5173 5174
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5175
	if (!ret) {
5176 5177 5178
		mc.precharge += count;
		return ret;
	}
5179

5180
	/* Try charges one by one with reclaim, but do not retry */
5181
	while (count--) {
5182
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5183 5184
		if (ret)
			return ret;
5185
		mc.precharge++;
5186
		cond_resched();
5187
	}
5188
	return 0;
5189 5190 5191 5192
}

union mc_target {
	struct page	*page;
5193
	swp_entry_t	ent;
5194 5195 5196
};

enum mc_target_type {
5197
	MC_TARGET_NONE = 0,
5198
	MC_TARGET_PAGE,
5199
	MC_TARGET_SWAP,
5200
	MC_TARGET_DEVICE,
5201 5202
};

D
Daisuke Nishimura 已提交
5203 5204
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5205
{
5206
	struct page *page = vm_normal_page(vma, addr, ptent);
5207

D
Daisuke Nishimura 已提交
5208 5209 5210
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5211
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5212
			return NULL;
5213 5214 5215 5216
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5217 5218 5219 5220 5221 5222
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5223
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5224
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5225
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5226 5227 5228 5229
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5230
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5231
		return NULL;
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5249 5250 5251 5252
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5253
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5254
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
5255 5256 5257 5258
		entry->val = ent.val;

	return page;
}
5259 5260
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5261
			pte_t ptent, swp_entry_t *entry)
5262 5263 5264 5265
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5266

5267 5268 5269 5270 5271 5272 5273 5274 5275
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5276
	if (!(mc.flags & MOVE_FILE))
5277 5278 5279
		return NULL;

	mapping = vma->vm_file->f_mapping;
5280
	pgoff = linear_page_index(vma, addr);
5281 5282

	/* page is moved even if it's not RSS of this task(page-faulted). */
5283 5284
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5285 5286
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5287
		if (xa_is_value(page)) {
5288
			swp_entry_t swp = radix_to_swp_entry(page);
5289
			if (do_memsw_account())
5290
				*entry = swp;
5291 5292
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5293 5294 5295 5296 5297
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5298
#endif
5299 5300 5301
	return page;
}

5302 5303 5304
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5305
 * @compound: charge the page as compound or small page
5306 5307 5308
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5309
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5310 5311 5312 5313 5314
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5315
				   bool compound,
5316 5317 5318
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5319 5320
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5321
	unsigned long flags;
5322
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5323
	int ret;
5324
	bool anon;
5325 5326 5327

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5328
	VM_BUG_ON(compound && !PageTransHuge(page));
5329 5330

	/*
5331
	 * Prevent mem_cgroup_migrate() from looking at
5332
	 * page->mem_cgroup of its source page while we change it.
5333
	 */
5334
	ret = -EBUSY;
5335 5336 5337 5338 5339 5340 5341
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5342 5343
	anon = PageAnon(page);

5344
	pgdat = page_pgdat(page);
5345 5346
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5347

5348 5349
	spin_lock_irqsave(&from->move_lock, flags);

5350
	if (!anon && page_mapped(page)) {
5351 5352
		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5353 5354
	}

5355 5356
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
5357
	 * mod_memcg_page_state will serialize updates to PageDirty.
5358 5359 5360 5361 5362 5363
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
5364 5365
			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5366 5367 5368
		}
	}

5369
	if (PageWriteback(page)) {
5370 5371
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
5382

5383 5384 5385 5386 5387
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
5388
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5389
	memcg_check_events(to, page);
5390
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5391 5392 5393 5394 5395 5396 5397 5398
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5414 5415
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5416 5417 5418
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5419 5420
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5421 5422 5423 5424
 *
 * Called with pte lock held.
 */

5425
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5426 5427 5428
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5429
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5430 5431 5432 5433 5434
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5435
		page = mc_handle_swap_pte(vma, ptent, &ent);
5436
	else if (pte_none(ptent))
5437
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5438 5439

	if (!page && !ent.val)
5440
		return ret;
5441 5442
	if (page) {
		/*
5443
		 * Do only loose check w/o serialization.
5444
		 * mem_cgroup_move_account() checks the page is valid or
5445
		 * not under LRU exclusion.
5446
		 */
5447
		if (page->mem_cgroup == mc.from) {
5448
			ret = MC_TARGET_PAGE;
5449
			if (is_device_private_page(page))
5450
				ret = MC_TARGET_DEVICE;
5451 5452 5453 5454 5455 5456
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5457 5458 5459 5460 5461
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5462
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5463 5464 5465
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5466 5467 5468 5469
	}
	return ret;
}

5470 5471
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5472 5473
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5474 5475 5476 5477 5478 5479 5480 5481
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5482 5483 5484 5485 5486
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5487
	page = pmd_page(pmd);
5488
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5489
	if (!(mc.flags & MOVE_ANON))
5490
		return ret;
5491
	if (page->mem_cgroup == mc.from) {
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5508 5509 5510 5511
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5512
	struct vm_area_struct *vma = walk->vma;
5513 5514 5515
	pte_t *pte;
	spinlock_t *ptl;

5516 5517
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5518 5519
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5520 5521
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5522
		 */
5523 5524
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5525
		spin_unlock(ptl);
5526
		return 0;
5527
	}
5528

5529 5530
	if (pmd_trans_unstable(pmd))
		return 0;
5531 5532
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5533
		if (get_mctgt_type(vma, addr, *pte, NULL))
5534 5535 5536 5537
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5538 5539 5540
	return 0;
}

5541 5542 5543 5544
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5545 5546 5547 5548
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5549
	down_read(&mm->mmap_sem);
5550
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5551
	up_read(&mm->mmap_sem);
5552 5553 5554 5555 5556 5557 5558 5559 5560

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5561 5562 5563 5564 5565
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5566 5567
}

5568 5569
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5570
{
5571 5572 5573
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5574
	/* we must uncharge all the leftover precharges from mc.to */
5575
	if (mc.precharge) {
5576
		cancel_charge(mc.to, mc.precharge);
5577 5578 5579 5580 5581 5582 5583
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5584
		cancel_charge(mc.from, mc.moved_charge);
5585
		mc.moved_charge = 0;
5586
	}
5587 5588 5589
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5590
		if (!mem_cgroup_is_root(mc.from))
5591
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5592

5593 5594
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5595
		/*
5596 5597
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5598
		 */
5599
		if (!mem_cgroup_is_root(mc.to))
5600 5601
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5602 5603
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5604

5605 5606
		mc.moved_swap = 0;
	}
5607 5608 5609 5610 5611 5612 5613
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5614 5615
	struct mm_struct *mm = mc.mm;

5616 5617 5618 5619 5620 5621
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5622
	spin_lock(&mc.lock);
5623 5624
	mc.from = NULL;
	mc.to = NULL;
5625
	mc.mm = NULL;
5626
	spin_unlock(&mc.lock);
5627 5628

	mmput(mm);
5629 5630
}

5631
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5632
{
5633
	struct cgroup_subsys_state *css;
5634
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5635
	struct mem_cgroup *from;
5636
	struct task_struct *leader, *p;
5637
	struct mm_struct *mm;
5638
	unsigned long move_flags;
5639
	int ret = 0;
5640

5641 5642
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5643 5644
		return 0;

5645 5646 5647 5648 5649 5650 5651
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5652
	cgroup_taskset_for_each_leader(leader, css, tset) {
5653 5654
		WARN_ON_ONCE(p);
		p = leader;
5655
		memcg = mem_cgroup_from_css(css);
5656 5657 5658 5659
	}
	if (!p)
		return 0;

5660 5661 5662 5663 5664 5665 5666 5667 5668
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5685
		mc.mm = mm;
5686 5687 5688 5689 5690 5691 5692 5693 5694
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5695 5696
	} else {
		mmput(mm);
5697 5698 5699 5700
	}
	return ret;
}

5701
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5702
{
5703 5704
	if (mc.to)
		mem_cgroup_clear_mc();
5705 5706
}

5707 5708 5709
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5710
{
5711
	int ret = 0;
5712
	struct vm_area_struct *vma = walk->vma;
5713 5714
	pte_t *pte;
	spinlock_t *ptl;
5715 5716 5717
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5718

5719 5720
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5721
		if (mc.precharge < HPAGE_PMD_NR) {
5722
			spin_unlock(ptl);
5723 5724 5725 5726 5727 5728
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5729
				if (!mem_cgroup_move_account(page, true,
5730
							     mc.from, mc.to)) {
5731 5732 5733 5734 5735 5736
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5737 5738 5739 5740 5741 5742 5743 5744
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5745
		}
5746
		spin_unlock(ptl);
5747
		return 0;
5748 5749
	}

5750 5751
	if (pmd_trans_unstable(pmd))
		return 0;
5752 5753 5754 5755
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5756
		bool device = false;
5757
		swp_entry_t ent;
5758 5759 5760 5761

		if (!mc.precharge)
			break;

5762
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5763 5764 5765
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5766 5767
		case MC_TARGET_PAGE:
			page = target.page;
5768 5769 5770 5771 5772 5773 5774 5775
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5776
			if (!device && isolate_lru_page(page))
5777
				goto put;
5778 5779
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5780
				mc.precharge--;
5781 5782
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5783
			}
5784 5785
			if (!device)
				putback_lru_page(page);
5786
put:			/* get_mctgt_type() gets the page */
5787 5788
			put_page(page);
			break;
5789 5790
		case MC_TARGET_SWAP:
			ent = target.ent;
5791
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5792
				mc.precharge--;
5793 5794 5795
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5796
			break;
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5811
		ret = mem_cgroup_do_precharge(1);
5812 5813 5814 5815 5816 5817 5818
		if (!ret)
			goto retry;
	}

	return ret;
}

5819 5820 5821 5822
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

5823
static void mem_cgroup_move_charge(void)
5824 5825
{
	lru_add_drain_all();
5826
	/*
5827 5828 5829
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5830 5831 5832
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5833
retry:
5834
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5846 5847 5848 5849
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5850 5851
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
5852

5853
	up_read(&mc.mm->mmap_sem);
5854
	atomic_dec(&mc.from->moving_account);
5855 5856
}

5857
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5858
{
5859 5860
	if (mc.to) {
		mem_cgroup_move_charge();
5861
		mem_cgroup_clear_mc();
5862
	}
B
Balbir Singh 已提交
5863
}
5864
#else	/* !CONFIG_MMU */
5865
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5866 5867 5868
{
	return 0;
}
5869
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5870 5871
{
}
5872
static void mem_cgroup_move_task(void)
5873 5874 5875
{
}
#endif
B
Balbir Singh 已提交
5876

5877 5878
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5879 5880
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5881
 */
5882
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5883 5884
{
	/*
5885
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5886 5887 5888
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5889
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5890 5891 5892
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5893 5894
}

5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5905 5906 5907
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5908 5909 5910
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5911 5912
}

R
Roman Gushchin 已提交
5913 5914
static int memory_min_show(struct seq_file *m, void *v)
{
5915 5916
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5936 5937
static int memory_low_show(struct seq_file *m, void *v)
{
5938 5939
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5950
	err = page_counter_memparse(buf, "max", &low);
5951 5952 5953
	if (err)
		return err;

5954
	page_counter_set_low(&memcg->memory, low);
5955 5956 5957 5958 5959 5960

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
5961
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5962 5963 5964 5965 5966 5967
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5968 5969
	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5970 5971 5972 5973
	unsigned long high;
	int err;

	buf = strstrip(buf);
5974
	err = page_counter_memparse(buf, "max", &high);
5975 5976 5977 5978 5979
	if (err)
		return err;

	memcg->high = high;

5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6002

6003 6004 6005 6006 6007
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6008 6009
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6010 6011 6012 6013 6014 6015
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6016 6017
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6018 6019 6020 6021
	unsigned long max;
	int err;

	buf = strstrip(buf);
6022
	err = page_counter_memparse(buf, "max", &max);
6023 6024 6025
	if (err)
		return err;

6026
	xchg(&memcg->memory.max, max);
6027 6028 6029 6030 6031 6032 6033

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6034
		if (signal_pending(current))
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6050
		memcg_memory_event(memcg, MEMCG_OOM);
6051 6052 6053
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6054

6055
	memcg_wb_domain_size_changed(memcg);
6056 6057 6058
	return nbytes;
}

6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6069 6070
static int memory_events_show(struct seq_file *m, void *v)
{
6071
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6072

6073 6074 6075 6076 6077 6078 6079
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6080

6081
	__memory_events_show(m, memcg->memory_events_local);
6082 6083 6084
	return 0;
}

6085 6086
static int memory_stat_show(struct seq_file *m, void *v)
{
6087
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6088
	char *buf;
6089

6090 6091 6092 6093 6094
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6095 6096 6097
	return 0;
}

6098 6099
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6100
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6129 6130 6131
static struct cftype memory_files[] = {
	{
		.name = "current",
6132
		.flags = CFTYPE_NOT_ON_ROOT,
6133 6134
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6135 6136 6137 6138 6139 6140
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6162
		.file_offset = offsetof(struct mem_cgroup, events_file),
6163 6164
		.seq_show = memory_events_show,
	},
6165 6166 6167 6168 6169 6170
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6171 6172 6173 6174 6175
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
6176 6177 6178 6179 6180 6181
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6182 6183 6184
	{ }	/* terminate */
};

6185
struct cgroup_subsys memory_cgrp_subsys = {
6186
	.css_alloc = mem_cgroup_css_alloc,
6187
	.css_online = mem_cgroup_css_online,
6188
	.css_offline = mem_cgroup_css_offline,
6189
	.css_released = mem_cgroup_css_released,
6190
	.css_free = mem_cgroup_css_free,
6191
	.css_reset = mem_cgroup_css_reset,
6192 6193
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6194
	.post_attach = mem_cgroup_move_task,
6195
	.bind = mem_cgroup_bind,
6196 6197
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6198
	.early_init = 0,
B
Balbir Singh 已提交
6199
};
6200

6201
/**
R
Roman Gushchin 已提交
6202
 * mem_cgroup_protected - check if memory consumption is in the normal range
6203
 * @root: the top ancestor of the sub-tree being checked
6204 6205
 * @memcg: the memory cgroup to check
 *
6206 6207
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6208
 *
R
Roman Gushchin 已提交
6209 6210 6211 6212 6213
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6214
 *
R
Roman Gushchin 已提交
6215
 * @root is exclusive; it is never protected when looked at directly
6216
 *
R
Roman Gushchin 已提交
6217 6218 6219
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
6220
 *
6221 6222 6223 6224 6225 6226 6227
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
6228
 *
6229 6230 6231
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
6232
 *
6233 6234
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
6235
 *	       | 0, otherwise.
6236
 *
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
6264 6265
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
6266 6267 6268 6269
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
6270
 */
R
Roman Gushchin 已提交
6271 6272
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6273
{
6274
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
6275 6276 6277
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
6278

6279
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6280
		return MEMCG_PROT_NONE;
6281

6282 6283 6284
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6285
		return MEMCG_PROT_NONE;
6286

6287
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6288 6289 6290 6291 6292
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
6293

R
Roman Gushchin 已提交
6294
	parent = parent_mem_cgroup(memcg);
6295 6296 6297 6298
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6299 6300 6301
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

6316 6317
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
6318 6319
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
6320

R
Roman Gushchin 已提交
6321 6322 6323
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
6324

R
Roman Gushchin 已提交
6325 6326 6327 6328
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
6329 6330

exit:
R
Roman Gushchin 已提交
6331
	memcg->memory.emin = emin;
6332
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
6333 6334 6335 6336 6337 6338 6339

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6340 6341
}

6342 6343 6344 6345 6346 6347
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
6348
 * @compound: charge the page as compound or small page
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6361 6362
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
6363 6364
{
	struct mem_cgroup *memcg = NULL;
6365
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
6379
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6380
		if (compound_head(page)->mem_cgroup)
6381
			goto out;
6382

6383
		if (do_swap_account) {
6384 6385 6386 6387 6388 6389 6390 6391 6392
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

6419 6420 6421 6422 6423
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
6424
 * @compound: charge the page as compound or small page
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6437
			      bool lrucare, bool compound)
6438
{
6439
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6454 6455 6456
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6457
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6458 6459
	memcg_check_events(memcg, page);
	local_irq_enable();
6460

6461
	if (do_memsw_account() && PageSwapCache(page)) {
6462 6463 6464 6465 6466 6467
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6468
		mem_cgroup_uncharge_swap(entry, nr_pages);
6469 6470 6471 6472 6473 6474 6475
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6476
 * @compound: charge the page as compound or small page
6477 6478 6479
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6480 6481
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6482
{
6483
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6510
{
6511 6512 6513 6514 6515 6516
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6517 6518
	unsigned long flags;

6519 6520
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6521
		if (do_memsw_account())
6522 6523 6524 6525
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6526
	}
6527 6528

	local_irq_save(flags);
6529 6530 6531 6532 6533
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6534
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6535
	memcg_check_events(ug->memcg, ug->dummy_page);
6536
	local_irq_restore(flags);
6537

6538 6539 6540 6541 6542 6543 6544
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6545 6546
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
6569
			nr_pages = compound_nr(page);
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
6581
		ug->nr_kmem += compound_nr(page);
6582 6583 6584 6585 6586
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6587 6588 6589 6590
}

static void uncharge_list(struct list_head *page_list)
{
6591
	struct uncharge_gather ug;
6592
	struct list_head *next;
6593 6594

	uncharge_gather_clear(&ug);
6595

6596 6597 6598 6599
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6600 6601
	next = page_list->next;
	do {
6602 6603
		struct page *page;

6604 6605 6606
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6607
		uncharge_page(page, &ug);
6608 6609
	} while (next != page_list);

6610 6611
	if (ug.memcg)
		uncharge_batch(&ug);
6612 6613
}

6614 6615 6616 6617 6618 6619 6620 6621 6622
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6623 6624
	struct uncharge_gather ug;

6625 6626 6627
	if (mem_cgroup_disabled())
		return;

6628
	/* Don't touch page->lru of any random page, pre-check: */
6629
	if (!page->mem_cgroup)
6630 6631
		return;

6632 6633 6634
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6635
}
6636

6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6648

6649 6650
	if (!list_empty(page_list))
		uncharge_list(page_list);
6651 6652 6653
}

/**
6654 6655 6656
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6657
 *
6658 6659
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6660 6661 6662
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6663
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6664
{
6665
	struct mem_cgroup *memcg;
6666
	unsigned int nr_pages;
6667
	unsigned long flags;
6668 6669 6670 6671

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6672 6673
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6674 6675 6676 6677 6678

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6679
	if (newpage->mem_cgroup)
6680 6681
		return;

6682
	/* Swapcache readahead pages can get replaced before being charged */
6683
	memcg = oldpage->mem_cgroup;
6684
	if (!memcg)
6685 6686
		return;

6687
	/* Force-charge the new page. The old one will be freed soon */
6688
	nr_pages = hpage_nr_pages(newpage);
6689 6690 6691 6692 6693

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6694

6695
	commit_charge(newpage, memcg, false);
6696

6697
	local_irq_save(flags);
6698 6699
	mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
			nr_pages);
6700
	memcg_check_events(memcg, newpage);
6701
	local_irq_restore(flags);
6702 6703
}

6704
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6705 6706
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6707
void mem_cgroup_sk_alloc(struct sock *sk)
6708 6709 6710
{
	struct mem_cgroup *memcg;

6711 6712 6713
	if (!mem_cgroup_sockets_enabled)
		return;

6714 6715 6716 6717
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6718 6719
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6720 6721
	if (memcg == root_mem_cgroup)
		goto out;
6722
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6723 6724
		goto out;
	if (css_tryget_online(&memcg->css))
6725
		sk->sk_memcg = memcg;
6726
out:
6727 6728 6729
	rcu_read_unlock();
}

6730
void mem_cgroup_sk_free(struct sock *sk)
6731
{
6732 6733
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6746
	gfp_t gfp_mask = GFP_KERNEL;
6747

6748
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6749
		struct page_counter *fail;
6750

6751 6752
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6753 6754
			return true;
		}
6755 6756
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6757
		return false;
6758
	}
6759

6760 6761 6762 6763
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6764
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6765

6766 6767 6768 6769
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6770 6771 6772 6773 6774
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6775 6776
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6777 6778 6779
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6780
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6781
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6782 6783
		return;
	}
6784

6785
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6786

6787
	refill_stock(memcg, nr_pages);
6788 6789
}

6790 6791 6792 6793 6794 6795 6796 6797 6798
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6799 6800
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6801 6802 6803 6804
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6805

6806
/*
6807 6808
 * subsys_initcall() for memory controller.
 *
6809 6810 6811 6812
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6813 6814 6815
 */
static int __init mem_cgroup_init(void)
{
6816 6817
	int cpu, node;

6818
#ifdef CONFIG_MEMCG_KMEM
6819 6820
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6821 6822 6823
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6824
	 */
6825 6826
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6827 6828
#endif

6829 6830
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6842
		rtpn->rb_root = RB_ROOT;
6843
		rtpn->rb_rightmost = NULL;
6844
		spin_lock_init(&rtpn->lock);
6845 6846 6847
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6848 6849 6850
	return 0;
}
subsys_initcall(mem_cgroup_init);
6851 6852

#ifdef CONFIG_MEMCG_SWAP
6853 6854
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6855
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6871 6872 6873 6874 6875 6876 6877 6878 6879
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6880
	struct mem_cgroup *memcg, *swap_memcg;
6881
	unsigned int nr_entries;
6882 6883 6884 6885 6886
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6887
	if (!do_memsw_account())
6888 6889 6890 6891 6892 6893 6894 6895
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6896 6897 6898 6899 6900 6901
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6902 6903 6904 6905 6906 6907
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6908
	VM_BUG_ON_PAGE(oldid, page);
6909
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6910 6911 6912 6913

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6914
		page_counter_uncharge(&memcg->memory, nr_entries);
6915

6916 6917
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6918 6919
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6920 6921
	}

6922 6923
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6924
	 * i_pages lock which is taken with interrupts-off. It is
6925
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6926
	 * only synchronisation we have for updating the per-CPU variables.
6927 6928
	 */
	VM_BUG_ON(!irqs_disabled());
6929 6930
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6931
	memcg_check_events(memcg, page);
6932 6933

	if (!mem_cgroup_is_root(memcg))
6934
		css_put_many(&memcg->css, nr_entries);
6935 6936
}

6937 6938
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6939 6940 6941
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6942
 * Try to charge @page's memcg for the swap space at @entry.
6943 6944 6945 6946 6947
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6948
	unsigned int nr_pages = hpage_nr_pages(page);
6949
	struct page_counter *counter;
6950
	struct mem_cgroup *memcg;
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6962 6963
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6964
		return 0;
6965
	}
6966

6967 6968
	memcg = mem_cgroup_id_get_online(memcg);

6969
	if (!mem_cgroup_is_root(memcg) &&
6970
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6971 6972
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6973
		mem_cgroup_id_put(memcg);
6974
		return -ENOMEM;
6975
	}
6976

6977 6978 6979 6980
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6981
	VM_BUG_ON_PAGE(oldid, page);
6982
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6983 6984 6985 6986

	return 0;
}

6987
/**
6988
 * mem_cgroup_uncharge_swap - uncharge swap space
6989
 * @entry: swap entry to uncharge
6990
 * @nr_pages: the amount of swap space to uncharge
6991
 */
6992
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6993 6994 6995 6996
{
	struct mem_cgroup *memcg;
	unsigned short id;

6997
	if (!do_swap_account)
6998 6999
		return;

7000
	id = swap_cgroup_record(entry, 0, nr_pages);
7001
	rcu_read_lock();
7002
	memcg = mem_cgroup_from_id(id);
7003
	if (memcg) {
7004 7005
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7006
				page_counter_uncharge(&memcg->swap, nr_pages);
7007
			else
7008
				page_counter_uncharge(&memcg->memsw, nr_pages);
7009
		}
7010
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7011
		mem_cgroup_id_put_many(memcg, nr_pages);
7012 7013 7014 7015
	}
	rcu_read_unlock();
}

7016 7017 7018 7019 7020 7021 7022 7023
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7024
				      READ_ONCE(memcg->swap.max) -
7025 7026 7027 7028
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7045
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7046 7047 7048 7049 7050
			return true;

	return false;
}

7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
7078 7079
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7094
	xchg(&memcg->swap.max, max);
7095 7096 7097 7098

	return nbytes;
}

7099 7100
static int swap_events_show(struct seq_file *m, void *v)
{
7101
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7102 7103 7104 7105 7106 7107 7108 7109 7110

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7123 7124 7125 7126 7127 7128
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7129 7130 7131
	{ }	/* terminate */
};

7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
7163 7164
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
7165 7166 7167 7168 7169 7170 7171 7172
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */